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In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral

band as that of the emitted pulse. The transmission frequency determines the trade-off between pen-

etration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic

of the emitted frequency band to construct images. Recently, superharmonic imaging (SHI) has

been introduced, which uses the third to the fifth (super) harmonics. The harmonic level is deter-

mined by two competing phenomena: nonlinear propagation and frequency dependent attenuation.

Thus, the transmission frequency yielding the optimal trade-off between the spatial resolution and

the penetration depth differs for THI and SHI. This paper quantitatively compares the concepts of

fundamental, second harmonic, and superharmonic echocardiography at their optimal transmission

frequencies. Forward propagation is modeled using a 3D-KZK implementation and the iterative

nonlinear contrast source (INCS) method. Backpropagation is assumed to be linear. Results show

that the fundamental lateral beamwidth is the narrowest at focus, while the superharmonic one is

narrower outside the focus. The lateral superharmonic roll-off exceeds the fundamental and second

harmonic roll-off. Also, the axial resolution of SHI exceeds that of FI and THI. The far-field pulse-

echo superharmonic pressure is lower than that of the fundamental and second harmonic. SHI

appears suited for echocardiography and is expected to improve its image quality at the cost of a

slight reduction in depth-of-field. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3643815]

PACS number(s): 43.80.Qf, 43.80.Vj, 43.35.Yb, 43.35.Bf [CCC] Pages: 3148–3157

I. INTRODUCTION

Over the last decades, medical ultrasound has greatly

improved due to numerous technological advances.1 How-

ever, until the late 1990s most of these improvements mainly

impacted the technically suitable patient subgroup.1,2 A con-

siderable subgroup of patients was considered difficult to

image due to tough windows, inhomogeneous skin layers,

and limited penetration.2 This was especially so in the case

of echocardiography, where the ultrasound propagation paths

are generally long and reflections from the skeletal structures

occur often. In this early period ultrasound imaging was

based on linear acoustic wave propagation. The technique

was called fundamental imaging (FI) because the frequency

transmitted (the fundamental frequency) was also received

and used to construct an image. The transmission frequency

follows from a trade-off between the attainable spatial reso-

lution, which improves for increasing frequency, and the

required penetration depth, which reduces for an increasing

frequency.3 The trade-off yields an optimum frequency that

depends on the specific application. For example, for the vis-

ualization of the left ventricular endocardial border during

echocardiography (imaging depths of 10–15 cm) a transmis-

sion frequency of 3.5 MHz yielded the best results.4

About a decade ago it became possible to improve ultra-

sound image quality by exploiting the nonlinear nature of

acoustic wave propagation. The developed technique is called
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tissue second harmonic imaging (THI) and is based on the

selective imaging of the reflections of the second harmonic of

the emitted frequency.2,5 Compared to fundamental imaging,

second harmonic imaging features lower sidelobes, and is

therefore less sensitive to clutter and off-axis scatterers.1,3,6–8

Also, since the second harmonic field builds up progressively,

the effects of reverberation and near-field artifacts are greatly

reduced.1,8 This is particularly important for echocardiogra-

phy in view of the proximity of the ribs to the available imag-

ing windows, and the intermediate skin and fat layers.

Ultrasound image quality improved considerably due to these

characteristics, especially for the patient subgroup considered

challenging to image.8

Even though the nonlinear nature of wave propagation in

tissue was already used in the late 1970s for acoustic micros-

copy9 and shown to be relevant in the context of medical

applications in the early to mid 1980s by Muir and Carsten-

sen10 and Starritt et al.,11 it took until the late 1990s for sec-

ond harmonic imaging to take off. Reasons for this were the

necessary improvements in dynamic range and signal process-

ing, but also the widely held assumption that nonlinear

distortion was not a significant factor in medical diagnostic

imaging, since the frequency dependent thermoviscous

absorption rapidly dissipates the generated harmonic energy.2

The level of the harmonics is determined by two competing

phenomena: A growth over distance of the harmonics due to

nonlinear propagation, and a decay over distance of the har-

monics due to frequency dependent attenuation. Therefore,

compared to fundamental imaging, second harmonic imaging

requires a different trade-off between the required penetration

depth and the obtainable spatial resolution, and this will result

in a different optimal transmission frequency. Thus, in the

case of visualizing the left ventricular endocardial border dur-

ing echocardiography (imaging depths of 10–15 cm) a trans-

mission frequency of 1.6–1.8 MHz yielded the best results for

second harmonic imaging. This in contrast to the 3.5 MHz

transmission frequency that gave the optimum results for fun-

damental imaging.4

Recently, a new imaging modality named tissue super-

harmonic imaging (SHI) was proposed. The modality

extends the idea behind second harmonic imaging by using

the reflections of the third to the fifth harmonics arising

from nonlinear wave propagation.13 Based on numerical

simulations,8 superharmonic imaging promises increased

suppression of near-field artifacts, reverberations, and off-

axis artifacts in addition to enhancing the spatial resolu-

tion. The resulting images from phantom measurements

showed indeed more details than those produced by second

harmonic imaging.8 Recently, this was confirmed in addi-

tional simulations and in vitro experiments conducted by

Ma et al.14 As superharmonic imaging uses the third to the

fifth harmonics for imaging instead of the second har-

monic, a different transmission frequency is expected to

yield the optimum trade-off between spatial resolution and

penetration depth. For superharmonic echocardiography

optimal transmission frequencies of 1.0–1.2 MHz were

found.12,15

Although the physical principles of the aforementioned

imaging methods are different, there seems to exist a

common property: For the same application, the ranges of

the frequencies used to create an image are very similar.

This is illustrated by the case of echocardiography, where

the center frequencies of the imaging signals are 3.5 MHz

for fundamental imaging, 3.4–3.6 MHz for second harmonic

imaging, and 3.0–6.0 (with 3.0–3.6 MHz containing the

dominant signals) for superharmonic imaging.

In previous work,14 superharmonic imaging has been

compared to second harmonic imaging, both using simula-

tions and experiments. However, in this comparison the fre-

quency ranges of the second harmonic and the dominant

superharmonic components differ, so it is assumed that the

modalities are not compared under their optimal conditions

for the same application. Also, the simulations are performed

for a less realistic situation involving water and an axially

symmetric transducer and corresponding ultrasound field.

The axial symmetry also appears in other work.8 Moreover,

the latter paper mainly compares the superharmonic and sec-

ond harmonic components around the focus. Zemp et al.16

compared fundamental and second harmonic imaging at

their optimal frequencies, but only investigated the field

around the focus and only showed normalized results. To the

authors’ knowledge, no research has been published that

compares all of the relevant features of fundamental, second

harmonic, and superharmonic imaging at their optimal fre-

quencies for a realistic application, i.e., involving phased

array transducers, a medium with tissue-like attenuation, and

a maximum allowable mechanical index (MI). In view of the

nonlinear character of the physics that underlies harmonic

imaging, comparison of the modalities under the desired re-

alistic circumstances cannot be deduced from the results

obtained under different circumstances. The aim of this pa-

per is to make a fair comparison of fundamental, second har-

monic, and superharmonic imaging under conditions that

resemble a realistic medical diagnostic situation. The study

is performed using numerical simulations, and the chosen

situation applies to echocardiography. For each modality,

the realistic situation is mirrored in all aspects, e.g., by using

the optimal transmission frequencies, different phased array

topologies, equal focal distances, the highest allowable pres-

sures in transmission, and tissue-like attenuation. The three

imaging modalities will be evaluated with regard to the lat-

eral beam shape over the entire imaging depth, axial pulse

shape, and pulse-echo axial pressure.

A truly fair comparison between different harmonic

imaging modalities can only be performed by a numerical

study, such as presented by Zemp et al.16 The experimental

comparison of these modalities would be very difficult,

because it is impossible to obtain suitable phased array trans-

ducers with the same aperture size, the correct center fre-

quency, equal relative bandwidths, and equal transmit

efficiencies. Deviations form the carefully selected trans-

ducer parameters would result in an unfair comparison. Both

the INCS method17–19 and a KZK implementation20–22 are

used for the numerical simulations in this study. The KZK

implementation was adapted to handle frequency power-law

losses, since the accurate modeling of tissue-like attenuation,

next to nonlinearity, is important in the simulations. The

INCS method is also able to deal with these kinds of losses.
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A description of both nonstandard simulation tools will be

given to show their interrelation and to enable reproduction

of the results.

II. METHOD

A. Westervelt equation

The nonlinear propagation of the ultrasound field in a

source-free region of a thermoviscous fluid may be described

by the source-free Westervelt equation22,23

r2p� 1

c2
0

@2p

@t2
þ d

c4
0

@3p

@t3
¼ � b

q0c4
0

@2p2

@t2
: (1)

Here, the ultrasound field is represented by the acoustic pres-

sure p, and the medium is represented by the ambient density

of mass q0, the ambient speed of sound c0, the diffusivity of

sound d, and the coefficient of nonlinearity b. The latter

quantity is often written as

b ¼ 1þ B

2A
; (2)

where B/A is the parameter of nonlinearity, which follows

from the second order Taylor expansion of the state equation

of the medium around equilibrium. In all media that show

attenuation, a plane propagating ultrasound wave decays

exponentially with distance. For a thermoviscous medium, the

corresponding attenuation coefficient satisfies the quadratic

frequency law22,24 a¼ a0|x|2. Experiments show that most

biomedical tissues exhibit a more general frequency power

law25,26 a ¼ a0jxjai , with 1 � a1 � 2. To accommodate this

kind of attenuation as well, Eq. (1) is generalized to17,18,27

r2p� 1

c2
0

@2ðv �t pÞ
@t2

¼ � b

q0c4
0

@2p2

@t2
: (3)

Here, v¼ v(t) is a causal relaxation function, and *t denotes

a temporal convolution. The relaxation function may be split

according to

vðtÞ ¼ dðtÞ þ aðtÞ; (4)

where d(t) is the Dirac delta function, which represents the

instantaneous behavior of the medium, and a(t) is a causal

memory function, which is associated with the attenuation

and dispersion of the medium.

B. KZK simulations

The far field behavior of the considered unsteered beams

will be simulated using an approximate method. For these

beams most of the ultrasound energy propagates in the posi-

tive z-direction, i.e. in the direction that is normal to and

away from the transducer. By introducing the retarded time

T¼ t –z/c0 and neglecting the resulting derivatives with

respect to z (parabolic approximation), Eq. (3) may be turned

into a beam equation or evolution equation that favors the

positive z-direction. The resulting equation is

@2�p

@s@z
� c0

2
r2
?�pþ 1

2c0

aðsÞ �s
@2 �p

@s2
¼ b

2q0c3
0

@2�p2

@s2
: (5)

In the retarded time frame, the acoustic pressure is repre-

sented by �p (x, y, z, s)¼ p(x, y, z, t,), while the memory func-

tion remains unchanged. Apart from the more general loss

term, Eq. (5) is identical to the Khokhlov-Zabolotskaya-Kuz-

netsov (KZK) equation20–22 for a nonlinear medium with

thermoviscous behavior. The numerical solution of this

equation will be based on the method proposed by Lee and

Hamilton28 for circular transducers, and in particular on the

extension by Yang and Cleveland29 for rectangular trans-

ducers. This involves the introduction of the dimensionless

quantities

X ¼ x

a
; Y ¼ y

b
; Z ¼ z

d
; (6)

T ¼ x0s; (7)

PðX; Y; Z; TÞ ¼ �pðx; y; z; sÞ
p0

; (8)

where d is a characteristic length in the direction of propaga-

tion (e.g., the focal distance), a and b are the lateral dimen-

sions of the sound source, x0 is a characteristic angular

frequency (e.g., the center frequency of the transmitted

pulse) and p0 is the peak pressure of the sound wave at the

source. Subsequent integration with respect to s gives

@P

@Z
¼ 1

4

ðT

�1

1

Gx

@2P

@X2
þ 1

Gy

@2P

@Y2

� �
dT0

þ NP
@P

@T
þ A �T

@P

@T
; (9)

in which the following quantities appear

Gx ¼
x0a2

2c0d
; Gy ¼

x0b2

2c0d
; (10)

N ¼ bx0p0d

q0c3
0

; (11)

AðTÞ ¼ � d

2c0

aðx�1
0 TÞ: (12)

The numerical solution of Eq. (9) is performed by the algo-

rithms described by Voormolen.31 This involves the tradi-

tional operator splitting scheme,28,32 which separately

accounts for the effects of diffraction (the integral term),

nonlinearity (the term with the factor N) and attenuation (the

term with the factor A). The diffraction substep is performed

in the time domain and uses the implicit backward finite dif-

ference (IBFD) method33 in the near-field and the alternating

direction implicit (ADI) finite difference scheme at larger

axial distances. The nonlinearity substep is also performed

in the time domain and employs a time base transformation.

The attenuation substep is performed in the frequency

domain to avoid the explicit evaluation of the convolution in

the time domain.
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In case of general frequency power law losses of the

form a ¼ a0 xj ja1 , one can combine Eqs. (3) and (4) of this

paper, and compare the result with Eqs. (B6) and (B7) of

Szabo.30 Using generalized calculus in the same sense as in

that paper, it may be deduced that

aðtÞ ¼ 4c0h HðtÞ
a1ða1 þ 1Þta1

; (13)

in which h¼ –a0 U(a1þ 2) cos[(a1þ 1)p/2]/p with U being

the gamma function, and H(t) is the Heaviside step function.

Application of Eqs. (12) and (13) gives for the attenuation

term in Eq. (9)

A�T
@P

@T
¼ 2dxa1

0 h

a1 þ 1

ðT

0

PðT0Þ
ðT � T0Þa1þ1

dT0; (14)

where it has been used that P(T)¼ 0 for T< 0. For the evalu-

ation of this term, it is employed that in the generalized

sense a convolution in the time domain still corresponds to a

multiplication in the frequency domain, and hence

A�T
@P

@T
¼ F�1fF½PðTÞ�F½KðTÞ�g: (15)

Here, F and F–1 denote the forward and inverse Fourier

transformation, respectively, and the kernel function K(T) is

given by

KðTÞ ¼ 2dxa1

0 h HðTÞ
ða1 þ 1ÞTa1 þ 1

: (16)

The Fourier transformation of this function is

F½KðTÞ� ¼ dxa1

0 a0ðjXÞa1 ; (17)

where X is the angular frequency associated with the time T.

This expression is directly applied in Eq. (15), which is

implemented using fast Fourier transforms.

C. INCS simulations

Close to the source it cannot be assumed a priori that

most of the ultrasound energy propagates in a preferred

direction, and the KZK equation may become inaccurate.

Therefore, the directionally independent Iterative nonlinear

contrast source (INCS) method17–19 will be used for the sim-

ulation of the near field of the beams. This method is based

on the generalized Westervelt equation

r2p� 1

c2
0

@2ðv �t pÞ
@t2

¼ �SNLðpÞ � S; (18)

where, in accordance with Eq. (3), the nonlinear term equals

SNLðpÞ ¼ b

q0c4
0

@2p2

@t2
: (19)

The additional term S is the primary source term that repre-

sents the transducer. In the absence of SNL(p), the primary

source generates the linear contribution to the wave field.

With the INCS method, SNL(p) gets the role of a separate

source. This source accounts for the difference between the

linear and the nonlinear case, i.e., it generates the nonlinear

contribution to the wave field, and is called a contrast source.

The contrast source depends on the field itself, and is distrib-

uted over the entire space. Since the wave operator at the left

hand side of Eq. (18) applies to a linear and attenuative me-

dium, both the primary source and the nonlinear contrast

source may be thought to operate in a linear and attenuative

background medium. This implies that the fields of the pri-

mary source and the contrast source may be computed using

the same techniques that apply to a linear medium. Now sup-

pose that the Green’s function of the background medium,

i.e., the function G that satisfies

r2G� 1

c2
0

@2ðv �t GÞ
@t2

¼ �dðxÞ dðyÞ dðzÞ dðtÞ; (20)

is known. This function may most conveniently be derived

in the space-frequency domain.17,18 Because the Green’s

function describes the spatiotemporal impulse response of

the relevant medium, the solution of Eq. (18) may formally

be written as

p ¼ G�x;y;z;t ½Sþ SNLðpÞ�: (21)

Here, *x,y,z,t denotes a convolution over the entire spatial and

temporal domain where either source term has a significant

value. Since the nonlinear contrast source depends on the

total pressure wave field p, the equation yields an implicit

solution. The main assumption of the INCS method is that

for weakly to moderately nonlinear behavior, as encountered

with diagnostic ultrasound, the contribution of the contrast

source will be relatively small. In that case, increasingly

accurate approximations of the total pressure wave field may

be obtained by first computing the linear field contribution

p(0), using this to compute an approximation of the contrast

source, then computing an approximation of the nonlinear

field, and successively repeating of the last two steps. This

results in the iterative Neumann scheme

pð0Þ ¼ G �x;y;z;t S; (22)

pðjÞ ¼ G �x;y;z;t ½Sþ SNLð pðj�1ÞÞ�
¼ pð0Þ þ G �x;y;z;t SNLðpðj�1ÞÞðj � 1Þ:

(23)

As a rule of thumb, in the jth approximation the fundamental

up to the (j� 1)th harmonic will be represented accurately.

The most involving task in the numerical evaluation of the

scheme is the spatiotemporal convolution, which is efficiently

performed with the filtered convolution method.34 The

method first filters out all spatial and temporal frequencies

above the highest frequencies of interest. This enables

sampling at only two points per shortest period or shortest

wavelength, without introducing aliasing. Then the resulting

four-dimensional discrete convolution is performed using Fast

Fourier Transforms. To model frequency power law losses of
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the form a ¼ a0 xj ja1 , the INCS method employs a relaxation

function x that is defined in the Laplace domain as17,18,27

v̂ðsÞ ¼ 1þ c0a0sa1�1

cosðpa1=2Þ½1þ ðs=s1Þa�

� �2

; (24)

where a is an integer with value a> a1�1 and s1 is taken

greater than the highest angular frequency of interest. The

term (s/s1)a is necessary for causality purposes, but has no

influence for the angular frequencies of interest. For low

losses, the quadratic term in the expansion of Eq. (24) may

be omitted. Under these circumstances, comparison of

Eq. (24) with the transformed version of Eq. (4) shows that

âðsÞ ¼ 2c0a0sa1�1

cosðpa1=2Þ : (25)

The inverse Laplace transformation of this function is identi-

cal to a(t) in Eq. (13). From this it may be concluded that for

low losses and angular frequencies well below s1, the attenu-

ation in the KZK and INCS simulations is the same.

III. SIMULATION SETTINGS

In this paper three imaging modalities applied to echo-

cardiography are compared: fundamental, second, and

superharmonic imaging. The acoustic beams produced in

each modality are calculated from the source plane up to an

axial depth of 15 cm using a full 3D implementation of the

KZK equation. However, only the results from 6–15 cm are

analyzed. The near-fields of these beams are calculated and

analyzed from the source plane up to an axial depth of

�7 cm using the INCS method. To estimate the pressure

received by the transducer for each of the imaging modal-

ities in pulse-echo mode, linear back propagation is

assumed. The scatterer is assumed to be small, and situated

on the propagation axis. It is further assumed that the field

at the scatterer is totally reflected in the direction of the

transducer, where it is registered. No receive focusing is

applied.

The transmission pressure amplitude (p0) at the trans-

ducer element surface is taken such that a Mechanical Index

(MI) of 1.9 is produced in water25 (the MI is defined as the

peak negative pressure divided by the square root of the fre-

quency in MHz). The lateral and elevation focus is set to 9

cm and no beam steering is applied. Three cycle Gaussian

apodized sine bursts, with a center frequency equal to the re-

spective optimal transmission frequency (see section I), are

used as transmission signals.

The transducer configurations used to simulate each

imaging modality are summarized in Table I. Notice that the

footprint for each array is equal, i.e., 16 mm� 22 mm. The

transducer geometry used for superharmonic imaging is

based on a previously reported interleaved array,15 which

consists of a low frequency subarray interleaved with a high

frequency subarray. The low frequency subarray is used in

transmission, and the high frequency subarray is used in

reception. Both subarrays consist of 44 elements each, and

the subarray pitch is 0.5 mm.

To evaluate the axial resolution in the case of superhar-

monic imaging the dual-pulse method35,36 is applied. This

technique is required to prevent ghosting artifacts associated

with imaging based on multiple harmonics and using tempo-

rally wide (i.e., spectrally narrow) transmission pulses. This

imaging protocol is based on the transmission of two pulses

with a slightly different center frequency. Subsequently, both

time traces are summed to create an image. The frequencies

of the first and second pulses are 1.1 and 1.3 MHz, and were

determined using the methodology described by van Neer

et al.36 The tissue parameters are based on those reported

for cardiac tissue:25 B/A¼ 5.8, a0¼ 0.52 dB 	 cm–1 	MHz–1,

p0¼ 1060 kg/m3 and c0¼ 1529 m/s. In this case a1¼ 1, but

for the INCS simulations, a slightly larger value is used to

avoid a zero denominator in Eq. (4). To determine p0, simula-

tions are performed using the properties of water:25

B/A¼ 4.96, a0¼ 2.17�10–3 dB 	 cm–1 	MHz–2, q0¼ 998.2

kg/m3 and c0¼ 1482.3 m/s.

IV. RESULTS

A. Lateral beam profiles

Figures 1�5 display the normalized lateral pressure pro-

files of the fundamental at 3.5 MHz, the second harmonic at

3.6 MHz, and the superharmonic at 3.6–6.0 MHz at axial

depths of 3, 6, 9, 12, and 15 cm. The profiles have been cal-

culated using the INCS method (gray lines in Figs. 1 and 2)

and KZK simulations (black lines in Figs. 2–5). The INCS

and KZK results are in good agreement. The differences

between the results of both methods are between 0�1 dB,

TABLE I. The array geometries used for the simulations.

Transmit No.

freq. po Footprint elements of Element size Pitch

(MHz) (kPa) (mm2) – (mm2) (mm)

FI 3.5 774 16� 22 128 16� 0.12 0.17

THI 1.8 910 16� 22 88 16 �0.20 0.25

SHI 1.2 1730 16� 22 44 16� 0.20 0.50

FIG. 1. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line) at an axial depth of 3 cm.
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0�2 dB, and 0�1 dB for the fundamental, second harmonic

and superharmonic, respectively. The lateral �6 dB beam

widths and beam roll-off at particular off-axis distances are

given in Table II. Except for an axial depth of 3 cm, the val-

ues in this table are taken from the KZK simulations.

B. Axial pulse shape

The normalized envelopes of the pressure pulses pro-

duced at focus by the fundamental at 3.5 MHz (solid line),

the second harmonic at 3.6 MHz (dashed line), and the super-

harmonic at 3.6–6.0 MHz (dash-dotted line) are displayed in

Fig. 6(a) on a linear scale. Figure 6(b) shows these envelopes

in decibel. The envelopes have been calculated using KZK

simulations. The axial lengths produced by each modality at

the �6, �10, and �20 dB levels are given in Table III.

C. Pulse-echo axial pressure

Figure 7 displays the pulse-echo axial pressure profiles

of the fundamental at 3.5 MHz (solid line), the second

harmonic at 3.6 MHz (dashed line), and the superharmonic

at 3.6�6.0 MHz (dash-dotted line). The profiles have been

calculated using the INCS method (gray color) and using

KZK simulations (black color). The INCS and KZK results

are in good agreement. The differences between the results

of both methods are between 0�0.5 dB, 0�2 dB, and 0�1

dB for the fundamental, second harmonic, and superhar-

monic, respectively. The focal spot is at 70 mm for the fun-

damental beam, at 66 mm for the second harmonic, and at

65 mm for the superharmonic (values taken from KZK simu-

lations). The pulse-echo axial intensities produced by each

modality in the near-field at 1 cm (from INCS simulations),

the focal point (from KZK simulations) and the far-field at

15 cm (from KZK simulations) are shown in Table III.

V. DISCUSSION

A. Lateral resolution and roll-off

To the authors’ knowledge the comparison between the

fundamental, second harmonic, and superharmonic imaging

FIG. 2. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line) at an axial depth of 6 cm.

FIG. 3. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line) at an axial depth of 9 cm.

FIG. 4. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line) at an axial depth of

12 cm.

FIG. 5. The normalized lateral pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line) at an axial depth of

15 cm.
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modalities at their respective optimal frequencies is the first

of its kind. The �6 dB lateral beam widths of the second and

superharmonic are 18% and 27% wider than the fundamental

at the geometric focus (an axial distance of 9 cm). Similar

results have been reported for the second harmonic by Zemp

et al.16 They compared simulations of 4 MHz fundamental

beams and 2–4 MHz second harmonic beams produced by

phased array transducers.

At short axial distance (6 cm) the superharmonic beam

has a �6 dB lateral beamwidth, which is 47% and 35% nar-

rower than the fundamental and second harmonic beams,

respectively. At a large axial distance (15 cm) the superhar-

monic beam has a 48% and 36% narrower beamwidth than

the fundamental and second harmonic beams, respectively.

This is caused by the fact that for the fundamental of the

superharmonic beam the natural focus of the aperture is

close to the lateral and elevation foci (9 cm). Therefore, the

focal zone is elongated and the fundamental ultrasound

beam spreads slowly. The resulting superharmonic beam

shape is even narrower due to the autofocusing effect of non-

linear propagation. The fundamental of the second harmonic

beam is more focused than the fundamental of the superhar-

monic, but less so compared to the fundamental beam. In

case of the second harmonic beam, the autofocusing effect is

also weaker than for the superharmonic beam. The autofo-

cusing of second harmonic beams in the far-field was also

reported by Tranquart et al.1

TABLE III. Axial lengths and pulse-echo intensities.

Fundamental 2nd harmonic Superharmonic

Transmit frequency 3.5 MHz 1.8 MHz 1.2 MHz

Receive frequency 3.5 MHz 3.6 MHz 3.6�6.0 MHz

Axial length

�6 dB (ls) 0.77 1.1 0.33

�10 dB (ls) 0.98 1.37 0.45

�20 dB (ls) 1.3 1.9 1.3

Axial Pressure

Near-field at 1 cm (dB) 112 87 59

Focus (dB) 106 101 93

Far-field at 15 cm (dB) 68 67 61

FIG. 7. The pulse-echo axial pressure profiles of the fundamental at

3.5 MHz (solid line), the second harmonic at 3.6 MHz (dashed line) and the

superharmonic at 3.6�6.0 MHz (dash-dotted line). The pressure values are

relative to 1 Pa.

TABLE II. Lateral beam characteristics.

Fundamental 2nd harmonic Superharmonic

Transmit frequency 3.5 MHz 1.8 MHz 1.2 MHz

Receive frequency 3.5 MHz 3.6 MHz 3.6�6.0 MHz

Axial depth 3 cm

�6 dB width (mm) 13.8 12.5 11.4

Roll-off at 10 mm (dB) �17 �24 �28

Axial depth 6 cm

�6 dB width (mm) 6.6 5.4 3.5

Roll-off at 15 mm (dB) �28 �43 �57

Axial depth 9 cm

�6 dB width (mm) 2.2 2.6 2.8

Roll-off at 10 mm (dB) �30 �40 �52

Roll-off at 15 mm (dB) �33 �46 �60

Axial depth 12 cm

�6 dB width (mm) 5.0 4.2 4.3

Roll-off at 15 mm (dB) �27 �37 �51

Axial depth 15 cm

�6 dB width (mm) 12.6 8.1 6.5

Roll-off at 15 mm (dB) �19 �27 �36

FIG. 6. (a) The normalized envelopes of the pressure pulses produced at

focus by the fundamental at 3.5 MHz (solid line), the second harmonic at

3.6 MHz (dashed line) and the superharmonic at 3.6�6.0 MHz (dash-dotted

line) displayed on a linear scale. (b) The normalized envelopes displayed in

decibel.

3154 J. Acoust. Soc. Am., Vol. 130, No. 5, November 2011 van Neer et al.: Fundamental, second, and superharmonic imaging compared

Downloaded 27 Feb 2012 to 159.226.100.225. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Usually, in the literature the lateral profile around focus

is discussed, where sidelobes are clearly discernable (as can

be seen from Fig. 3). If lateral profiles away from focus are

discussed (such as Figs. 1 and 5, but to a lesser extent also

Figs. 2 and 4), the sidelobes are not or not clearly visible.

Therefore, the roll-off is chosen to describe and compare the

lateral beam behavior. The roll-off of the second and super-

harmonic beams is considerably higher than that of the fun-

damental beam. For example, around the geometric focus (9

cm) the second harmonic pressure at 10 mm off-axis was 10

dB lower than that of the fundamental, which was similar to

the 12 dB difference reported in the work of Zemp et al.16

Over the axial interval 6–15 cm, the roll-off of the second

harmonic beam as characterized by the pressure at 15 mm

off-axis was 8�15 dB higher than that of the fundamental.

Over the same axial interval, the improvement in roll-off of

the superharmonic beam relative to that of the second har-

monic beam was 9–14 dB, which is approximately equal to

the improvement in roll-off of the second harmonic beam

compared to the fundamental beam, and amounts to an

improvement of 17–29 dB in the superharmonic beam rela-

tive to the fundamental beam. The improved roll-off of the

second harmonic and superharmonic beams is also caused

by the autofocusing effect of nonlinear propagation.

B. Axial resolution

The axial length of the fundamental pulse is 28% shorter

at the �10 dB level and 28% shorter at the �20 dB level than

the length of the second harmonic signal. The superharmonic

axial length (based on the dual-pulse method) is in turn 67%

shorter at the �10 dB level and 31% shorter at the �20 dB

level than that of the second harmonic. These last results are

similar to the 62% decrease in axial pulse length for the

superharmonic relative to the second harmonic reported by

Bouakaz and de Jong.8 The difference is explained by the fact

that Bouakaz and de Jong simulated a circular symmetric

transducer in stead of a rectangular transducer, and used a 1.7

MHz transmission frequency for the second harmonic com-

pared to the 1.8 MHz transmission frequency used here.

The axial length of the simulated superharmonic compo-

nent obtained using the dual-pulse method is about 35%

shorter compared to previously reported experimental

results.36 Part of this discrepancy is caused by the difference

in transmission frequencies, which were 0.9 and 1.15 MHz in

the experiments and which are 1.1 and 1.3 MHz here. Also,

the previously reported results were obtained using a phased

array transducer combined with an ultrasound system. The

pulse created by the arbitrary waveform generators was

affected (in practice lengthened) by the transfer function of

both the transducer and the electrical circuitry, effects which

were not taken into account in the simulations reported here.

C. Pulse-echo axial pressure: Depth-of-field

The pulse-echo near-field pressure of the superharmonic

beam at an axial distance of 1 cm is 34 dB below its pressure

at focus. For the fundamental and second harmonic beams the

near-field intensities are 6 dB above and 14 dB below their

respective intensities at focus. The pressure at focus of the

superharmonic beam is 13 and 8 dB lower than those of the

fundamental and second harmonic beams, respectively. How-

ever, the pressure loss associated with the imaging at larger

depths is lower for superharmonic imaging compared to fun-

damental and second harmonic imaging. At 15 cm the super-

harmonic pulse-echo pressure is 7 and 6 dB lower than that of

the fundamental and second harmonic, respectively. These

results mean that the depth-of-field of superharmonic imaging

is lower than those of fundamental and second harmonic

imaging. If the second harmonic pressure at 15 cm is taken as

a minimum threshold pressure, the second harmonic depth-of-

field stretches from 0.1 to 15 cm, while the superharmonic

depth-of-field extends from 1.6 to 13.7 cm. Thus, superhar-

monic imaging features a slightly lower penetration depth

than fundamental or second harmonic imaging. However, the

limited depth-of-field of superharmonic imaging also causes it

to be less sensitive to near-field artifacts and reverberations

compared to fundamental and second harmonic imaging,

which is particularly useful for echocardiography.

D. Simulation remarks

The simulations presented here assumed a homogeneous

propagation medium and used the material properties

reported for cardiac tissue. However, in the case of echocar-

diography a propagating sound wave encounters a mix of

cardiac tissue and blood. Although the B/A values of blood

(6.0) and cardiac tissue (5.8) are similar, the attenuation of

blood (�0.14 dB 	 cm–1 	MHz–1.2) is about 2�3 times lower

than that of cardiac tissue (0.52 dB 	 cm–1 	MHz–1).25 There-

fore, the axial pulse-echo pressures reported here apply to a

worst-case scenario.

The MI is defined as the derated peak negative pressure

divided by the square root of the frequency in MHz.37 How-

ever, in this article the peak negative pressure has not been

derated for the calculation of the MI. If the derated peak

negative pressure had been used for the MI calculation, the

pulse-echo pressure at focus for fundamental and second

harmonic imaging would increase by at least �16 dB. How-

ever, the superharmonic is made up from the third to the

fifth harmonics. The third harmonic component would also

increase by at least �16 dB, but the fourth and fifth harmon-

ics would increase by more than �22 and �28 dB, respec-

tively. Thus, the backscattered superharmonic pressure

would effectively increase somewhat compared to the inten-

sities obtained using the fundamental and second harmonic

imaging modalities.

In these simulations the backscattered power in the

direction of the receiving aperture is equal to the incident

power. Thus, the frequency dependent character of the back-

scattering was ignored in this comparison. This hypothesis is

valid for the fundamental of 3.5 MHz, second, and third har-

monics of 3.6 MHz, as these frequencies are almost the

same. However, taking into account the power frequency

dependency of the backscattering in biological tissue,25 the

backscattering is expected to be larger for the fourth and fifth

harmonics. Hence, in this respect again a worst-case scenario

has been considered with regard to the superharmonic. It

is important to mention that the contribution of those
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harmonics to superharmonic imaging is much lower than the

one of the third. Therefore, the approximation to assume a

frequency independent character of the backscattering was

deemed acceptable.

VI. CONCLUSIONS

It is the increased roll-off in combination with the pro-

gressive build-up of the harmonic beams that leads to a

reduced sensitivity to off-axis scatterers, and a better suppres-

sion of near-field artifacts and reverberation in harmonic

images compared to a fundamental image, despite the

increased beamwidths around focus. Therefore, superhar-

monic imaging is particularly suited for echocardiography,

where the imaging window is limited by the ribs and there is

often a focus on high contrast borders between cardiac tissue

and blood. The reduced spreading of the superharmonic

beam in combination with a reduced roll-off and a higher

axial resolution should lead to images of higher resolution

compared to those produced by fundamental and second har-

monic imaging. The drawback of superharmonic imaging is

its lower pulse-echo peak pressure compared to second har-

monic imaging. This leads to either a slightly lower depth-of-

field or the requirement for a more sensitive transducer in

cases where mainly tissue is imaged, such as in abdominal

imaging. However, this drawback is reduced in practical

echocardiographic situations, where the sound wave encoun-

ters blood next to tissue. In this case, the lower attenuation of

blood, in combination with the approximately equal nonli-

nearity, actually makes that the ratios between the superhar-

monics and the second harmonic become more favorable for

superharmonic imaging, as compared to the considered

tissue-only case.

In summary, superharmonic imaging appears particu-

larly suited for echocardiography and is expected to improve

the image quality of this modality at the cost of slight reduc-

tion in depth-of-field.
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