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will slow down their spin rates with time after the
RLDP. However, they cannot explain the apparent
difference in spin distributions between AXMSPs
and radio MSPs, because radio MSPs, which
have weak surface magnetic field strengths, could
not spin down by the required amount even in a
Hubble time. The true age of a pulsar (23) is given
by t ¼ P=ððn − 1ÞP:Þ½1 − ðP0=PÞn−1�. Assum-
ing an evolution with a braking index n ¼ 3
and B ¼ 1:0� 108 G, the time scale t is larger
than 10 Gy, using P0 ¼ 〈P〉AXMSP ¼ 3:3 ms and
PðtÞ ¼ 〈P〉MSP ¼ 5:5 ms. To make things worse,
one has to add the main-sequence lifetime of the
LMXB donor star, which is typically 3 to 12Gy,
thereby reaching unrealistic large total ages. Al-
though the statistics of AXMSPs still has its basis
in small numbers and care must be taken for both
detection biases (such as eclipsing effects of radio
MSPs) and comparison between various sub-
populations (8), it is evident from both observa-
tions and theoretical work that the RLDP effect
presented here plays an important role for the
spin distribution of MSPs.

The RLDP effect may also help explain a few
other puzzles, for example, why characteristic (or
spin-down) ages of radio MSPs often largely ex-
ceed cooling age determinations of their white
dwarf companions (24). It has been suggested
that standard coolingmodels of white dwarfs may
not be correct (25–27), particularly for low-mass
helium white dwarfs. These white dwarfs avoid
hydrogen shell flashes at early stages and retain
thick hydrogen envelopes, at the bottom of which
residual hydrogen burning can continue for sev-
eral billion years after their formation, keeping the
white dwarfs relatively hot (~104 K) and thereby
appearing much younger than they actually are.
However, it is well known that the characteristic
age is not a trustworthy measure of true age (28),
and the RLDP effect exacerbates this discrepancy
even further. In the model calculation presented
in Fig. 1, it was assumed that B ¼ 1:0� 108G
andϕ ¼ 1:0. However,P0 and t0 depend strong-
ly on bothB andϕ. This is shown in Fig. 2, where
I have calculated the RLDP effect for different
choices of B and ϕ by using the same stellar
donor model [i.e., same M

:ðtÞ profile] as before.
The use of other LMXB donor star masses, met-
allicities, and initial orbital periods would lead
to otherM

:ðtÞ profiles (16, 17) and hence different
evolutionary tracks. The conclusion is that recycled
MSPs can basically be born with any characteristic
age. Thus, we are left with the cooling age of the
white dwarf companion as the sole reliable, although
still not accurate, measure as an age indicator.

A final puzzle is why no sub-millisecond pul-
sars have been found among the 216 radio MSPs
detected in total so far. Although modern obser-
vational techniques are sensitive enough to pick
up sub-millisecond radio pulsations, the fastest
spinning known radio MSP, J1748−2446ad (29),
has a spin frequency of only 716 Hz, correspond-
ing to a spin period of 1.4 ms. This spin rate is
far from the expected minimum equilibrium spin
period (8) and the physical mass shedding limit

of about 1500 Hz. It has been suggested that grav-
itational wave radiation during the accretion phase
halts the spin period above a certain level (30, 31).
The RLDP effect presented here is a promising
candidate for an alternative mechanism, in case a
sub-millisecond AXMSP is detected (8).
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Revealing the Superfluid Lambda
Transition in the Universal
Thermodynamics of a Unitary Fermi Gas
Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein*

Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from
solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a
superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by
high-precision measurements of the local compressibility, density, and pressure. Our data completely
determine the universal thermodynamics of these gases without any fit or external thermometer. The
onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat
capacity, which displays a characteristic lambda-like feature at the critical temperature Tc/TF = 0.167(13).
The ground-state energy is 3

5 xN EF with x = 0.376(4). Our measurements provide a benchmark for
many-body theories of strongly interacting fermions.

Phase transitions are ubiquitous in nature:
Water freezes into ice, electron spins sud-
denly align as materials turn into magnets,

and metals become superconducting. Near the

transitions, many systems exhibit critical behav-
ior, reflected by singularities in thermodynamic
quantities: The magnetic susceptibility diverges
at a ferromagnetic transition, and the specific heat

www.sciencemag.org SCIENCE VOL 335 3 FEBRUARY 2012 563

REPORTS

 o
n 

F
eb

ru
ar

y 
20

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


shows a jump at superconducting and superfluid
transitions (1, 2), resolved as the famous lambda
peak in 4He (3). A novel form of superfluidity has
been realized in trapped, ultracold atomic gases of
strongly interacting fermions, particles with half-
integer spin (4–7). Thanks to an exquisite control
over relevant system parameters, these gases have
recently emerged as a versatile system well suited
to solve open problems in many-body physics (7).

Initial measurements on the thermodynamics
of strongly interacting Fermi gases have focused
on trap-averaged quantities (8–10) in which the
superfluid transition is inherently difficult to ob-
serve. The emergence of the condensate of fermion
pairs in a spin-balanced Fermi gas is accompa-
nied by only minute changes in the gas density
(5). Quantities that involve integration of the den-
sity over the local potential, such as the energy
E (11) and the pressure P (12), are only weakly
sensitive to the sudden variations in the thermo-
dynamics of the gas expected near the superfluid
phase transition (13).

For a neutral gas, thermodynamic quantities
involving the second derivative of the pressure P
are expected to become singular at the second-
order phase transition into the superfluid state.
An example is the isothermal compressibility
k ¼ 1

n
∂n
∂P jT , the relative change of the gas density

n due to a change in the pressure P. Because the
change in pressure is related to the change in
chemical potential m of the gas via dP = n dm at
constant temperature, k ¼ 1

n2
∂2P
∂m2 jT is a second de-

rivative of the pressure, and thus should reveal
a clear signature of the transition.

The general strategy to determine the ther-
modynamic properties of a given substance is to
measure an equation of state (EoS), such as the
pressure P(m,T ) as a function of the chemical po-
tential m and the temperature T. Equivalently, re-
placing the pressure by the density n ¼ ∂P

∂m jT, one
can determine the density EoS n(m,T ).We directly
measure the local gas density n(V ) as a function of
the local potential V from in situ absorption
images of a trapped, strongly interacting Fermi
gas of 6Li atoms at a Feshbach resonance (5).
The trapping potential is cylindrically symmetric,
with harmonic confinement along the axial direc-
tion; this symmetry allows us to find the three-
dimensional (3D) density through the inverse
Abel transform of the measured column density
(14, 15). The local potential is directly determined
from the atomic density distribution and the ac-
curately known harmonic potential along the axial
direction.

The compressibility k follows as the change
of the density nwith respect to the local potential
V experienced by the trapped gas. The change in
the local chemical potential is given by the neg-
ative change in the local potential, dm = −dV, and

hence the local compressibility is k ¼ − 1
n2

dn
dV jT .

We can then replace the unknown chemical po-
tential m in the density EoS n(m,T ) by the known
variation of nwith m in the atom trap, given by k.
Instead of the a priori unknown temperature T,
we determine the pressure P(V ) = ∫

m

−∞dm′nðm′Þ =
∫
∞
V dV ′nðV ′Þ given by the integral of the density
over the potential (16). The resulting equation of
state n(k,P) contains only quantities that can be
directly obtained from the density distribution.
This represents a crucial advance over previous
methods that require the input of additional ther-
modynamic quantities, such as the temperature T
and the chemical potential m, whose determina-
tion requires the use of a fitting procedure or an
external thermometer, as in (11, 12).

We normalize the compressibility and the pres-
sure by the respective quantities at the same
local density for a noninteracting Fermi gas at
T = 0, k0 ¼ 3

2
1

nEF , and P0 ¼ 2
5 nEF , where

EF ¼ ħ2ð3p2nÞ2=3
2m is the local Fermi energy andm is

the particle mass, yielding k̃≡ k/k0 and p̃ ≡ P/P0.
For dilute gases at the Feshbach resonance, the
scattering length diverges and is no longer a rele-
vant length scale. In the absence of an interaction-
dependent length scale, the thermodynamics of
such resonant gases are universal (17), and k̃ is a
universal function of p̃ only. Every experimental
profile n(V ), irrespective of the trapping potential,
the total number of atoms, or the temperature, must
produce the same universal curve k̃ versus p̃. By
averaging many profiles, one obtains a low-noise
determination of k̃ ( p̃).

Our method has been tested on the nonin-
teracting Fermi gas that can be studied in two in-
dependent ways: in spin-balanced gases near the
zero-crossing of the scattering length and in the
wings of highly imbalanced clouds at unitarity,
where only one spin state is present locally. Both
determinations yield the same noninteracting com-
pressibility EoS (Fig. 1).

Figure 1 also shows the compressibility equa-
tion of state k̃ ( p̃) for the unitary Fermi gas. In the
high-temperature ( p̃ >> 1) regime, the pressure,
and hence all other thermodynamic quantities, al-
low for a Virial expansion in terms of the fugacity
ebm (18): P bl3 = 2∑ j bj e

jbm, with the nth-order
Virial coefficients bn. It is known that b1 = 1, b2 =
3

ffiffiffi
2

p
/8, and b3 = −0.29095295 (18); our data show

good agreement with the third-order Virial expan-
sion. Fixing b2 and b3, our measurement yields a
prediction for b4 = +0.065(10), in agreement with
(12), but contradicting a recent four-body calcu-
lation that gives a negative sign (19).

At degenerate temperatures ( p̃ ≲ 1), the nor-
malized compressibility rises beyond that of a
noninteracting Fermi gas, as expected for an at-
tractively interacting gas. A sudden rise of the com-
pressibility at around p̃ = 0.55, followed by a
decrease at lower temperatures marks the super-
fluid transition. The expected singularity of the
compressibility at the transition is rounded off by
the finite resolution of our imaging system. Be-
low the transition point, the decrease of the com-
pressibility is consistent with the expectation from
Bardeen-Cooper-Schrieffer (BCS) theory, inwhich

Department of Physics, Massachusetts Institute of Technology
(MIT), MIT Harvard Center for Ultracold Atoms, and Research
Laboratory of Electronics, MIT, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail:
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κ 0

4321
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ξ

Fig. 1. Normalized compressibility k/k0 versus normalized pressure P/P0 of the unitary Fermi gas (red
solid circles). Each data point is the average of between 30 and 150 profiles. The error bars show mean T
SD, including systematic errors from image calibration (13). Blue solid line: third-order Virial expansion.
Black open squares (black open diamonds): data for a noninteracting Fermi gas obtained with a highly spin-
imbalanced mixture at the Feshbach resonance (spin-balanced gas near zero-crossing of the scattering
length). Black solid curve: theory for a noninteracting Fermi gas. Black dashed curve: the relation k̃= 1/p̃
that must be obeyed at zero temperature both for the noninteracting gas (k̃= 1/p̃= 1) and the unitary gas
(k̃= 1/p̃= 1/x) (dotted lines). Gray band: the uncertainty region for the T = 0 value of k̃= 1/x and p̃= x.
Blue dashed curve: model for the EoS of the unitary Fermi gas [above Tc: interpolation from the Monte
Carlo calculation (34); below Tc: BCS theory, including phonon and pair-breaking excitations]. Green solid
curve: effect of 2 mm optical resolution on the model EoS.
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single-particle excitations freeze out and pairs form
(see model in Fig. 1).

As T → 0, the Fermi energy EF is the only
intensive energy scale, so the chemical potential
must be related to EF by a universal number, m =
xEF, where x is known as the Bertsch parameter
(6, 7). It follows that at T = 0, k̃ = 1/p̃ = 1/x (13).
The extrapolation of the low-temperature exper-
imental data for k̃ ( p̃) toward the curve k̃ = 1/p̃
gives x = 0.37(1), a value that we find consistently
for the normalized chemical potential, energy, and
free energy at our lowest temperatures.

From the universal function k̃ ( p̃), we obtain
all other thermodynamic quantities of the unitary
gas. First, to find the normalized temperature T/TF
(where kB TF = EF), note that the change in pres-
sure with T/TF at constant temperature is re-
lated to the compressibility. One finds dp̃

dðT=TF Þ ¼5
2
TF
T p̃ − 1

k̃

� �
, so by integration (13)

T

TF
¼ T

TF

� �
i

exp
2

5

Z
pi˜

p̃

dp̃
1

p̃ − 1

k̃

8<
:

9=
; ð1Þ

where (T/TF)i is the normalized temperature at an
initial normalized pressure p̃i that can be chosen
to lie in the Virial regime validated above.

Thanks to the relation E = 3
2PV, valid at

unitarity (17), we can also directly obtain the heat
capacity per particle at constant volume V (13),

CV

kBN
≡

1

kBN

∂E
∂T

jN,V ¼ 3

5

dp̃

dðT=TFÞ

¼ 3

2

TF
T

p̃ −
1

k̃

� �
ð2Þ

Figure 2 shows the normalized compressibility
and the specific heat as a function of T/TF. At
high temperatures, the specific heat approaches
that of a noninteracting Fermi gas and eventually
CV = 3

2 N kB, the value for a Boltzmann gas. A
dramatic rise is observed for T/TF at around 0.16,
followed by a steep drop at lower temperatures.
Such a l-shaped feature in the specific heat is
characteristic of second-order phase transitions,
as in the famous l transition in 4He (3). Jumps in
the specific heat are well known from supercon-
ductors (1) and 3He (2). In experiments on atomic
gases, such jumps had only been inferred from
derivatives to fit functions that implied a jump
(20, 21). We do not expect to resolve the critical
behavior very close to Tc. Because of the spatially
varying chemical potential in our trapped sample,
the critical region is confined to a narrow shell.

Based on the estimate in (22), the thickness of the
critical shell is 1% of the cloud size. The finite
resolution of our imaging system (2 mm or about
5% of the cloud size in the radial direction) suf-
fices to explain the rounding of the singularity
expected from criticality. The rounding also re-
duces the observed jump in the heat capacity at
the transition. We obtain a lower bound ∆C/Cn ≡
(Cs − Cn)/Cn ≥ 1:0þ4

−1 , where Cs/N (Cn/N) is the
specific heat per particle at the peak (the onset of
the sudden rise). Considering the strong inter-
actions, this is surprisingly close to the BCS
value of 1.43 (1). Below Tc, the specific heat is
expected to decrease as ∼ exp(−∆0/kB T ) due to
the pairing gap ∆0. At low temperatures, T << Tc ,
the phonon contribution º T3 dominates (23).
This behavior is consistent with our data, but the
phonon regime is not resolved.

To validate our in situ measurements of the
superfluid phase transition, we have employed
the rapid ramp method to detect fermion pair con-
densation (24, 25). The results (Fig. 2C) show
that the onset of condensation and the sudden rise
in specific heat and compressibility all occur at
the same critical temperature, within the error bars.
Unlike previous experimental determinations of
Tc/TF for the homogeneous unitary Fermi gas
(11, 12), we determine Tc/TF directly from the den-
sity profiles, finding a sudden rise in the specific
heat and the onset of condensation at Tc/TF =
0.167(13). This value is determined as the mid-
point of the sudden rise, and the error is assessed
as the shift due to the uncertainty of the Feshbach
resonance (13). This is in very good agreement
with theoretical determinations, such as the self-
consistent T-matrix approach that gives Tc/TF ≈
0.16 (23), andMonte Carlo calculations that give
Tc/TF = 0.171(5) (26) and 0.152(7) (27). There is
a current debate on the possibility of a pseudo-
gap phase of preformed pairs above Tc (12, 28).
A pairing gap for single-particle excitations above
the transition should be signaled by a downturn
of the specific heat above Tc, which is not ob-
served in our measurements.

From the definition of the compressibility
k ¼ 1

n2
∂n
∂m jT , we can obtain the reduced chemical

potential m/EF as a function of the T/TF (Fig. 3A)
(13). This function is here obtained frommeasured
quantities, rather than from numerical derivatives
of data that involved uncontrolled thermometry (11).
In the interval of T/TF from around 0.25 to 1,
the chemical potential is close to that of a non-
interacting Fermi gas, shifted by (xn − 1)EF be-
cause of interactions present in the normal state,
with xn ≈ 0.45. Unlike a normal Fermi gas, the
chemical potential attains a maximum of m/EF =
0.42(1) at T/TF = 0.171(10), and then decreases at
lower temperatures, as expected for a superfluid
of paired fermions (23). As the temperature is in-
creased from zero in a superfluid, first the emer-
gence of phonons (sound excitations) and then
the breaking of fermion pairs contribute to in-
creasing the chemical potential. At Tc, the sin-
gular compressibility implies a sharp change in
slope for m/EF, in agreement with our observa-

2.5

2.0

1.5

1.0

0.5

0.0

C
V
/N

k B

1.21.00.80.60.40.2

4

3

2

1

0

κ/
κ 0

1.21.00.80.60.40.2

0.5
0.4
0.3
0.2
0.1
0.0

N
0/

N

1.21.00.80.60.40.2

T/TF

B

A

C

Fig. 2. (A) Normalized compressibility k̃ = [2/3]k n EF and (B) specific heat per particle CV /NkB of a
unitary Fermi gas as a function of reduced temperature T/TF (solid red circles). Black solid curve: theory for
a noninteracting Fermi gas. Blue solid curve: third-order Virial expansion for the unitary gas. Black open
squares: data for the normalized compressibility as a function of T/TF of a noninteracting Fermi gas
(combining data from both highly imbalanced gases at unitarity and balanced gases near zero-crossing).
Blue dashed (green solid) curve: model from Fig. 1, excluding (including) the effect of finite imaging
resolution. (C) Global condensate fraction at unitarity as determined from a rapid ramp to the molecular
side of the Feshbach resonance, plotted as a function of local T/TF at the trap center. The onset of con-
densation coincides with the sudden rise of the specific heat. Error bars, mean T SD.
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tion and theory (23). At low temperatures, the
reduced chemical potential m/EF saturates to the
universal value x. As the internal energy E and
the free energy F satisfy E(T ) > E(0) = 3

5N xEF =
F(0) > F(T ) for all T, the reduced quantities
fE ≡ 5

3
E

NEF
¼ p̃ and fF ≡ 5

3
F

NEF
¼ 5

3
m
EF
− 2

3 p̃ (Fig.
3A) provide upper and lower bounds for x (29).
Taking the coldest points of these three curves and
including the systematic error due to the effective
interaction range, we find x = 0.376(4). The un-
certainty in the Feshbach resonance is expected
to shift x by at most 2% (13). This value is con-
sistent with a recent upper bound x < 0.383(1) from
(30), is close to x = 0.36(1) from a self-consistent
T-matrix calculation (23), and agrees with x =
0.367(9) from an epsilon expansion (31). It lies
below earlier estimates x = 0.44(2) (32) and x =
0.42(1) (33) from fixed-node quantumMonteCarlo
calculation that provides upper bounds on x. Our
measurement agrees with several less accurate ex-
perimental determinations (6) but disagrees with
the most recent experimental value 0.415(10) that
was used to calibrate the pressure in (12).

From the energy, pressure, and chemical po-
tential, we can obtain the entropy S = 1

T(E + PV −
mN), and hence the entropy per particle S=NkB ¼
TF
T

p̃ −
m
EF

� �
as a function of T/TF (Fig. 3B). At

high temperatures, S is close to the entropy of
an ideal Fermi gas at the same T/TF. Above Tc,
the entropy per particle is nowhere small com-
pared with kB. Also, the specific heat CV is not
linear in T in the normal phase. This shows that
the normal regime above Tc cannot be described in
terms of a Landau Fermi Liquid picture, although
some thermodynamic quantities agree surpris-
ingly well with the expectation for a Fermi liquid
[see (12) and (13)]. Below about T/TF = 0.17, the
entropy starts to strongly fall off comparedwith that
of a noninteracting Fermi gas, which we again
interpret as the freezing out of single-particle excita-
tions as a result of the formation of fermion pairs.
Far below Tc, phonons dominate. They only have a
minute contribution to the entropy (23), less than
0.02 kB at T/TF = 0.1, consistent with our measure-
ments. At the critical point, we obtain Sc = 0.73(13)
NkB, in agreement with theory (23). It is encourag-
ing for future experiments with fermions in optical
lattices that we obtain entropies less than 0.04 N
kB, far below critical entropies required to reach
magnetically ordered phases.

From the chemical potential m/EF andT=TF ¼
4p

ð3p2Þ2=3
1

ðnl3Þ2=3, we finally obtain the density EoS

n(m,T ) ≡ 1
l3
fnðbmÞ, with the de Broglie wave-

length l ¼
ffiffiffiffiffiffiffiffi
2pħ2
mkBT

q
. The pressure EoS follows

as P(m,T ) ≡ kBT
l3

fPðbmÞ, with fP ¼ 2
5
TF
T p̃fnðbmÞ.

Figure 4 shows the density and pressure nor-
malized by their noninteracting counterparts at
the same chemical potential and temperature. For
the normal state, a concurrent theoretical calcu-
lation employing a new Monte Carlo method
agrees excellently with our data (34). Our data

deviate from a previous experimental determi-
nation of the pressure EoS (12) that was cal-
ibrated with an independently measured value of

x = 0.415(10) (35) and disagree with the energy
measurement in (11) that used a thermometry in-
consistent with the Virial expansion (10). Around
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Fig. 3. (A) Chemical potential m, energy E, and free energy F of the unitary Fermi gas versus T/TF. m (red
solid circles) is normalized by the Fermi energy EF, and E (black solid circle) and F (green solid circle) are
normalized by E0 = 3

5N EF. At high temperatures, all quantities approximately track those for a non-
interacting Fermi gas, shifted by xn − 1 (dashed curves). The peak in the chemical potential signals the
onset of superfluidity. In the deeply superfluid regime at low temperatures, m/EF, E/E0, and F/F0 all approach
x (blue dashed line). (B) Entropy per particle. At high temperatures, the entropy closely tracks that of a
noninteracting Fermi gas (black solid curve). The open squares are from the self-consistent T-matrix
calculation (23). A few representative error bars are shown, representing mean T SD.
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star and blue triangle: critical point from the Monte Carlo calculations (26) and (27), respectively. Solid
diamonds: Ecole Normale Supérieure experiment (12). Purple open diamonds: Tokyo experiment (11).

3 FEBRUARY 2012 VOL 335 SCIENCE www.sciencemag.org566

REPORTS

 o
n 

F
eb

ru
ar

y 
20

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


the critical point, the density shows a strong var-
iation, whereas the pressure, the integral of the
density over m at constant T, is naturally less sen-
sitive to the superfluid transition.

In conclusion, we have performed thermody-
namic measurements of the unitary Fermi gas
across the superfluid phase transition at the level
of uncertainty of a few percent, without any fits
or input from theory, enabling validation of the-
ories for strongly interacting matter. Similar un-
biased methods can be applied to other systems,
for example, two-dimensional Bose and Fermi
gases or fermions in optical lattices.
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Iron Catalysts for Selective
Anti-Markovnikov Alkene
Hydrosilylation Using Tertiary Silanes
Aaron M. Tondreau,1 Crisita Carmen Hojilla Atienza,1 Keith J. Weller,2 Susan A. Nye,2

Kenrick M. Lewis,3 Johannes G. P. Delis,4 Paul J. Chirik1*

Alkene hydrosilylation, the addition of a silicon hydride (Si-H) across a carbon-carbon double bond,
is one of the largest-scale industrial applications of homogeneous catalysis and is used in the
commercial production of numerous consumer goods. For decades, precious metals, principally
compounds of platinum and rhodium, have been used as catalysts for this reaction class. Despite
their widespread application, limitations such as high and volatile catalyst costs and competing
side reactions have persisted. Here, we report that well-characterized molecular iron coordination
compounds promote the selective anti-Markovnikov addition of sterically hindered, tertiary silanes
to alkenes under mild conditions. These Earth-abundant base-metal catalysts, coordinated by
optimized bis(imino)pyridine ligands, show promise for industrial application.

Metal-catalyzedolefinhydrosilylation,which
forms alkylsilanes by cleaving a silicon-
hydrogen bond and adding the frag-

ments across a carbon-carbon double bond (1, 2),
finds widespread application in the commercial
manufacture of silicone-based surfactants, fluids,
molding products, release coatings, and pressure-
sensitive adhesives (3, 4). Consequently, hydro-
silylation has emerged as one of the largest-scale
applications of homogeneous catalysis (5–9).

For more than three decades, precious metal com-
pounds with Pt, Pd, Ru, and Rh have been used
almost exclusively as catalysts. Platinum com-
pounds such as Karstedt’s and Speier’s cata-
lysts, Pt2{[(CH2=CH)SiMe2]2O}3 (Me, methyl) and
H2PtCl6·6H2O/

iPrOH(iPr, isopropyl), respective-
ly, are the most widely used industrial catalysts
(1, 10–12), though they suffer from chemical lim-
itations such as intolerance to amino-substituted
olefins and a tendency to catalyze competing isom-

erization of the terminal alkenes to internal isomers.
Undesired isomerization often necessitates sub-
sequent purification steps that are both energy
and cost intensive. Furthermore, decomposition
of the catalyst to colloidal platinum contributes to
unwanted side reactions and also causes dis-
coloration of the final products.

It has been estimated that the worldwide sil-
icone industry consumed ~180,000 troy ounces
(5.6metric tons) of platinum in2007 andmost is not
recovered (13). The high cost, coupled with the in-
creasing demands on preciousmetals due to fuel-cell
and other emerging technologies, has increased the
volatility of the platinum market (14). The combi-
nation of chemical, economic, and political chal-
lenges inspires the exploration of inexpensive and
Earth-abundant catalysts using iron, manganese,
and cobalt (15). At the core of this challenge is sup-
pressing tendencies of first-row transition metals
toward one-electron redox processes in favor of the
two-electron chemistry associated with the heavier
metals that probably make up the fundamental
steps in a catalytic cycle for alkene hydrosilylation.
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