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Ultrasmall, quasi-zero-dimensional quantum box structures can now be made which exhibit com- 
plete quantum carrier confinement. We have calculated the exciton stales i~ quantum boxes. Results 
are presented to illustrate the transition from complete to negligible confinement. 

With the recent advances in the art of  microfabr/cation, quasi-zero-dimensional 
quantum box nanostructures can be made which exhibit quantum carrier confine- 
ment in all three dimensions [ 1-4 ]. As a consequence, quantum box structures 
have generated much interest as a new class of artificiaUy structured materials with 
interesting nonlinear optically properties [ 5 ] and atomic-like discrete states ideal 
for use in laser structures [6 ]. To develop a better understanding of quantum boxes 
and the effects of complete quantum confinement on their optoeiectronic proper- 
ties, we have performed extensive calculations of' the exciton stales in such 
structures. 

Exciton states are studied by use of  the multiparticle, effective-mass, Schr6din- 
get equation for interacting electrons and holes in a quantum box. Microfabricated 
quantum boxes are constructed from narrow, two-dimensional quantum wells by 
processing the wells to confine the two-dimensional motion [ 1-4]. Typically, the 
width w of the two-dimensional well is an order of magnitude less than the length 
L of  the side of~he box (see fig. t )o As a simplifi:afion we model quantum boxes 
as two-dimensional rectangular boxes with w= 0 m d  with infi,aite barriers. Use of 
a finite, narrow well width w weakens the Coulcmb effect slightly but would not 
change the results qualitatively. The panicle interaction is the Coulomb interac- 

are calculated by use of a variational approach. "[he exciton variational wave func- 
tion is a product o~ ~he etec~ron and hole single particle slates ( n =  1 ) and a linear 
combination of Gauss an  functions of  the electron-hole separatiom A configura- 
tion-interaction (CI) approach [7,81 has been used to calculate exciton excited 

* This work was performed under the McDonnell Douglas Independent Research and Development 
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Fig. I. Ground  state energy o f  an exciton confined in a square box o f  width L. The solid (upper  
dashed)  curve is the energy o f  an (non)interact ing electron-hole ( mh = 0.09) pair. The lower dashed 
curves are the exciton binding energies for mh = 0.09 and mh = 0.377. ] 'he  horizontal solid line gives 

the unconfined-exciton energy (mh = 0.09).  The  inset shows the configuration of  the box. 

states. The multiparticle electron-hole wave functions are expanded in tet~ns of 
Slater determinants constructed from the single-particle eiigenstates. 

Results are presented for excitons confined in square GaAs boxes with width L, 
dielectric constant e = 13. l, electron effective mass (in units of  the electron mass 
too) mc = 0.067, and hoie masses inside the box mh = 0.090 and 0.377. Energies are 
scaled by the effective electron Rydberg Re = (h 2/2moa~ ) (rode 2) = 5.3 meV. 

In very large boxes the exciton ground-state energy (fig. 1 ) approaches the en- 
ergy of  the unconfined, two-dimensional exciton. However, the exciton energy is 
still shifted by five percent for boxes that are an order of magnitude wider (L ~ 0. t 
gm) than the two-dimensional bulk-exciton radius R2D( ~ 0.01/~m). In contrast, 
the ground state energy of  an e!ectron bound to a hydrogenic impurity fixed at the 
center of a quantum disk is unchanged from the free-impurity energy level unless 

cantly, due to quantum cenfinement, for L-%< 0. l pro. Energy shifts of ~- 5 meV 
occur for L.~ 0.05 ~m, which ~s typical of shifts observed in photoluminescence 
[ 3,4 ]. Moreover, shifts in the binding energy and in the ground state energy that 
occur as L changes are comparable. Thus, any attempt to determine box sizes from 
the shifts of exciton photoluminescence peaks should account for the shifts of  
binding energies and single particle levels. The binding energy becomes infinite as 
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Fig. 2. Energy levels of  an exciton (mh=0.09)  confined in a square box of  width L. The dashed 
(solid) lines indicate the levels of  an (non)interacting electron-hole pair. The parity relative to the 
two directions defining the box is shown for the lowest-energy states: e (o)  for states even (odd)  in 
both directions; eo for states with even parity in one direction and odd parity in the other. The order 

of  noninteraeting levels is independent of box size. 

L decreases because the barriers prevent tunneling from the box. In finite-barrier 
structures, tunneling from the structure reduces the binding energy when L ~ 0.005 

~m [91. 
As L decreases and the transihon from negligible to complete confinement oc- 

cures, the exciton state evolves from a state which is a mixture of many electron 
and hole subbands to a state with the electron and bole in specific subband states. 
The effec~ of quantum confinement on the mixing of subband states in the exciton 
state is shown by fig. 2. For L ~ 0.01/~m one can clearly identify each exciton state 
with the specific noninteracting electron-hole pair level that  the exciton state is 
derived from. The exciton states are shifted from the noninteracting states but the 
ordering of each set of  states is the same. This identification becomes more diffi- 
cult to make as L increases. The finite basis CI calculations for L >/0.1 gm have not 
been done accurately enough to account for all of the exciton binding; however, 
the Coulomb mixing of single particle levels that has been included still prevents 
identification of exciton levels with specific noninteracfing levels. The transition 
from negligible to complete confinement as L decreases is nearly complete when 
. . . . .  2D. For L~n,.,.,~.a I ,,,,,, a'~oa~,,. ,u u.~'*'*~.,, . . . . . . .  u~.u-.,tat,.A ~. . . . . . .  ;.^_ k.-A:-~ ~1~ • A L i L U I I  I J l l E g l l l ~ - ~ i l g l ~  t . , O . l l  U g  

accounted for by assuming that the electron and hole occupy the lowest single par- 
ticle states. For L/> 0.05 ~m, the mixing of higher levels is crucial; restricting oc- 
cupation to the lowest level accounts for less than half  of the binding energy. As L 
decreases and the mixing of higher levels becomes insignificant, the difference in 
light and heavy hole binding energies vanishes (fig. 1 ). 

Several conclusions can be drawn from the results presented. Although the onset 
p f , ~  of confinement effects occurs for L ~ 0. I am, the transition to compl_,, confine- 
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ment does not occur until L < 0.01/zm. Quantum structures presently being stud- 
ied are in this transition regime. Additional reduction in structure size will be needed 
to reach the regime of  complete confinement. 
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