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In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral
band as that of the emitted pulse. The transmission frequency determines the trade-off between pen-
etration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic
of the emitted frequency band to construct images. Recently, superharmonic imaging (SHI) has
been introduced, which uses the third to the fifth (super) harmonics. The harmonic level is deter-
mined by two competing phenomena: nonlinear propagation and frequency dependent attenuation.
Thus, the transmission frequency yielding the optimal trade-off between the spatial resolution and
the penetration depth differs for THI and SHI. This paper quantitatively compares the concepts of
fundamental, second harmonic, and superharmonic echocardiography at their optimal transmission
frequencies. Forward propagation is modeled using a 3D-KZK implementation and the iterative
nonlinear contrast source (INCS) method. Backpropagation is assumed to be linear. Results show
that the fundamental lateral beamwidth is the narrowest at focus, while the superharmonic one is
narrower outside the focus. The lateral superharmonic roll-off exceeds the fundamental and second
harmonic roll-off. Also, the axial resolution of SHI exceeds that of FI and THI. The far-field pulse-
echo superharmonic pressure is lower than that of the fundamental and second harmonic. SHI
appears suited for echocardiography and is expected to improve its image quality at the cost of a
slight reduction in depth-of-field. © 2011 Acoustical Society of America. [DOI: 10.1121/1.3643815]

PACS number(s): 43.80.0Qf, 43.80.Vj, 43.35.Yb, 43.35.Bf [CCC]

. INTRODUCTION

Over the last decades, medical ultrasound has greatly
improved due to numerous technological advances.! How-
ever, until the late 1990s most of these improvements mainly
impacted the technically suitable patient subgroup.' A con-
siderable subgroup of patients was considered difficult to
image due to tough windows, inhomogeneous skin layers,
and limited penetration.” This was especially so in the case
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of echocardiography, where the ultrasound propagation paths
are generally long and reflections from the skeletal structures
occur often. In this early period ultrasound imaging was
based on linear acoustic wave propagation. The technique
was called fundamental imaging (FI) because the frequency
transmitted (the fundamental frequency) was also received
and used to construct an image. The transmission frequency
follows from a trade-off between the attainable spatial reso-
lution, which improves for increasing frequency, and the
required penetration depth, which reduces for an increasing
frequency.® The trade-off yields an optimum frequency that
depends on the specific application. For example, for the vis-
ualization of the left ventricular endocardial border during
echocardiography (imaging depths of 1015 cm) a transmis-
sion frequency of 3.5 MHz yielded the best results.*

About a decade ago it became possible to improve ultra-
sound image quality by exploiting the nonlinear nature of
acoustic wave propagation. The developed technique is called
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tissue second harmonic imaging (THI) and is based on the
selective imaging of the reflections of the second harmonic of
the emitted frequency.>> Compared to fundamental imaging,
second harmonic imaging features lower sidelobes, and is
therefore less sensitive to clutter and off-axis scatterers.'=*®
Also, since the second harmonic field builds up progressively,
the effects of reverberation and near-field artifacts are greatly
reduced."® This is particularly important for echocardiogra-
phy in view of the proximity of the ribs to the available imag-
ing windows, and the intermediate skin and fat layers.
Ultrasound image quality improved considerably due to these
characteristics, especially for the patient subgroup considered
challenging to image.

Even though the nonlinear nature of wave propagation in
tissue was already used in the late 1970s for acoustic micros-
copy’ and shown to be relevant in the context of medical
applications in the early to mid 1980s by Muir and Carsten-
sen'® and Starritt et al.,“ it took until the late 1990s for sec-
ond harmonic imaging to take off. Reasons for this were the
necessary improvements in dynamic range and signal process-
ing, but also the widely held assumption that nonlinear
distortion was not a significant factor in medical diagnostic
imaging, since the frequency dependent thermoviscous
absorption rapidly dissipates the generated harmonic energy.”
The level of the harmonics is determined by two competing
phenomena: A growth over distance of the harmonics due to
nonlinear propagation, and a decay over distance of the har-
monics due to frequency dependent attenuation. Therefore,
compared to fundamental imaging, second harmonic imaging
requires a different trade-off between the required penetration
depth and the obtainable spatial resolution, and this will result
in a different optimal transmission frequency. Thus, in the
case of visualizing the left ventricular endocardial border dur-
ing echocardiography (imaging depths of 10-15 cm) a trans-
mission frequency of 1.6—1.8 MHz yielded the best results for
second harmonic imaging. This in contrast to the 3.5 MHz
transmission frequency that gave the optimum results for fun-
damental imaging.*

Recently, a new imaging modality named tissue super-
harmonic imaging (SHI) was proposed. The modality
extends the idea behind second harmonic imaging by using
the reflections of the third to the fifth harmonics arising
from nonlinear wave propagation.'’ Based on numerical
simulations,® superharmonic imaging promises increased
suppression of near-field artifacts, reverberations, and off-
axis artifacts in addition to enhancing the spatial resolu-
tion. The resulting images from phantom measurements
showed indeed more details than those produced by second
harmonic imaging.® Recently, this was confirmed in addi-
tional simulations and in vitro experiments conducted by
Ma et al.'* As superharmonic imaging uses the third to the
fifth harmonics for imaging instead of the second har-
monic, a different transmission frequency is expected to
yield the optimum trade-off between spatial resolution and
penetration depth. For superharmonic echocardiography
optimal transmission frequencies of 1.0-1.2 MHz were
found.'*'?

Although the physical principles of the aforementioned
imaging methods are different, there seems to exist a
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common property: For the same application, the ranges of
the frequencies used to create an image are very similar.
This is illustrated by the case of echocardiography, where
the center frequencies of the imaging signals are 3.5 MHz
for fundamental imaging, 3.4-3.6 MHz for second harmonic
imaging, and 3.0-6.0 (with 3.0-3.6 MHz containing the
dominant signals) for superharmonic imaging.

In previous work,'* superharmonic imaging has been
compared to second harmonic imaging, both using simula-
tions and experiments. However, in this comparison the fre-
quency ranges of the second harmonic and the dominant
superharmonic components differ, so it is assumed that the
modalities are not compared under their optimal conditions
for the same application. Also, the simulations are performed
for a less realistic situation involving water and an axially
symmetric transducer and corresponding ultrasound field.
The axial symmetry also appears in other work.® Moreover,
the latter paper mainly compares the superharmonic and sec-
ond harmonic components around the focus. Zemp et al.'®
compared fundamental and second harmonic imaging at
their optimal frequencies, but only investigated the field
around the focus and only showed normalized results. To the
authors’ knowledge, no research has been published that
compares all of the relevant features of fundamental, second
harmonic, and superharmonic imaging at their optimal fre-
quencies for a realistic application, i.e., involving phased
array transducers, a medium with tissue-like attenuation, and
a maximum allowable mechanical index (MI). In view of the
nonlinear character of the physics that underlies harmonic
imaging, comparison of the modalities under the desired re-
alistic circumstances cannot be deduced from the results
obtained under different circumstances. The aim of this pa-
per is to make a fair comparison of fundamental, second har-
monic, and superharmonic imaging under conditions that
resemble a realistic medical diagnostic situation. The study
is performed using numerical simulations, and the chosen
situation applies to echocardiography. For each modality,
the realistic situation is mirrored in all aspects, e.g., by using
the optimal transmission frequencies, different phased array
topologies, equal focal distances, the highest allowable pres-
sures in transmission, and tissue-like attenuation. The three
imaging modalities will be evaluated with regard to the lat-
eral beam shape over the entire imaging depth, axial pulse
shape, and pulse-echo axial pressure.

A truly fair comparison between different harmonic
imaging modalities can only be performed by a numerical
study, such as presented by Zemp er al.'® The experimental
comparison of these modalities would be very difficult,
because it is impossible to obtain suitable phased array trans-
ducers with the same aperture size, the correct center fre-
quency, equal relative bandwidths, and equal transmit
efficiencies. Deviations form the carefully selected trans-
ducer parameters would result in an unfair comparison. Both
the INCS method'”™"” and a KZK implementation®®* are
used for the numerical simulations in this study. The KZK
implementation was adapted to handle frequency power-law
losses, since the accurate modeling of tissue-like attenuation,
next to nonlinearity, is important in the simulations. The
INCS method is also able to deal with these kinds of losses.
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A description of both nonstandard simulation tools will be
given to show their interrelation and to enable reproduction
of the results.

Il. METHOD
A. Westervelt equation

The nonlinear propagation of the ultrasound field in a
source-free region of a thermoviscous fluid may be described
by the source-free Westervelt equation®>*

19p 60 o’p?
R g
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Here, the ultrasound field is represented by the acoustic pres-
sure p, and the medium is represented by the ambient density
of mass py, the ambient speed of sound c, the diffusivity of
sound J, and the coefficient of nonlinearity . The latter
quantity is often written as

1 5 2
B=1+57 @)
where B/A is the parameter of nonlinearity, which follows
from the second order Taylor expansion of the state equation
of the medium around equilibrium. In all media that show
attenuation, a plane propagating ultrasound wave decays
exponentially with distance. For a thermoviscous medium, the
corresponding attenuation coefficient satisfies the quadratic
frequency law”*** o= oglwl>. Experiments show that most
biomedical tissues exhibit a more general frequency power
law?>?0 o = aplw|™, with 1 < o; < 2. To accommodate this
kind of attenuation as well, Eq. (1) is generalized to'”'%%’

v 1&(xp) B 0% 3)
& or pocy O

Here, y = y(t) is a causal relaxation function, and *, denotes
a temporal convolution. The relaxation function may be split
according to

(1) = 0(1) + a(), )

where 0(¢) is the Dirac delta function, which represents the
instantaneous behavior of the medium, and a(f) is a causal
memory function, which is associated with the attenuation
and dispersion of the medium.

B. KZK simulations

The far field behavior of the considered unsteered beams
will be simulated using an approximate method. For these
beams most of the ultrasound energy propagates in the posi-
tive z-direction, i.e. in the direction that is normal to and
away from the transducer. By introducing the retarded time
T=t —z/cy and neglecting the resulting derivatives with
respect to z (parabolic approximation), Eq. (3) may be turned
into a beam equation or evolution equation that favors the
positive z-direction. The resulting equation is
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In the retarded time frame, the acoustic pressure is repre-
sented by p (x, y, z, 1) =p(x, y, z, t,), while the memory func-
tion remains unchanged. Apart from the more general loss
term, Eq. (5) is identical to the Khokhlov-Zabolotskaya-Kuz-
netsov (KZK) equationZ(L22 for a nonlinear medium with
thermoviscous behavior. The numerical solution of this
equation will be based on the method proposed by Lee and
Hamilton?® for circular transducers, and in particular on the
extension by Yang and Cleveland®® for rectangular trans-
ducers. This involves the introduction of the dimensionless
quantities

X =- Y== 7 =— 6
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where d is a characteristic length in the direction of propaga-
tion (e.g., the focal distance), a and b are the lateral dimen-
sions of the sound source, w, is a characteristic angular
frequency (e.g., the center frequency of the transmitted
pulse) and pq is the peak pressure of the sound wave at the
source. Subsequent integration with respect to t gives
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in which the following quantities appear
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The numerical solution of Eq. (9) is performed by the algo-
rithms described by Voormolen.>' This involves the tradi-
tional operator splitting scheme,”®** which separately
accounts for the effects of diffraction (the integral term),
nonlinearity (the term with the factor N) and attenuation (the
term with the factor A). The diffraction substep is performed
in the time domain and uses the implicit backward finite dif-
ference (IBFD) method™ in the near-field and the alternating
direction implicit (ADI) finite difference scheme at larger
axial distances. The nonlinearity substep is also performed
in the time domain and employs a time base transformation.
The attenuation substep is performed in the frequency
domain to avoid the explicit evaluation of the convolution in
the time domain.
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In case of general frequency power law losses of the
form o = ap|w|™, one can combine Egs. (3) and (4) of this
paper, and compare the result with Egs. (B6) and (B7) of
Szabo.*® Using generalized calculus in the same sense as in
that paper, it may be deduced that

_ 460/’11’1(!) , (13)
o (OCl + I)I“I

in which h=-oy I'(o; +2) cos[(o + 1)n/2]/m with T" being

the gamma function, and H(z) is the Heaviside step function.

Application of Egs. (12) and (13) gives for the attenuation

term in Eq. (9)
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where it has been used that P(T) =0 for T < 0. For the evalu-
ation of this term, it is employed that in the generalized
sense a convolution in the time domain still corresponds to a
multiplication in the frequency domain, and hence

opP

Aspor = F~{F[P(T)| FIK(T)]}. (15)

Here, F and F! denote the forward and inverse Fourier
transformation, respectively, and the kernel function K(7) is
given by

~ 2dophH(T)

The Fourier transformation of this function is
F[K(T)] = dog' oo (jQ)™, (17)

where Q is the angular frequency associated with the time 7.
This expression is directly applied in Eq. (15), which is
implemented using fast Fourier transforms.

C. INCS simulations

Close to the source it cannot be assumed a priori that
most of the ultrasound energy propagates in a preferred
direction, and the KZK equation may become inaccurate.
Therefore, the directionally independent Iterative nonlinear
contrast source (INCS) method'” ™ will be used for the sim-
ulation of the near field of the beams. This method is based
on the generalized Westervelt equation

vy 1Pz *0p)

M gV (p) — 18
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where, in accordance with Eq. (3), the nonlinear term equals
B *p?
poch OF

SN (p) = (19)

The additional term S is the primary source term that repre-
sents the transducer. In the absence of S™“(p), the primary
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source generates the linear contribution to the wave field.
With the INCS method, SN“(p) gets the role of a separate
source. This source accounts for the difference between the
linear and the nonlinear case, i.e., it generates the nonlinear
contribution to the wave field, and is called a contrast source.
The contrast source depends on the field itself, and is distrib-
uted over the entire space. Since the wave operator at the left
hand side of Eq. (18) applies to a linear and attenuative me-
dium, both the primary source and the nonlinear contrast
source may be thought to operate in a linear and attenuative
background medium. This implies that the fields of the pri-
mary source and the contrast source may be computed using
the same techniques that apply to a linear medium. Now sup-
pose that the Green’s function of the background medium,
1.e., the function G that satisfies

2 (. %,
e P ERL UL NL CEUNMCY

VG
is known. This function may most conveniently be derived
in the space-frequency domain.'”'® Because the Green’s
function describes the spatiotemporal impulse response of
the relevant medium, the solution of Eq. (18) may formally
be written as

P = G*,ny,z,t [S + SNL(p)] (21)

Here, *,, ., denotes a convolution over the entire spatial and
temporal domain where either source term has a significant
value. Since the nonlinear contrast source depends on the
total pressure wave field p, the equation yields an implicit
solution. The main assumption of the INCS method is that
for weakly to moderately nonlinear behavior, as encountered
with diagnostic ultrasound, the contribution of the contrast
source will be relatively small. In that case, increasingly
accurate approximations of the total pressure wave field may
be obtained by first computing the linear field contribution
p?, using this to compute an approximation of the contrast
source, then computing an approximation of the nonlinear
field, and successively repeating of the last two steps. This
results in the iterative Neumann scheme

PO =Gy S, (22)

p(/‘) =G %y [S + SNL(p(/—U)]

=P+ Gy SM(PUV)( > ). =
As a rule of thumb, in the jth approximation the fundamental
up to the (j — 1)th harmonic will be represented accurately.
The most involving task in the numerical evaluation of the
scheme is the spatiotemporal convolution, which is efficiently
performed with the filtered convolution method.** The
method first filters out all spatial and temporal frequencies
above the highest frequencies of interest. This enables
sampling at only two points per shortest period or shortest
wavelength, without introducing aliasing. Then the resulting
four-dimensional discrete convolution is performed using Fast
Fourier Transforms. To model frequency power law losses of
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the form o = og|w|™, the INCS method employs a relaxation
function x that is defined in the Laplace domain as'”'®2’

Cooos™ !

w(s) = (1 t costam 2)[1 + (s/sl)“])z’

where a is an integer with value a > o;—1 and s; is taken
greater than the highest angular frequency of interest. The
term (s/s;)“ is necessary for causality purposes, but has no
influence for the angular frequencies of interest. For low
losses, the quadratic term in the expansion of Eq. (24) may
be omitted. Under these circumstances, comparison of
Eq. (24) with the transformed version of Eq. (4) shows that

(24)

2coops™ !
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The inverse Laplace transformation of this function is identi-
cal to a(?) in Eq. (13). From this it may be concluded that for
low losses and angular frequencies well below sy, the attenu-
ation in the KZK and INCS simulations is the same.

lll. SIMULATION SETTINGS

In this paper three imaging modalities applied to echo-
cardiography are compared: fundamental, second, and
superharmonic imaging. The acoustic beams produced in
each modality are calculated from the source plane up to an
axial depth of 15 cm using a full 3D implementation of the
KZK equation. However, only the results from 6—15 cm are
analyzed. The near-fields of these beams are calculated and
analyzed from the source plane up to an axial depth of
~7 cm using the INCS method. To estimate the pressure
received by the transducer for each of the imaging modal-
ities in pulse-echo mode, linear back propagation is
assumed. The scatterer is assumed to be small, and situated
on the propagation axis. It is further assumed that the field
at the scatterer is totally reflected in the direction of the
transducer, where it is registered. No receive focusing is
applied.

The transmission pressure amplitude (py) at the trans-
ducer element surface is taken such that a Mechanical Index
(MI) of 1.9 is produced in water® (the MI is defined as the
peak negative pressure divided by the square root of the fre-
quency in MHz). The lateral and elevation focus is set to 9
cm and no beam steering is applied. Three cycle Gaussian
apodized sine bursts, with a center frequency equal to the re-
spective optimal transmission frequency (see section I), are
used as transmission signals.

The transducer configurations used to simulate each
imaging modality are summarized in Table I. Notice that the
footprint for each array is equal, i.e., 16 mm x 22 mm. The
transducer geometry used for superharmonic imaging is
based on a previously reported interleaved array,'®> which
consists of a low frequency subarray interleaved with a high
frequency subarray. The low frequency subarray is used in
transmission, and the high frequency subarray is used in
reception. Both subarrays consist of 44 elements each, and
the subarray pitch is 0.5 mm.
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TABLE I. The array geometries used for the simulations.

Transmit No.
freq. po Footprint elements of Element size  Pitch
(MHz)  (kPa)  (mm?) - (mm?) (mm)
FI 35 774 16 x22 128 16 x 0.12 0.17
THI 1.8 910 16x22 88 16 x0.20 0.25
SHI 1.2 1730 16 x22 44 16 x 0.20 0.50

To evaluate the axial resolution in the case of superhar-
monic imaging the dual-pulse method®™® is applied. This
technique is required to prevent ghosting artifacts associated
with imaging based on multiple harmonics and using tempo-
rally wide (i.e., spectrally narrow) transmission pulses. This
imaging protocol is based on the transmission of two pulses
with a slightly different center frequency. Subsequently, both
time traces are summed to create an image. The frequencies
of the first and second pulses are 1.1 and 1.3 MHz, and were
determined using the methodology described by van Neer
et al.®® The tissue parameters are based on those reported
for cardiac tissue:>> B/A = 5.8, 0p=0.52 dB- cm™'-MHz !,
po= 1060 kg/m3 and c¢o= 1529 m/s. In this case o; =1, but
for the INCS simulations, a slightly larger value is used to
avoid a zero denominator in Eq. (4). To determine p,, simula-
tions are performed using the properties of water:*
BIA=4.96, 0y=2.17x10" dB-cm ' -MHz 2, p,=998.2
kg/m® and ¢y = 1482.3 m/s.

IV. RESULTS
A. Lateral beam profiles

Figures 1—5 display the normalized lateral pressure pro-
files of the fundamental at 3.5 MHz, the second harmonic at
3.6 MHz, and the superharmonic at 3.6-6.0 MHz at axial
depths of 3, 6,9, 12, and 15 cm. The profiles have been cal-
culated using the INCS method (gray lines in Figs. 1 and 2)
and KZK simulations (black lines in Figs. 2-5). The INCS
and KZK results are in good agreement. The differences
between the results of both methods are between 0—1 dB,

BN
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==|NCS, fundamental
===|NCS, second harmonic
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-30 -15 -10 -5 0 5 10 15 20
Lateral dimension (mm)

FIG. 1. The normalized lateral pressure profiles of the fundamental at
3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line) at an axial depth of 3 cm.
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FIG. 2. The normalized lateral pressure profiles of the fundamental at
3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line) at an axial depth of 6 cm.

0—2 dB, and 0—1 dB for the fundamental, second harmonic
and superharmonic, respectively. The lateral —6 dB beam
widths and beam roll-off at particular off-axis distances are
given in Table II. Except for an axial depth of 3 cm, the val-
ues in this table are taken from the KZK simulations.

B. Axial pulse shape

The normalized envelopes of the pressure pulses pro-
duced at focus by the fundamental at 3.5 MHz (solid line),
the second harmonic at 3.6 MHz (dashed line), and the super-
harmonic at 3.6-6.0 MHz (dash-dotted line) are displayed in
Fig. 6(a) on a linear scale. Figure 6(b) shows these envelopes
in decibel. The envelopes have been calculated using KZK
simulations. The axial lengths produced by each modality at
the —6, —10, and —20 dB levels are given in Table III.

C. Pulse-echo axial pressure

Figure 7 displays the pulse-echo axial pressure profiles
of the fundamental at 3.5 MHz (solid line), the second
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FIG. 3. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line) at an axial depth of 9 cm.
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FIG. 4. The normalized lateral pressure profiles of the fundamental at
3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line) at an axial depth of
12 cm.

harmonic at 3.6 MHz (dashed line), and the superharmonic
at 3.6—6.0 MHz (dash-dotted line). The profiles have been
calculated using the INCS method (gray color) and using
KZK simulations (black color). The INCS and KZK results
are in good agreement. The differences between the results
of both methods are between 0—0.5 dB, 0—2 dB, and 0—1
dB for the fundamental, second harmonic, and superhar-
monic, respectively. The focal spot is at 70 mm for the fun-
damental beam, at 66 mm for the second harmonic, and at
65 mm for the superharmonic (values taken from KZK simu-
lations). The pulse-echo axial intensities produced by each
modality in the near-field at 1 cm (from INCS simulations),
the focal point (from KZK simulations) and the far-field at
15 cm (from KZK simulations) are shown in Table III.

V. DISCUSSION
A. Lateral resolution and roll-off

To the authors’ knowledge the comparison between the
fundamental, second harmonic, and superharmonic imaging

Normalized pressure (dB)

—KZK, fundamental
-=-KZK, second harmonic
6 H i ==+KZK, superharmonic i i
30 -15 -10 5 0 5 10 15 20
Lateral dimension (mm)

FIG. 5. The normalized lateral pressure profiles of the fundamental at
3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line) at an axial depth of
15 cm.
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TABLE II. Lateral beam characteristics.

TABLE III. Axial lengths and pulse-echo intensities.

Fundamental ~ 2nd harmonic ~ Superharmonic
Transmit frequency 3.5 MHz 1.8 MHz 1.2 MHz
Receive frequency 3.5 MHz 3.6 MHz 3.6—6.0 MHz
Axial depth 3 cm
—6 dB width (mm) 13.8 12.5 114
Roll-off at 10 mm (dB) —17 —24 —28
Axial depth 6 cm
—6 dB width (mm) 6.6 5.4 35
Roll-off at 15 mm (dB) —28 —43 —-57
Axial depth 9 cm
—6 dB width (mm) 22 2.6 2.8
Roll-off at 10 mm (dB) -30 —40 —52
Roll-off at 15 mm (dB) —33 —46 —60
Axial depth 12 cm
—6 dB width (mm) 5.0 4.2 4.3
Roll-off at 15 mm (dB) 27 -37 -51
Axial depth 15 cm
—6 dB width (mm) 12.6 8.1 6.5
Roll-off at 15 mm (dB) -19 —27 —36

modalities at their respective optimal frequencies is the first
of its kind. The —6 dB lateral beam widths of the second and
superharmonic are 18% and 27% wider than the fundamental

1
(a) —KZK, fundamental
=-=--KZK, second harmonic

==:KZK, superharmonic
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FIG. 6. (a) The normalized envelopes of the pressure pulses produced at
focus by the fundamental at 3.5 MHz (solid line), the second harmonic at
3.6 MHz (dashed line) and the superharmonic at 3.6—6.0 MHz (dash-dotted
line) displayed on a linear scale. (b) The normalized envelopes displayed in
decibel.
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Fundamental ~ 2nd harmonic ~ Superharmonic
Transmit frequency 3.5 MHz 1.8 MHz 1.2 MHz
Receive frequency 3.5 MHz 3.6 MHz 3.6—6.0 MHz
Axial length
—6dB (us) 0.77 1.1 0.33
—10dB (us) 0.98 1.37 0.45
—20 dB (us) 1.3 1.9 1.3
Axial Pressure
Near-field at 1 cm (dB) 112 87 59
Focus (dB) 106 101 93
Far-field at 15 cm (dB) 68 67 61

at the geometric focus (an axial distance of 9 cm). Similar
results have been reported for the second harmonic by Zemp
et al.'® They compared simulations of 4 MHz fundamental
beams and 2—4 MHz second harmonic beams produced by
phased array transducers.

At short axial distance (6 cm) the superharmonic beam
has a —6 dB lateral beamwidth, which is 47% and 35% nar-
rower than the fundamental and second harmonic beams,
respectively. At a large axial distance (15 cm) the superhar-
monic beam has a 48% and 36% narrower beamwidth than
the fundamental and second harmonic beams, respectively.
This is caused by the fact that for the fundamental of the
superharmonic beam the natural focus of the aperture is
close to the lateral and elevation foci (9 cm). Therefore, the
focal zone is elongated and the fundamental ultrasound
beam spreads slowly. The resulting superharmonic beam
shape is even narrower due to the autofocusing effect of non-
linear propagation. The fundamental of the second harmonic
beam is more focused than the fundamental of the superhar-
monic, but less so compared to the fundamental beam. In
case of the second harmonic beam, the autofocusing effect is
also weaker than for the superharmonic beam. The autofo-
cusing of second harmonic beams in the far-field was also
reported by Tranquart ef al.!

120, T
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110 ==:KZK, superharmonic
==|NCS, fundamental
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FIG. 7. The pulse-echo axial pressure profiles of the fundamental at
3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the
superharmonic at 3.6—6.0 MHz (dash-dotted line). The pressure values are
relative to 1 Pa.
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Usually, in the literature the lateral profile around focus
is discussed, where sidelobes are clearly discernable (as can
be seen from Fig. 3). If lateral profiles away from focus are
discussed (such as Figs. 1 and 5, but to a lesser extent also
Figs. 2 and 4), the sidelobes are not or not clearly visible.
Therefore, the roll-off is chosen to describe and compare the
lateral beam behavior. The roll-off of the second and super-
harmonic beams is considerably higher than that of the fun-
damental beam. For example, around the geometric focus (9
cm) the second harmonic pressure at 10 mm off-axis was 10
dB lower than that of the fundamental, which was similar to
the 12 dB difference reported in the work of Zemp et al.'®
Over the axial interval 6-15 cm, the roll-off of the second
harmonic beam as characterized by the pressure at 15 mm
off-axis was 8—15 dB higher than that of the fundamental.
Over the same axial interval, the improvement in roll-off of
the superharmonic beam relative to that of the second har-
monic beam was 9-14 dB, which is approximately equal to
the improvement in roll-off of the second harmonic beam
compared to the fundamental beam, and amounts to an
improvement of 17-29 dB in the superharmonic beam rela-
tive to the fundamental beam. The improved roll-off of the
second harmonic and superharmonic beams is also caused
by the autofocusing effect of nonlinear propagation.

B. Axial resolution

The axial length of the fundamental pulse is 28% shorter
at the —10 dB level and 28% shorter at the —20 dB level than
the length of the second harmonic signal. The superharmonic
axial length (based on the dual-pulse method) is in turn 67%
shorter at the —10 dB level and 31% shorter at the —20 dB
level than that of the second harmonic. These last results are
similar to the 62% decrease in axial pulse length for the
superharmonic relative to the second harmonic reported by
Bouakaz and de Jong.® The difference is explained by the fact
that Bouakaz and de Jong simulated a circular symmetric
transducer in stead of a rectangular transducer, and used a 1.7
MHz transmission frequency for the second harmonic com-
pared to the 1.8 MHz transmission frequency used here.

The axial length of the simulated superharmonic compo-
nent obtained using the dual-pulse method is about 35%
shorter compared to previously reported experimental
results.*® Part of this discrepancy is caused by the difference
in transmission frequencies, which were 0.9 and 1.15 MHz in
the experiments and which are 1.1 and 1.3 MHz here. Also,
the previously reported results were obtained using a phased
array transducer combined with an ultrasound system. The
pulse created by the arbitrary waveform generators was
affected (in practice lengthened) by the transfer function of
both the transducer and the electrical circuitry, effects which
were not taken into account in the simulations reported here.

C. Pulse-echo axial pressure: Depth-of-field

The pulse-echo near-field pressure of the superharmonic
beam at an axial distance of 1 cm is 34 dB below its pressure
at focus. For the fundamental and second harmonic beams the
near-field intensities are 6 dB above and 14 dB below their
respective intensities at focus. The pressure at focus of the
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superharmonic beam is 13 and 8 dB lower than those of the
fundamental and second harmonic beams, respectively. How-
ever, the pressure loss associated with the imaging at larger
depths is lower for superharmonic imaging compared to fun-
damental and second harmonic imaging. At 15 cm the super-
harmonic pulse-echo pressure is 7 and 6 dB lower than that of
the fundamental and second harmonic, respectively. These
results mean that the depth-of-field of superharmonic imaging
is lower than those of fundamental and second harmonic
imaging. If the second harmonic pressure at 15 cm is taken as
a minimum threshold pressure, the second harmonic depth-of-
field stretches from 0.1 to 15 cm, while the superharmonic
depth-of-field extends from 1.6 to 13.7 cm. Thus, superhar-
monic imaging features a slightly lower penetration depth
than fundamental or second harmonic imaging. However, the
limited depth-of-field of superharmonic imaging also causes it
to be less sensitive to near-field artifacts and reverberations
compared to fundamental and second harmonic imaging,
which is particularly useful for echocardiography.

D. Simulation remarks

The simulations presented here assumed a homogeneous
propagation medium and used the material properties
reported for cardiac tissue. However, in the case of echocar-
diography a propagating sound wave encounters a mix of
cardiac tissue and blood. Although the B/A values of blood
(6.0) and cardiac tissue (5.8) are similar, the attenuation of
blood (~0.14 dB -cm™' - MHz ') is about 2—3 times lower
than that of cardiac tissue (0.52 dB - cm™! -MHZ*I).25 There-
fore, the axial pulse-echo pressures reported here apply to a
worst-case scenario.

The MI is defined as the derated peak negative pressure
divided by the square root of the frequency in MHz.*” How-
ever, in this article the peak negative pressure has not been
derated for the calculation of the MI. If the derated peak
negative pressure had been used for the MI calculation, the
pulse-echo pressure at focus for fundamental and second
harmonic imaging would increase by at least ~16 dB. How-
ever, the superharmonic is made up from the third to the
fifth harmonics. The third harmonic component would also
increase by at least ~16 dB, but the fourth and fifth harmon-
ics would increase by more than ~22 and ~28 dB, respec-
tively. Thus, the backscattered superharmonic pressure
would effectively increase somewhat compared to the inten-
sities obtained using the fundamental and second harmonic
imaging modalities.

In these simulations the backscattered power in the
direction of the receiving aperture is equal to the incident
power. Thus, the frequency dependent character of the back-
scattering was ignored in this comparison. This hypothesis is
valid for the fundamental of 3.5 MHz, second, and third har-
monics of 3.6 MHz, as these frequencies are almost the
same. However, taking into account the power frequency
dependency of the backscattering in biological tissue, the
backscattering is expected to be larger for the fourth and fifth
harmonics. Hence, in this respect again a worst-case scenario
has been considered with regard to the superharmonic. It
is important to mention that the contribution of those
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harmonics to superharmonic imaging is much lower than the
one of the third. Therefore, the approximation to assume a
frequency independent character of the backscattering was
deemed acceptable.

VI. CONCLUSIONS

It is the increased roll-off in combination with the pro-
gressive build-up of the harmonic beams that leads to a
reduced sensitivity to off-axis scatterers, and a better suppres-
sion of near-field artifacts and reverberation in harmonic
images compared to a fundamental image, despite the
increased beamwidths around focus. Therefore, superhar-
monic imaging is particularly suited for echocardiography,
where the imaging window is limited by the ribs and there is
often a focus on high contrast borders between cardiac tissue
and blood. The reduced spreading of the superharmonic
beam in combination with a reduced roll-off and a higher
axial resolution should lead to images of higher resolution
compared to those produced by fundamental and second har-
monic imaging. The drawback of superharmonic imaging is
its lower pulse-echo peak pressure compared to second har-
monic imaging. This leads to either a slightly lower depth-of-
field or the requirement for a more sensitive transducer in
cases where mainly tissue is imaged, such as in abdominal
imaging. However, this drawback is reduced in practical
echocardiographic situations, where the sound wave encoun-
ters blood next to tissue. In this case, the lower attenuation of
blood, in combination with the approximately equal nonli-
nearity, actually makes that the ratios between the superhar-
monics and the second harmonic become more favorable for
superharmonic imaging, as compared to the considered
tissue-only case.

In summary, superharmonic imaging appears particu-
larly suited for echocardiography and is expected to improve
the image quality of this modality at the cost of slight reduc-
tion in depth-of-field.
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