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OPTICAL PROPERTIES OF YAG AND YAP SINGLE CRYSTALS IN VUV

Tetsuhiko TOMIKI, Fujito FUKUDOME*, Minoru KAMINAO*, Masami FUJISAWA~, Yoshikazu TANAHARA#
and Tomoyoshi FUTEMMA

Department of Physics, University of the Ryukyus, Nishihara, Okinawa 903-01, Japan
+ Synchrotron Radiation Laboratory, ISSP, University of Tokyo, Tanashi, Tokyo 188, Japan

The optical spectra of Y
3A15O12(YAG) and YA1O3(YAP) single crystals in the VUV region to 40 eV are

3+
interpreted in terms of atomic levels of Y and Al. The excitation spectra are presented for Ce
emission from YAG:Ce and YAP:Ce powder phosphors at room temperature.in the VUV region, and they
are compared with the optical functions of the host crystals, especially in the exciton region.

INTRODUCTION as the spectrum of YAP at room temperature for

YAG and YAP have been widely used as a host the light E II (a>. The spectrum of YAG is de-

of the rare earths doped lasers or phosphors , termined via comparisons of the spectra measur-

but their fundamental spectra have received less ed at the Synchrotron Radiation Lab., ISSP
4, at

attention up to now. In this paper, several op- the Photon Factory, KEK, National Lab, for High

tical properties in the fundamental region of Energy Physics3 and at University of the Ryu-

these species in single crystalline state are

pt—esente:t.
30

REFLECTIVITY SPECTRA R(E) -

297K2. EXPERIMENTAL RESULTS AND DISCUSSION

The measurements were mainly made at the Syn- 20

chrotron Radiation Laboratory, ISSP. Single cry-

stals of YAG and YAP were purchased from the

Nippon Electric Co., NEC. Ce-activated phosphors 10

were synthesized at the Matsushita Research Ins-

titute Tokyo Inc.2 __________________

The absorption constant A(E,T) in the tail

region is expressible by the well known Urbach
_rule:

A(E,T) = A
0 exp [ - 6~(T)(E0 - E)/kT],

Yhp (wIt
= ‘~so Tie) tanh 10

where e.g. (A0 = 5.27 x lO~cm
1, E

0 = 8.018 eV)

and (ç~= 0.478, Tiw = 32.5 meV) for E lI(b> of 0 5 10 15 20 25 30 35 40

YAP in the region of I = 300 K to 10 K, E being PHOTONENERGY E(.V)

the electric field vector of a light wave.

Figure 1 shows the reflectivity spectra R(E) FIGURE 1

from the (111) planes of Y203
3 and YAG as well The reflectivity spectra of Y

203
3, YAG and YAP.
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5. The spectrum of YAP is also revised from the transitions giving rise to the exciton for-

that of ref. 4. mation. The structure at 7.7 eV might corres-

Three prominent structures found in the fun- pond to the manifestation of other origins, e.g.

damental regions of YAG and YAP are interpreted the interband transitions. This interpretation

as follows, referring to the results of Y
2O3

3: does not appear to be in conflict with the ex-

(1) The 1st structure lying over the region of 6 perimental curve of photocurrent in ref. 7.

to 15 eV is due to the transitions from the o2_
2p6 to y2~4p6(4d + 5s) levels. 30 40

(2) The 2nd structure in the region of 15 to 25 VAG 297K I~ YAP 297K I~W

20 10
eV is due to the transitions from the o2_ 2p6 to ~ R(E)(i) Y2~4p6(md + ns) with m� 5 and n� 6 and 50

E2(E) ~ 30
0(E)

(ii) Al2~ 3s, 3d,... bands. The latter is con- ~ 0(E)
ducted because the corresponding structure is 2.5 10 5 ) / ~‘—N~== 20

missing in the spectrum of Y
2O3 except the pla- Er(E)

teau which was interpreted along (i)
3. I/ 1/

(3) The 3rd part above 25 eV is due to the inner 0~ B 10 120 07 9 ~ 10
core transitions of Y3~: 4p6 to 4p5(4d + 5s) ~. PHOTONENERGY E(eV)

In Fig. 2 are shown the excitation spectra
3+ - -

Q(E) for Ce emission from YAG:Ce and YAP:Ce FIGURE 2

powder phosphors6 which were chemically etched The excitation spectra Q(E) for Ce3~emission in
comparison with the spectra of R(E) and E

2(E).
beforehand in HNO3 solution to minimize extrin-
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