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1. Introduction

The -general idea behind the pseudopotential approximation
(PPA} is to replace complicated interactions between particles
described by the (exact)- Hamiltonian H,.,, (if known) of a
physical system by a pseudopotential operator Vi (which
often is of phenomenalogical nature), such that the (eigenval-
ue) spectrum of the resulting pseudo-Hamiltonian (or effective
Hamiltonian), o{H:s), is as close as possible 10 o(Heu) [or a de-
sired subset of g(H...)l. and the corresponding pseudo-eigen-
functions, ¥, match the exact ones, ¥,,,., as closely as possi-
ble for the region of interest. This more general definition for
the pseudopotential approximation is applicable to all areas
describing interactions between particles, that is, to electronic
structure theory for atoms, molecules, and the solid state, to
interactions in Bose-Einstein condensates, or to nuclear inter-
actions and scattering processes, to name but a few." The
main motivation for such a procedure is that the eigenfunc-
tions and eigenvectors of Hy are more easily accessible
through efficient computer codes than it would be through
the formally exact Hamiltonian, He,., and that not all of the in-
formation that can be extracted from H,,, is relevant for the
physical system of current interest.

One of the most important concepts in chemistry is that
only the valence electrons are chemically active, that is, the
core electrons remain inactive and act as spectators in chemi-
cal reactions (frozen-core approximation). As we are mostly in-
terested in chemical properties coming from the valence
space, we can try to replace the effect of the core electrons on
a valence system in an atom, molecule or infinite system by a
pseudopotential, which for this special case we call an effective
core potential (ECP) (unfortunately, in electronic structure
theory the term effective core potential and the more general
term pseudopotential are used synonymously, the latter fav-
oured by European theoretical chemists and the solid-state
community, which we will adopt in the following). Core states
are localized in the vicinity of the nucleus where valence states
oscillate in order to maintain orthogonality with the core func-
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tions. This results in a large kinetic energy (kinetic energy pres-
sure) for the valence electrons in thi core region, which rough-
ly cancels the large potential energy from the Coulomb inter-
action (this can nicely be seen in the work by Schwarz et al.”?),
Hans G. A. Helimann® in 1934 therefore replaced these effects
by a pseudopotential (which he called, Zusatzpotential, that is,
added-on potential}’¥ which is repulsive -in ‘the core region
and therefore keeps the electrons out of the core (Pauli repul-
sion). Around the same time, both Enrico Fermi {for the simula-
tion of alkali atom spectra) and P&l Gombas (for the simulation
of alkali metals) independently proposed the use of pseudopo-
tentials® It took, hawever, until 1959 when James C. Phillips
and Leonard Kleinman from the solid-state community provid-
ed a more rigorous theoretical foundation for the pseudopo-
tential theory for single valence-electron systems by replacing
the core-valence orthogonalization terms by an effective re-
pulsive (hard-core) potential in a very simple procedure!®
Weeks and Rice later in 1968 extended this method to many-
valence.electron systems.”! &

Without any doubt the pseudopotential approximation is
the most widely used method in electronic structure theory
dealing with heavy atoms where relativistic effects need to be
considered: “Pseudopotential calculations are less accurate
than all-electron calculations, but théy simulate the results of
the latter often surprisingly well, for substantially smaller ex-
penses. It does therefore not astonish that in the chemistry of
heavy atoms, relativistic pseudopotential theory is practically
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the method of choice. It is certainly the most successful of afl
approximate relativistic molecular theories”, Werner Kutzelnigg,
1987"®. The pseudopotential approximatidn saves valuable
computer time in large molecular caiculations (or in calcula-
tions for: infinite systems) as the basis set is considerably re-
duced, that is, integrals arising from core orbitals are avoided
and substituted by corresponding (one-electron} pseudopoten-
tial integrals, which can be treated in an efficient way. More-
over, relativistic contributions can be treated in a more effi-
cient way compared to all-electron methods by including such
effects directly into the pseudopotential. In the last two de-
cades it became evident that the error inherent in the (ab ini-
tio) electron correlation or density functional procedure is
almost always larger than the error produced by the pseudo-
potential approximation {if a small core definition is chosen
and care has been taken in the adjustment procedure for the
pseudopotential parameters). Despite the overwhelming suc-
cess of the pseudopotential approximation, there have been
some misunderstandings in the past concerning the validity of
this approximation and the quality of the accompanying va-
lence basis sets. One needs to understand that the use of
smooth pseudo-valence orbitals is strictly for valence proper-
ties only (which need to be defined); in other words, using the
pseudopotential approximation in electronic structure calcula-
tions requires some knowledge of its limits of applicability (as
for any other approximate quantum chermical method).

Many excellent and comprehensive reviews on the pseudo-
potential approximation in electronic structure theory have
been published over the last 20 years, mainly dealing with mo-
lecular systems {and a few for the solid state).®"'” The accuracy
of the pseudopotential approximation as compared to more
accurate all-electron methods has been investigated intensive-
by in the past, leading to a much better understanding of this
useful theory.™ ' Here we highlight some of the recent im-
portant developments in this area, and address some of the
drawbacks of the pseudopotential approximation,” 2 detail-
ing where some care needs to be taken if this theory is applied
in electronic structure calculations. It is hoped that this Minire-
view serves as a basic guide to computational chemists who
want to apply this theory in quantum chemical applications
from molecules to surfaces and the solid state, that is, it
should serve as a beginners’ guide to pseudopotential theory.
A much more comprehensive and rigorous recent review on
relativistic pseudopotentials is given by Deolg and Cao, and is
highly recommended for further reading.l'?

2. Pseudopotential Theory

Electrons are indistinguishable and a separation into pure core,
pure valence and mixed core-valence terms for the electronic
Hamiltonian is therefore not possible. Nevertheless, it is con-
venient to write, for example, the molecular pseude-Hamiltoni-
an H, for valence electrons in the form given by Equation (1):
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with n, the valence electrons and N the cores (nuclei), and
atomic units are used throughout. The indices a,b run over all
cores (nuclei), ij over all valences electrons, @, is the charge of
core a {Q,=Z,—N, N, being the number of core electrons of
atom a, Z, the nuclear charge, and for an all-electron atom we
simply get Q,=Z,), and the last term in Equation (1) describes
the classical (point charge) core-core repulsion. Vg, is the one-
electron(!) pseudopotential operator, which keeps the valence
electrons out of the core and in the valence space (therefore
repulsive in the short-range and attractive in the long-range).
Additional corrections may apply if non-frozen core effects are
considered such as core-repulsion and core-polarization
terms."??" It is clear that we already made a choice in Equa-
tion (1) for the core of a specific atom in our molecule, which
can only come from previous atomic Hartree-Fock (HF) or den-
sity functional Kohn-Sham {DFT-KS) calculations, where orbital
energies and corresponding one-particle densities give us a

"clear indication of what is to be considered tore or valence

space. From a theoretical point of view it is therefore more ap-
propriate to introduce the pseudopotential approximation
within an orbital-based theory (mean-field theory or independ-
ent particle model). -

For the following it is useful to outline the Phillips-Kleinman
procedure for a single valence-electron atom with a closed-
shell core of n/2 core orbitals (for 2 more complicated many-
valence electron treatment leading to the generalized Phillips-
Kleinman form see ref. [7]), The Hartree-Fock equation for a va-
lence orbital ¢, is given by Equation (2) (NB: ¢ = |g)):

Fpy = eypy  with (‘Pv | @) =0 (2)

We now create a pseudo-valence orbital ¥, by mixing core
orbitals- into ¢, [the pseudo-valence orbital transformation or
Phillips—Kleinman ansatz, Eq. (3)]:

=@+ Zacv@c with gy = {@c | xv} {3
C ;

and we obtain Equation (4):

OlFle) = & + Zaévfc (4)
- C

As we have complete freedom for the choice of linear com-
bination in Equation (3), we may select the pseudo-valence or-
bital y to become nodeless (smooth) in the radial part of the
region {0,00). Our aim is to construct a new Fock operator £
for the valence orbital yy such that [Eq. (5)]:

FPKZV = vy : - B ] (5)
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The Pseudopotential Approx:manon in Electronrc Structure Theory

In order to do this, we write down the original Hartree-Fock
equation for y, [Eq. 6]

Fav= vy + Z OevEcPe = vty + Sv(fpv )+ Z acvﬁ'c‘??c

=&viv + Z Aey (&
(6)

Rearranging Equation {6) gives Equation (7):
F+ Z (v — el@c et pv = F+ Py = Fly = ety (7)
C

with P being a core-projection operator, which assures that
the valence electrons cannot collapse into the core. We now
split the original Fock operator F into a core and valence-only

part {Eq. (8)]:

F=F.+F (8)

but remember that the core exchange operator also’leads to
core-valence contributions when acting on a valence orbital.
We now define the non-local pseudopotential operator for a
valence electron at position r [Eq. {9} :

n
Voo(r) = Fo P = 5+ 3 (e = Ko) +Pe (9)
C

and obtain the expectation values for F**

(ZvlFPK|XV> — (el Fv + VPP|XV>
e | 20v) Oov | aw)

‘pchPK|‘Pc> =&y
{10}

‘PV|FFK|§0V

Equation {10) shows-that all core energies &. are shifted up
to the valence energy &, due to the shift operator P.. If we use
the Fock-operator F* instead of F. nothing would be gained
for computational purposes. We therefore try to find suitable
and computer-efficient approximations to Vg, leading to results
close to all-electron calculations.

There are basically two current approaches in molecular ap-
plications for approximating Vi, (the terminology here is rather
unfortunate, but is used throughout the theoretical chemistry
community): 1) the model core potential (MCP) approximation,
or its extension to the ab initioc model potential {AIMP} approx-
imation, originating from Huzinaga and Cantu in 1971 which
directly models the non-local Hartree-Fock potential for a va-
lence orbital,”™ where the inner nodes of the radial vatence or-
bitals are maintained, but the core levels are shifted to higher
energies into the virtual space in order to avoid occupation by
electrons, and 2) the semi-local pseudopotential approximation
of using orbitals that are smooth and nodeless in the short-
range of the radial function and can be derived from the (gen-
eralized) Phillips—Kleinman procedure®™” as discussed above.

MINIREVIEWS

P = vy + Z 2w | @) (e ~ eyl

In the MCP approximation, Ve is replaced -by an adjustable
local potential and a projection operator”™ for example by
Equation (11}

Vep (1)

= ST AMe T £y Beige(n)) (ge(n) (an

where A, m, and o, are adjustable parameters (k runs over the
Gaussian expansion} and B; is chosen such that B> (ey—&.)
{usually Be=—2gc is taken). The corresponding one-electron
integrals over Gaussian functions are easy to implement [inte-
grals over the local potential in Eq.(11) can be solved analyti-
cally except for the standard error and Dawson function, and
the projection operator results in simple overlap integrals].
This approximation can be improved by considering also the
non-focal core-valence exchange K of the original all-electron
Fock operatar, giving raise to AIMPs.?¥ The advantage of Equa-
tion (11) is that the inner nodal structure of the resulting
pseudo-valence orbitals is conserved,.thus closely approximat-
ing all-electron valence orbitals. As a result, relativistic opera-
tors, such as the scalar Douglas-Kroll operator, acting in the
close proximity of the nucleus, can be applied directly to such
pseudo-valence orbitals.2¥ Spin—orbit effects can be included
as well”™ The parameters in Equation (11} can be adjusted to
Hartree-Fock orbital energies and corresponding radial func-
tions in [27]. MCPs and AIMPs have been implemented into
molecular program packages like MOLCAS?® or GAMESS-US™
for most of the elements of the periodic table.

In the pseudopotential (or effective core potential) approxi-
mation, Vs is replaced by a semi-local (focal in the coordinate
r but non-iocal in spherical angle coordinates & and ¢) poten-
tial,B%3" for example by splitting it into a locat V., and an an-
gular-momentum-dependent semi-local term V, [Eq. (12)]:

+Zvl(r Pil
= ZA e —u izsik’m ~hut Z |t} {m;

. {(12)

VPP ( Vlocal

where A, By N Ny oy and By are adjustable parameters, and
the last term in Equation (12) contains a projection operator F,
{containing spherical harmonics) whith projects onto the Hil-
bert sub-space with angular momentum /. Note that if /,,, is
taken large enough, the local term can be avoided. Unlike in
Equation {11), there are no core functions and the pseudo-va-
lence orbitals belonging to the lowest Hartree-Fock {or Kohn-
Sham) solutions for each angular momentum /! are therefare
nodeless for the radial part. The integrals over the semi-local
part over the Gaussian basis functions (and its derivatives) in
Equation (12) are more complicated than in the AIMP ap-
proach, but efficient algorithms have been developed in the
past.?¥ One can also use a transformation from a semi-local to
a non-local form to speed up the integration.”™ Scalar relativis-

tic effects are included directty into Vs by the adjustment pro-
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cedure,P as relativistic perturbation operators originating, for
example, from the Breit-Pauli or Douglas-Kroll Hamiltonian are
short-to-medium range in nature®” and should not be used for
smooth pseudo-valence orbitals. However, this shift of relativis-
tic effects into the valence region seems to work perfectly well
(we come back to this problem in the next section). Therefore,
one- and two-electron spin—orbit effects are also treated by a
relativistic (R) one-electron pseudopotential of the form
[Eq. (13)]:5° '

ME

+1/ J
Z ) Z wmf)i(”mfli
e 11172

> Z ZCJ e Z |fimy )ity ;
1=0 j=|I-1,2

k my=—Ff

T
=]
7
E

(13}

Pitzer and Winter split this equation in a convenient scalar
relativistic (SR} and pure spin—orbit (SO) part for efficient inte-
gral evaluation te be used in configuration interaction (Cl)
treatments [Eq. (1459

Vie () = Ves (1) + Ver (1)

Ly
M)+ 0+ V)] 3 o

:Z 2041

=0 m=—!

53 (437 [0 - v

=0 mf=—tm=—I

(14)

which is useful for extracting the scalar relativistic part if Equa-
tion (13} is solely for the adjustment procedure inciuding both
spin-orbit and scalar relativistic effects [except for a local po-
tential as shown in Eq. (12} which can be included as weil].
Spin-orbit effects are usually treated at the post-HF level of
theory (e.g. in a multi-reference configuration interaction pro-
cedure), but have recently been implemented in a two-compo-
nent form into the program system DIRAC®” by Lee and co-
workers.?® Here we mention that a four-component treatment
of pseudopotentials perhaps "overstretches” that method, as
the small component of the Dirac orbital has most of its densi-
ty in the vicinity of the nucleus and the kinetic-balance condi-

“tion loses its meaning as pseudo-valence orbitals neglect im-

portant core-like contributions. Ta phrase it differently, if core
states are shifted to higher energies or are eliminated, there is
no need to account for the negative energy states. Moreover,
the advantage of the relativistic pseudopotential approach is
that the pseudo-Hamiltonian is bound from below, thus caus-
ing no difficulties for the variational principle of the Rayleigh—
Schradinger term,

Relativistic pseudopotentials of the form of Equations (12) or
(13) are implemented in most program packages, including
Gaussian 09,%% Molpro 1 MOLCAS® or Turbomole™! but is
also found in the solid-state program CRYSTALM™ which uses
Cartesian Gaussian functions as basis sets. The pseudopotential
shown in Equation (12) (with or without the local form) is the
most widely applied approximation for valence electrons in

7 R
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heavy-element-containing systems (most notably but in differ-
ent functional form for the solid state using plane-wave basis
sets for reasons which will be explained below), and we there-
fore give a short overview over the two main adjustment tech-
nigues used to produce either energy- or shape-consistent
pseudopotentials.

The energy-consistent pseudopotentials originated from the
Stuttgart group (Preuss, Stoll, Dolg, Schw'erdtfeger and others),
anticipated originally for the development of semi-empirical
pseudopotentials. Here the adjustable pseudopotential param-
eters in Equation {12) or (13} are determined in a least-squares
fitting procedure to a large number of precalculated atomic
transitions in the valence space (including ionization-potentials
and the electron affinity of the nautral atom) obtained, for ex-
ample, from relativistic Dirac~Fock calculations including Breit
interactions [and if necessary even quantum electrodynamic
(QED} effects™], This fitting technique has been developed
and perfected over more than three decades now by the Stutt-
gart group, and more recently by Dolg and coworkers.*" Only
up to two or three Gaussians [k, =2 or 3 in Eqgs. (12) or (13)]
per angular symmetry | are required. These energy-consistent
relativistic pseudopotentials are available for almost all ele-
ments of the periodic table and can be downloaded from the
Stuttgart or Cologne websites."™ These pseudopotentials are
usually adjusted to (muiti-reference) Hartree-Fock or
Dirac—Hartree-Fock energies, but they seem to be easily
transferable to the density functional domain without
much loss of accuracy, as errors produced by the density
functional approximation far outweighs the error inher-
ent in the pseudopotential approximation for valence proper-
ties. Figure 1 shows the performance of various pseudopoten-
tials using a large-core three-valence-electron ([Pd]-core) defini-
tion for indium. it is clear that the improved multi-electron

-0.005 4
-0.01 4
-0.615 4

002

0025

5825p11]
5515p2
552
5515p1A
5p3 ]
5p2-]
581
5pl]
651 4
5d11

Figure 1. Comparison of the performance of various pseudopotentials for
indium using a [Pd] core. Difference in total electronic energies for various
valence configurations. Data taken from ref. [14]. SEFIT: Single valence elec-
tron energy-consistent pseudopotential (ref. [46]); MEFIT1: Multi-electron
energy-consistent pseudopotential {ref. [47]}; MEFIT2: Multi-electron energy-
consistent pseudopotential (ref. {141}; HW: Hay-Wadt shape-consistent pseu-
dopotential (refs. [48, 49); T: Toulouse shape-consistent PP [ref. [52]); CE:
Christiansen-Ermler shape-consistent pseudopotentlal {ref. [5OD. All values

' are in atomic units.
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energy-consistent pseudopotential (MEFIT2) is per"forming ex-
tremely well compared to the other fitting technlques which
is discussed in the following.

if the pseudopotential parameters are fitted in such a way
that the valence orbitals of different symmetries reproduce to
a high accuracy the corresponding all-electron orbitals from a
certain cut-off (valence) radius r, onwards with matching orbi-
tal energies, we obtain shape-consistent pseudopotentials. This
method was favoured by a number of research groups in the
United States, in particular by Hay and Wadt™ ™ as well as
Kahn®"! Christiansen, Ermler and co-workers®™ and Cundari
and Stevens.®" This technigue has the disadvantage that it re-
quires inversion of the Fock equation to produce angular-mo-
mentum-dependent pseudopotentials, resulting in a large
number of Gaussian fitting functions. The Toulouse group ele-
gantly avoided this by using a direct fit to the shape of the va-
Jlence orbital, ™" which was also adopted later by Stevens
et al., who accordingly named their pseudopotentials compact
effective core potentials (CEPs)."" Shape-consistent pseudopo-
tentials have the advantage that the fitting technique used is
fast and efficient. However, energy-consistent pseudopotentials
choosing a rather large valence spectrum in the fit procedure
fulfil the shape-consistent requirement extremely ‘well (not
necessarily vice versa) if the spectrum is accurately adjusted.
Here we note that, because of historical reasons, the definition
of the pseudopotential used by these groups may differ slight-
ly for the local potential®®*" (as implemented for example in
programs like Gaussian 09°%), that is, Vi, is often defined ac-
cording to the original paper by Kahn and Goddard®" as
{Eq. (15}

Fax

+Z[v,

This implies that the local potential only acts on symmetries
lnax+ 1 and higher up [if the local potential is set to zero, the
definitions in Egs. {12} and (15) are trivially the same],

Titov expanded the pseudopotential approximation of Equa-
tion (12) by dividing the valence space into an outer core part
and a valence part,®¥ which he calls the generalized relativistic
effective core potential (GRECP) approximation. This introduces
an extra degree of freedom {non-locality) and in principle, if a
small core definition is used, should be more accurate in the
fit procedure compared to Equation {12). However, the fit tech-
nigue used for these GRECPs is identical to the way shape-con-
sistent pseudopotentials are produced, which, as experience
shows, is less accurate than the corresponding procedure for
the energy-consistent pseudopotentials (see Figure 1). More-
over, as pseudopotential parameters are not available for all el-
ements of the periodic table, and additional projection opera-
tors are required, the method is not widely used. It therefore
remains to be seen if the GRECP approximation finds wider ac-
ceptance,

In electronic structure theory for 1D, 2D or 3D infinite sys-
tems (polymers, surfaces and the hulk), plane waves are ideally
suited as Bloch basis functions. There are only few exceptions
such as the CRYSTAL™ or Gaussian 099 program suites,

Vpp(r) vlocal Vlocal(’f)]Pu (15)

MINIREVIEWS

where Gaussian basis sets are applied. In this case, pseudopo-
tentials of the form shown in Equation (12} can be used. Local-
ized functions such as Gaussians are generally better suited to
describe the large oscillations of the valence arbitals in the
core region in all-electron calculations, and the corresponding
one- and two-electron integrals in the Hartree—Fock (or in
post-Hartree-Fock) procedures are easily evaluated. On the
other hand, plane waves have many advantages over such lo-
calized basis functions for infinite systems (for a review on this
subject see ref. [57]). However, the expansion of wavefunctions
in plane waves converges rather slowly for the description of
large oscillations in the core region, and pseudopotentials are
therefore ideally suited, for example in solid-state calculations,
The norm-conserving pseudopotential (NC-PP or NC-ECP) de-
veloped by Hamann and Schliter and others*® originated
from the orthogonalized plane-wave (OPW) approximation,*
and is identical to {or a slight modification of} the shape-con-
sistent pseudopotential method adopted for plane-wave codes
within the density-functional formalism. It enforces the condi-
tion that up to a certain cut-off radius, the norm of each
pseudo-valence orbital is identical to the corresponding all-
electron orbital. The norm-conserving pseudopotentials are
constructed from Kohn-Sham rather than Hartree—Fock equa-
tions, and thus are dependent on the functional used. For ex-
ample, the Troutlier and Martins approach®™ is a refinement of
Kerker's procedure®™ and uses the following condition for the
construction of radial {shape-consistenty pseudo -valence orbi-
tals [Eq. (16)]:

e
ex o r<r,
w7 (&) (16)
rer,
widr)

The coefficients ¢, are obtained from the following condi-
tions [Eq. (17)]:

dr d’

Er—nqa""(rc) = W‘P;('}) ¥n=0,..m (match first m derivatives)

fr‘ dr [ (r) — @(r)]* =0 (norm conservation)

oo
dz PP!SC (0)

(17)

The cut-off radius r, needs to be farger than the outermost
node of the valence orbital to abtain nodeless pseudo-valence
orbitals. Using the pseudo-valence orbitals generated through
the conditions given in Equatior] {17), the Kohn-Sham equa-
tions can be inverted while avoiding singularities (except for
the origin) because of the nodeless character of the @F{).
Figure 2 shows a comparison between all-electron and node-
less pseudo-valence orbitals for sulphur. The smoothness con-
dition in Equation (17} ensures rapid convergence of the total
energy (and system properties) with increasing plane-wave
basis set. Here V5 is the screened pseudopotential derived
from inverting the radial Schrédinger equation for an atom

" [Eq. (18)]:16"

iy

R R
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Figure 2. Pseudo- and all-electron valence wavefunctions for sulphur of
Troulliers—Martin type (data taken from ref. [15]).

M+ 1) 1 &

T'FWFW.?F(T) : (18)

VP — 6 -

From this equation it is clear that if V" is to be continuous
then ¢ (r) must be continuous up to {and including} the
second derivative. Moreover, if we want to aveid a hard-core
pseudopotential (singularity at the origin), the pseudo-valence
orbitals must behave as / at the origin.®® The screened pseu-
dopotential includes the Hartree and exchange-correlation
contributions from the valence electrons, and in order to
obtain the pure ionic core part we must correct: for these
terms, giving Equation (19):

va,ion(r)= VfP.SCF(r) - Vli:nree(r) - V::(f)
_ VPP,ion (J') + Z "I-II’P,sernFIocal(',)PJ (1 9)
I

Tocal

Equafion (19) is identical to the general form of Equa-
tion (12), but obtained by a different procedure. Note that this
implies that different pseudopotentials are produced for differ-
ent exchange-correlation functionals. The integrals over plane-
wave functions are easily solved®® or treated in a non-local
form (Kleinman-Bylander transformation®™). As in Equa-
tion (12) the local potential can be derived in an arbitrary pro-
cedure, for example, accounting for the high-angular momen-
tum terms not covered by the semi-local potential V"1
Note that the construction of this soft-core pseudopotential
viPen(r) is a simple procedure and, as in the case of the
shape-consistent pseudopotentials used in molecular applica-
tions, can perhaps not compete in accuracy with a more elabo-
rate adjustment for the muilti-electron energy-consistent pseu-
dopotentials of the Stuttgart group, where the fit procedure
leads to a good representation for the valence spectrum as
well. However, a fair comparison between the different pseu-
dopotentials used in molecular and in solid-state applications
is still missing. Nevertheless, the plane-wave expansion in the
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Troullier-Martins scheme is significantly reduced compared to
all-electron or to hard-core pseudopotential calculations. For
example, Troullier and Martins required only about 850 plane
waves for metallic copper to converge the energy to within
100 meV with respect to the basis size,® while for the pseudo-
potential of Hamann-Schliiter and Chiang® ~1800 plane
waves were needed, for the Kerker pseudopotential®'! ~3000,
and for the ultra-soft pseudopotential by Vanderbilt® ~1550.
in the latter approach by Vanderbilt and co-workers, the norm-
conservation is not enforced and there is greater flexibility for
choosing the cut-off radius r, to ensure better smoothness and
transferability (see Figure 2). However, this implies dealing with
charge augmentation and a generalized eigenvalue problem.
The Fourier transform of V' "(r) shows that these ultra-soft
Vanderbilt pseudopotentials decay much faster in reciprocal
space (which according to Troullier and Martins does not nec-

_essarily imply a faster convergence of the total energy with in-

creasing plane-wave basis size!™). Especially for transition
metals, this results in a significant saving of computer time.
For a general discussion on softening pseudopotentials for
plane wave applications see Furthmiier et al"** The Troullier-
Martins®! and the Vanderbil®® " -type pseudopotentials are
the most widely used in solid-state and surface-science appli-
cations and lead to excellent results. Soft or ultra-soft pseudo-
potentials are available on a numerical grid base or fitted to
standard functions, or can be easily generated through various
atomic program codes.®™ Although different pseudopotentials
are used for different functionals, the error inherent in the den-
sity functional approximation itself is much larger than that
caused by the variation in the pseudopotential parameters due
to different functionals.®”! Apart from the pseudopotentials al-
ready mentioned, there are also the ones by Delley,®® Hutter,
and coworkers,®™ or Krack?™ and others, all varying in the
smoothness conditions and adjustment techniques. Norm-con-
serving and ultrasoft pseudopotentials are implemented in
almost all plane-wave packages for infinite systems like VASP™"
or ESPRESSO,”¥ or in programs like SIESTA, which uses numeri-
cal methods for the radial part of the basis functions.l”” Spin-
orbit coupling can be included within the pseudopotential ap-
proximation for example in the usual way through Equa-
tion {13).74

3. Electronic Properties from Pseudopotentials

There are so many applications for molecules and the solid
state that we restrict our discussion to very few examples in
order to critically analyze the validity (transferability) of the
pseudopotential approximation to molecules and infinite sys-
tems (for the latter we solely focus on the solid state). Figure 3
clearly highlights the enormous success of the pseudopotential
approximation in electronic structure theory-(the survey is by
no means complete, but demonstrates the sudden increase in
popularity since about 1990, mainly due to the immense in-
crease in activity in’ solid-state physics, materials science and
nanoscience}. - :
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1200+ valence space. The same is true
' for the static dipole polarizabili-
1000 ty, which is a typical valence
property. Note that the multi-

8004 electron adjusted energy-consis-
tent nonrelativistic pseudopo-

8001 tential for gold is from 1982
00 and could be improved consid-
erably using modern adjustment

200 procedures* Second we note
that relativistic effects, which

ol have been successfully trans-

Figure 3. Number of papers published per year over the last 25 years using the pseudopotential approximation
for atoms, molecules or infinite systems {from a Web-of-Science search with no guarantee of completeness).

3.1. Atoms

Atoms are better dealt with using all-electron methods at the
four-component relativistic Dirac-Coulomb-Breit level together
with accurate electron-correlation methods like Fock-space
coupled-cluster theory’? Nevertheless, for certain atomic
properties, such as electric dipole polarizabilities, the pseudo-
potential approximation has been quite useful in the pastl®
Studies on atomic properties are also useful to evaluate the ac-
curacy of the core chosen, that is, the use of small vs large
core pseudopotentials, and some of the short-comings of the
pseudopotential approximation for certain properties (for a de-
tailed discussion see ref. [12]}. Table 1 shows a comparison be-
tween all-electron and psevdopotential results for various va-
lence properties of neutral gold at the nonrelativistic and
scalar relativistic Hartree-Fock levet of theory obtained with an
uncontracted all-electron {29s/25p/17d/12f) basis set.”?

Table 1 shows that both the ionization potential and elec-
tron affinity are weill reproduced by the pseudopotential ap-
proximation, even for the large-core Hay-Wadt pseudopoten-
tial ¥ which only takes the (5d"6s') electrons of Au into the
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Property NR-AE  NR-SCPP  DK2-AE  SR-SCPP  SR-LCFP
IP [ev]™ 592 593 7.66 7.68 7.60
EA [eVI™ 0.085 0.088 061 0.63 059
ap [aw] 109 103 50.1 49.7 53.0
Q DAl —-288 —-250 ~269 —23.1 ~185
—< VT 2,00 3.91 1.68 3.93 232
Gae " fa0] 8.53 0.32 907 031 0.37

[a] Not corrected for the relafivistic picture change effect.” [b] This work.

ferred into the- valence space,
are nicely reproduced. Moreover,
there are many different proce-
dures to transform the Dirac
Hamiltonian to the two-compo-
) nent or cne-component (scalar-
relativistic) form,"®™ and one expects slight differences between
scalar-relativistic pseudopotential and all-electron results if dif-
ferent relativistic Hamiltonians are used. If we want to compare
to experimental results we need to include electron correla-
tion. Relativistic Fock-space coupled cluster calculations includ-
ing Breit interactions by Kaider and co-workers give (nonrela-
tivistic values are given in parentheses) 9.197 (7.057) eV for the
ionization potential and 2.295 (1.283) eV for the electron affini-
ty.®" This compares to 9.22554{2) and 2.30861(3) eV respective-
ly from experiment®™ Pseudopotential results give 9.14
(7.04) eV for the ionization potential and 2.13 {1.16) eV for the
electron affinity’"® A fairer comparison using the same basis
sets and electron correlation procedure needs to be made,
however. Zeng and Klobukowski recently presented different
ab initio model potentials [see Eq. (11)] for various core defini-
tions.* For a similar core (555p5dés valence space) compared
to the Stuttgart pseudopotentials they obtained 9.324 eV for
the ionjzation potential and 2.190 eV for the electron affinity at
the multi-configuration quasi-degenerate perturbation theory
(MC-QDPT} level of theory™ These results clearly demonstrate
that the errors inherent in the pseudopotential approximation
for valence properties are quite.small (of chemical accuracy),
and expected" to be much smaller compared to the density
functional approximation widely used in gquantum chernical
applications, or to limitations in the electron-correlation proce-
dure. Moreover, quantum electrodynamic carrections for the
ionization potential and electron affinity of neutral gold at the
Dirac-Hartree-Fock level are —0.0211 and -0.009 eV respec-
tively and already of the size of the pseudopotential error®
Such effects become rather sizable for the 7s or 8s shell of the
superheavy elements and need to be included in the pseudo-
potential adjustment procedure™® Concerning the electric
dipole polarizability for neutral gold, experimental values are
not available, but pseudopotential coupled-cluster calculations
give 351 a.u., in good agreement with an all-electron Doug-
las—Kroll coupled-cluster value of 36,1 au®™

The other properties shown in Table 1 are given to illustrate
the (obvious) limitations of the pseudopotential approxima-

" tion. Apart from (small) errors in the pseudopotential adjust-
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ment procedure, further errors arise from the neglect of core
contributions, core-polarization and core-valence correlation,
and from the use of nodeless pseude-valence orbitals. It is
clear that typical core properties like the electric field ;gradient
at the nucleus {see Table 1), NMR chemical shifts, Méssbauer
shifts, and so forth, cannot be described by the pseudopoten-
tial approximation without reintroducing the core orbitals.®
From the missing kinetic and potential core and core-valence
contributions it is also clear that the nonrelativistic virial theo-
rem is not fulfilled®™®! (although in this form it is not fulfilled
for the relativistic Douglas—Kroll case for various reasons®™),
What is perhaps more surprising is that the electric quadrupole
moment Q contains a rather sizeable error, which seems to in-
crease with increasing core size. It is well known that radial
pseudo-valence orbitais lead to expectation values for < /">
{n>0} in very good agreement with all-electron orbitals (which
.contain all their nodes), thus <r" > is regarded as a typical va-
lence property (and is the reason why dipole polarizabilities
are well described by the pseudopotential approximation}.”
Indeed, it was found recently that even for muitipole moments
(and especially for the quadrupole moment), contributions aris-
ing from the core orbitals cannot be neglected anymore.”™ As
quadrupcle moments enter, for example, the equation for the
calculation of magnetizabilities {response to an external mag-
netic field), such properties cannot be regarded anymore as
typical valence properties (for a detailed discussion, see
ref, [20]). Hence, one needs to be aware which properties are
well described by the pseudopotential approximation and which
are not. As a general rule, property operators containing in-
verse coordinate powers or derivatives, that is, operators of
the type r"@" /0r" (n+m >10), are not well suited for nodeless
pseudo-valence orbitals, and may give rather large contribu-
tions from core orbitals—the electric field gradient operator at
a nucleus is of such type.

There are many other studies that deal with the accuracy of
the pseudopotential methods for atoms."*' We only mention
a more recent paper by Pitzer and coworkers on the ground
and low-lying excited states of U** and U*", where a 24 va-
lence-electron shape-consistent relativistic pseudopotential in-
cluding spin-orbit coupling yields low relative and rms errors
for the electronic valence states, and correctly predicts the or-
dering of these states™

3.2. Molecules

The pseudopotential approximation has become an invaluable
tool in the electronic structure treatment of molecules,®™ espe-
cially for large molecules containing heavy elements. Consider-
able computational savings are made in the Hartree—Fock pro-
cedure and subsequent integral transformation for an elec-
tron-carrelation treatment compared to an all-electron treat-
ment. Moreover, the basis set superposition error is often re-
duced compared to ali-electron calculations, which is an
advantage for the treatment of weakly interacting systems
such as Hg,.*® Of course, what has been described in the pre-
vious section concerning. core properties also applies for mole-
cules or the solid state. In this section we focus on a prime
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molecular example to discuss the accuracy: of the relativistic
pseudopotential approximation, on the diatomic AuH, discus-
sing the quality of calculated spectroscopic constants, such as
the bond distance, dissociation energy and vibrational con-
stants. Table 2 contains the collected results from various cor-

related calculations.

2 W 49
iy _‘:,;5?649%' e IRy ,bl;%}éj{ﬂ%,}i}:
LR
Method Dy eVl
Experimental®™ 1.524 3.22 2305 43.1
DK3-AE-CCSD{M™ 1526  3.05 2328 -
DK-AE-CASPT214 1.522 2.95 2315 -
SEPP-CCSD(T)™ 1.527 2.980 2306 456
SC1-AIMP-CASPT2Y | 1523 295 2312 -
SC2-AIMP-CASPT2M 1.518 297 2328 -
NR-AE-CCSDM® 1.743 1.99 1587 -
NR-SCPP-CCSD()® 1.747 1.987 1575 303

fa] Dy is D, corrected for zero-point vibrational effects using w, and w.x,
{the latter if available). (b] Experimental values from ref, [91]. [c] All-elec-
tron values from ref, [92]. [d] Ab-Initio Model Potential and all-electron re-
sults from ref, [27]. fe] From ref. {16},

The results shown in Table 2 clearly demonstrate that errors
for typical valence properties caused by the small-core pseudo-
potential approximation are small compared to errors originat-
ing from the incomplete treatment of electron correlation or
basis set incompleteness. Further, relativistic effects are correct-
ly reproduced by the pseudopotential method. A more de-
tailed analysis can be found in ref. [16], where similar basis
sets were used for both all-electron and pseudopotential MP2
(second-order Maller-Plesset) calculations in order to make the
performance of the pseudopotential approximation more
transparent, see Table 3. The results clearly demonstrate that a
small-care pseudopotential for gold leads to negligible devia-
tions to all-electron results for typical valence properties, while
a large-core definition can lead to substantial errors, especially
for the dissociation energy of AuH. At the same time, Han and
Hirao carried out test calculations for the ground states of
AuH, AuCl, and Au,, and pointed out that a small-core relativis-
tic pseudopotential can safely be used in density functional
calculations with little loss of accurdey.®™ Previous claims that
pseudopotentials yield rather large-errors in structural or elec-
tronic valence properties compared to all-electron calculations
are unfounded, and either due to insufficient valence basis
sets or low-quality pseudopotentials used. However, as ex-
plained above, special care needs to be taken to define the
correct core size in the pseudopotential adjustment procedure.
For example, a one-valence electron pseudopotential for gold
is not acceptable and leads to very large errors in valence
properties, as core repulsion, core polarization and core-va-
lence correlation effects become very large" Even for copper
in the higher oxidation state, a compound like CuF,” involves
strong bonding participation by the Cu(3d) orbitals as Figure 4
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Method r. [A] D, [eV]®

w.icm™l wxJem™l u, D]
NR-AE 1694 1955 1716 27.1 343
NR-SCPP-5t] 1689  1.855 1726 30.0 3.40
DC-AEM 1484  3.208 2521 - 1.03
DK2-AE 1486  3.034 2517 4B.4 1.07
SCPP-5t1 1480 3,161 2523 446 1.01
SCPP-CE® 1477 3193 2524 445 0.99
SCPP-HWI? 1472 3307 2587 447 0.87
SCPR-SK! 1484 3144 2518 445 1.04
LCPP-CEW 1.519 . 2520 2303 40.7 1.08
LCPP-HWY 1.547 2450 2156 371 1.20

[a] D, is not corrected for zero-point vibrational effects for better compar-
ison. [b] Nonrelativistic energy-consistent SCPP from the Stuttgart group.
[¢] Dirac-Coulomb  all-electron. [l] Scalar relativistic energy-consistent
SCPP from the Stuttgart group. [e] Scalar relativistic shape-consistent
SCPP of Christlansen and Ermler. {f]) Scalar relativistic shape-consistent
SCPP of Hay and Wadt. [g] Scalar relativistic shape-consistent SCPP of Ste-
vens et al. [h) Scalar relativistic shape-consistent LCPP of Christiansen and
Ermler. [i] Scalar relativistic shape-consistent LCPP of Hay and Wadt. For
details and references see ref. [16].

Figure 4. Selected valence molecular orbitals for CuF,” showing large contri-
butions from the Cu{3d) in some lower lying “valence” orbitals (b and ¢)
with orbital energies close to the highest occupied molecular orbital
(HOMQ). a) HOMO (—0.11 a.u.) b) MO {—0.17 a.u.} ¢) MO {—0.2% a.r).

shows, and thus a one-valence electron pseudopotential for
copper is also inappropriate. Placing just the 5d electrons into
the valence space for Au to give an 11 valence-electron pseu-
dopotential can lead to sizeable errors as well as the results in
Table 3 show.">™

As pointed out before for the atomic case, one needs to be
aware which properties are well described by the pseudopo-
tential approximation and which are not. For example, the dy-
namic or static dipole {hyper)polarizability of an atom or male-
cule is considered as a typical valence property, and results for
atoms, molecules or atomic clusters indeed show very good
agreement with all-electron results or experimental measure-
ments.” However, one might naively expect that the response
to an external magnetic field is equally well described by the
pseudopotential approximation. This is however not the case,
as recent test calculations on diamagnetic and paramagnetic
contributions to the magnetizability of AuF and clusters of tin
up to Smy, show Here the pseudopotential approximation
carries rather large errors from missing core contributions and

2 a0y

the missing correct inner nodal structure of the pseudo-va-
lence orbitals, which can be corrected for the diamagnetic
part, but not so easily for the paramagnetic component of the
magnetizability® It is obvious that typical core properties like
the electric field gradient or the NMR chemical shift cannot be
accurately obtained if a pseudapotential is used at the center
considered. Here one needs to either reintroduce the core and
nodal structure of the valence orbitals,®™ or carry out a single-
point all-electron caiculatmns (at the optimized pseudopoten-
tial geometry).

3.3, Infinite Systems

The pseudopotential approximation is the method of choice
for the treatment of infinite systems, including heavy elements,
and has become invaluable in the electronic structure calcula-
tion of surfaces and the solid state. In a caveful analysis, Yin
and Cohen pointed out that the pseudopotential approxima-
tion is an accurate and viable method for the study of structur-
al properties of solids™ Barth and Gelatt came to similar re-
sults.®™ Table 4 shows a comparison of pseudopotential with
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solid Method aq [Al En [eV] B, [GPal
Si dig™® Exp. 5.43 463 99
PP 539 599 98
PAW 538 6.03 98
LAPW 5.41 592 o8
Ca fec Exp. 558 1.84 15
PP ' 537 214 20
PAW 532 224 19
LAPW 5.33 220 19
V bee Exp. 3.03 531 162
PP 294 9.46 210
PAW 2.94 939 200
LAPW 9.27 200

294

[a] Diamond structure for silicon.

all-electron results for various solids carried out by Holzwarth
et al.® The large deviations to expefimental values are clearly
caused by the density functional method used and not by the
pseudopotential approximation, that is, the local density ap-
proximation (LDA) severely overestimates cohesive energies.
Nevertheless, the all-electron linearized augmented-plane-
wave (LAPW) results are in good agreement with the pseudo-
potential values.

Troullier and Martins showed that the pseudopotential func-
tions V{r) for a specific angular momentum ! (including the
local part if not absent) can differ substantially between the
different adjustment techniques (see for example Figure 7 for
Cu in ref. [60]). The same was found for pseudopotentials used

" in molecular calculations.™ However, they all lead to very simi-
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lar structural and electronic properties. Table 5 shows a com-
parison'of results for bulk copper, obtained with a Troullier-
Martins pseudopotential, with other calculations,*” demon-
strating that the pseudopotential approximation performs ex-
tremely'well-compared to the LAPW method. It also shows
that relativistic effects are successfully transferred into the va-
lence region.

Method a, [A] E. [eV) B, [GPa]
Exp. 361 3.50 142
SR-TM-PP 3.57 4.38 174
SR-BHS-PP 362 335 150
LAPW 356 4.42 183
MNR-TM-PP 3.60 419 160
NR-K-PP 3.62 3.83 i88
NR-LAPW 361 4,14 163

Luppi et al. showed that the pseudopotential approximation
can safely be applied to excited electronic states for solids.""
This is perhaps not surprising, as this has been known for de-
cades within the molecular quantum chemistry community.®*4

Nevertheless, band gaps and optical spectra are well repro-~

duced compared to ali-electron resuits, and large errors com-
pared to experiment come from the density functional approx-
imation. However, it was recently shown that the magnetic
moment of the V(100) surface obtained from pseudopotentials
deviates significantly from all-electron full-potential linearized
augmented plane-wave (FLAPW) calculations.'”"¥ Thus, while
the magnetization in the top layer vanishes after surface relax-
ation (in agreement with experiment), the pseudopotential
value for the surface magnetization is 0.75u; for the relaxed
and 1.77 g for the bulk truncated surface. A careful analysis by
Kresse and coworkers showed that these results are sensitive
to the cut-off radius r. chosen, and a large value of r. leads to
erroneous results™ They further argued that for softer poten-
tials {large r.) the maximum in the V(3d) pseudo wavefunction
is shifted significantly outward, thus causing a reduction of the
core-valence overlap, and subsequently a too large value for
the spin-enhancement factor in the region where the magneti-
zation density reaches its maximum. They advise to perform
careful convergence studies on the pseudopotential cut-offs
before applying it to such calculations.'

Cocula and Carter showed that the problem of correctly de-
scribing the magnetic behaviour of surfaces (or the solid state)
can be corrected by using spin-dependent pseudopotentials."®
However, the transferability of such an approach to other sys-
tems needs to be tested. In such problematic cases where the
pseudopotential approximation breaks down (see the recent
discussion on the electric quadrupole moment and corre-
spending magnetizability for atoms and molecules™), one
may be better served to camry out an all-electron calculation.
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One way to avoid pseudopotentials for infinite’ systems and at
the same time a very large plane-wave expansion, is by using
mixed basis sets, for example, Gaussian-type functions for the
short-range and plane waves for the long-range."™ However,
currently a more poputar method seems to be the projector
augmented-wave (PAW) approximation as suggested by
Blochl,® which combines ideas from bath the pseudopotential
and the LAPW methods. Here one takes advantage of the
pseudopotential approximation, that is, the smooth pseudo-va-
lence orbitals are used in the variational calculations, but the
correct inner nodal structure is retained through- all-electron
and projector functions using the frozen-core approximation.
Blschl achieves this by introducing a linear transformation con-
necting the true orbitals, which retain all their inner nodes, to
pseudo-valence orbitals (for details see ref. [98]). This tech-
nique saves significantly in computational costs and gives re-
sults close to fully variational all-electron methods. Hence, the
PAW procedure can be used to reconstruct all-electron orbitals
from pseudo-orbitals useful for typical core properties, where
the inner nodes of the valences orbitals are required. A formal
refationship between Vanderbilt's ultrasoft pseudopotential ap-
proximation and the PAW method has been derived by Kresse
and Joubert, showing that the total energy functional for ultra-
soft pseudopotential pseudopotentials can be obtained by lin-
earization of two terms in a slightly modified PAW total energy
functional."® Thus programs that use norm-conserving or ul-
trasoft pseudopotentials can easily be modified for the PAW
method. Spin-orbit coupling can also be treated in an efficient
way within the PAW method.™ -

4, Outlook

The pseudopotential appreximation remains an invaluable tool
in the theoretical treatment of the electronic structure for
large molecules and infinite systems such as surfaces or the
solid state. For structural and electronic valence properties, the
accuracy of this method (if the core is chosen appropriately,
that is, not too large to avoid frozen-core errors) is high
enough compared to other errors caused for example by insuf-
ficient treatment of electron correlation or by the density-func-
tional approximation, except perhaps for atoms and small mol-
ecules where large scale configuration-interaction or coupled-
cluster techniques can achieve spectroscopic accuracy. Relativ-
istic effects are well incorporated into the valence space by
the pseudopotential approximation an'd are successfully trans-
ferred to molecules or the solid state, despite the fact that rela-
tivistic perturbation operators act in the close vicinity of the
nucleus. Care needs to be taken in applying this method to
properties where the (polarized} core-density, the nodal struc-
ture of the valence orbitals, core-valence correlation or core-
overlap effects become important. For example, in high-pres-
sure simulations of materials one needs to be sure that the va-
lence densities of the neighbouring atoms do not penetrate
significantly into the core region of the atom carrying a pseu-
dopotential. More recently we have also learned that external
magnetic field properties contain large contributions from the
core region.” In such cases, single-point all-electron calcula-
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tions at the optimized pseudopotential geometry are advisa-
ble. _

Herein we did not discuss Gaussian basis séts in detail. Like
alt-electron basis sets used in atomic or motecular calcfulations,
the accompanying valence basis sets can be obtained from
various sources like the basis set exchange service at the Envi-
ronmental Molecular Sciences Laboratory (EMSL).'™ Mast
noteworthy here is the development of Dunning-type™” corre-
lation-consistent valence basis sets by Peterson and cowork-
ersi'® We also did not reflect on pseudopotentials used in
quantum Monte Carlo applications and refer here to the work
by Dolg and coworkers!"™ In the last 50 years the develop-
ment of accurate pseudopotentials -happened independently
in two different communities, the molecular (chemistry) and
the solid-state (physics) community. What perhaps is missing is
a fair comparison of the pseudopotentials obtained from both
<communities, as they can learn from each other.

Hellmann’s very basic idea of the well known fact that only
valence electrons are important for the understanding of
chemical bonding and processes, can be brought into a rigor-
ous quantum mechanical framework and has been refined to
such perfection and high accuracy’® that the pseudopotential
approximation is the method of choice in most structural and
electronic properties of systems containing heavy elements.
When Pekka Pyykkd was asked in an interview what difference
the increased computing power has made to his work, he re-
plied: You can do far more complex calculations. One very good
philosophy is that if you push your calculations to the currently
available limit, more often than not, you find new science. Anoth-
er thing that made relativistic quantum chemistry available to
anyone was pseudopotentials. There have been other approxi-
mate methods, but the market share of pseudopotentials is per-
haps the largest one™®
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