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The van der Waals corrected first-principles approach (DFT-D) is for the first time applied for
investigation of interlayer interaction and relative motion of graphene layers. A methodological

study of the influence of parameters of calculations with the dispersion corrected and original
PBE functionals on characteristics of the potential relief of the interlayer interaction energy is
performed. Based on the DFT-D calculations, a new classical potential for interaction between
graphene layers is developed. Molecular dynamics simulations of relative translational vibrations
of graphene layers demonstrate that the choice of the classical potential considerably affects
dynamic characteristics of graphene-based systems. The calculated low values of the Q-factor for
these vibrations Q ~ 10-100 show that graphene should be perfect for the use in fast-responding

nanorelays and nanoelectromechanical memory cells.

1. Introduction

In addition to zero-dimensional and one-dimensional carbon
nanostructures, fullerenes and carbon nanotubes, a novel
two-dimensional carbon nanostructure, graphene, was
discovered recently.! The experimental data suggest that
few-layer graphene possesses a number of remarkable properties,
which open the way for a variety of applications. Outstanding
electrical, mechanical and chemical properties of graphene
have been utilized in flexible transparent electrodes used
recently in a fully functional touch-screen panel device.? Stiff
and flexible graphene oxide paper? holds great promise for the
use in fuel cell and structural composite applications.

A wide set of properties and applications of graphene is
related to interaction between graphene layers. Thermal
conductivity of graphene improves drastically with decreasing
the number of layers.* The structure of bilayer graphene
membranes exhibits out-of-plane fluctuations (ripples).® The
possibility for graphene layers to form incommensurate
configurations upon their relative rotation is responsible for
such phenomena as superlubricity®® and fast diffusion'® of a
graphene flake on a graphene layer. Experimentally observed
self-retracting motion of graphite, i.e. retraction of graphite
flakes back into the graphite stacks on their extension arising
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from the van der Waals interaction, led to the idea of a
gigahertz oscillator based on the telescopic oscillation of
graphene layers.!' A nanorelay based on the telescopic motion
of nanotube walls'*"? and a mass nanosensor based on the
small translational vibrations of nanotube walls have been
considered."*!> By analogy with these devices, a nanorelay
based on the telescopic motion of graphene layers and a mass
nanosensor based on the small translational vibrations of
graphene layers can be proposed.

For adequate consideration of the phenomena and nano-
electromechanical systems listed above and realistic simulation
of graphene-based systems, exhaustive information on the
interaction between graphene layers is necessary. In particular,
accurate values of the interlayer binding energy, interlayer
spacing, c-axis compressibility, magnitude of corrugation of
the potential relief of the interlayer interaction energy, barrier
to relative motion of graphene layers and frequencies of
relative vibrations of graphene layers are required. Graphene
layers consisting of covalently bound carbon atoms interact
with each other by relatively weak dispersion forces. The
weakness of these dispersion forces leads to experimental
difficulties when measuring the mentioned physical quantities
characterizing the interaction between graphene layers. The
equilibrium interlayer distance,'®!” c-axis compressibility'®
and phonon spectrum!® were experimentally measured for
graphite with good accuracy. However, the data on the
interlayer binding energy show significant scatter depending
on the experimental approach.?* 2> No experimental data on
the corrugation of the potential relief of the interlayer
interaction energy are available. The value of the critical
shear strength for graphite measured in the only known
experiment® is related to macroscopic structural defects of
the graphite sample. In the experiments with a graphene flake
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moved by the tip of the friction force microscope,® only a small
region of the potential relief of the interlayer interaction
energy can be investigated. Therefore, ab initio calculations
are particularly valuable for understanding the phenomena
observed in graphene-based systems and providing the
reference data for large-scale simulation techniques.

In the present paper, we for the first time use the van der
Waals corrected first-principles approach for calculation of the
interlayer interaction and relative motion of graphene layers.
Based on this study, a new classical potential for interaction
between graphene layers is developed. The potential is applied
for molecular dynamics (MD) simulations of a nanoresonator
based on the small relative translational vibrations of
graphene layers.

The interaction of graphene layers at a distance of 3.4 A has
been difficult for theoretical description. The density
functional theory (DFT) techniques based on the local density
approximation (LDA) and generalized gradient density
approximation (GGA) are unable to describe non-local
dispersive interactions and, consequently, the cohesion of
graphene layers.?* 2® Therefore, it was proposed to supple-
ment the LDA and GGA DFT calculations with an empirical
long-range interaction term.”*?’ Such a DFT-D approach
made it possible to reproduce cohesive properties of
graphite?>?*?%3% and interaction in systems of polycyclic
aromatic molecules in different relative orientations.?-3!:32
Recently, a more rigorous approach was proposed by Dion
et al.,* the van der Waals density functional (vdW-DF), which
includes long-range dispersion using polarization properties of
the almost uniform electron gas. However, as we show below
(see Sec. 2), this less empirical correction gives results similar
to the DFT-D approach.

We apply the recent DFT-D technique taking into
account van der Waals interactions to investigate the potential
relief of the interlayer interaction energy of bilayer graphene
with high accuracy. The PBE-D functional,®® which was
shown to provide the values of the equilibrium interlayer
distance, interlayer binding energy and c-axis compressibility
of graphite closer to the experimental data'®'®?> than other
DFT-D functionals,?*?>2728 is used. We perform a methodo-
logical study of the influence of the parameters of calculations
with the dispersion corrected and original functionals on the
characteristics of the potential relief. This allows us to revise
the results of the previous DFT calculations without the
dispersion correction.>>*¢

For simulation of graphene-based systems consisting of
hundreds—thousands of atoms by the MD or the Monte Carlo
method, an appropriate interatomic potential is required. The
potential able to provide the sufficient overall cohesion of
graphene layers and magnitude of corrugation fitted to the
previous DFT calculations without the dispersion correction
was suggested.’>3® We propose here a new potential for
interlayer interaction of graphene layers and fit this potential
to the results of our DFT-D calculations. The potential
accurately reproduces both the experimental data on the
interlayer binding energy, interlayer spacing, c-axis compres-
sibility of graphite and the data obtained from the DFT-D
calculations on the magnitude of corrugation of the interlayer
interaction energy, barrier to relative motion of graphene

31,34

layers and frequency of the relative translational vibrations
of graphene layers. Furthermore, we study the influence of the
choice of the classical potential on dynamic behavior of
graphene-based systems by the example of the nanoresonator
based on small relative translational vibrations of graphene
layers. Our molecular dynamics simulations demonstrate that
dynamic characteristics of the nanoresonator described using
the developed potential are strongly different from the
characteristics of the systems described using the previously
known potentials.

The paper is organized in the following way. The results of
the DFT-D calculations of the potential relief of the interlayer
interaction energy in bilayer graphene are presented in Sec. 2.
In Sec. 3, we describe development of the new classical
potential. The results of the MD simulations of the nano-
resonator based on the small relative translational vibrations
of graphene layers for different classical potentials are given in
Sec. 4. Our conclusions are summarized in Sec. 5.

2. Potential relief of interaction energy of
graphene layers

The recently developed DFT-D method®'** taking into
account van der Waals interactions was used to obtain the
potential relief of the interlayer interaction energy of bilayer
graphene with high accuracy. The periodic boundary
conditions were applied to a 4.271 A x 2.466 A x 20 A model
cell. The VASP code®” with the generalized gradient approxi-
mation (GGA) density functional of Perdew, Burke, and
Ernzerhof,®® in its original form (PBE) and corrected with
the dispersion term (PBE-D),*® was used. The basis set
consisted of plane waves with a maximum kinetic energy of
300-800 eV. The interaction of valence electrons with atomic
cores was described using the projector augmented-wave
method (PAW).* The cutoff distance for van der Waals
interactions was 200 A. Integration over the Brillouin zone
was performed using the Monkhorst-Pack method*® with
k-point grids from 12 x 18 x 1 to 36 x 54 x 1. The block
Davidson scheme*! was used for iterative matrix diagonalization.
The precision of convergence of the self-consistent field was
1073 V. A second-order Methfessel-Paxton smearing® with a
width of 0.1 eV was applied. In the calculations of the
potential energy reliefs, one of the graphene layers was rigidly
shifted parallel to the other. Account of structure deformation
induced by the interlayer interaction was shown to be
inessential for the shape of the potential relief for the inter-
action between graphene-like layers, such as the interwall
interaction of carbon nanotubes*® and the intershell inter-
action of carbon nanoparticles.***

The calculated interlayer interaction energy of bilayer
graphene as a function of the relative displacement of the
graphene layers along the armchair direction at the equili-
brium interlayer spacing is shown in Fig. 1 (see Fig. 2 of ref. 10
for the qualitative map of the potential relief of the interlayer
interaction energy as a function of the relative displacement of
the graphene layers in both in-plane directions). We found that
minima Ep of the interlayer interaction energy correspond to
the AB-stacking of the layers, while maxima FEas of the
interlayer interaction energy correspond to the AA-stacking,
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Fig. 1 Calculated interlayer interaction energy E (in meV per atom)
of bilayer graphene at the equilibrium interlayer spacing as a function
of the relative displacement x (in /D%) of the layers along the
armchair direction for different potentials: Lennard-Jones potential
(dotted line), Kolmogorov—Crespi potential (dashed line) and
potential developed in the present work (solid line). The data obtained
from the DFT-D calculations are shown with rhombs. The energy is
given relative to the global energy minimum.

1 1 |

10 15 20 z
Fig. 2 Calculated relative energies AEsa (solid lines; in meV per
atom) and AEsp (dashed lines; in meV per atom) of the AA and SP
stackings of bilayer graphene as functions of the square of the
interlayer spacing z* (in Az) for different potentials: Lennard-Jones
potential (LJ), Kolmogorov—Crespi potential (KC) and potential
developed in the present work (New). The results of the DFT-D
calculations (rhombs) are shifted by the difference of the equilibrium
interlayer spacings for bilayer graphene obtained using the developed
potential and DFT-D.

in agreement with the experiment.*® The potential relief
of the interlayer interaction energy of bilayer graphene is
characterized by the following two quantities. The first
quantity is the magnitude of corrugation of the potential relief
AEpn = Eaan — Eap. The second one is the energy barrier for
transition of the layers between adjacent energy minima
represented by the AB stacking AEsp = Esp — Eap, Where

Esp is the interaction energy corresponding to the saddle point
stacking (SP stacking) (see Fig. 1). These two quantities are
referred to below as the relative energies AEs 5 and AEgp of the
AA and SP stackings, respectively.

Convergence on the number of k-points in the Brillouin
zone and the maximum kinetic energy of plane waves was
tested for bilayer graphene with respect to the interlayer
binding energy Eap and relative energies of the AA and SP
stackings AEa A and AEgp at the equilibrium interlayer spacing
(see Table 1). It is seen that accuracies of about 0.6%, 0.7%
and 1.6% in calculations of the interlayer binding energy Exg,
the relative energies AExn and AEgp of the AA and SP
stackings, respectively, are reached for the 24 x 36 x 1
k-point sampling and a cutoff energy of 400 eV. In calculations
for bulk graphite, a similar accuracy is achieved using the
24 x 36 x 16 k-point sampling.

Let us consider the dependence of the interlayer interaction
energy on the distance between the graphene layers. The
calculations for bilayer graphene with the original PBE
functional showed only a small energy minimum corresponding
to an interlayer binding energy of —1.12 meV per atom at an
interlayer spacing of 4.45 A. As opposed to the original PBE
functional, the PBE-D functional provides a binding energy of
the graphene layers of —50.6 meV per atom at an interlayer
spacing of 3.25 A (see Table 2).

The PBE-D functional was found to closely reproduce the
experimental data on the interlayer binding energy,?® > inter-
layer spacing'®!” and c-axis compressibility'® of graphite
(see Table 3), in agreement with ref. 30. However, the values
of the interlayer binding energy and c-axis compressibility
obtained in the present paper differ by about 5% from the
ones reported in ref. 30. In paper 30, the PWscf code from the
Quantum-ESPRESSO package?” with ultrasoft pseudo-
potentials*® and the 12 x 12 x 8 k-point sampling was used.
So the small discrepancy of the results can be explained by the
differences in the computational approaches (particularly, the
fewer number of k-points used in calculations in ref. 30).

The relative energies AEsn and AEsp of the AA and SP
stackings for bilayer graphene at the equilibrium interlayer
spacing are given in Table 2. It should be noted that the
calculated barrier for transition of the layers between adjacent
energy minima exceeds the maximum values of the barriers for
relative motion of carbon nanotube walls'*3¢4°~52 reached for
commensurate non-chiral nanotube walls by one—two orders
of magnitude. This is due to perfect matching between the
graphene layers as opposed to the curved nanotube walls.

The values of AEA o and AEsp obtained here are nearly twice
higher than those reported earlier, AEaa =~ 10-15 meV per
atom, AEsp ~ 1 meV per atom (see ref. 32, 35, 36). Let us
discuss possible reasons for this discrepancy. In papers 35, 36,
the calculations of AExn and AEsp were performed for
graphite under periodic boundary conditions. The VASP
code’” with ultrasoft pseudopotentials®® and the LDA
functional® was used, the cutoff energy was 358 eV, and the
number of k-points was not specified. We believe that those
calculations®>3® of the potential relief of the interlayer energy
did not reach the accuracy as high as in the present work
(1.6% for the relative energies of AA and SP stackings) due to
the insufficient number of k-points and cutoff energy in the
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Table 1 Tests for convergence on the number of k-points and cutoff kinetic energy of plane waves with respect to the interlayer binding energy
Ep and relative energies of the AA and SP stackings AExs and AEgp in calculations with the PBE-D and PBE functionals. The calculated values
correspond to the interlayer spacing 3.25 A, which is equilibrium for the PBE-D functional

k-points 12 x 18 16 x 24 24 x 36
Energy cutoff/eV 800 800 800
PBE-D

Exp/meV per atom —51.43 —50.91 —50.59
AExa/meV per atom 18.15 19.18 19.52
AEsp/meV per atom 1.692 1.945 2.073
PBE

Eap/meV per atom +20.51 +21.03 +21.35
AExa/meV per atom 17.89 19.04 19.41
AEsp/meV per atom 1.721 1.973 2.102

36 x 54 24 x 36 24 x 36 24 x 36
800 500 400 300
—50.48 —50.56 —50.80 —51.43
19.40 19.52 19.55 18.97
2.039 2.065 2.095 1.556
+21.36 +21.39 +21.14 +20.51
19.28 19.40 19.44 18.86
2.067 2.093 2.123 1.585

Table 2 Calculated interlayer binding energy Eap, equilibrium interlayer spacing c,, compressibility y, relative energies of the AA and SP
stackings AEaa and AEgp, frequency of the small relative translational vibrations of the layers f,, parameters U, and U, for approximation (2) of
the potential relief of the interlayer interaction energy and relative root-mean-square deviation of approximation (2) 6U/U, at the equilibrium

interlayer spacing for bilayer graphene

DFT-D vdW-DF New potential KC potential LJ potential

Eag/meV per atom —50.6 -293 —46.90 —43.69 —45.67
co/A 3.25 3.35 3.374 3.375 3.384
7/GPa™! 0.0257 0.0261 0.0309 0.0308
AExa/meV per atom 19.5 18.9 19.5 13.3 0.887
AEsp/meV per atom 2.07 1.92 2.07 0.841 0.0809
fo/THz 1.04 1.06 0.539 0.213
Up/meV per atom -50.59 —46.90 —43.69 —45.67
U,/meV per atom 4.24 4.24 2.14 0.178
oU/U; 0.043 0.044 0.87 0.21

Table 3 Calculated interlayer binding energy Eap, equilibrium interlayer spacing c,, compressibility y and frequency of the small relative
translational vibrations of the layers f; at the equilibrium interlayer spacing for graphite

@ Ref. 22. ” Ref. 21. ¢ Ref. 20. ¢ Ref. 16. ¢ Ref. 17.”/ Ref. 18. ¢ Ref. 19.

DFT-D New potential KC potential LJ potential Exp
Eag/meV per atom —57.1 —52.0 —48.8 —52.0 52794 43k 357 5¢
co/A 3.22 3.341 3.336 3.340 3.328¢, 3.354°
%/GPa™! 0.0225 0.0244 0.0270 0.0256 0.024/
fo/THz 1.50 1.58 0.807 0.335 ~1.5%

calculations. Moreover, the discrepancy in the values of AEsa
and AEgp obtained here and in works 35, 36 can be attributed
to the use of the different functionals. In paper 32, the
calculations of interaction of polycyclic aromatic molecules
with a graphene flake were performed using the Q-Chem
quantum chemistry package>* with the wB97X-D functional.>
In this case, the discrepancy in the values of AExn and AEsp
can be related to the strong influence of the edge effects™ in the
finite systems, and the use of the different version of the
DFT-based approach.

In order to check the validity of our results obtained using
the DFT functional with the empirical dispersion correction,
we also performed calculations of potential energy relief of
bilayer graphene using the vdW-DF functional ** implemented
in the GPAW code.>® These calculations were performed using
the real space grid with spacing 0.12 A and the same size of the
model cell as in the above DFT-D calculations. Integration in
the inverse space was carried out using the 18 x 27 x 1 k-point
sampling. The results obtained with the vdW-DF functional
are given in Table 2 in comparison with those for the DFT-D
functional. It is seen that both functionals give approximately

the same values of the characteristics AEx5 and AEgp of the
potential relief of the interlayer interaction energy for bilayer
graphene. Note also that the vdW-DF functional is not
accurate with respect to the interlayer binding energy of
bilayer graphene. So at the moment the vdW-DF approach
is yet not more reliable than DFT-D.

Though the dispersion term strongly affects the overall
interlayer binding energy, the contributions of the dispersion
term to the barrier for relative motion of graphene layers AEsp
and the magnitude of corrugation of the potential relief of the
interlayer interaction energy AEsn were found to be only
1.4% and 0.6%, respectively. The characteristics of the
potential relief of the interaction energy of graphene layers
are mostly determined by the overlap of electron clouds of the
layers, which is anisotropic and strongly dependent on the
relative position of the layers as opposed to the long-range
dispersion forces. So we confirmed the qualitative conclusion
of paper 32 made for polycyclic aromatic molecules on a
graphene flake that the dispersion correction provides a small
contribution (<10%) to the magnitude of corrugation of the
potential relief of the interlayer interaction energy for

5690 | Phys. Chem. Chem. Phys., 2011, 13, 5687-5695

This journal is © the Owner Societies 2011


http://dx.doi.org/10.1039/c0cp02614j

Downloaded by Chengdu Library of Chinese Academy of Science on 19 May 2011
Published on 10 February 2011 on http://pubs.rsc.org | doi:10.1039/COCP02614J

View Online

graphene-like layers AEaA. Evaluation of the contribution of
the dispersion correction to the barrier for relative motion of
graphene layers AEgp in paper 32 was complicated due to the
influence of the edge effects. According to our calculations,
this contribution is also negligibly small. Therefore, such a
correction is not relevant for consideration of relative motion
of graphene layers.

The calculated dependences of the relative energies AEaa
and AEgp of the AA and SP stackings on the interlayer spacing
are shown in Fig. 2. These dependences can be approximated
as AExa AEsp oc exp(—/oz2) with 4, ~ 0.464 A2, where z is
the interlayer spacing.

The frequency f, of the small relative translational
vibrations of the graphene layers about the energy minimum
(see Table 2) was found as

.1 20U
fO,E PRPINGE (1)

where U is the potential energy per atom of one of the layers,
d?U/dx” is the second derivative of the potential energy with
respect to the displacement along the armchair direction at the
energy minimum and m is the mass of a carbon atom.
A similar quantity for graphite is given in Table 3 and is
consistent with the experimental value for the frequency
of TO' mode of graphite at I'-point of about 1.5 THz
(see ref. 19).

It should also be mentioned that in papers on superlubricity
of graphene (see, e.g., ref. 6 and 8), the interaction of a single
carbon atom in the graphene flake with the graphite surface
was described using the simple approximation®’ containing
only the first Fourier components. Based on that expression, it
is easy to show that the potential energy relief of bilayer
graphene can be roughly approximated in the form

2n

U =U()|15 2Uepx — =

1 ( +cos( 1X 3) (2)
—2cos(k1x — g) cos(kzy)) + Uo(2)

where k, = 2n/ay, k| = kz/\/§, x and y axes are chosen along
the armchair and zigzag directions, respectively, U;(z) and
Uy(z) are expressed through the parameters V(z) and Vy(z) of
paper 6 as Uj(z) = 0.5Vy(z) and Uy(z) = V1(z) — 0.75V(2).
The parameters Uy, U fitted to reproduce the potential energy
relief of bilayer graphene for the equilibrium interlayer
spacing and relative root-mean-square deviation 0U/U; of
approximation (2) from the potential energy relief obtained
using the DFT-D calculations are given in Table 2. Though
approximation (2) is rather simple, it can be fitted to reproduce
the potential energy relief of bilayer graphene obtained
through the DFT-D calculations with the accuracy of a few
percent. Therefore, such approximations are adequate for
interpretation®® of the experiments on superlubricity of
graphene using the friction force microscope. The value of
the parameter U; = 0.5V, ~ 4.24 meV per atom fitted to
reproduce the results of our DFT-D calculations is in
reasonable agreement with the values of the parameter
Vo ~ 3.3-6.7 meV per atom fitted to the experimental data
obtained using the friction force microscope.®®

3. Classical potential for interaction between
graphene layers

It was pointed out in papers 35, 36 that the n-overlap between
graphene layers is anisotropic. So to fit both the experimental
graphite compressibility and the corrugation against sliding, it
is needed to distinguish the in-plane and out-of-plane directions.
This approach was firstly realized in the Kolmogorov—Crespi
potential.*>*® We used such an approach to develop a new
classical potential for the interaction of graphene layers on the
basis of the results of our DFT-D calculations.

We assumed that the interaction of atoms of the layers at a
distance r, transverse separation p and interlayer spacing z
(* = p? + z%) can be described as

U =4 (ZITO>6+B exp(—a(r — zo))

+ C(1 + D1p* + Dap*) exp(—1p*) exp(—4a(2* — 7))
3)

where zo = 3.34 A is the equilibrium interlayer spacing of
graphite.

The potential consists of two parts. The first part is
isotropic. The parameters of this part 4 = —10.510 meV,
B = 11.652 meV and o = 4.16 A~" were fitted to provide the
interlayer binding energy,?” interlayer spacing'®!” and c-axis
compressibility'® for graphite close to the recent experimental
values (see Table 3). As this part of the potential was fitted to
the experimental data, it provides the equilibrium interlayer
spacing of bilayer graphene d.q = 3.38 A, which is greater
than the equilibium interlayer spacing following from the
DFT-D calculations doq = 3.25 A (see Table 2). The second
part of the potential is anisotropic and determines the
dependence of the interlayer energy on the in-plane relative
displacement of graphene layers. The parameters of the second
part of the potential were fitted to satisfy the following
conditions: (1) this part gives zero contribution to the
interlayer interaction energy for the AB stacking; (2) the
relative energies AEx5 and AEgp of the AA and SP stackings
and the frequency of the small relative translational vibrations
of the layers f, at the equilibrium interlayer spacing d.q =
3.38 A have the same values as were provided by the DFT-D
calculations for dq = 3.25 A. The following values
of the parameters were obtained: C = 35.883 meV, D; =
—0.86232 A2, D, = 0.10049 A~* and 4, = 0.48703 A2
(see Fig. 1). To provide the dependences of the relative
energies AEaa and AEgp of the AA and SP stackings on the
interlayer spacing following from the DFT-D calculations the
parameter 4, was set equal to 4, = 0.46445 A (see Fig. 2).
For the fitting procedure and the MD simulations presented
below, the cutoff distance of the potential was taken equal to
25 A. It is seen that the fitting procedure is rather simple and
can be easily applied to revise the parameters of the potential
as soon as the experimental data on the potential relief of the
interlayer interaction energy in graphite or few-layer graphene
become available.

The root-mean square deviation of the potential energy
relief for the fitted potential (3) from the potential energy
relief obtained using the DFT-D calculations is 0.17 meV per

This journal is © the Owner Societies 2011

Phys. Chem. Chem. Phys., 2011, 13,5687-5695 | 5691


http://dx.doi.org/10.1039/c0cp02614j

Downloaded by Chengdu Library of Chinese Academy of Science on 19 May 2011
Published on 10 February 2011 on http://pubs.rsc.org | doi:10.1039/COCP02614J

View Online

atom, which is only 0.8% of the magnitude of corrugation of
the potential relief of the interlayer interaction energy AEaa.
The frequency of the small relative vibrations of the graphene
layers exceeds the DFT-D value only by 2% (see Table 2).

The first version of the Kolmogorov—Crespi potentia
gives the energy minimum for bilayer graphene at the
SP-stacking. The second version of the Kolmogorov—Crespi
potential®® provides the qualitatively correct behavior of the
interlayer interaction energy. However, it displays a significant
root-mean-square deviation from the potential energy relief
obtained using our DFT-D calculations of about 2.6 meV per
atom (see Fig. 1).

The form of the potential (3) is similar to that of the
Kolmogorov—Crespi potential>>*® However, we modified
the dependence of the anisotropic part of the potential on
the interlayer spacing z to reproduce the dependences of the
relative energies AExn and AEsp of the AA and SP stackings
on the interlayer spacing obtained using the DFT-D calcula-
tions (see Fig. 2). According to our DFT-D results, these
dependences are approximated by exp(—4,z°) better than by
exp(—43z). The Kolmogorov—Crespi potential®® gives the
dependence of the barrier to relative motion of graphene
layers AEsp on the interlayer spacing essentially different from
the dependence found from our DFT-D calculations (see Fig. 2).

Furthermore, we found that to fit the relative energies AEaa
and AEsp of the AA and SP stackings and the frequency of the
small relative translational vibrations of the layers f, obtained
using the developed potential to the values following from our
DFT-D calculations at the same time it was necessary to
increase the contribution of long-distance atoms of the oppo-
site layer. In consequence of this, we obtained a relatively low
value of the parameter A, for the developed potential, so that
long-distance atoms separated from a considered atom by the
distance up to three bond lengths of graphene in the transverse
direction contribute to the anisotropic part of the potential.
This is opposed to the Kolmogorov—Crespi potential**>3® for
which the main contribution to the anisotropic part is
provided by the nearest atoms of the opposite layer within
the distance corresponding to a single bond length in the
transverse direction.

The Lennard-Jones potential

w-s(OQ) W

was also considered for comparison. The parameters of the
Lennard-Jones potential ¢ = 2.757 meV, ¢ = 3.393 A were
fitted to reproduce the interlayer binding energy,”” interlayer
spacing'®!” and c-axis compressibility!® for graphite. The
cutoff distance of the potential was equal to 25 A. Though
the Lennard-Jones potential reproduces the experimental
data'®'822 for graphite, the magnitude of corrugation of the
potential relief of the interlayer interaction energy is under-
estimated by an order of magnitude (see Fig. 1, Fig. 2 and
Table 2).

As the in-plane and out-of-plane directions should be
distinguished in order to fit both the experimental graphite
compressibility and the corrugation against sliding, any pair-
wise potential similar to the Lennard-Jones potential also
strongly underestimates the magnitude of corrugation of the

135

potential relief of the interlayer interaction energy in graphite
or few-layer graphene. In particular, we performed the calcu-
lations of the potential energy relief for bilayer graphene using
the MM3 and MM4 force fields. ®*° The calculations showed
that for these potentials, the minimum of the interlayer
binding energy of —49.54 meV per atom is reached at an
interlayer spacing of 3.433 A. At this interlayer spacing, the
magnitude of corrugation of the potential energy relief of
bilayer graphene and the barrier for relative motion of the
layers are only AEsa = 0.510 meV per atom and AEsp =
0.0542 meV per atom, respectively. These values are more than
an order of magnitude smaller than the results of the DFT-D
calculations, similar to the Lennard-Jones potential (see Fig. 1,
Fig. 2 and Table 2).

4. MD simulations of the graphene-based
nanoresonator

To investigate the influence of the potential on dynamic
behavior of graphene-based systems, we performed
simulations of the nanoresonator based on the small relative
translational vibrations of graphene layers similar to the
recently proposed ultra-high frequency nanoresonator based
on the small relative vibrations of carbon nanotube walls.'*!
We compared the dynamic behavior of the systems in which
the interlayer interaction is described using three different
potentials: the potential developed in the present work,
Kolmorogov—Crespi*® and Lennard-Jones potentials. The
system used in the MD simulations consisted of two infinite
graphene layers. The size of the model cell was 5.1 nm x 5.2 nm.
The periodic boundary conditions were applied along
mutually perpendicular armchair and zigzag directions of the
graphene layers. The covalent carbon—carbon interactions in
the layers were described by the empirical Brenner potential,®
which was shown to correctly reproduce the vibrational
spectra of carbon nanotubes®' and graphene nanoribbons®
and has been widely applied to study carbon systems.!%1463763
Microcanonical MD simulations of the small vibrations of the
graphene layers were performed at the liquid helium tempera-
ture 4.2 K and at the liquid nitrogen temperature 77 K. An
in-house MD-kMC code®® was implemented. The code used
the velocity Verlet algorithm. The integration time step was
0.4 fs. The simulation time was 0.5-1.0 ns. To start the
vibration, one of the layers was shifted by 0.2 A from the
energy minimum in the armchair direction and released with
zero center-of-mass velocity. During the simulations, both of
the layers were free.

The relative displacement of the centers of mass of the layers
as a function of time is shown in Fig. 3. To estimate the
frequency and the Q-factor of the vibrations, the Fourier
transform of the relative displacement of the centers of mass
of the layers was calculated (see Fig. 4). The frequency f of the
vibrations was found as the center of the main peak and the
Q-factor was estimated by the width Af of the peak as

A

2rA (5)

0=

The frequencies of the vibrations and the Q-factors obtained
through the MD simulations using different potentials are
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Fig. 3 Relative position x (in A) of the centers of mass of the

graphene layers as a function of time ¢ (in ps) at temperature 4.2 K
calculated using the potential developed in the present work.
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Fig. 4 Calculated Fourier transforms of the relative displacement of
the graphene layers along the armchair direction at temperatures 4.2 K
(solid lines) and 77 K (dashed lines) for different potentials: Lennard-
Jones potential (LJ), Kolmogorov—Crespi potential (KC) and potential
developed in the present work (New). Frequency f'is given in THz.

Table 4 Calculated frequency f'and Q-factor Q of the nanoresonator
based on the small relative translational vibrations of graphene layers
at temperatures 4.2 K and 77 K

Potential ~ New potential KC potential LJ potential
T=42K

f/THz 1.0278 £ 0.0005  0.5811 £ 0.0004  0.2051 £ 0.0004
0 150 £ 80 110 £ 80 40 £ 30
T=7K

f/THz 1.0236 &+ 0.0012  0.5774 £ 0.0011  0.2087 £ 0.0008
0 70 £ 30 41 £ 16 21 £ 12

listed in Table 4. The frequencies of the relative translational
vibrations of the graphene layers observed in the MD simula-
tions (see Table 4) are in agreement with the values derived
from the steepness of the minima of the calculated potential
relief of the interlayer interaction energy (see Table 2). The
small discrepancy is related to anharmonicity of the vibrations
of the considered amplitude. As it is seen from Table 4, the

Q-factor of the graphene-based nanoresonator is relatively
small, Q0 ~ 10-100, for all the considered potentials. The
Q-factor strongly decreases with temperature.

The small Q-factor values of the nanoresonator are related
to the intensive energy exchange of the considered relative
vibrations of the graphene layers with other vibrational
modes. The relative translational vibrations of the layers are
excited in the direction perpendicular to the considered
vibrations (but parallel to the layer). This is due to degeneracy
of the vibrations in the perpendicular directions, which is a
result of the graphene symmetry. The excitation of the vibra-
tions in the perpendicular direction is an intrinsic property of
graphene and is not sensitive to the choice of the potential.

Furthermore, the high dissipation in the nanoresonator can
be provided also by the excitation of other low frequency
vibrational modes, such as the flexural vibrations of the
graphene layers. The fundamental frequency of the flexural
vibrations of the layers can be found as

27y,

where the coefficient ¢, was found to be ¢, = 5.6 x 107" m?s~!
(see ref. 67) and L is the length of the graphene layers (or the
length of the model cell in our simulations). The effective
excitation of the flexural vibrations should be observed at
fo < f, i.e. for lengths L > 2 nm for the developed potential
and L > 3 nm for the Kolmogorov—Crespi potential.

It is seen from Table 4 and Fig. 4 that the dynamic behavior
of the nanoresonator is strongly influenced by the choice of the
potential. The developed potential provides the highest
frequency of the small relative translational vibrations of the
graphene layers, as it follows from the performed DFT-D
calculations. Furthermore, the Q-factor is in general higher
for the developed potential compared to those for the
Kolmogorov—Crepsi and Lennard-Jones potentials (see Table 4).

The degeneracy of the translational vibrations in the
perpendicular directions and fast energy transfer to the
flexural vibrations of the graphene layers provide the relatively
small Q-factor values for the nanoresonator based on the
relative translational vibrations of the graphene layers. This is
opposed to the nanoresonator based on the relative vibrations
of the walls of the (9,0)@(18,0) carbon nanotube, for which
the high Q-factor values (Q =~ 500 at the liquid helium
temperature 4.2 K and Q ~ 200 at the liquid nitrogen
temperature 77 K) were obtained'* using the Lennard-Jones
potential. Carbon nanotubes are one-dimensional structures,
so the translational vibrations of the walls along the axis are
not degenerate. Since nanotubes are stiffer than graphene, the
flexural vibrations of nanotubes should get in the resonance
with the translational vibrations of the walls and, therefore,
become important for energy dissipation only at long nano-
tube lengths (the analogous conclusion was drawn for nano-
tube-based gigahertz oscillators).** This explains high Q-factor
values for the nanoresontators based on the relative vibrations
of nanotube walls as compared to the nanoresontators based
on the relative vibrations of graphene layers.

The low Q-factor values for the nanoresonator based on the
small relative translational vibrations of graphene layers
demonstrate that graphene is not suitable for such an application.
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However, this allows elaborating the nanorelays and memory
cells which are based on relative motion of graphene layers
and are fast-responding due to fast damping of mechanical
oscillations after switching.

5. Conclusions

The potential relief of the interlayer interaction energy of
bilayer graphene was investigated in the framework of the
DFT-D approach using the recent PBE-D functional. Based
on the methodological study, it was found that the 24 x 36 x 1
k-point sampling and a cutoff energy of 400 eV are required to
achieve the sufficient accuracy of calculations. This allowed us
to revise the results of the previous DFT calculations without
the dispersion correction.*° In particular, the magnitude of
corrugation of the potential relief of the interlayer interaction
energy for bilayer graphene AEs and the barrier for relative
motion of graphene layers AEsp were found to be AEsp =
19.5 meV per atom and AEsp = 2.07 meV per atom. The
contributions of the dispersion correction to quantities AEgp
and AExA were shown to be 1.4% and 0.6%, respectively. So
though the dispersion term strongly affects the overall
interlayer binding energy, the influence of the dispersion term
on relative motion of graphene layers is negligible. This
conclusion is also of high importance for carbon nanotubes,
for which a number of DFT calculations of the barriers to
relative motion of nanotube walls were performed without the
dispersion correction.'#36:49732

It was also shown that the results of the DFT-D calculations
can be fitted with sufficient accuracy using the simple
expression for interaction of graphene layers containing only
the first Fourier components (see eqn (2)). Therefore, such
approximations are adequate for interpretation®® of the
experiments on superlubricity of graphene using the friction
force microscope.

Based on the DFT-D calculations, a new classical potential
for the interaction between graphene layers was developed.
The potential accurately reproduces the experimental data on
the interlayer binding energy, interlayer spacing, c-axis
compressibility of graphite as well as the data obtained from
the DFT-D calculations on the magnitude of corrugation of
the interlayer interaction energy, barrier for relative motion of
graphene layers and frequency of the small relative transla-
tional vibrations of graphene layers. Therefore, the developed
potential should be useful for modeling graphene-based
nanodevices,>!! superlubricity® ® and diffusion'® of graphene
flakes, ripples,” thermal conductivity* and mechanical
properties of few-layer graphene.?

The influence of the choice of the classical potential on the
dynamic properties of graphene-based systems was investi-
gated by the example of the nanoresonator based on the small
relative translational vibrations of graphene layers. The MD
simulations of the graphene-based nanoresonator were
performed using the potential developed in the present work,
Kolmogorov—Crespi*>*® and Lennard-Jones potentials for the
interlayer interaction. The developed potential was found to
provide the highest frequency of the relative translational
vibrations of the graphene layers and the highest value of
the Q-factor. The calculated low values of the Q-factor of the

graphene-based nanoresonator Q =~ 10-100 show that
graphene should be perfect for the use in fast-responding
nanorelays and nanoelectromechanical memory cells, for
which fast dissipation of mechanical oscillations after
switching is necessary.
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