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Abstract-A general theory is presented to describe the carrier transport across heterojunction interfaces. In 
matching the boundary conditions at the interface, the conservation of total energy and perpendicular momentum is 
assumed and the difference of effective masses on two sides of the junction is taken into account. The quantum 
mechanical transmission coefficient is calculated by a combined numerical and WKB method. Application of the 
present model to an Al,Ga,.,As-GaAs N-n heterojunction is performed and it gives rise to rectifying charac- 
teristics together with non-saturated reverse current. Comparison with the classical thermionic emission model is 
made to show the significance of tunneling and effect of quantum mechanical reflection. 

1. INTRODUCTION 

In the early semiconductor literature, the continuity and 

transport equations along with the Poisson’s equation 
have been employed to describe the electrical charac- 
teristics of semiconductor devices. Shockley [ 11 and 
Schottky[2] developed the diffusion models for the p-n 
junction and the metal-semiconductor junction, respec- 
tively, under the assumption of constant quasi-Fermi 
level. The thermionicemission theory of the Schottky 
barrier was presented by Bethe[3] who considered the 
current contributed by carriers with a kinetic energy 
greater than the barrier height. The importance of tunnel- 
ing through a barrier was later described by Kane [4] and 
Harrison]51 in which the quantum mechanical trans- 
mission probability of carriers was introduced. The 
theory of field emission was presented by Stratton(61 
who extended the theory of thermionic emission to in- 
clude tunneling and took into account the deviation of 
the effective mass from the free electron mass. 
Significant contribution to the Schottky barrier theory 
was made by Crowell and Sze[7,8] who also calculated 
the quantum mechanical transmission coefficient (QMT) 
of carriers passing through the interface[9]. 

Current conduction in heterojunctions was first in- 
vestigated by Anderson[lO] who made use of Shockley 
and Bethe’s models. The Anderson model was extended 
by various investigators[ 11-161 who employed the 
thermionic, tunneling and diffusion models derived for 
the homojunction and the Schottky barrier. It should be 
pointed out that the assumptions in deriving the models 
in p-n homojunction and Schottky barrier do not neces- 
sarily apply to the heterojunction, particularly under the 
conditions that the difference between effective masses 
on the two sides of the junction is large, that the ther- 
mionic field emission is significant and that carrier ac- 
cumulation exists at the interface. Summaries of the 
transport theory are given by Milnes and Feucht[l’l] and 
by Casey and Panish[l8]. 

tWork supported by JSEP Contract DAAG29-77-C-0019 and by 
National Science Foundation. 

The p-n homojunction and the Schottky barrier may 
be considered as two forms of the semiconductor 
heterojunction[l9]. The homojunction is a special aniso- 
type heterojunction with the same semiconductor on 
both sides of the junction. The Schottky barrier is a 
special isotype heterojunction with a strongly degenerate 
material, i.e. metal, on one side and the semiconductor 
on the other side. Thus, a generalized transport theory 
can be written using the heterojunction as the basic 
structure for calculation. This paper presents such a 
model, covering mechanisms of thermionic emission and 
tunneling. The significance of the QMT is explained and 
numerical calculation is used in the region where the 
WKB method is not applicable. The importance of the 
effective mass difference is elucidated. The twodimen- 
sional effect in momentum space is accounted by making 
use of the conservation of total energy and perpendicular 
momentum. Calculated results of an Al,Ga,.,As-GaAs 
N-n isojunction are presented. 

2. CARRIRR TRANRKIRT ACROSS A 

fWRNTLU BARRIER OF REFEROJUNCTION 

The transport of carriers from one side of the hetero- 
junction to the other is characterized by the quantum- 
mechanical transmission coefficient (QMT), defined as 
the ratio of the transmitted to the incident current. The 
current per unit area from side 1 to side 2 of the junction 
in the x-direction is given by 

11 I. f2um~ (1) 

where k,, k, and k, are the wave vectors in the x, y and z 
directions respectively. Smce heterojunctions used in 
optical devices are mostly fabricated with the direct- 
band semiconductor, we assume that the electron 
effective mass m* is isotropic. In addition, 

Z’(E, k,, k,) = the quantum mechanical transmission 
coe5cient of the carrier across the junction 
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E = the kinetic energy of the carrier total energy and perpendicular momentum are conserved 
during the transition. Figure 1 shows an arbitrary-shaped 
barrier, and the electron is incident from side 1 to side 2, 
or vice verse. Then, the conservation of energy and 
perpendicular momentum yields 

II* p -. =- 
2m* 

= &(&:+k,‘+k:) 
f,. f2 = the probability of the carrier occupancy at 

the energy E in side 1 and side 2, 
respectively. 

Here, electrons are considered as the only carriers and 
the formulae are valid for holes. Then the net current is the 
difference of the two current components flowing in 
opposite directions, 

J = J&.2 - Jz-1 

dkx dk, dkzT(E, k,, kz) 

x IfI( - fi(E(@)I. (2) 

Equation (2) can be rewritten as 

and 

J = J, - Jt (3) 

dk, dk, dkzT(E, k,, Mfr(E(6) 

= $$ j- dE,, _/ dE,. T(E,,, EL)~~%. EL) (4) 

where J, is the emission current from side 1 to side 2. A 
similar equation for J2 can be obtained by interchanging 
the subscripts 1 and 2. The following relations have been 
used in obtaining eqn (4) 

E,=&(k,?+k:) 

h*k, 
En= 2m*’ 

where E,, is the kinetic energy along the current direction 
and E,. is the kinetic energy perpendicular to the current 
direction. J, can be written in terms of the normalized 
kinetic energies, 

where $, = E,jkT, J?‘, = E,/kT, A* = the Richardson’s 
constant of the semiconductor in side 1, k = Boltzmann’s 
constant. 

It is found that J, and J2 have the same form except 
for the carrier occupancy probability f, and f2. Although 
J2 is expressed in terms of the material parameters of 
side 1. we can reformulate it as an invariant form in 
terms of material parameters of side 2 by keeping the 
transition matrix not vanished. In that case, the upper 
and lower bounds of the integral will be limited, and the 

or 

E=E,+E[=E:+Ei+E, (6) 

m*El=m*‘E’ I (7) 

1 - 
fl,=E,,+ I+, El--& -( > (9) 

where 6 = m*‘/m* and the primed notation are the 
parameters of side 2. Since fi,, J?;, $ and fir are all 
required to be positive, the upper and lower bounds of 
the integral can be determined and J, and J2 are given by 

J,=A*T2 

x d,$.T($, J?L)f,($, gL); if 4 < 1 (10) 

= A*T2 

x d& T(& &)f,($,. &); if 6 > 1 (11) 

where A* = (qm*k2/2~2h3) _ 

and jr<&,, B,) = [l + exp (-$. , + 8, + $)]-’ 

J2=A*T2 

= A”‘T2 

x dJ?‘; T(& E;)f2@, 8;); if 9~ 1 (12) 

= A*T2 

= A*‘T’ (_4.0, d.&,j ~ar+4”‘a-‘r 

xd&T(&, &)fi(i$, 8;); if 8 > 1 (13) 

-x 
Fig. 1. Electrons are incident from side 1 to side 2 through an 

arbitrary-shape barrier. 
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where A*’ = (4m*‘k2/2?r2fi3) 

f2(& 8;) = [l + exp (- El.2 t 8: t &I-’ 

=[ltexp(-~,“lt~‘I+$It tdl- 
- _ - _ 
VBS = 4, I - El,,, - EB. 

vBS is the normalized bias voltage across the junction 
with the positive polarity on side 2. Therefore, both J, 
and J2 can be expressed in the form of the emission 
current identical to that of emission from the semicon- 
ductor to the vacuum. However, the QMT here denotes 
the probability of carrier transmission from one semi- 
conductor to another semiconductor. If the semiconduc- 
tors are not degenerate, the Boltzmann’s distribution can 
be used to simplify J, and J2 

1, = A*T2exp(EI.,) 

x 
I 

d,!?l exp (- $3 
I 

dIL?lT($, ,J?,) exp (-J?,) 

= A*T2qI exp (Ef,,) (14) 

and 

J2 = A* T* exp (I&,2 + 6,) 

= A*T*q, exp (& ,) exp (- v=) 

where 

(15) 

x dJ?IT(fiiI, &) exp (- &); if 6 < 1 (16) 

= 

x dJ?lT(& 8,) exp (-8,); if 6 > 1. (17) 

The integration limits in eqns (14) and (15) are the 
same as those in eqns (10)-(13). Therefore, the net cur- 
rent across the junction will be 

_ _ 
J = A*T*q exp (Ef,,,)[l - exp (- V&l. (18) 

Similarly, J can be written in terms of the parameters of 
side 2 and is given by 

J = A*‘T2q2 exp (Ef&xp ( VBS) - 11 (19) 

where 

x dE;T(& 8:) exp (-g:); if 9 < 1 (20) 

= I 1. c_EB. o,dG exp (- &~.~‘qfBbHe-s 

xd,$;T(& J?;)exp(-EL); if 9> 1. (21) 

Here, T)*S are defined to express the current density in 
terms of the thermal current A*T* exp (Bf,,) of the bulk 
material. They can be seen as a modification factor to the 
thermal current which depends upon the band bending Of 
junction. The modification, factor is dependent on the 
minority carrier life-time in the event the junction current 
is dominated by the diffusion mechanism. This case, 
however, is not discussed here. From eqns (16), (17), (20) 
and (21), we get 

~2 = h em @B). (22) 

Either 11, or v2 can be used to express the current 
under the bias VBs, but ql is usually appropriate as the 
current is saturated at the thermal current and q2 is used 
to express the low voltage case with the customary 
exponential form. Both q1 and 1)* are strongly dependent 
on the QMT. In the next section the cases of the ideal 
step-function barrier and N-n junction will be calculated 
and discussed. 

3. CAL4XLATlON OF TRE QUN-lIJM MECHANICAL 

TRAN.VbiIWON COEFFICIENT (Qm) 

The QMT is defined as the ratio of the transmitted 
current to the incident, i.e. the probability of a carrier 
passing through a junction interface. From Crowell’s 
analysis, the QMT of the depletion region of a Schottky 
barrier depends on the potential height and the material 
parameter [20] E, = 1.8565 x lo-” (N/m,.e,)“*. The WKB 
approximation is valid when the carrier’s kinetic energy 
is not near the peak of the potential. In the Schottky 
diode, electrons are emitted to a region with a larger 
effective mass, (the free electron mass); therefore, the 
current transport is very sensitive to the value of the 
effective mass ratio 8. In the heterojunction, the carrier 
transport through the junction is affected by the change 
of the effective mass which makes the perpendicular 
kinetic energy to be added or substracted depending on 
the value of I% An ideal step-function barrier is first used 
in the following paragraphs to explain the effect of the 
conservation of the perpendicular momentum with 
different values of 9. Following the consideration of this 
idealized model, the carrier transport through a hetero- 
junction is calculated. 

(a) Ideal step-function barrier 
With the boundary conditions that the Bloch wave 

function $ is continuous through the junction interface 
x=0. 

* $(0-v) = $(0-j (23) 

and its derivative is modulated with a factor 9, 

dS 
TiY I x-o+ 

=@I 
.X-O- 

(24) 

the QMT of the ideal step-function barrier shown in Fig. 
2is . 

(25) 
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SIDE I SISE 2 

Fig. 2. Electrons are incident from side I to side 2 through an 
ideal step-function barrier. 

where k,, kz = the parallel momentum in side 1 and side 
2, respectively. Equation (25) can be rewritten in terms 
of the kinetic energy of side 1, 

Tell, El) = 
4~(8E,,)t/(E,, + (1 - WE, - Ed 

[d/(&El) + V/(E,, + (I- WED - Edli’ 
(26) 

When 19 is not equal to one, we can find that the 
change of the kinetic energy due to the transport 
effectively increases or decreases the barrier height. The 
magnitude of this effective barrier height depends on the 
value of 19. When 9 is equal to one, the QMT will be 
reduced to a simple form which is independent of the 
perpendicular kinetic energy, 

T(4) = 4V(EN(EIi - EB) 
[v’(En) + V(EII - Er~)l’. 

(27) 

The probability of the carrier occupancy obeys 
Boltzmann’s distribution as the semiconductor is non- 
degenerate. Since the QMT’s of carriers transporting in 
the opposite directions are the same, we only consider 
the case 9 < I and substitute eqn (26) in eqn (16). By the 
numerical integration, n, is calculated as a function of 
the barrier height of both positive and negative vahre. 
The different values of the mass ratio 6 is also consi- 
dered and their effects are shown in Fig. 3 and Fig. 4. In 
Fig. 3, vl is modified by the exponential of the normal- 
ized barrier height I?* to show the effect of the reduction 
of the QMT due to the barrier height. This modified 
value is given by 

ti = ~1 exp GO) (28) 

where &;,, = max (&, 0). When & increases positi_vely, 
4 becomes small because the QMT decreases. If Eg is 
less than zero, the increase of the magnitude of & will 

, 
1 

Fig. 3. The values of tjr = qr exp ($) are functions of the barrier 
with the effective mass ratio 19. ga = EJkT. 

00 -8 
MRRIER HEIGHT ( cB ) 

Fig. 4. The values of tj, = n are functions of the negative barrier 
height with the effective mass ratio 8. Es = E,JkT. 

not lead to monotonic decrease of iI. This is due to the 
mass deviation effect in which a quantity of (1 - 
1/6)E, is added to the kinetic energy in the current flow 
direction. As the carrier reaches the second region, this 
additional kinetic energy effectively lowers the negative 
barrier which modifies ql as shown in Fig. 4. Both the 
QMT and T& are lowered although the magnitude of the 
barrier is smaller in the case of the lower barrier height. 
In fact, the current will be saturated classically when the 
barrier is negative. In this case, the series resistance 
becomes significant but we will not consider it here. 

(b) The QMT of carriers crossing a heterojunction 

Since the energy-band discontinuity exists in the in- 
terface of the heterojunction, carriers passing through 
the junction are reflected partly from the barrier. Similar 
to Schottky barrier, the quantum-mechanical reflection 
has to be taken into account to characterize the transport 
mechanism of heterojunctions. Especially, the QMT is 
an important factor when there is a large barrier in the 
junction or when the tunneling current has to be consi- 
dered in heavilydoped materials. 

In the calculation of the QMT, the WKB ap- 
proximation is a powerful method and is applicable un- 
der the condition 

dkx I I dx <<k,*. (2% 

Let us consider the carrier flow shown in Fig. 5 where 
carriers transporting from left (side 1) to right (side 2). 
There is a depletion layer in side 1, but in side 2 there may 
be either depleted or accumulated region. Sometimes, 
surface charge is so large that both sides of the junction are 
accumulated; then the junction becomes an ohmic contact 
which is not interesting to us at present. In the depletion 

.-I 

SIDE I SIDE 2 
Fig. 5. Electrons are incident from side I with a depletion region 
to side 2. The KWB approximation is not applicable and the 

numerical solution is obtained in the shaded region. 
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region of side 1, 

k, _ (2mY -,(En- U)ln (30) 

>=- m* dU 
dx Itlk,dx 

C’r 1 2q2N,., u “’ -= 
c 

where Eli = the parallel kinetic energy in the flat band 

(31) 

(32) 

region, U = the potential at x, Nr., = the doping concen- 
tration of the semiconductor in side 1, e = the dielectric 
constant of the semiconductor in side 1. 

Substituting eqns (30)-(32) into eqn (29) the necessary 
condition of the WKB approximation becomes 

E&u 41El- u(” (33) 

where E,= $ [ %I”‘. Let 

dkx 
a=& k:, I /I 

E2,U = a2(Ew- U)‘. (34) 

The WKB approximation can be applied when a is much 
less than unity. Solving eqn (34), we obtain 

E. = Um.x+~ (35) 

E, = U,ti-6 (36) 

where U mu = the peak potential energy with reference 
to EC (see Fig. 5), f = (Ef U ,,/a’>“‘, E. = the avail- 
able lower bound of the WKB approximation when 
En> U-9 E, = the available upper bound of the WKB 
approximation when El < U,,. 

As E,, > El > El, the WKB approximation is not ac- 
curate enough, and it will not be used to calculate the 
wave function of the entire depletion region. Solving eqn 
(34) for U in terms of El at the point x = xl, we can get 

(38) 

In the region O< x <xl, the WKB approximation is 
sufiiciently accurate. But the numerical calculation can 
not be avoided beyond this region, i.e. x >xI. The 
momentum space is now divided into three parts by I?. 

and El, and the combined formulae using both the WKB 
approximation and the numerical method are derived as 
follows. 

(9 E~ch<lL 
Because of the limitation of the WKB approximation, 

a closed form of thcQk4T cannot be found. Crowell and 
Sze[9] characterized the Schottky barrier by numerically 
solving the Schrodinger’s equation. The method presen- 
ted here modifies their work so that it can be used to 
characterize heterojunctions. Similarly to Crowell and 
Sze’s treatment, we separate the junction into three parts 
at x = xl and x=x2 between which the WKB ap- 
proximation is inappropriate and Schrodinger’s equation 
must be solved numerically. Let us assume $, and e2 are 
two homogeneous solutions with the initial conditions. 

sm = 1 

!I!& =o 
dx I x-x, 

ti2h) = 0 

.d$z 
dx =1 

I x-x, 
(39) 

and the boundary conditions at x = xd (see Fig. 5) are 

k(Xd+) = $,(xd-) 

where i = 1 or 2. The total wave function J, is a linear 
combination of $, and +2 

+=c*,+D& if x, <x<x2. (41) 

The WKB method gives the wave function in the 
regions x<x, and x>x2 as 

1 
$ = p M exp 0%) + E exp (-iv,)1 if x<x, (42) 

* = $ exp (irrr ) if x > x2 (43) 

where “/I= Jl, k(x) dx and ,711 = Ii2 k(x) dx. By matching 
the boundary conditions that the wave function and its 
derivative are continuous at x = x1 and x = x2, the QMT 
is found to be 

T = & [([I - 13;ed2 + ([2 - &t,)2 
I 

’ 

+ h2(132 + L2)] + ;)-’ (44) 

where 

52 = k&&z) 
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k = k242(x*) 
1 dk, 

*“=2kldx x=x,* I 
(45) 

All cs and kz, (dk&x) are values at x =x2 where the 
WKB approximation is again valid. k, and (dk,/dx) are 
values at x = x1. Here, we have also used condition[9] 

=I9 

which can be obtained from the current flow formula. 

(ii) El, > E, 
From the definition of E,,, the WKB approximation 

can be used in the entire depletion region of side 1. 
Equation (44) is also applicable in this case, if we let 
x, = xd- so that we can use the same program to Cal- 
culate the QMT’s in cases (i) and (ii). When the barrier is 
a step function, (dk,/dx) = 0, (dkddx) = 0, f, = J.+ = 19, = 
0, & = k2 and t= 9 and it is found that eqn (44) is 
reduced to eqn (25) for the ideal case. 

(iii) El, < El 
When the parallel kinetic energy is less than E., the 

WKB approximation can be used from x = 0 to x = xd 

and the numerical wave functions are used in side 2 as in 
case (i). The QMT is given by 

T= 

+ h-%5, - te# + (t - be2)2)] + 5)-’ (47) 

A=exp[ -/XykX(x’)dx’]. 

where all 5’s are the same as eqn (45) and 

M) 

(49) 

Kr is the imaginary wave number at xl = xd, and (dkr/dx) 
is its derivative, x, = x,(&d U,.,)“*. 

4. APPLJCATION To TED3 N-n RlWEROJUNCTlON 

The general theory of carrier transport across the 
heterojunction has been presented in the previous 
sections. In this section, the N-n heterojunction with 
different effective masses on both sides and the energy- 
band discontinuity at the interface will be used as an 
example to explain the above model for calculating the 
I-V characteristics. Although Chang[Zl] has made use of 
the thermionic emission to model the Ge-GaAs,,P, N-n 
junction in low voltages, the analytical form is available 

only for a limited range of doping. According to the 
analysis of Crowell et al. 1201, the tunneling current is not 
negligible, especially, when the energy-band dis- 
continuity or the doping is high. Therefore, the T-F 
model must be employed in the general case. The band 
structure of an abrupt N-n junction under the bias Vss 
is shown in Fig. 6. The forward bias is defined as the 
positive voltage Ves applied to the side of the small 
energy band. Then, the surface potential 4, of side 1 is 
given by 

l N~nw¶X =-- 
2sNN ’ (50) 

where NN is the donor density, xd is the depletion width 
of the depletion region and l N is the dielectric constant 
of the larger-energy-band-gap semiconductor in side 1. 
p,,,,, is the maximum electric field at the interface. It can 
also be expressed in terms of the parameters of the 
semiconductor in side 2. Using Poisson’s equation, the 
potential Q(x) in side 2 is given by 

* x !h?!$=+r &--NN,+p-nl 

1 

l+g.exp 
q&(x) + I?$ + Ed 

kT 

- N,tn 
1 

1 + gh-’ exp - @k(x) + Erp + E, 
kT > 

t Nvn 2 9”* - &4x) + Ef, 
dn kT > 

_ NC, 2 9112 &(‘I + &” 

d/n kT )I (51) 
where l ,, is the dielectric constant of the semiconductor 
in side 2, NP,, and NAn are the densities of donor and 
acceptor, Ed and E, are the ionization energy for elec- 
tron and hole, Efm and Efp are electron and hole quasi- 
Fermi levels referred to the corresponding energy-band 
edges, g, and gh are degeneracy factors of electron and 
hole, NC. and NV” are the effective density states in the 
conduction band and the valence band, respectively. g” 
is the Fermi-Dirac integral. Assuming constant quasi- 
Fermi levels, we multiply d4(x) on both sides of eqn (51) 

Al&,,As GaAs 

Fig. 6. The band diagram of the N-n heterojunction under the 
bias V,,. 



Carrier transport across heterojuoction interfaces 247 

and integrate the right-hand side from d(m) = 0 to I+(O) = 
62 and the left-hand side from (dQi/dx)J,,,=O to 
(ddWdx)L=, = -SM. Then, we obtain 

1 

where G(x) = 
I 

= Pu2(x’) dx’. 
-a 

From the band diagram shown in Fig. 6 we get 

4vm = Em - Efn + q,$, - q42 + A&. (53) 

BY making use of eqns (50)-(53), the self-consistent 
solutions of 4, and #2 can be obtained for a given bias 
VBs. Therefore, the band bending of the junction is 
determined and the QMT of the carrier passing through 
the potential barrier of this bending can be calculated. 
Substituting the QMT into eqn (lo), the current-voltage 
relationship can be found by the numerical integration. 

The Al,Ga,_,As-GaAs heterojunction is employed in 

the DH laser structures[23]. Gur study of the AIXGal,As- 
GaAs N-n junction is intended to help understand the 
current transport mechanism in these lasers. We have 
made use of the parameters of AI,Gar,As collected 
by Rode [22] and calculated the I-V characteristics of Al,- 
Gar,As-GaAs N-n junction. The results are shown in 
Figs. 7 and 8. Note that the rectifying characteristics are 
obtained, but the reverse current is not saturated. The 
current increases with the doping concentration of AL- 
Ga,,As similar to a Schottky diode when we treat the 
accumulated GaAs as a metal. The larger the x-value and the 
conduction-band discontinuity, A& = 0.85 AE, WI, the 
lower the current passing through the junction. 

Let us neglect the tunneling effect and quantum- 
mechanical reflection. We set the transmission coefficient 
T to one for carriers with a kinetic energy greater than 
the barrier height and to zero, otherwise, the current 
density of this classical consideration becomes 

J=A*T2exp[p][l-exp(-*)] 

= A*‘T2 exp Efn+q$-AEc][exp(+)-l] (54) 

where we use the condition that the mass ratio 9 is near 
unity. Comparing this classical form of the thermionic 

Fig. 7. The forward current of the N-n Al,GaI.,AsGaAs 
junction under the bias VBs, Nn is the doping of the ternary 

compound and that of GaAs is 10IJ cme3. 

Fii. 8. The reverse current of the N-n Al,GaI,AsGaAs junction 
under the bias VBS, Nn is the doping of the ternary compound 

and that of GaAs is 10IJ cm-’ . 

emission to the exact current density in the case of the 
doping density of 10” cme3 in Al,Ga,,As and lOI crne3 
in GaAs, we find that the classical approximation is 
about one half of the exact value at low voltage because 
the tunneling current has not been included[l9]. The 
effect of quantum-mechanical reflection is also shown in 
the higher bias where the result of the classical ap- 
proximation is larger than the more exact value. These 
discrepancies are shown in Fig. 9. The larger ideality factor 
obtained exhibits the quantum-mechanical effect based on 
the transport theory presented here. Qf course, the series 
resistance is also a factor that increases the n-value in the 
real diode characteristics. 
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WKB method is employed in the depletion region of side 
1 and the numerical method is used in side 2. Referring 
Rode’s work[22] on AlGaAs-GaAs DH laser, ALGal-, 
As-GaAs N-n junction is taken as an example to cal- 
culate the current densities under both forward and 
reverse biasing voltages. At high biasing, the forward 
characteristics show that the quantum-mechanical 
reflection reduces the current density to sixty per cent of 
its classical value. But at low biasing, it shows that the 
tunneling current must be considered as the semicon- 
ductor of the larger energy-band gap is heavily doped. 
This transport theory is applicable to the anisotype 
heterojunction. However, we must take into account the 
diffusion mechanism in series with the T-F emission 
considered in this paper. 

I I , I , , 
5 IO 

FORWARD BIAS VB, t kT? 
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Fig. 9. The forward current of the N-n junction calculated by (a) 
the quantum mechanical reflection T-F model with the dash line 
(b) the classical thermionic emission model with the solid line. 
The dopant density of AJ,Ga,.,As is 10”cm- and that of GaAs 

is 1O’r cme3. 

5. CONCLXJSIONS 

The transport equations are examined in the hetero- 
junction interface, especially concerned with the 
different masses of carriers in both sides of either an 
isotype or anisotype heterojunction. The upper and 
lower limits of the perpendicular component of the 
kinetic energy are, in general, not infinity and zero, 
respectively. The general form of the current density is 
derived as given in eqn (18) by assuming an isotropic 
effective mass. In the model presented in this paper, the 
perpendicular component of the kinetic energy is 
modified by l/8 so that the perpendicular momentum is 
conserved when carriers pass through the barrier. For 
the conservation of the total energy, this modulated 
perpendicular kinetic energy of (l/S- DE, plays a role 
in reducing effectively the barrier height in the cal- 
culation of the quantum-mechanical transmission 
coefficient. Since the WKB approximation cannot be 
used to calculate the quantum-mechanical transmission 
when the kinetic energy is around the peak of the poten- 
tial barrier, we have used a combined WKB-numerical 
method in which the parallel kinetic energy is considered 
separately in three regions: (i) El> E. in which the 
WKB method is valid, (ii) E,, > fil> E, in which the 
numerical method is used, and (iii) EN < E, in which the 
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