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GALVANOMAGNETIC EFFECTS IN GRAPHITE
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Abstract—A summary is given of recent work on galvanomagnetic effects in highly oriented pyrolytic graphite with
current flow in the basal planes and magnetic field parallel to the c-axis. Experimental studies over a wide range of
field are considered (0.001-23T) including the effect of fast neutron irradiation (0-2.9x 10" nvt (E > 1 MeV)).
Theoretically, the effects of the variation of carrier properties along the zone edge, and trigonal warping of the
constant energy surfaces are considered, and comparison made with predictions of the simple two band model

usually used to describe galvanomagnetic properties.

1. INTRODUCTION

The purpose of this paper is to describe briefly recent
advances made in our understanding and application of
galvanomagnetic properties of graphite. Some of this
work has appeared in greater detail in other
publications [1-6]. In this paper, an overview of our
studies will be given, with attention drawn to the main
principles and results.

The study has included detailed measurements of the
galvanomagnetic coefficients of highly oriented pyrolytic
graphite (HOPG) with electronic properties similar in
many respects to purified natural single crystals (SCG) or
Kish graphite (KG). Defects have been introduced by
fast-neutron irradiation, and galvanomagnetic effects
have been used to study the resulting changes in elec-
tronic properties. Measurements have been made to very
high magnetic fields (23T =230 kg), into a region known
as the extreme quantum limit, where new, weak, oscil-
lations have been found.

The electronic energy states of graphite have been
studied extensively by many workers. A detailed dis-
persion relationship for the free carriers is available [7]
together with a model for the energy states in a magnetic
field [8,9). The detailed model will be referred to as
SWMcC (Slonczewski-Weiss-McClure). Most recent
estimates of the band parameters can be found in Ref.
[10].

The complete description of the free carriers is com-
plicated. Electron and hole states lie along the edge of
the Brillouin zone resembling highly elongated cigars.
However, the surfaces are trigonally warped and the
dynamic properties of the carriers (e.g. effective masses)
vary strongly along the zone edge. A brief description of
work to examine the effects of these complications on
the galvanomagnetic coefficients will be given.

This paper will only consider effects with the current
flowing perpendicular to the c-axis, along the layer
planes. The subject of c-axis properties is highly con-
tentious, because measured properties depend strongly
on sample material [11]. For the work described in this
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paper, properties obtained on different materials such as
SCG [12], KG[13] or HOPG [14] are very similar, and
differences can be related to different types of scattering,
resulting from different types of predominant defect.

2. PHENOMENOLOGY OF GALVANOMAGNETIC EFFECTS{15]

Since graphite has a six-fold symmetry axis the mag-
netoresistance and Hall effect do not depend on the
direction of current within the planes. However, the
magnetoresistance is strongly dependent on the direction
of the applied magnetic field. In this paper, only effects
with field parallel to the c-axis will be considered (B =
B.).

With current flow along the x-direction, the measured
resistivity will be denoted p,, and the magnetoresistance
Apl po = (pec(B) — pex(0))/ pex(0). The Hall resistivity, p,,,
1S:

Pyx = Ey/jx (1)

where E, is the field developed across the sample and j.
is the current density, The Hall coefficient, Ry, is

RH = pyx/ Bz. (2)
Theoretical models give results in terms of conduc-

tivities, oy, and o.,. Experimental data on resistivities
may be inverted to give conductivities using

__ Pxx
Uxx - 3 3a
Pict P ()
= Py
P pix + pfrx- (30)

In zero field, p,.—0, since Ry is constant in very low
field (see eqn 2). Thus, from (3), pu(0) = }(0), and
0+,(0)=0. The resistivities can be obtained from con-
ductivities using

Pax =~
=y
Ot Oy

(4a)

Pox = (4b)
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Galvanomagnetic effects are used to estimate the den-
sities and mobilities of carriers in the conductor. In
order to understand this, a simple model of gal-
vanomagnetic effects will be discussed.

3. SIMPLE THEORY FOR GALVANOMAGNETIC EFFECTS [15)

In the absence of a magnetic field, an applied glectric
field accelerates the charge carriers parallel to E. Col-
lisions of the charge carriers with lattice imperfections
such as (thermal) atomic vibrations, dislocations, vacan-
cies, impurities, produce a steady-flow current in which
the charge carriers have a net average speed (v) parallel
to the field. The mobility (i) is the ratio of this average
speed to the field.

n=()E )

The mobility is related to the effective mass of the
charge carrier m*, and the average time between col-
lisions 7, called the relaxation time:

er __er
m*  m*(p)

w= (6)

where A is the mean distance travelled between col-
lisions (mean free path), and 7 is the average speed of
the carriers, which is much greater than the drift velo-
city.

If the density of charge carriers is n, then the conduc-
tivity, o, is

ne’r _ ne’A
m*  m*py M

o=nep=

Many of the galvanomagnetic properties of graphite
can be understood qualitatively in terms of a simple
two-band model (STB), comprising a band of electrons
and one of holes. The conductivities are additive. For
instance

0:<(0) = n,ep, (electrons) + naeu, (holes). 8)

When a magnetic field is applied, the combined force

on a carrier due to crossed electric (E) and magnetic (B)
fields is:

= —e[E+ oA Bl ©)

where v is the instantaneous velocity. The action of the
magnetic field is therefore to apply a force tangential to
o, thus producing a helicoidal motion of the carrier. It is
this force which gives rise to the Hall potential and the
magnetoresistance.

Simple theory gives the following forms for o.. and
g, in the semi-classical limit:

nep N2€4k2

T = T4 (B T T+ (uaB)’ (10a)
2 2
_—meu"B | nreux’B

T = T (B 1+ (uB) (10b)

Using these formulae with the transformations (4a)
and (4b) the formula for the magnetoresistance factorises
exactly to give:

(] + b)znlnzb

Ap= (n1+n2b) (11)

E m 2 2p2
[<n1+bn2) bu’B +l]

where b is the ratio of hole to electron mobility (b =
u2/pn1). The expression for the Hall coefficient does not
factorise readily and is too lengthy to reproduce here. In
zero field

‘LZBZ

_-—1@-»)
H = mela+b) (12)

where a = n,/n,.

The behavior in high magnetic fields is also of interest.
For the conductivities, high fields are implied when u,B
and u,B are very much greater than unity. In this case
(eqns 10a and 10b),

ax,—>e( )/B2
M1 M2

€
Oxy —’E(nz - n).

13)
(14

The field dependences of o.., 0xy, pux, pyx are plotted
in Fig. 1 for a two band model. Detailed analysis of
galvanomagnetic data[12, 14, 16] suggests that n, ~n,
i1~ p2. Accordingly, the values n, = 1.02n,, u, = 1.1u,
are assumed in these figures. At low field o,, and p,, are
positive, becoming negative at high field, since n, > n,.

It is interesting to compare the reduced field values at
which these quantities change from behavior charac-
teristic of low field (2B < 1) to that of asymptotic high
field behavior. a,, assumes a B~ dependence for @B =
3, while o, reaches its limiting behavior, « B~', for
somewhat higher fields. It is interesting to note that field
dependences predicted for o, and o, in this high field
limit are also predicted for less restrictive models in the
semi-classical limit. Also, (14) may be used to determine
the difference in densities of carriers of opposite sign for
cases where there are multiple groups of carriers, warped
energy surfaces, etc. In this case (n, - n,) is replaced by
(N — P) where N is the total electron density and P the
total hole density.

The high field conditions are much more restrictive for
resistivities than conductivities as can be seen from Fig.
1. According to (11), if the denominator becomes much
greater than unity, then the magnetoresistance tends to a
constant value. Also, at sufficiently high field (Fig. 1), p,.
should become linear in field and

Ipyxl > Prx. (15)
In this case, from (3), (4), (10a), (10b),
1
Ry->———. (16)

e(n2—ny)
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As will be discussed in the following, (15) is never
obeyed in graphite, so that o, data must be used to
evaluate differences in carrier densities, rather than (16).

In summary, the two band model affords a useful basis
against which to compare experimental data. However, it
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Fig. 1. Calculated variation of galvanomagnetic quantities with
magnetic field for the simple two band model (STBM) with n, =
10242, g2 = 1.1u,. (a), Reduced logarithmic plot for o..(B). Point
B is approximately where the slope reaches its limiting value of
—2. (b), Reduced logarithmic plot of o,,(B). At point B a,,
reaches 99% of its limiting behavior. (c), Logarithmic plot of the
magnetoresistance. At point A, |p,,] = pex. pox does not reach 99%
of its saturation value until zB ~ 10*. (d), Reduced plot of p,,. At
A'lp,:| = psx. At point B on the reduced Hall coefficient curve,
this parameter has reached 99% of its saturation value. g is
defined in eqn (22).

will be shown that the model is inadequate in several
ways. When comparing experimental results with
models, it is preferable to compare conductivities rather
than resistivities, not only because the formulae are
simpler, but also because “high field conditions” are
reached more easily.

The reduced fields, B, on zB defined in Table 1 are
useful quantities for plotting galvanomagnetic data. They
are dimensionless when SI units are used (u-
m?volt 'sec™'; B-Tesla (IT =10kG)). When aB =1,
then, on an average, carriers complete a cyclotron orbit
before being scattered. Since g varies strongly with
temperature, the field, B* = 1/, also varies, as sketched
in Fig. 2, for a high quality sample of HOPG.

There are other fields which are important for the
description of galvanomagnetic properties. When a field
is applied, the energy levels become quantized, with a
separation of feB/m*. This quantisation into magnetic
energy levels, called Landau levels, gives rise to ocil-
lations in the galvanomagnetic properties at low tem-
perature, called the Shubnikov~de Haas ocillations. When
the separation between the Landau levels is greater than
the thermal energy (heB/m* > kT) the carriers are in the
“quantum limit”. The fields necessary to achieve this
condition are also sketched in Fig. 2 using an “‘average”
effective mass (0.05m,) Shubnikov-de Hass oscillations
can just be resolved in this limit.
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Fig. 2. Sketch showing the various magnetic fields of importance -

for graphite. The curves between the classical, low field, and

semi-classical, low field, and semi-classical high field region are

drawn for sample No. 2 of Ref. [2]. Distinctions between the

various regions are not sharp and the curve is only drawn as a
guide.

A third magnetic field of importance occurs when the
separation between Landau levels becomes comparable
to the electrochemical potential, or Fermi energy, 7.
Above this critical field, all of the carriers lie in one
Landau level, the ground state level. The carriers are
then said to be in the ‘“extreme quantum limit”. In
graphite this occurs at about 7T and experiments in this
region were carried out first by McClure and Spry [17].
Also indicated in Fig. 2 is the extreme quantum limit for
the holes which occurs at a lower field value (~3.5T)
than for the electron states.

The extreme quantum limit field is unusually low in
graphite because it is a semimetal with small Fermi
energy and low carrier effective masses. By comparison
the threshold field for a metal such as copper may be as
high as ~2x10*T. Commercial superconducting mag-
netic can be purchased relatively cheaply with maximum
fields ~ 107, and expensively for ~ 14T. Facilities such
as the Francis Bitter National Magnet Laboratory,
Cambridge, Mass., provide steady fields up to ~23T.
Thus, graphite is one material with which the quantum
limit condition can be studied experimentally. It is a
fascinating region in which the density of charge carriers
increases linearly with field as a result of the magnetic
guantization[17]. Further remarks will be made about it
in Section 9.

4. THE MAGNETORESISTANCE
The simple model developed in the previous section
suggested that the magnetoresistance should be propor-
tional to B2, provided the denominator does not deviate
appreciably from unity. Using the model above (n,=
1.02n,, w2 = 1.1yx,) then the denominator only deviates
from unity by 0.02% when the field reaches a value
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Fig. 3. Typical data for p,, and p,, at (a), 77.4; and (b), 1.1°K. At

the upper field value, the magnetoresistance at 77.4°K amounts to

Aplpo=1250 and at 1.1°K to 33,000. Shubnikov-de Haas oscil-

lations can be seen clearly at 1.1°K. At this temperature the
m =1, 2 electron and m = | hole oscillations are indicated.

B*=p*"' where p*=(wip2)"*=(bu,?)"?. Thus, the
magnetoresistance should follow B> behavior well in
fields less than B*. This leads to a useful formula for
estimating p*[12]:

1/2
w* =< 8p ) where B < B*. (17

poB :

Unfortunately, the experimental data (Fig. 3) indicate
that the magnetoresistance does not follow this power
law. If a plot is made of log Ap/po vs log B, the slope
of the line, n(B), can be used conveniently to describe
the field exponent of the magnetoresistance (Fig. 4).
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Fig. 4. Experimental plot of the magnetoresistance power law
exponent, n, as a function of field at T =298, 77.4 and 4.2°K [2].
Data at 4.2°K was smoothed to eliminate Shubnikov-de Haas
oscillations in the magnetoresistance.
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Generally the curves show dips, approaching the expec-
ted value of 2 only at very low field values (u*B < 1).

At low field it is interesting to enquire whether
the magnetoresistance, or other galvanomagnetic
coefficients, can be universally scaled onto a single plot.
The magnetoresistance of many metals can be reduced in
this way onto a Kohler plot [18]. Kohler’s rule needs to
be modified for graphite [19] since the density of carriers
changes appreciably with temperature, whereas for a
metal it remains nearly constant. A suitable modification
would be

B2 _ fiyn 18
2 f(u*B). (18)

A specific, possible form for the function f(u*B) is given
in eqn (17). Unfortunately, no general function can be
found to fit the data in graphite (see Fig. 4 for the
different behavior of n(u*B) at different temperatures,
for instance). This suggests that the magnetoresistance
may be a very complicated phenomenon. A more
detailed discussion of scaling concepts is given in Ref. [1].

As shown in Fig. 3, p., does not saturate at any field,
and at low temperature follows a B' dependence closely.
Also p., is much greater than |p,.| at high field values. It
was discussed in Section 3 that the high field condition
was more stringent for p,, than o,.. Accordingly, in Fig.
5, the high field behavior of o,, is examined. A reduced
logarithmic form o.,(B)B/o.(0)B* vs u*B is used,
where B*=u’ "', At high field (e.g. B/B*=3), the
STBM indicates that the slope of this curve should be
—1. As shown in Fig. 5, experimental data do not
conform to this prediction. In fact at 1.1°K the curve
flattens out above u:‘B =100(B ~ 1T). A good test of
the failure of STBM cannot be made above ~ 3T since
“extreme quantum limit” effects become important (Fig.
2).

Note that in the low temperature data (1.1°K) Shub-
nikov-de Hass oscillations can be seen. They are
“washed out” at higher temperature by thermal
broadening caused by collisions between carriers and
lattice vibrations (phonons). Also, the oscillations are
damped out by collisions between carriers and defects
(e.g. dislocations, impurities, point defects, grain boun-
daries) and cannot be detected in highly defective sam-
ples. Note that no more oscillations are indicated above
the quantum limit field (~ 17T) discussed in Section 3.
However, weak oscillations have been detected in this
field range, to be discussed in Section 9.

In summarizing this section, the magnetoresistance is a
much more complex phenomenon than is allowed for by
the simple two-band model. The low-field behavior is
anomalous, while at high field the semi-classical predic-
tion for its field dependence is not obeyed. The mag-
netoresistance can still be useful as a tool for charac-
terising specimens, as will be discussed in Section 6.
Shubnikov-de Haas oscillations can be useful in some
cases for characterising neutron-irradiated specimens, as
discussed in Section 8. The quantum limit is currently
being studied, and a brief description of our work is
given in Section 9.
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Fig. S. Plot of 0. (B)- Blo(0)- B* vs B/B* at 298, 77.4 and

1.1°K. At 77.4 and 1.1°K the data are derived from that in Fig. 5

with Shubnikov-de Haas oscillations smoothed from data at

1.1°K. The curve for STBM is drawn with n;=1.02n,, u,=
Lig,.

5. THE HALL EFFECT

The Hall Effect is much more difficult to understand
than the magnetoresistance because contributions from
carriers of different sign (electrons and holes) are sub-
tractive, rather than additive, as in the magnetoresis-
tance. At low field the Hall coefficient or p,. can change
sign even for a simple two band model (Fig. 1). Typical
data for p,, over a wide field range are shown in Fig. 3.

At low field, however, the variation of the Hall
coefficient is complicated and cannot be fitted by a
two-band model. Note the unusual changes that occur in
Ru(B) at very low field, as indicated in Fig. 6. A nega-
tive-going spike is invariably seen in HOPG. Cooper et
al. [20] found that, upon further annealing, the behavior
at 77°K was characterised by a positive-going trend
similar to that seen by Soule [12] in SCG at the same
temperature (Fig. 6). Note, however, that the same sam-
ple of SCG shows a negative-going trend at low field at
4.2°K (Fig. 6). Samples of Kish graphite with high per-
fection (see Section 6) appear to show negative-going
trends at low field [13, 21].

Soule [12] originally interpreted the positive-going
trend at 77°K in terms of a mobile, minority hole.
Pockets of light holes are located in the corners of the
Brillouin zone. However, all the low field trends in
Ru(P) cannot be related to these carriers, since in most
specimens the Hall behavior is electron-like (negative
trend).

Experimentally, |p,| is always much smaller than p,,.
This is related to the anomalous field-dependence of p,,
and o, discussed in the previous section. The sign of the
charge carrier with the higher density can be inferred
from the sign of the Hall coefficient at high field, but
because |p,«| < pxx at all fields the high field limit equa-
tion (16) cannot be used. Instead, the limiting equation
for o, (eqn 14) may be used, since this conductivity
component tends to B~' dependence as predicted by
general, semi-classical models.

It is interesting to note that the difference in carrier
densities (N-P) where N is the total electron, and P the
hole densities, is usually smaller for high quality samples
of HOPG (~0.4x10”m™ using data from Fig. 3 at
1.1°K) than SCG (~ 1.5 x 10> m™3)[22]. In this one res-
pect HOPG is more “perfect” than SCG. A further
discussion of the relationship between galvanomagnetic
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Fig. 6. (a), Hall effect data for HOPG {13] and SCG{11] below

0.6T. More detailed measurements for HOPG can be found in

Ref. [2]. Note the trends at very low field. (b), Detail of curve at
71.4K, B <0.06T [2].

properties and sample perfection is given in Section 6.
In summary, the Hall coefficient is anomalous at low
fields. Results show that samples of SCG, HOPG and
Kish graphite are nearly compensated ((P-N)< P, N).
Furthermore, the mean carrier mobilities of electrons
and holes are roughly equal. Although the high field
asymptote of Ry cannot be used to estimate (P-N)
reliably, because of the anomalous behavior of py, o,.B
behaves semi-classically at high field, suggesting that
(P-N) may be obtained from its asymptotic value.

6. THE MOBILITY OF THE CHARGE CARRIERS
It is of interest to evaluate the mean mobilities for the
charge carriers from galvanomagnetic data. As outlined

in eqn (6) the mean free path may then be obtained. At
T =(0°K, all carrier scattering results from defects, so
that valuable information can be gained about the density
of defects. Measurements need not be carried out at very
low temperature, since the relaxation times due to
defects and intrinsic scattering mechanisms can be
summed using Mathiesson’s rule [17]. In practice, 77°K
(liquid nitrogen temperature) is a useful measurement
temperature. Several different methods for evaluating
mobility are summarised in Table 1, and discussed
below.

6.1 Mean conductivity mobility

A mean conductivity mobility can be defined from eqn
(7) in which n is the total number of carriers (N + P).

0u(0) = p=i (0) = (N + P)e(p.). (19)

Values of (N + P) used here were calculated by Prof.
McClure, using band parameters in SWMcC discussed in
Ref. [11]. Data for (u.) are illustrated in Fig. 7 for
HOPG [2]. Although the above value of mobility, which
is an arithmetic mean of u, and w, for the two-band
model, is useful, it is convenient to have a measure of
mobility without recourse to a calculation of the density
of carriers. In principle this can be obtained from the
magnetoresistance or magnetoconductivity.

6.2 Magnetoresistance mobility due to Soule, 11

Soule [12] proposed the use of eqn (17) for the mobil-
ity. Realizing that it only represented a rough guide to
the mobility, he suggested that it would be convenient to
measure it at a fixed field, which he chose to be 0.3T.
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Fig. 7. Comparison of the scaled magnetoresistance mobility,

p%, in eqn (20b), or magnetoconductivity mobility, g, in eqn (22)

as a function of temperature, compared to the average drift
mobility (), in eqn (19).
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Table 1. Mobilities discussed in present paper

Symbol Definition Name General remarks Valuet (m?v~'s™")
A o 172 .
u* (—2) Magnetoresistance Value not defined unless -
o8 mobility magnetic field specified
12
uh (A—pz) Magnetoresistance Magnetic field specified 43.2
PoB"/ p-const. mobility for all temperatures usually (B=03T)
chosen as 0.3T
[T ( AZ:) Scaled magneto- The value of reduced field
PoB  uzB=1 resistance mobility at which value is calculated 91.1
can take other values than
piB=1
wt See eqn (21)  Mobility of Based on simplified two- 45.6 (data to 0.37)
in text Kawamura ef al.[13] band model. Value depends 37 (data to 2T)
on field range over which ~ 90 (data to 0.01T)
data taken.
@ a=B3y, Scaled magneto- Definition can be gener- 933
(see eqn 22) conductivity mobility alized (see Ref. [1])
(i) —|e|(;ﬁ(i031) Conductivity mobility Mobility in principle gives 4.4

“best” mobility, but depends
on knowledge of (N + P)

tBased on sample No. 2 of HOPG of Ref. [2] at 4.3°K. oxx(0)=36.0x10%Qm)~", (N + P)=5.7x 10¥m™>;

Paook/ P2k =145

The main difficulty with the use of (17) is that values of
mobility depend on the value of magnetic field. Typical
curves of u*(B) are given in Fig. 8 for HOPG. If the
magnetic field is fixed at some arbitrary value, the resul-
ting curve u 5(T) will necessarily give values which are

> 5 1 1 L j
w
s
>
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130} T=42kK
I
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0] 0.5 1.0 1.5 2.0
*
KgB

Fig. 8. The magnetoresistance mobility from eqn (17) plotted as a
function of reduced field, w*, at 298, 77.4 and 4.2°K. p* and u?¥
are defined in the text and Table 1.

relatively reduced at lower temperature, and relatively
increased at higher temperature, This difficulty can be
overcome through the use of scaling concepts, to be
discussed later.

6.3 Mobilities based on two-band analysis of gal-
vanomagnetic data

If the curves of p.(B) and p,.(B), or ox(B) and
0xy(B) can be fitted with a two-band model, using for-
mulae such as (10a) and (10b), etc. then mobilities y, and
2 can be obtained directly. However, the data cannot be
fitted well in this way, even using multiple carrier
models, as originally indicated by McClure [8]. Specific
difficulties such as anomalous low and higher field
behavior have already been discussed.

Kawamura et al. [13] proposed a method based on a
simplified form of the two-band formula for the mag-
netoresistance (11):

BZ
Aplpo

Thus, a plot of B*/Ap/pe V B? should yield a straight line
with intercept . The experimental data for HOPG do
not give a straight line for any part of this plot (Fig. 9).
Furthermore, published data on Ap(B)/p, for Kish
graphite indicate a similar form to HOPG. A two-band
model is not expected to fit the data and the method of
Kawamura et al. will give an intercept which depends on
the field range over which the data is taken (see Fig. 9).
Kawamura ef al. [13] take measurements to 0.6, and use
an approximately linear portion of their curve between
0.35-0.6T. However, if data are taken to higher field,
then a different intercept can be obtained, as shown in
Fig. 9. Resulting mobility values for a sample of HOPG
are listed in Table 1.

w+ (u)sz. 2n

N+P
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Fig. 9. A plot of B?py/Ap vs B? for HOPG [2] as proposed by

Kawamura et al. [13]. The lower curve is drawn approximately to

the same scale and field range as in Ref. [13]. The upper curve

extends data from the same specimen to higher field values. The

dashed line is the same in each case, indicating that the portion

of the lower curve which appears as a straight line is in fact part
of a curve.

6.4 Mobility values based on scaling concepts

As discussed earlier, magnetoresistance data obtained
at different temperatures cannot be scaled onto a uni-
versal curve (eqn 18). However, a scaled mobility value
can be obtained if magnetoresistance or magnetocon-
ductivity formulae are used at the same value of reduced
field at all temperatures. For the scaled magnetoresis-
tance mobility, . 3:

A 1/2
P’:( - (Pozz) gB=constam. (20b)

It is proposed that the specific value of ufB be chosen
as unity [1]. At this field, anomalous effects from trigonal
warping should be minimized[3] while field values should
not be too high that linear magnetoresistance anomalies
or quantum effects (Fig. 2) are important. The value
©¥=1is therefore a compromise.

A similar scaled mobility based on the conductivity
component g, is:

i=Bi (22a)

where

Oxx(Buy2) = 303 (0). (22b)
The definition can be generalized, as discussed in Ref.
[1]. Although this formula is more firmly based on
theoretical grounds than (20), the two scaled mobilities
uy and g differ by less than about 2% for typical
materials (Table 1). The difference is too small to be of
much consequence and will be ignored in this paper.

6.5 Comparison of mobility values
All of the above prescriptions give different values for

the mobility. To illustrate the differences, the mobilities
have been calculated for a sample of HOPG at 4.2°K
(sample No. 2 of Ref. [2]) and are recorded in Table 1. If
the magnetoresistance could be explained on the basis of
a two-band model, then all of the mobilities in Table 1
would lie within a few per cent of each other. If the
density of carriers calculated by McClure is correct, then
{u.) must represent the “best” value of the mean mobil-
ity. One aim of any theoretical model for the gal-
vanomagnetic properties of graphite should be an
understanding of the reasons for the discrepancy be-
tween these values.

If (u.) represents the “best” value for the mobility,
then Kawamura et al’s[13] value at 4.2°K is the
“nearest” obtained from the magnetoresistance.
However, this is accidental, since it results from the
arbitrary field range over which they took data, dictated
by the limitations of the magnet used for the measure-
ments. With another magnet or at another temperature,
their value of mobility could have been “worse” than
other values.

In the next section results of some theoretical models
will be presented, which allow some of the anomalies
discussed above to be understood. These models cannot
explain the reason for the large (~ x2) difference be-
tween (i) and g+ or ji. In the absence of a satisfactory
explanation, it is suggested that experimental results for
mobility should be expressed in terms of pi or j.
Between about 77 and 300°K, u} measured at 0.3T is an
acceptable alternative, because it is based on experi-
mental convenience.

6.6 Use of mobility values for assessing specimen per-
fection

In spite of the fact that estimates of mobility are
anomalously high, differences in mobility for different
specimens have been wused to assess material
perfection [14, 23-27]. The mobility at low temperature is
a blunt tool for this purpose since it only gives a measure
of the weighted separation of defects responsible for
scattering. It cannot distinguish between different defects
and may be relatively insensitive to certain types of
defects, e.g. neutral substitutional impurities.

The resistivity ratio of metals between 300 and 4°K is
often used as an indication of specimen quality. Essen-
tially this ratio is the mobility ratio, since the density of
carriers is independent of temperature for a good metal.
For graphite the density of free carriers increase about
four-fold between 4 and 300°K, so that the resistivity
ratio and mobility ratio differ by this factor. Also, ac-
ceptor or donor-type defects may change the density of
free carriers, since graphite is a semimetal with only one
free carrier for ~ 10* atoms.

In a sample of HOPG with very large basal crystallite
dimension (~4pm) the resistivity ratio may approach
proo-x!pex <20, corresponding to a mobility ratio ~
80(n¥(4°K) ~ 100 m*v"s™", u*(300°K)~ 1.25 m’v's™").
Purified natural crystals have been studied with resistivity
and mobility ratios about twice these values[12], and
slightly higher ratios have been found recently for Kish
graphite [13]. More typical values for HOPG or PG are
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(p(300°K)/p(4°K) ~ 4; pAaK) ~ 18m?*v's7;
p*G00°K) ~ 1.1m%>v™'s™"). It is to be noted that the
resistivity and mobility at, or near 300°K are not changed
appreciably, until the resistivity ratio falls to about unity,
because electron-phonon  scattering predominates.
However, trends in the mobility at liquid nitrogen tem-
perature (77°K) can be used as a convenient measure of
sample perfection without the expense and equipment
complication of liquid helium.

The idea of using resistivity ratios and mobilities to
assess defects in highly graphitized materials is certainly
not new. Earlier work has been carried out in several
laboratories [14, 23-27]. However, more recent work on
galvanomagnetic properties has refined the definition of
mobility and its interpretation in terms of scattering
phenomena. This will be addressed in the following
section.

7. GALVANOMAGNETIC EFFECTS AND THE
ELECTRONIC STRUCTURE OF GRAPHITE

In the previous sections certain problems with the
interpretation of galvanomagnetic data were discussed.
In this section more detailed calculations will be con-
sidered which will help to explain some of the
anomalous behavior. A complete understanding is not
possible at the present time, but the calculations have
illustrated some of the complexities and subtleties of the
transport properties of graphite.

Compared with the simple two-band model, the actual
electronic properties of graphite differ in three major
ways:

(1) In STBM all carriers within a band have the same
effective mass and relaxation time. In SWMcC the
effective mass varies markedly along the edge of the
Brillouin zone. The relaxation time is also expected to
vary (see later discussion). In effect, the properties
should be described by a Multiple-Carrier-Group~Model
(MCGM), in which a thin slice of carriers within the ele-
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Fig. 10. A reduced plot of o,.(B)/a,(0) vs B/By in the low field

region for STBM, MCGM (constant relaxation time) and MCGM

(constant mean free path) compared to experimental data at
4.2°K.
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ment of k-space k. to k, + Ak, is considered to have the
same effective mass and relaxation time.

(2) Within such a slice the constant energy surfaces
are not circular, but have three-fold warping. The degree
of warping varies along the zone edge, roughly diminish-
ing from the centre of the zone edge to the zone corners
where the surfaces are circular. In the region between
electrons and holes, the trigonal warping produces off-
edge connecting arms. Transport effects are strongly
affected by the warping.

(3) In the formulae for STBM, the mobilities used in
expressions for o, (conductivity mobility) and o,, (Hall
mobility) were the same. This is strictly true only for
very low temperature (kT <7, where k is Boltzmann's
constant, T the absolute temperature, n the electro-
chemical potential or Fermi energy). This is called the
region of degenerate statistics. At ambient temperature,
kT/m ~ 1, so that non-degenerate statistics are applicable,
and the Hall and conductivity mobilities are not identical.

Calculations have been made to assess the effects of
these three factors on the galvanomagnetic coefficients.
The effects of carrier non-degeneracy are not as im-
portant as the other two factors, and experiments show
that anomalies tend to be less pronounced at higher
temperature. Further discussion of carrier non-
degeneracy is left to Ref. [2].

Figures 10 and 11 indicate the effect of the variation of
mobility along the zone edge (MCGM) on the conduc-
tivity components o,.. Two models of the relaxation time
have been used in these figures: (a) Mean free path,
A = constant; (b) Relaxation time, 7 = constant. At low-
field (Fig. 10) the reduced conductivity is depressed
below the simple case, but at high-field (Fig. 11) the
reverse is true. However, the model does not explain the
anomalous high-field behavior for B/B,,, = 10, nor can it
explain the low-field anomalies in the Hall effect.

The complexity introduced by trigonal warping can be
illustrated by simplifying the shape of the constant
energy surfaces as shown in Fig. 12 by arcs of circles.
For the purpose of calculation, the transport properties
can be calculated by rearranging these segments into two
separate circles. Considering the electrons, the small

T ' T T
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Fig. 11. A reduced plot o,(B)- Blo.(0)B,, vs B/B,, for

STBM and MCGM compared to experimental data. Note that the

constant relaxation time model fits the data well up to B/B, 4.

At higher field the calculation gives a slope of — 1(o,,aB™2) while
the experimental data tend to saturate (o, aB™').
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(a)

(b)

Fig. 12. (a), Simplified form for the trigonally warped electron

Fermi surface in graphite. (b), The same surface reconstructed

into equivalent electron and hole surfaces. Shaded areas
represent filled states.

circle resulting from the tips of the trigonally-warped
surface is electron-like, since states with lower energy lie
inside the circle. However, the larger circle is hole-like
since states with lower energy lie outside the circle.
Thus, for this simplified form of the trigonally-warped
surface, the properties of a thin slice of electrons can be
represented by a group of electrons plus a larger group
of holes. Because the electron circle is smaller, these
carriers dominate at low field (they turn through larger
Hall angles). At higher field the hole carriers dominate.
Finally, calculations show that at very high field o,
tends to the semi-classical limit given earlier.

For SWMcC the segments of the constant energy
surfaces are not arcs of circles and the velocity of the
carriers has to be Fourier-analysed. The result of a
model calculation (6) is shown in Fig. 13 in which the
ratio of o, calculated for the trigonally warped surfaces
is compared to that of unwarped (circular) surfaces. The
sharp dip occurs when the carriers in segments with
negative curvature predominate. Over a region of mag-
netic field the electron states may behave as holes in the
Hall effect, and vice-versa!

Similar calculations for o, using this Model (3) show
that trigonal warping is very important at lower fields
(e.g. B/B,><I1)Fig. 14). The variation of o.(B) is
similar to that for MCGM illustrated in Figs. 10 and 11.
In both cases a minimum occurs in the magnetoresis-
tance power-law exponent, n, with field, similar to that
obtained experimentally (Fig. 4). This is not surprising,
since in both MCGM and calculations using trigonally-
warped surfaces, a range of values of mobility is intro-
duced for each carrier (mobility dispersion). At zero field
the conductivity can be increased by a factor of ~ 1.5
over that obtained for a model with the same relaxation

HOLES

ELECTRONS

103 1072 107 I 10 102
B/B,,»
Fig. 13. A possible variation for the ratio of the Hall conduc-
tivity o%,/o5, =r, where ¢ represents the calculation for the
trigonally warped surface and ¢ for a pocket with the same
number of carriers, but circular cross-sections.

time, but constant energy surfaces with circular cross-
section. Apart from being important in the magnetic field
dependence of o.,, trigonal warping is also important in
the pressure dependence of the conductivity [29).

The calculations are very lengthy, even for simplified
models of the constant energy surfaces and relaxation
time. A quantitative fit to the Hall and magnetoresistance
data has not been made, but it is believed that anomalies
at low field can be explained in this way. The difficulty of
using Hall and magnetoresistance data to obtain carrier
densities and mobilities is apparent. Although estimates
can be made using simple models, such as STBM, the
values derived may be misleading. Trends of properties
with specimen perfection may be interpreted much more
readily, but caution should be exercised.

In the above calculations, very crude approximations

25 T T T
Oux™ TRIGONAL & CIRCULAR

1 I
oO | 2 3 4

B/B,,»

Fig. 14. A plot of &,(B) for electrons in a trigonally warped

surface (SWMcC) compared with that for the same number of

electrons in a pocket with circular cross-section with the same

relaxation time 7. Note the enhancement of o,, due to trigonal
warping.



Galvanomagnetic effects in graphite

for the relaxation time were used. At the same time,
detailed models of the constant energy surfaces,
effective masses, etc. can be used. This is clearly an
undesirable situation. Scattering processes are extremely
complex in graphite, so that very little progress is expec-
ted in our quantitative understanding of low-field pro-
perties.

At higher field (e.g. u*B =4, but B well below the
quantum limit) the conductivity component a,, should
decrease as B~ even for complex models of the dis-
persion relationship. Experimentally, this was not
observed, and the reason is not understood. In fields
above ~ 1.5T the density of carriers begins to increase,
becoming roughly linear above the quantum limit field
(~7T). Even when allowance is made for this in inter-
preting o, and p., non-classical behavior is observed. It
is possible that the scattering processes are dependent on
magnetic field, or that quantum effects produce a non-
quadratic dependence.

At the present time it has not been possible to recon-
cile the difference between the conductivity mobility,
{uc) and the magnetoresistance mobility, p*, or mag-
netoconductivity mobility, . Although either the MCGM
or trigonal warping models introduce important
modifications to the low field behavior, the average mobili-
ties calculated from p,.(B) or . (B) do not differ by more
than about 15% from the conductivity mobility. It is
extremely unlikely that more detailed models of the
relaxation time can help to explain the observed difference
of about a factor of two (u* ~ g ~ 2(u.)).

It appears that there is a basic problem with our
understanding of the transport properties which requires
careful consideration. The simplest explanation is that
the number of carriers calculated from the Slonczewski
Weiss model is in error by a factor of about two.
However, this requires a complete re-examination of all
the band parameters in SWMcC, and many experiments
can be fitted satisfactorily to the present model. A satis-
factory explanation of the present problem with both the
mobility values and the field dependence of o,. awaits
further developments.

1 1 i
0 12 24 36 48 60 72 84 96
B(TESLA)

Fig. 15. Variation of o,,B with field for samples irradiated to

different dose levels. Note that o,.B tends to a constant value at

high field. Data are taken at ~ 1.4°K. Dose levels for each sample
4 are given in Table 1.
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Fig. 16. Variation of o,,B with field for samples irradiated to
different dose levels. a,,B tends to a constant value. Data are
taken at ~ 1.4°K.

8. THE EFFECT OF NEUTRON IRRADIATION ON THE QUANTUM
LIMIT GALVANOMAGNETIC EFFECTS

Samples of HOPG have been irradiated with fast
neutrons to doses in the range 0.18-2.9x 10" nvt (E >
1 MeV). p., and p,. were then measured to ~ 9T. By this
field both o..B and o,,B were found to reach ap-
proximately constant values (Figs. 15 and 16). Values for
the acceptor density. (P — N) were obtained from the
limiting value of o., B, as suggested by eqn (14). By
plotting o.,B/|e| in Fig. 15, acceptor densities can be read
directly off the graph.

Fast neutron irradiation knocks atoms out of lattice
sites into interstitial positions. At 90°C, the temperature
of irradiation, some annealing has already taken place,
and interstitial atoms will have diffused into interstitial
loops (for a review, see Ref. [30]). There are many
studies in the literature which discuss changes in elec-
tronic properties of polycrystalline graphite. The results
are qualitatively similar to those in PG [31], where the
Hall coefficient becomes more positive with irradiation,
the resistivity is increased, and the magnetoresistance
lowered. Acceptors are presumably related to the for-
mation of vacancies, although this is not established
definitely.

As discussed in Sections 3 and 5, the acceptor con-
centration may not be obtained from the limiting value of
the Hall coefficient, because use of the field limit formula
(16) assumes that p.. <|p,]. In all samples studied,
|pyxl < pex at all fields (compared Figs. 15 and 16). This is
the first study to have attempted to find acceptor con-
centrations at high field, and the only study to use the
asymptotic value of o,,B, It is emphasized that eqn (14)
is assumed to hold, since a,,B follows the semiclassical
predictions. However, the anomalous behavior of
0x: (0B saturates (Fig. 15) rather than ¢, B?) is trouble-
some, since it shows that galvanomagnetic effects are
not understood in this field range.

Values for the rate of acceptor production per unit
radiation dose are listed in Table 2. Values are given on
the basis of eqn (14) for doses measured on the basis of
two energy criteria (>0.1 MeV, >1MeV). Also, for
comparison, the value is also given for the same data
using Hall data alone (p,,) and eqn (16). The much higher
value obtained by Blackman et al. (31] is related partially
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Table 2. Comparison of values for the rate of production of acceptors with neutron

dose level
Acceptor
rate
Reference Type of measurement  (ppm/10'"nvt)  Comment
Blackman ef al. [31] Hall effect (B <0.5T7) ~175 E>1MeV
(T ~295°K) (eqn 16)
Cooper et al. [32] Shubnikov de Haas 28 energy criterion
(T~14K) not given
McClure [33]t magnetic sucepti- 57 E>0.25MeV
bility, ESR and
Hall data
Present galvanomagnetic data (14+£3) E>1MeV
results 42°K, 8T(eqn 14) 9+2) E>0.1 MeV
4.2°K 8T(eqn 16) 30+10) E>1MeV

tSimilar results have been found by Wagoner, based on analysis of galvanomagnetic,
ESR and magnetic susceptibility measurements (G. Wagoner, private communication,

1977).

to their use of eqn (16), and also to use of Hall data at
low field (<0.6T). A much lower value was obtained by
Cooper er al. [32] in which acceptor levels were inferred
from changes in Shubnikov-de Hass frequencies. The
shifts in the frequencies were small, and complicated
fitting proceedures were necessary to derive the shifts.
An intermediate value was reported by McClure [33],
who analysed a number of experiments. The discrepancy
between the present values and his is not clear.

The data were also of interest since shifts of the
extreme quantum limit Shubnikov-de Haas oscillations
could be measured with irradiation. Extrema in p,. and
Pyx Occur whenever maxima or minima with respect to k.
of magnetic energy levels are in coincidence with the

B { Testa)

® Woollam
© Present Result, |E

10 o Present Result, 1 H 7
O Present Resuit, 2E
I 1 1
0 10 20 30 40

(P-N) (ppm)

Fig. 17. The variation of the coincidence fields with acceptor

concentration for the m = 1, 2 electron, and m = | hole magnetic

quantum levels. The full line is the result of rigid-band theory,

including spin splitting. Results of experiment are indicated by

circles and represent positions of extrema in p..(B) and p,(B)

data. Apart from the unirradiated sample, spin splitting could not
be resolved in the experiments.

Fermi level. The calculated values of field at which the
m =1, 2 electron and m =1 hole quantum levels are in
this coincidence condition are plotted in Fig. 17 as a
function of acceptor concentration.

The model assumes that the only effect of the ac-
ceptors is to lower the Fermi energy, with all other band
parameters held constant (rigid band model). Since the
lattice parameters vary by less than 0.2% in the dose
range examined, this was thought to be a reasonable
approximation.

Experimentally the coincidence fields are associated
with extrema in p..(B) and p,«(B) as indicated for the
magnetic levels of interest in Fig. 3(b) for unirradiated
graphite. Allowance must be made for the fact that the
position of the extrema in p,, or p,, can be shifted by
electron scattering. Thus, in Fig. 17, the shifts in extrema
recorded between the most lightly irradiated specimen,
No. 2, and the irradiated specimen, No. 1, were probably
due to the increased scattering.

The following conclusions may be drawn from these
results.

(1) The downward shift of electron, and upward shifts
of hole extrema in p,, and p,, are in agreement with the
assignment of electrons near the centre of the Brillouin
zone edge. This corresponds to a negative value of the
band parameter y,. The shifts of low field Shubnikov-de
Haas frequencies of neutron-irradiated graphite were
also consistent with this carrier assignment, which has
been the subject of several studies over the last few
years (see Ref. [34] and discussion in Ref. [35]). Soules’
results on boron-doped graphite [36] are the only ones
that are apparently consistent with a positive value of y,.

(2) Although downward shifts of the electron extrema
are in rough agreement with the calculated values, the
upward shift of the hole, m = 1, extremum is too small to
be accounted for on the basis of the rigid band model.
Cooper et al.’s results[32] suggested this also, but scat-
ter was too high to enable definite conclusions to be
reached [10]. Attempts were made to determine changes
that could occur in band parameters in SWMcC, but the
data could not be fitted with reasonable changes. This
awaits a satisfactory explanation.
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A comprehensive account of this work can be found in
Ref. [4].

9. GALVANOMAGNETIC EFFECTS IN THE QUANTUM LIMIT

In the quantum limit it is of interest to compare the
experimental variation of o, and o,, with calculated
behavior. McClure and Spry [19] predicted that o,.B and
o.,B should be constant in this field region for a sample
in which ionised impurity scattering predominated, and
this behavior was approximately observed in their SCG
samples. Woollam [37] later found non-linear behavior in
0. for SCG up to ~20T.

Data for HOPG have been reported at 298, 77, 4.2 and
1.1°K by us, up to 23T [5, 38]. Representative curves of
0B and o,,B are shown in Figs. 18 and 19. Neither of
these quantities is constant at any temperature for this
material.

An interesting observation is that the curves do not
vary smoothly, but have small “bumps.” Shubnikov-de
Haas oscillations are not expected in this field range (a
further Shubnikov—de Haas oscillation is expected in
excess of 50T due to splitting of the ground state energy
level). Further work is necessary to establish more
clearly whether or not the effects are intrinsic. However,
they have been observed in two samples, and oscillations
have also been seen in c-axis magnetoresistance of two
samples. A possible explanation is that they are magneto-
phonon oscillations, but further work is required to
establish this conjecture.

10. CONCLUSIONS
In spite of the large number of publications which
have considered galvanomagnetic properties of graphite,
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Fig. 18. Curves of o, B vs B in the quantum limit for HOPG at
1.1, 4.2, 77 and 298°K {38].

there are many problems which remain to be solved
before a quantitative understanding is reached. However,
it is important that these properties are well understood
before galvanomagnetic properties are used to charac-
terize changes that occur with specimen perfection,
doping, or formation of dilute lamellar compounds. In
some cases these properties are the only ones that can be
measured conveniently.

In the preceeding sections some advances in our
understanding have been outlined. Complexity in these
properties is now qualitatively understood. The in-
adequacy of the simple two-band model (STBM) has
been clearly demonstrated. This work illustrates the
difficulty of quantitatively determining carrier mobilities
and densities from magnetoresistance and Hall data.
However, trends in properties can be used to assess
changes in scattering of carriers and acceptor or donor
concentrations.

A major problem still remains with the anomalous
behavior of .. in fields which are lower than the
extreme quantum limit, but for which u*B > 1. At the
present time a qualitative understanding of this is not
even available. (The anomalous maximum in the high
field resistivity observed by Kreps and Woollam [39] and
Ayache and de Combarieu {40] may be related to this
problem.) A fundamental problem remains with the lack
of agreement between the conductivity and magneto-
conductivity mobility. In the quantum limit more refined
calculations are required to understand the field depen-
dence of o, and o,, Also the origin of the weak
oscillations (whether intrinsic or extrinsic) needs to be
examined.
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