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ABSTRACT 
 
Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from 
numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The 
dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed 
waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical 
results of a photonic switch with properties modified by the application of periodic change of effective refractive 
index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating. 
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1. INTRODUCTION 
 
 Modern all optical network and future photonic systems will require miniaturized and efficient modulators, 
switches and other optical devices. Designs and devices known in principle for 20 years now, suffer from high 
longitudinal dimensions (from millimeters up to centimeters), which prohibits integration and cascadability. One 
possible solution to this problem is application of periodic structures in the form of multilayers, Bragg gratings or 
arrayed waveguides. At its extreme, one may consider making use of 3D photonic crystals – however due to 
extreme (sub-nanometer) design tolerances – this in not the approach of choice for most of the popular 
applications. Application of periodic structure may decrease dimensions of the devices, improve working 
efficiency and wavelength selectivity. It is interesting to notice, that the periodicity may be applied in all of the 
three dimensions independently, each periodicity affecting propagation in different way.  However, design and 
analysis of structures with a few independent periodicities poses significant challenges, calling for new methods of 
analysis or at leas adaptation of a known ones. In this paper we describe semi-analytical method that is capable to 
analyze light propagation in arbitrary integrated optic structure, composed of multilayer waveguides, gratings and 
coupled waveguides. Refractive index changes induced by the control optical beam are taken into account also, so 
that our method is capable of analysis of all optical devices. 
 Analysis is performed with the transfer matrix method and effective index methods. Combination of both 
methods is used to calculate transversal optical field distribution and longitudinal propagation constants of 
eigenmodes guided by the structure. Then the transfer-matrix method is applied to calculate the propagation of the 
guiding structure eigenmodes alongside the longitudinal direction. The transfer-matrix technique for the analysis 
of a contra-directional grating-assisted coupler is based on [1]. Details concerning the reflection coefficients come 
from [2] and [3]. A method, also based on the transfer-matrix technique, of calculating the 1D distributions of 
electromagnetic fields is described in detail in [4] and [5]. 
 The results obtained by us include transmission and reflection characteristics of the switches, with 
dependencies on the signal-beam wavelength and refractive index change induced by the control-beam optical 
power. The assumed physical properties of the structure correspond to a semiconductor heterostructure of 
GaInNAs / GaAs composition with superlattice active layer. Results of analysis and measurements of an all-optical 
switch based on the directional coupler loaded with Bragg grating, manufactured in GaInAs / InP can be found in 
[6]. 
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2. STRUCTURE 
 
 Two vertical cross-sections of a planar structure being analyzed are shown in Fig. 1. First, two arms of the 

directional coupler are formed as strip waveguides by etching to a depth of stripd . Then, by etching to a depth of 

Braggd , Bragg grating is formed on top of both strip waveguides and on surfaces surrounding them. Grating teeth 

will be marked throughout the rest of the article as +  sections, and spaces between teeth as – sections.  
 

 
Fig. 1. Contra-directional grating-assisted coupler - vertical cross-section of  a) one of coupler arms (a strip waveguide) 

and  b) area  sorrounding  coupler arms.. 
 
For the purpose of simplicity, the superlattice active layer has been reduced to a single layer with the refractive 

index 3n . Presentation of methods of such replacement is given e.g. in [7] and [8]. 

 
3. METHOD OF ANALYSIS 

 
 A top view of structure from Fig. 1. is shown in Fig. 2. Method of analysis applied by the authors follows in 
the next chapter. 
 

   
 

Fig. 2. Schematic view of a) contra-directional grating-assisted coupler and b) contra-directional grating-assisted 
coupler accompanied by input and output directional couplers. 

 

Let us define column vectors of (complex) field amplitudes at section interfaces kz . Amplitudes in section +  are: 

[ ]TRbabsfafs AAAAA +++++ = ,  and in section – : [ ]TRbabsfafs AAAAA −−−−− = , . Indexes as,  and bf ,  denote: 
symmetric or asymmetric modes propagating forward or backward, respectively. For each section interface we 
define transmission matrices transforming the field amplitudes from the left side of the interface to the right side of 

the interface. Depending on section sequence at given kz , −+ /  or +− / , two types of matrices are possible: −+T  

and +−T . They act as follows: 

+−+− = ATA  (3.1a) 

−+−+ = ATA  (3.1b) 
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Explicitly, the transmission matrices are given as: 
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where elements of the type ss  and aa  are amplitude transmission or reflection coefficients for symmetric or 
antisymmetric modes, respectively. Coefficients of the type sa  and as  are amplitude coefficients of coupling 
from symmetric to antisymmetric and from antisymmetric to symmetric modes, respectively, due to mode 
unorthogonality at section interfaces. In numerical results given in section 4. we assume modes to be orthogonal, 
thus the sa  and as  coefficients are set to 0 . With mode orthogonality assumed, the coefficients ss  and aa  can 
be derived directly from Fresnel reflection coefficients. It is enough to calculate them only for the −+ /  interface 

(and then substitute to +−T  with sign change at each −t ): 

( ) ( )RRL NNNt ∗+=+ 2/  (3.3a) 

( ) ( )RRL NNNt ∗−=− 2/  (3.3b) 

LN  and RN  are effective refractive coefficients (or equally propagation constants) in section to the left and to the 

right of section interface, respectively. E.g. ( ) ( )ssssst +−++ += γγγ *2/ . 
For all sections +  and – we then define transfer matrices describing phase change of light wave due to 
propagation over a distance equal to the length of given section. The transfer matrices are: 

( ) ( ) ( ) ( )[ ]+++++++++ ΛΛΛ−Λ−= asas iiiidiagP γγγγ expexpexpexp  (3.4a) 

( ) ( ) ( ) ( )[ ]−−−−−−−−− ΛΛΛ−Λ−= asas iiiidiagP γγγγ expexpexpexp  (3.4b) 
Now we write down a matrix relating field amplitudes at the beginning and at the end of grating’s period: 

+−+−+−++ = PTPTT  (3.5) 
For entire grating-assisted coupler, a matrix relating field amplitudes at both sides of the device, is a product of all 

matrices ++T : 

( ) ( ) ( )...531 zTzTzTT N
++++++++ =  (3.6) 

Summarizing, the matrix NT ++  acts as follows: 

( ) ( )LATA N
++++ =0  (3.7) 

To describe the phase change of light wave during propagation through input and output couplers we will now 

define two transfer matrices 1T  and 2T , which are similar to +P  and +P  written earlier for individual grating 
sections: 

( ) ( ) ( ) ( )[ ]111111111 expexpexpexp LiLiLiLidiagT asas γγγγ −−=  (3.8a) 

( ) ( ) ( ) ( )[ ]222222222 expexpexpexp LiLiLiLidiagT asas γγγγ −−=  (3.9b) 

Transfer matrix T  for entire device, i.e. the grating assisted coupler and the in and out couplers, is: 

12 TTTT N
++=  (3.10) 

The transfer matrix T  relates field amplitudes at one side of the device to field amplitudes at the other side. 
However, to be able to calculate output powers from given input powers, a scattering matrix instead of the transfer 
matrix is needed. Formulas relating the scattering matrix S  to the transfer matrix T  are: 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

TT

TT
T , ⎥

⎦

⎤
⎢
⎣

⎡
=

2221

1211

SS

SS
S  (3.11) 

Proc. of SPIE Vol. 5956  59561I-3

Downloaded from SPIE Digital Library on 03 Nov 2009 to 159.226.100.225. Terms of Use:  http://spiedl.org/terms



where: 

21
1

22121111 TTTTS −−= ,   1
221212
−= TTS ,   21

1
2221 TTS −= ,   1

2222
−= TS  (3.12) 

Writing a column vectors of input field amplitudes 

( ) ( ) ( ) ( )[ ]TRbabsfafs
IN LLALLALALAA 22221111 ,,, ++−−=  and of output field amplitudes: 

( ) ( ) ( ) ( )[ ]TRbabsfafs
OUT LALALLALLAA 12122121 ,,, −−++=  the effect of the scattering matrix S  can be 

expressed as follows: 

INOUT SAA =  (3.13) 
 
All the above derivations concerned coupler eigenmodes. To calculate optical powers exiting the device through 
individual ports 4,...,1  we need to carefully define a method of calculating the optical power exiting a port. We 
will assume the following definition: 

( ) ( )∫ Φ+Φ=
right

left

y

y

aass
n dyyAyAP

2
 (3.14) 

where as AA ,  are field amplitudes and ( ) ( )yy as ΦΦ ,  are field distributions of symmetric and antisymmetric 

coupler-eigenmodes exiting the given port n . Coordinates of walls of port’s strip waveguide are rightleft yy , . 

 
Using the above definition we can calculate waveguide-to-coupler and coupler-to-waveguide coupling matrices. 

The waveguide-to-coupler WCC  and coupler-to-waveguide CWC  amplitude coupling matrices have the following 

form: 
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where: 
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Here we have used the symbol →  to denote coupling between field distributions. Values of individual couplings 

are given by overlap integrals with integration limits rightleft yy ,  being the coordinates of walls of port’s strip 

waveguide: 

( ) ( )∫ ΦΦ=Φ→Φ
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 (3.18) 

where: { }4,3,2,1∈m , { }2,1∈n  and { }ast ,∈ . All the field distributions are normalized: 

( ) ( ) 1* =ΦΦ∫
+∞

∞−

dyyy t
n

t
n ,      ( ) ( ) 1* =ΦΦ∫

+∞

∞−

dyyy WmWm  (3.19) 

 
Finally, using matrices defined until now we can express waveguide eigenmode amplitudes exiting the coupler by 
waveguide eigenmode amplitudes entering the coupler. Appropriate formula is: 

INWWCCWOUTW ASCCA −− =  (3.20) 
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4. NUMERICAL RESULTS 

 
 As an example, we will give numerical results for three different configurations of the discussed structure, 
having different, potentially useful, characteristics. All three configurations are summarized in Table 1. Schematic 
view of signal beam flow within the device in different configurations is shown in Figure 3. 
 

No. 
Input 

coupler 
Grating-assisted 

coupler / length [µm] 
Bragg grating / 

length [µm] 
Output 
coupler 

Active port(s) – 
no stimulation 

Active port(s) – 
with stimulation 

1. no 
0.5 * beat length / 

1200 
full reflection, 

apodized / 1200 
no 2 4 

2. 
0.5 * beat 

length 
0.5 * beat length / 

1200 
full reflection, 

apodized / 1200 
no 2 3 

3. no 
0.5 * beat length / 

1200 
full reflection, 

apodized / 1200 
0.25 * beat 

length 
2 

3 and 4 
(power splitter) 

 
Tab. 1. Summary of device configurations analyzed. 

 
 

 
 

Fig. 3. Schematic view of signal beam flow in different configurations a) without control-beam stimulation b) with control-
beam stimulation in configurations 1., 2. and 3., respectively. 

 
The calculations were conducted for a system of layers shown in Figure 1. Refraction coefficients values 

4.31 =n , 35.342 == nn , 55.33 =n  and 0.15 =n , layer thicknesses mt µ0.22 = , mt µ4.03 = , 

mt µ3.04 = , etching depths mdstrip µ11.0= , md Bragg µ09.0= , widths of both strip waveguides mµ00.2  

and separation between waveguides mµ58.2 .  The value of separation has been adjusted so that half the beat 

length of the grating-assisted coupler equals mµ1200 . The Bragg grating without apodization requires a length 

of only mµ400  to achieve full reflection. However, since the apodization decreases the reflectivity of the 

grating, we have assumed the apodized-grating length to be three times bigger, i.e. mµ1200 , than the length 

required for a grating without apodization. Grating period is mµ189.0 . Apodization has been achieved through 

modulation of the grating duty cycle. The modulation formula is )*/(4.05.0 zNCos π+  where N  is the 
number of grating’s periods. Reflection and transmission curves of power carried by eigenmodes of grating-
assisted coupler described above, are shown in Fig. 4.  
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Fig. 4. Power reflection and transmission curves of two eigenmodes guided  by the analyzed grating-assisted coupler: 
symmetric eigenmode (solid line) and antisymmetric eigenmode (dotted line). 

 
 

 
 

 
Fig. 5. Optical power exiting the device through port 1. (solid line) and port 2. (dotted line) a) without stimulation and 

b) under stimulation with the control beam. 
 

According to the analysis discussed in section 3., optical powers exiting individual ports of the device have been 
calculated. Fig. 5. contains results for the device configuration 1. There is shown power exiting through port 1., i.e. 
power reflected to the signal-beam source, and power exiting through port 2. To demonstrate the impact of 
refractive index modulation on individual ports of the device, Fig. 5. shows both the device’s response without 
stimulation (Fig. 5.a) and under stimulation with the control beam (Fig. 5.b). Calculations for the stimulated state 

assume a change of the refractive index of the active layer ( 3n ) in both arms of the coupler by a value of 
310*0.4 − . The thick vertical line in both plots marks a wavelength chosen to be the signal-beam wavelength. By 

comparing Fig. 5.a and 5.b it is clearly visible that the discussed control-beam stimulation shifts the device’s 
response towards longer light wavelength. In current example the shift is about nm0.1 . Thus, using the control 
beam it is possible to change the distribution of the signal-beam optical power among ports of the device. In this 
example, when the control beam is on, optical power ceases exiting through port 2. (and starts exiting through port 
4. – also see Tab. 1 and Fig. 3.). The shape of the shifted response undergoes a change, but it does not affect the 
functioning of the device. 
 
 Plots of the optical power exiting through ports 3. and 4. in the device configurations 1., 2. and 3. are shown in 
Fig. 6. 
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Fig. 6. Optical power exiting the device through port 3. (solid line) and port 4. (dotted line) without stimulation (solid vertical 

line) and under stimulation (dashed vertical line) with the control beam in device configurations a) 1., b) 2. and c) 3 
 
 It must be noted that the relatively large refractive index change required for functioning of the presented 
device might be decreased by optimizing the geometrical parameters of the device (e.g. to increase the power 
confinement factor in the active layer’s volume stimulated by the control beam). 
 
 

5. CONCLUSIONS 
 
 We have described in detailes a method of calculating the scattering matrix for the eigenmodes of a contra-
directional grating-assisted coupler. Also calculation of the waveguide-to-coupler and coupler-to-waveguide 
coupling of eigenmodes has been discussed. Based on the presented methods, a structure of the contra-directional 
grating-assisted coupler with exemplary physical parameters, has been analyzed. The structure has been shown to 
potentially function as an all-optical switch allowing various possible output-port characteristics depending on 
additional elements – directional couplers – used in the construction of the device. In future, the method will be 
applied to design and optimize structure and technology of semiconductor photonic devices.  
 

REFERENCES 
 
1. J. Hong, W. Huang, Contra-directional coupling in grating-assisted guided-wave devices, Journal of 

Lightwave Technology, vol. 10, no. 7, pp. 873-881, 1992 
2. T. Makino, Effective-index matrix analysis of distributed feedback semiconductor lasers, IEEE Journal of 

Quantum Electronics, vol. 28, no. 2, pp. 434-440, 1992 
3. T. Makino, Threshold condition of DFB semiconductor lasers by the local-normal-mode transfer-matrix 

method: correspondence to the coupled-wave method, Journal of Lightwave Technology, vol. 12 , no. 12, 
pp. 2092-2099, 1994 

4. K.-H. Schlereth, M. Tacke, The complex propagation constant of multilayer waveguides: an algorithm for 
a personal computer, IEEE Journal of Quantum Electronics, vol. 26, no. 4, pp. 627-630, 1990 

5. T.D. Visser, H. Blok, D. Lenstra, Modal analysis of a planar waveguide with gain and losses, IEEE Journal 
of Quantum Electronics, vol. 31, no. 10, pp. 1803-1810, 1995 

6. C. Coriasso, D. Campi, L. Faustini, A. Stano, C. Cacciatore, Optically controlled contradirectional coupler, 
IEEE Journal of Quantum Electronics, vol. 35, no. 3, pp. 298-305, 1999 

7. G.M. Alman, L.A. Molter, H. Shen, M. Dutta, Refractive index approximations from linear perturbation 
theory for planar MQW waveguides, IEEE Journal of Quantum Electronics, vol. 28, no. 3, pp. 650-657, 
1992 

8. R.E. Smith, L.A. Molter, M. Dutta, Evaluation of refractive index approximations used for mode 
determination in multiple quantum well slab waveguides, IEEE Journal of Quantum Electronics, vol. 27, 
no. 5, pp. 1119-1122, 1991 

Proc. of SPIE Vol. 5956  59561I-7

Downloaded from SPIE Digital Library on 03 Nov 2009 to 159.226.100.225. Terms of Use:  http://spiedl.org/terms


