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This work signifies the next step in our way in the magnetic properties simulation of spin
clusters and extended networks containing quantum spins, by original FORTRAN codes
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based on Heisenberg–Dirac–VanVleck (HDVV) or Ising approaches, using Full Diago-
nalization Heisenberg Matrix (FDHM) or Monte Carlo–Metropolis (MCM) procedure,

respectively.
We present the results of magnetic Monte Carlo studies on a magnetite type lattice,

Ising model ferrimagnet that provide insight into the exchange interactions involved
in Cubic Ferrospinels. We have demonstrated that a comparatively simple model can
reproduce ferrimagnetic behavior of ferrospinels, particularly for magnetite.

Keywords: Molecular magnets; ferrimagnets; cubic ferrospinels; Ising–Monte Carlo study.

1. Introduction

Strong magnetism was first discovered not in a metal but in magnetite, which is
a main constituent of “lodestone”. Magnetite belongs to a very large class of non-
conducting, strongly magnetic compounds whose magnetic properties qualitatively
resemble those of ferromagnetic metals. These samples exhibit spontaneous mag-
netization, Ms, below a critical temperature, Tc and have domain structure.

However, there are significant quantitative differences. The paramagnetic sus-
ceptibility well above Tc, follows a Curie–Weiss law, with a negative Weiss constant,
θ, in contrast to the positive θ characterizing a ferromagnetic metal.

In particular the Ms versus T curves show greater variability of shape than
those of the ferromagnetic metals and alloys; many ferrimagnetics have Ms versus T

curves with more complicated shapes, including the cases in which Ms falls sharply
to zero at an intermediate temperature and immediately rises sharply again before
decreasing finally to zero at Tc. The variability of shape, particularly the case of
“compensation temperature” where Ms falls to zero and rises again, is characteristic
of ferrimagnetism.

The behavior of the compensation point has important technological applica-
tions particularly in the field of thermomagnetic recording, since at this point, only a
small driving field is required to change the resultant magnetization of the material.

These differences have been traced to the fact that the strongest interactions
between magnetic ions in these materials are negative, rather than positive as in
ferromagnetic metals, i.e. they favor antiparallel alignment of neighboring magnetic
moments. As a result, the magnetic ordering in a crystal involves two or more
interpenetrant sublattices that are spontaneously magnetized in different directions.

Following Néel’s suggestion,1 the name ferrimagnetism is used to cover the
behavior of materials in which the overall spontaneous magnetization is a resul-
tant of two or more sublattice magnetizations of these kinds. Generally, it is the
crystal structure of a ferrimagnetic compound that determines the detailed form
of the ordering into magnetic sublattices. The two crystal types to which the most
intensely investigated ferrimagnetics belong are those known as “spinels” and “gar-
nets”, classes of materials currently finding important technical applications.

The general chemical formula for the compounds that may crystallize in the
spinel structure is MQ2X4, where

— X is a non-magnetic divalent ion which may be sulfur or selenium or, as in the
large majority of studied cases, oxygen.
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Fig. 1. Spinel structure; left — Two octants of the cubic elementary cell of a spinel structure (if
cubic, c = a); right — Full cobic elementary cell.

— M is a divalent ion of a metal such as Mn, Fe, Ni, Co, Cu, Zn or Mg.
— Q is a trivalent ion of a metal such as Mn, Fe, Co, Al or Ga.

M and Q are the magnetic ions in a ferrimagnetic spinel. The spinel compounds
containing iron, i.e. MFe2O4, are generally called ferrites and form a large group
that includes the simple ferrimagnetic compound, magnetite Fe3O4. In these ferrites
there are two oppositely directed sublattices each of these may contain both M and
Q ions.

Considering the possibility of static disorder of the M and Q ions over the
two types of coordination sites, there is a 1/3 ratio of metal ions with given spin
orientation, while the remaining 2/3 adopt opposite alignment, see Fig. 1.

Figure 1 (left) shows the two octants of the cubic elementary cell of a spinel
structure and the cation and anion sites in a primitive unit cell (if cubic, c = a).
Each of these octants is repeated in diagonally opposite corners of the Full Cubic
Elementary Cell (see Fig. 1 right). The arrows indicate the Néel magnetic structure.

For more complex systems involving many sublattices or canted moments, the
net spontaneous magnetization is not very informative and for detecting magnetic
order on the sublattices are used other experimental or theoretical methods. For
canted materials in particular, the application of a large enough magnetic field to
align Ms against anisotropy can modify2 the pattern of order.

The neutron diffraction3 on a magnetite crystal supplied the first direct con-
firmation of Néel1 hypothesis about interpenetrant, differently oriented magnetic
sublattices. The neutron experiments have shown that, in fact there are several
kinds of ferrimagnetic ordering involving canted spins, as well as the straightfor-
ward co-linear arrangements of the simple ferrites.

Magnetic measurement4–7 of resultant spontaneous magnetizations for ferrimag-
netic samples can yield only such information, if particular theoretical models8 are
used to separate the contributions and show the inadequacies of the molecular-field
models.
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In principle, the mean field approximation can be applied in the paramagnetic
region and in the ordered phase; however, this method leads to a large overestima-
tion of the ordering temperature.9 The deviations of the specific heat obtained by
mean field approaches comparatively with experimental values are closely associ-
ated with spontaneous sublattice magnetizations. They are due to the neglect of
the energy associated with short-range order.

We demonstrate that besides neutron-diffraction method, a Ising–Monte Carlo
simulation based on the Metropolis algorithm give the possibility to determine Néel
(or Curie) temperature TN(TC), the variation with temperature of spontaneous sub-
lattice magnetizations, the specific magnetic heat and the magnetic susceptibility.

In this paper we present the results of Monte Carlo simulations of an Ising
ferrimagnet on a magnetite type lattice. This work presents new advances in the
simulation the magnetic properties of spin clusters10–12 and extended networks
containing quantum spins13–15 by original FORTRAN codes based on Heisenberg–
Dirac–VanVleck (HDVV) or Ising approaches, using Full Diagonalization Heisen-
berg Matrix (FDHM) or Monte Carlo (MC) procedure, respectively.

2. Methodology

The Ising Spin model was chosen for this study since it is known to show a transition
to long-range order at a finite, non-zero temperature.16

Among the variety of approximate methods available in the literature, the Monte
Carlo technique (MC), based on the Metropolis algorithm,17 generates a sampling
of states following the Boltzmann distribution that preferentially contains config-
urations which minimize interaction energy of the system and bring important
contributions to the magnetization at temperature T.18

All the simulations were performed on finite samples, thus introducing system-
atic errors. To minimize these errors, the edge perturbation and accelerate conver-
gence towards the infinite lattice limit, periodic boundary conditions (PBC) were
adopted.19

To obtain reliable results, the optimal sizes of the samples were determined
by carrying out simulations on a range of different sample sizes (Table 1). The
minimum size that showed a finite-size effect for the studied reduced temperature
range kT/|Jab| was from only one Full Cubic Elementary Cell (FCEC, see Fig. 3).

Table 1. Samples sizes used in simulations.

Number of Number of Surface
Number of FCEC Octants for Number of Octants Number of Sites Sites/Number of

for Sample MC Analysis for PBC Conditions for MC Analysis Bulk Sites

1 8 56 24 7.00
8 64 152 192 2.40

27 216 296 648 1.40
64 512 488 1536 0.95
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That means a sample of 64 octants from which 8 for MC analysis and 56 octants
for PBC conditions.

Because the CPU time increases significantly with the size of the problem, for
our first test of the algorithm we chose only 8 FCECs. For each site, at least 104

Monte Carlo Steps (MCS) were performed and first 5∗103 were discarded as the
initial transient stage.19 To avoid a freezing of the spin configuration,19 we have
used a low cooling rate according to the following equation:

(P1)i+1 = 0.95∗(P1)i (1)

where P1 ≡ kT
|Jab| , is reduced temperature parameter.

So a periodic boundary “magnetite lattice” with 192, 648 or 1536 sites was
populated with two spin types (for inverse spinel, see Fig. 1), S1,2

A = 5
2 , S4,6

B =
5
2

( ± 5
2 ,± 3

2 ,± 1
2

)
and S3,5

B = 2(±2,±1, 0) on separate sublattices, A and B. Initial
spin states were randomly assigned.

The energy of each A site is described with the Hamiltonian:

EA
i = giµBHzS

A
zi + DA

i (SA
zi)

2 − 2Jab

∑

n

SA
i SB

j − 2Jaa

∑

n

SA
ziS

A
zj (2)

and for each B site with:

EB
i = giµBHzS

B
zi + DB

i (SB
zi)

2 − 2Jab

∑

n

SB
ziS

A
zj − 2Jbb

∑

n

SB
ziS

B
zi (3)

where n indicates summation over the nearest neighbors from sublattices A or B.
Jab is the nearest neighbor exchange constant between the A and B spin sub-

lattices and Jaa or Jbb indicates the nearest neighbor exchange constant between
the sites within the same sublattice A or B, depending on the sublattice to which
i belongs.

We have considered the case of cubic symmetry with only nearest-neighbour
A–B antiferromagnetic, A–A and B–B ferromagnetic interactions.

Néel model for ferrospinels, which has the cation spins on the tetrahedral (A)
interstices of the anion sublattice parallel to one another and antiparallel to all the
cation spins on the octahedral (B) interstices, is obviously correct if only a nega-
tive Jab interaction exists. However, the introduction of “competing” interactions
removes the simplicity of the problem.

The parameters Jab, Jaa or Jbb may be related to the Heisenberg theory, which
assumes localized atomic moments coupled through exchange interactions that
depend on the overlap of non-orthogonal, atomic orbitals of neighboring atoms.

In the present work, Hz is strength of an external magnetic field and DA,B
i is the

crystal field were fixed at zero. Even though it is possible to include them explicitly
in MC Ising program (this kind of term could be necessary in order to take into
account the noncollinear configurations), we avoided overparametrization effects.
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For each Monte Carlo Step (MCS), one site is picked at random and the spin
state changed. If this change results in a lower energy Ei the change is accepted
automatically; if not, the change is accepted with the probability

p = e−∆E/kT (4)

where ∆E is the energy difference between the new and the old spin states. Con-
figurations were generated by randomly sweeping through the lattice and flipping
the spins one at time according the heat-bath algorithm (to do one sweep means to
visit randomly all the spins from the system, more precisely, to visit every spin at
least once). The parameters Jab, Jaa or Jbb are substituted by the following reduced
parameters,

P1 ≡ kT

|Jab| , P2 ≡ Jaa

|Jab| , P3 ≡ Jbb

|Jab| . (5)

Mainly, we present the results of 121 runs for a sample with 8 FCEC. This
means that P2 and P3 are fixed for each run at one of values from 0 to 1.0 by steps
of 0.1 and for each of 121 runs, P1 is varied by Eq. (1) which gives the cooling rate.

The critical temperatures, Tcrit or (P1)crit ≡
(

kT
|Jab|

)
crit

, were calculated by locat-
ing the maximum value of the specific heat.

Our program calculates the Internal Energy, the Specific Magnetic Heat, the
Resultant and Sublattice Magnetizations, and the associated Susceptibilities by
equations which are given everywhere.15

3. Results

As Jaa and Jbb increase there is a monotonic increase in TN , reflecting the increasing
total magnetic energy of the system. Variation of (P1)crit ≡ k(T )crit

|Jab| versus P2 = Jaa

|Jab|
and P3 = Jbb

|Jab| is shown in Figs. 2 and 3. These results are confirmed20 for layered,
bimetallic ferrimagnets that show both compensate and non-compensate behavior
at low temperatures. Figures 2 and 3 illustrate that the P3 parameter is critical in
determination of the stable spin configuration and is experimentally confirmed4 for
various systems of ferrospinels.

Below the Néel (Curie) temperature of a collinear ferrimagnet, there is a sponta-
neous magnetization, just as in the ferromagnets. However, in this case the magne-
tization is the vector sum of the magnetizations of the two antiparallel sublattices
and therefore has magnitude

MS res = |MS bb − MS aa|. (6)

Because the sublattice magnetizations have quite different temperature depen-
dences, the Ms versus T curves are not restricted to a Brillouin-type shape, as in
the case for ferromagnets (Fig. 4).

If only one sublattice is saturated (or close to the saturation) it is apparent
that the interaction acting on the unsaturated paramagnetic ions is smaller than
that acting on the saturated paramagnetic ions. Therefore the magnetization of the
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Fig. 2. kT
|Jab| versus Jaa

|Jab| and Jbb
|Jab| (P1 versus P2 and P3).

Fig. 3. kT
|Jab| versus Jaa

|Jab| and Jbb
|Jab| (P1 versus P2 and P3).
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Fig. 4. Resultant spontaneous magnetization MS res., sublattice spontaneous magnetizations
MS aa, MS bb and, susceptibility∗ temperature product versus reduced temperature parameter.

Fig. 5. Magnetic specific heat versus reduced temperature parameter.
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Fig. 6. The spontaneous measured (see Fig. 4 for Fe) and calculated magnetizations.

unsaturated sites decreases with T faster than that of the saturated sites, so MS res

decreases if is parallel to the unsaturated sites.
As in the case of ferromagnets, there is a second-order transformation at the

order ↔ disorder transition temperature that is marked by the anomalies in the
magnetic susceptibility (Fig. 4) and specific heat (Fig. 5).

Because there is the entropy associated with the magnetic ordering, a magnetic
contribution to the specific heat must be expected. Close to the Curie temperature,
the rate of change of the long-range order, for which MS is a measure, is high and a
specific heat anomaly would be expected similar to those observed in ferromagnetic
and antiferromagnetic crystals.

Taking Jab = −24.50 cm−1, Jaa = +17.15 cm−1 and Jbb = +12.25 cm−1, the
data shown in Fig. 6 are obtained; calculated and experimental results are presented
for comparison. Clearly, the model is in agreement with the observed data.

By comparing measured4–7 and calculated curves we obtained parameters
P1, P2, P3 and consequently Jab, Jaa and Jbb.

4. Conclusions

We have demonstrated that a comparatively simple model can reproduce ferrimag-
netic behavior of ferrospinels, particularly for magnetite.
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Future improvements could be focused on the following points:

(1) to upgrade the precision of the obtaining critical temperature corresponding to
the maximum in specific magnetic heat,

(a) by improving the cooling rate from Eq. (1) (there are necessary more points
for a more exact shape of specific heat peak, at least in vicinity of TC);

(b) by using 27 or 64 FCEC, for a greater size of MC analized sample;

(2) to use crystal field term, to take into account “noncollinear contributions”;
(3) to use [5] gFe3O4

eff = 2.15 (comparatively with g = 2 used for us in this paper);
(4) it will be necessary also to verify for magnetite, the T 3/2 law, below21 about

10K.
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