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Interlayer interaction and relative vibrations of bilayer graphene
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The van der Waals corrected first-principles approach (DFT-D) is for the first time applied for

investigation of interlayer interaction and relative motion of graphene layers. A methodological

study of the influence of parameters of calculations with the dispersion corrected and original

PBE functionals on characteristics of the potential relief of the interlayer interaction energy is

performed. Based on the DFT-D calculations, a new classical potential for interaction between

graphene layers is developed. Molecular dynamics simulations of relative translational vibrations

of graphene layers demonstrate that the choice of the classical potential considerably affects

dynamic characteristics of graphene-based systems. The calculated low values of the Q-factor for

these vibrations Q E 10–100 show that graphene should be perfect for the use in fast-responding

nanorelays and nanoelectromechanical memory cells.

1. Introduction

In addition to zero-dimensional and one-dimensional carbon

nanostructures, fullerenes and carbon nanotubes, a novel

two-dimensional carbon nanostructure, graphene, was

discovered recently.1 The experimental data suggest that

few-layer graphene possesses a number of remarkable properties,

which open the way for a variety of applications. Outstanding

electrical, mechanical and chemical properties of graphene

have been utilized in flexible transparent electrodes used

recently in a fully functional touch-screen panel device.2 Stiff

and flexible graphene oxide paper3 holds great promise for the

use in fuel cell and structural composite applications.

A wide set of properties and applications of graphene is

related to interaction between graphene layers. Thermal

conductivity of graphene improves drastically with decreasing

the number of layers.4 The structure of bilayer graphene

membranes exhibits out-of-plane fluctuations (ripples).5 The

possibility for graphene layers to form incommensurate

configurations upon their relative rotation is responsible for

such phenomena as superlubricity6–9 and fast diffusion10 of a

graphene flake on a graphene layer. Experimentally observed

self-retracting motion of graphite, i.e. retraction of graphite

flakes back into the graphite stacks on their extension arising

from the van der Waals interaction, led to the idea of a

gigahertz oscillator based on the telescopic oscillation of

graphene layers.11 A nanorelay based on the telescopic motion

of nanotube walls12,13 and a mass nanosensor based on the

small translational vibrations of nanotube walls have been

considered.14,15 By analogy with these devices, a nanorelay

based on the telescopic motion of graphene layers and a mass

nanosensor based on the small translational vibrations of

graphene layers can be proposed.

For adequate consideration of the phenomena and nano-

electromechanical systems listed above and realistic simulation

of graphene-based systems, exhaustive information on the

interaction between graphene layers is necessary. In particular,

accurate values of the interlayer binding energy, interlayer

spacing, c-axis compressibility, magnitude of corrugation of

the potential relief of the interlayer interaction energy, barrier

to relative motion of graphene layers and frequencies of

relative vibrations of graphene layers are required. Graphene

layers consisting of covalently bound carbon atoms interact

with each other by relatively weak dispersion forces. The

weakness of these dispersion forces leads to experimental

difficulties when measuring the mentioned physical quantities

characterizing the interaction between graphene layers. The

equilibrium interlayer distance,16,17 c-axis compressibility18

and phonon spectrum19 were experimentally measured for

graphite with good accuracy. However, the data on the

interlayer binding energy show significant scatter depending

on the experimental approach.20–22 No experimental data on

the corrugation of the potential relief of the interlayer

interaction energy are available. The value of the critical

shear strength for graphite measured in the only known

experiment23 is related to macroscopic structural defects of

the graphite sample. In the experiments with a graphene flake
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moved by the tip of the friction force microscope,6 only a small

region of the potential relief of the interlayer interaction

energy can be investigated. Therefore, ab initio calculations

are particularly valuable for understanding the phenomena

observed in graphene-based systems and providing the

reference data for large-scale simulation techniques.

In the present paper, we for the first time use the van der

Waals corrected first-principles approach for calculation of the

interlayer interaction and relative motion of graphene layers.

Based on this study, a new classical potential for interaction

between graphene layers is developed. The potential is applied

for molecular dynamics (MD) simulations of a nanoresonator

based on the small relative translational vibrations of

graphene layers.

The interaction of graphene layers at a distance of 3.4 Å has

been difficult for theoretical description. The density

functional theory (DFT) techniques based on the local density

approximation (LDA) and generalized gradient density

approximation (GGA) are unable to describe non-local

dispersive interactions and, consequently, the cohesion of

graphene layers.24–26 Therefore, it was proposed to supple-

ment the LDA and GGA DFT calculations with an empirical

long-range interaction term.24–27 Such a DFT-D approach

made it possible to reproduce cohesive properties of

graphite25,26,28–30 and interaction in systems of polycyclic

aromatic molecules in different relative orientations.29,31,32

Recently, a more rigorous approach was proposed by Dion

et al.,33 the van der Waals density functional (vdW-DF), which

includes long-range dispersion using polarization properties of

the almost uniform electron gas. However, as we show below

(see Sec. 2), this less empirical correction gives results similar

to the DFT-D approach.

We apply the recent DFT-D technique31,34 taking into

account van der Waals interactions to investigate the potential

relief of the interlayer interaction energy of bilayer graphene

with high accuracy. The PBE-D functional,30 which was

shown to provide the values of the equilibrium interlayer

distance, interlayer binding energy and c-axis compressibility

of graphite closer to the experimental data16–18,22 than other

DFT-D functionals,24,25,27,28 is used. We perform a methodo-

logical study of the influence of the parameters of calculations

with the dispersion corrected and original functionals on the

characteristics of the potential relief. This allows us to revise

the results of the previous DFT calculations without the

dispersion correction.35,36

For simulation of graphene-based systems consisting of

hundreds–thousands of atoms by the MD or the Monte Carlo

method, an appropriate interatomic potential is required. The

potential able to provide the sufficient overall cohesion of

graphene layers and magnitude of corrugation fitted to the

previous DFT calculations without the dispersion correction

was suggested.35,36 We propose here a new potential for

interlayer interaction of graphene layers and fit this potential

to the results of our DFT-D calculations. The potential

accurately reproduces both the experimental data on the

interlayer binding energy, interlayer spacing, c-axis compres-

sibility of graphite and the data obtained from the DFT-D

calculations on the magnitude of corrugation of the interlayer

interaction energy, barrier to relative motion of graphene

layers and frequency of the relative translational vibrations

of graphene layers. Furthermore, we study the influence of the

choice of the classical potential on dynamic behavior of

graphene-based systems by the example of the nanoresonator

based on small relative translational vibrations of graphene

layers. Our molecular dynamics simulations demonstrate that

dynamic characteristics of the nanoresonator described using

the developed potential are strongly different from the

characteristics of the systems described using the previously

known potentials.

The paper is organized in the following way. The results of

the DFT-D calculations of the potential relief of the interlayer

interaction energy in bilayer graphene are presented in Sec. 2.

In Sec. 3, we describe development of the new classical

potential. The results of the MD simulations of the nano-

resonator based on the small relative translational vibrations

of graphene layers for different classical potentials are given in

Sec. 4. Our conclusions are summarized in Sec. 5.

2. Potential relief of interaction energy of

graphene layers

The recently developed DFT-D method31,34 taking into

account van der Waals interactions was used to obtain the

potential relief of the interlayer interaction energy of bilayer

graphene with high accuracy. The periodic boundary

conditions were applied to a 4.271 Å � 2.466 Å � 20 Å model

cell. The VASP code37 with the generalized gradient approxi-

mation (GGA) density functional of Perdew, Burke, and

Ernzerhof,38 in its original form (PBE) and corrected with

the dispersion term (PBE-D),30 was used. The basis set

consisted of plane waves with a maximum kinetic energy of

300–800 eV. The interaction of valence electrons with atomic

cores was described using the projector augmented-wave

method (PAW).39 The cutoff distance for van der Waals

interactions was 200 Å. Integration over the Brillouin zone

was performed using the Monkhorst–Pack method40 with

k-point grids from 12 � 18 � 1 to 36 � 54 � 1. The block

Davidson scheme41 was used for iterative matrix diagonalization.

The precision of convergence of the self-consistent field was

10�5 eV. A second-order Methfessel–Paxton smearing42 with a

width of 0.1 eV was applied. In the calculations of the

potential energy reliefs, one of the graphene layers was rigidly

shifted parallel to the other. Account of structure deformation

induced by the interlayer interaction was shown to be

inessential for the shape of the potential relief for the inter-

action between graphene-like layers, such as the interwall

interaction of carbon nanotubes43 and the intershell inter-

action of carbon nanoparticles.44,45

The calculated interlayer interaction energy of bilayer

graphene as a function of the relative displacement of the

graphene layers along the armchair direction at the equili-

brium interlayer spacing is shown in Fig. 1 (see Fig. 2 of ref. 10

for the qualitative map of the potential relief of the interlayer

interaction energy as a function of the relative displacement of

the graphene layers in both in-plane directions). We found that

minima EAB of the interlayer interaction energy correspond to

the AB-stacking of the layers, while maxima EAA of the

interlayer interaction energy correspond to the AA-stacking,
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in agreement with the experiment.46 The potential relief

of the interlayer interaction energy of bilayer graphene is

characterized by the following two quantities. The first

quantity is the magnitude of corrugation of the potential relief

DEAA = EAA � EAB. The second one is the energy barrier for

transition of the layers between adjacent energy minima

represented by the AB stacking DESP = ESP � EAB, where

ESP is the interaction energy corresponding to the saddle point

stacking (SP stacking) (see Fig. 1). These two quantities are

referred to below as the relative energies DEAA and DESP of the

AA and SP stackings, respectively.

Convergence on the number of k-points in the Brillouin

zone and the maximum kinetic energy of plane waves was

tested for bilayer graphene with respect to the interlayer

binding energy EAB and relative energies of the AA and SP

stackings DEAA and DESP at the equilibrium interlayer spacing

(see Table 1). It is seen that accuracies of about 0.6%, 0.7%

and 1.6% in calculations of the interlayer binding energy EAB,

the relative energies DEAA and DESP of the AA and SP

stackings, respectively, are reached for the 24 � 36 � 1

k-point sampling and a cutoff energy of 400 eV. In calculations

for bulk graphite, a similar accuracy is achieved using the

24 � 36 � 16 k-point sampling.

Let us consider the dependence of the interlayer interaction

energy on the distance between the graphene layers. The

calculations for bilayer graphene with the original PBE

functional showed only a small energy minimum corresponding

to an interlayer binding energy of �1.12 meV per atom at an

interlayer spacing of 4.45 Å. As opposed to the original PBE

functional, the PBE-D functional provides a binding energy of

the graphene layers of �50.6 meV per atom at an interlayer

spacing of 3.25 Å (see Table 2).

The PBE-D functional was found to closely reproduce the

experimental data on the interlayer binding energy,20–22 inter-

layer spacing16,17 and c-axis compressibility18 of graphite

(see Table 3), in agreement with ref. 30. However, the values

of the interlayer binding energy and c-axis compressibility

obtained in the present paper differ by about 5% from the

ones reported in ref. 30. In paper 30, the PWscf code from the

Quantum-ESPRESSO package47 with ultrasoft pseudo-

potentials48 and the 12 � 12 � 8 k-point sampling was used.

So the small discrepancy of the results can be explained by the

differences in the computational approaches (particularly, the

fewer number of k-points used in calculations in ref. 30).

The relative energies DEAA and DESP of the AA and SP

stackings for bilayer graphene at the equilibrium interlayer

spacing are given in Table 2. It should be noted that the

calculated barrier for transition of the layers between adjacent

energy minima exceeds the maximum values of the barriers for

relative motion of carbon nanotube walls14,36,49–52 reached for

commensurate non-chiral nanotube walls by one–two orders

of magnitude. This is due to perfect matching between the

graphene layers as opposed to the curved nanotube walls.

The values of DEAA and DESP obtained here are nearly twice

higher than those reported earlier, DEAA E 10–15 meV per

atom, DESP E 1 meV per atom (see ref. 32, 35, 36). Let us

discuss possible reasons for this discrepancy. In papers 35, 36,

the calculations of DEAA and DESP were performed for

graphite under periodic boundary conditions. The VASP

code37 with ultrasoft pseudopotentials48 and the LDA

functional53 was used, the cutoff energy was 358 eV, and the

number of k-points was not specified. We believe that those

calculations35,36 of the potential relief of the interlayer energy

did not reach the accuracy as high as in the present work

(1.6% for the relative energies of AA and SP stackings) due to

the insufficient number of k-points and cutoff energy in the

Fig. 1 Calculated interlayer interaction energy E (in meV per atom)

of bilayer graphene at the equilibrium interlayer spacing as a function

of the relative displacement x (in Å) of the layers along the

armchair direction for different potentials: Lennard-Jones potential

(dotted line), Kolmogorov–Crespi potential (dashed line) and

potential developed in the present work (solid line). The data obtained

from the DFT-D calculations are shown with rhombs. The energy is

given relative to the global energy minimum.

Fig. 2 Calculated relative energies DEAA (solid lines; in meV per

atom) and DESP (dashed lines; in meV per atom) of the AA and SP

stackings of bilayer graphene as functions of the square of the

interlayer spacing z2 (in Å2) for different potentials: Lennard-Jones

potential (LJ), Kolmogorov–Crespi potential (KC) and potential

developed in the present work (New). The results of the DFT-D

calculations (rhombs) are shifted by the difference of the equilibrium

interlayer spacings for bilayer graphene obtained using the developed

potential and DFT-D.

D
ow

nl
oa

de
d 

by
 C

he
ng

du
 L

ib
ra

ry
 o

f 
C

hi
ne

se
 A

ca
de

m
y 

of
 S

ci
en

ce
 o

n 
19

 M
ay

 2
01

1
Pu

bl
is

he
d 

on
 1

0 
Fe

br
ua

ry
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0C

P0
26

14
J

View Online

http://dx.doi.org/10.1039/c0cp02614j


5690 Phys. Chem. Chem. Phys., 2011, 13, 5687–5695 This journal is c the Owner Societies 2011

calculations. Moreover, the discrepancy in the values of DEAA

and DESP obtained here and in works 35, 36 can be attributed

to the use of the different functionals. In paper 32, the

calculations of interaction of polycyclic aromatic molecules

with a graphene flake were performed using the Q-Chem

quantum chemistry package54 with the oB97X-D functional.55

In this case, the discrepancy in the values of DEAA and DESP

can be related to the strong influence of the edge effects32 in the

finite systems, and the use of the different version of the

DFT-based approach.

In order to check the validity of our results obtained using

the DFT functional with the empirical dispersion correction,

we also performed calculations of potential energy relief of

bilayer graphene using the vdW-DF functional 33 implemented

in the GPAW code.56 These calculations were performed using

the real space grid with spacing 0.12 Å and the same size of the

model cell as in the above DFT-D calculations. Integration in

the inverse space was carried out using the 18 � 27 � 1 k-point

sampling. The results obtained with the vdW-DF functional

are given in Table 2 in comparison with those for the DFT-D

functional. It is seen that both functionals give approximately

the same values of the characteristics DEAA and DESP of the

potential relief of the interlayer interaction energy for bilayer

graphene. Note also that the vdW-DF functional is not

accurate with respect to the interlayer binding energy of

bilayer graphene. So at the moment the vdW-DF approach

is yet not more reliable than DFT-D.

Though the dispersion term strongly affects the overall

interlayer binding energy, the contributions of the dispersion

term to the barrier for relative motion of graphene layers DESP

and the magnitude of corrugation of the potential relief of the

interlayer interaction energy DEAA were found to be only

1.4% and 0.6%, respectively. The characteristics of the

potential relief of the interaction energy of graphene layers

are mostly determined by the overlap of electron clouds of the

layers, which is anisotropic and strongly dependent on the

relative position of the layers as opposed to the long-range

dispersion forces. So we confirmed the qualitative conclusion

of paper 32 made for polycyclic aromatic molecules on a

graphene flake that the dispersion correction provides a small

contribution (o10%) to the magnitude of corrugation of the

potential relief of the interlayer interaction energy for

Table 1 Tests for convergence on the number of k-points and cutoff kinetic energy of plane waves with respect to the interlayer binding energy
EAB and relative energies of the AA and SP stackings DEAA and DESP in calculations with the PBE-D and PBE functionals. The calculated values
correspond to the interlayer spacing 3.25 Å, which is equilibrium for the PBE-D functional

k-points 12 � 18 16 � 24 24 � 36 36 � 54 24 � 36 24 � 36 24 � 36
Energy cutoff/eV 800 800 800 800 500 400 300
PBE-D
EAB/meV per atom �51.43 �50.91 �50.59 �50.48 �50.56 �50.80 �51.43
DEAA/meV per atom 18.15 19.18 19.52 19.40 19.52 19.55 18.97
DESP/meV per atom 1.692 1.945 2.073 2.039 2.065 2.095 1.556
PBE
EAB/meV per atom +20.51 +21.03 +21.35 +21.36 +21.39 +21.14 +20.51
DEAA/meV per atom 17.89 19.04 19.41 19.28 19.40 19.44 18.86
DESP/meV per atom 1.721 1.973 2.102 2.067 2.093 2.123 1.585

Table 2 Calculated interlayer binding energy EAB, equilibrium interlayer spacing c0, compressibility w, relative energies of the AA and SP
stackings DEAA and DESP, frequency of the small relative translational vibrations of the layers f0, parameters U0 and U1 for approximation (2) of
the potential relief of the interlayer interaction energy and relative root-mean-square deviation of approximation (2) dU/U1 at the equilibrium
interlayer spacing for bilayer graphene

DFT-D vdW-DF New potential KC potential LJ potential

EAB/meV per atom �50.6 �29.3 �46.90 �43.69 �45.67
c0/Å 3.25 3.35 3.374 3.375 3.384
w/GPa�1 0.0257 0.0261 0.0309 0.0308
DEAA/meV per atom 19.5 18.9 19.5 13.3 0.887
DESP/meV per atom 2.07 1.92 2.07 0.841 0.0809
f0/THz 1.04 1.06 0.539 0.213
U0/meV per atom �50.59 �46.90 �43.69 �45.67
U1/meV per atom 4.24 4.24 2.14 0.178
dU/U1 0.043 0.044 0.87 0.21

Table 3 Calculated interlayer binding energy EAB, equilibrium interlayer spacing c0, compressibility w and frequency of the small relative
translational vibrations of the layers f0 at the equilibrium interlayer spacing for graphite

DFT-D New potential KC potential LJ potential Exp

EAB/meV per atom �57.1 �52.0 �48.8 �52.0 52+5
�5

a, 43b, 35+15
�10

c

c0/Å 3.22 3.341 3.336 3.340 3.328d, 3.354e

w/GPa�1 0.0225 0.0244 0.0270 0.0256 0.024f

f0/THz 1.50 1.58 0.807 0.335 B1.5g

a Ref. 22. b Ref. 21. c Ref. 20. d Ref. 16. e Ref. 17. f Ref. 18. g Ref. 19.
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graphene-like layers DEAA. Evaluation of the contribution of

the dispersion correction to the barrier for relative motion of

graphene layers DESP in paper 32 was complicated due to the

influence of the edge effects. According to our calculations,

this contribution is also negligibly small. Therefore, such a

correction is not relevant for consideration of relative motion

of graphene layers.

The calculated dependences of the relative energies DEAA

and DESP of the AA and SP stackings on the interlayer spacing

are shown in Fig. 2. These dependences can be approximated

as DEAA, DESP p exp(�l2z2) with l2 E 0.464 Å�2, where z is

the interlayer spacing.

The frequency f0 of the small relative translational

vibrations of the graphene layers about the energy minimum

(see Table 2) was found as

f0 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m

@2U

@x2

r
; ð1Þ

where U is the potential energy per atom of one of the layers,

q2U/qx2 is the second derivative of the potential energy with

respect to the displacement along the armchair direction at the

energy minimum and m is the mass of a carbon atom.

A similar quantity for graphite is given in Table 3 and is

consistent with the experimental value for the frequency

of TO0 mode of graphite at G-point of about 1.5 THz

(see ref. 19).

It should also be mentioned that in papers on superlubricity

of graphene (see, e.g., ref. 6 and 8), the interaction of a single

carbon atom in the graphene flake with the graphite surface

was described using the simple approximation57 containing

only the first Fourier components. Based on that expression, it

is easy to show that the potential energy relief of bilayer

graphene can be roughly approximated in the form

U ¼ U1ðzÞ 1:5þ cos 2k1x�
2p
3

� ��

�2 cos k1x�
p
3

� �
cosðk2yÞ

�
þU0ðzÞ

ð2Þ

where k2 = 2p/a0, k1 ¼ k2=
ffiffiffi
3
p

, x and y axes are chosen along

the armchair and zigzag directions, respectively, U1(z) and

U0(z) are expressed through the parameters V1(z) and V0(z) of

paper 6 as U1(z) = 0.5V0(z) and U0(z) = V1(z) � 0.75V0(z).

The parameters U0, U1 fitted to reproduce the potential energy

relief of bilayer graphene for the equilibrium interlayer

spacing and relative root-mean-square deviation dU/U1 of

approximation (2) from the potential energy relief obtained

using the DFT-D calculations are given in Table 2. Though

approximation (2) is rather simple, it can be fitted to reproduce

the potential energy relief of bilayer graphene obtained

through the DFT-D calculations with the accuracy of a few

percent. Therefore, such approximations are adequate for

interpretation6,8 of the experiments on superlubricity of

graphene using the friction force microscope. The value of

the parameter U1 = 0.5V0 E 4.24 meV per atom fitted to

reproduce the results of our DFT-D calculations is in

reasonable agreement with the values of the parameter

V0 E 3.3–6.7 meV per atom fitted to the experimental data

obtained using the friction force microscope.6,8

3. Classical potential for interaction between

graphene layers

It was pointed out in papers 35, 36 that the p-overlap between

graphene layers is anisotropic. So to fit both the experimental

graphite compressibility and the corrugation against sliding, it

is needed to distinguish the in-plane and out-of-plane directions.

This approach was firstly realized in the Kolmogorov–Crespi

potential.35,36 We used such an approach to develop a new

classical potential for the interaction of graphene layers on the

basis of the results of our DFT-D calculations.

We assumed that the interaction of atoms of the layers at a

distance r, transverse separation r and interlayer spacing z

(r2 = r2 + z2) can be described as

U ¼ A
z0

r

� �6
þB expð�aðr� z0ÞÞ

þ Cð1þD1r2 þD2r4Þ expð�l1r2Þ expð�l2ðz2 � z20ÞÞ
ð3Þ

where z0 = 3.34 Å is the equilibrium interlayer spacing of

graphite.

The potential consists of two parts. The first part is

isotropic. The parameters of this part A = �10.510 meV,

B = 11.652 meV and a = 4.16 Å�1 were fitted to provide the

interlayer binding energy,22 interlayer spacing16,17 and c-axis

compressibility18 for graphite close to the recent experimental

values (see Table 3). As this part of the potential was fitted to

the experimental data, it provides the equilibrium interlayer

spacing of bilayer graphene deq = 3.38 Å, which is greater

than the equilibium interlayer spacing following from the

DFT-D calculations deq = 3.25 Å (see Table 2). The second

part of the potential is anisotropic and determines the

dependence of the interlayer energy on the in-plane relative

displacement of graphene layers. The parameters of the second

part of the potential were fitted to satisfy the following

conditions: (1) this part gives zero contribution to the

interlayer interaction energy for the AB stacking; (2) the

relative energies DEAA and DESP of the AA and SP stackings

and the frequency of the small relative translational vibrations

of the layers f0 at the equilibrium interlayer spacing deq =

3.38 Å have the same values as were provided by the DFT-D

calculations for deq = 3.25 Å. The following values

of the parameters were obtained: C = 35.883 meV, D1 =

�0.86232 Å�2, D2 = 0.10049 Å�4 and l1 = 0.48703 Å�2

(see Fig. 1). To provide the dependences of the relative

energies DEAA and DESP of the AA and SP stackings on the

interlayer spacing following from the DFT-D calculations the

parameter l2 was set equal to l2 = 0.46445 Å�2 (see Fig. 2).

For the fitting procedure and the MD simulations presented

below, the cutoff distance of the potential was taken equal to

25 Å. It is seen that the fitting procedure is rather simple and

can be easily applied to revise the parameters of the potential

as soon as the experimental data on the potential relief of the

interlayer interaction energy in graphite or few-layer graphene

become available.

The root-mean square deviation of the potential energy

relief for the fitted potential (3) from the potential energy

relief obtained using the DFT-D calculations is 0.17 meV per
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atom, which is only 0.8% of the magnitude of corrugation of

the potential relief of the interlayer interaction energy DEAA.

The frequency of the small relative vibrations of the graphene

layers exceeds the DFT-D value only by 2% (see Table 2).

The first version of the Kolmogorov–Crespi potential35

gives the energy minimum for bilayer graphene at the

SP-stacking. The second version of the Kolmogorov–Crespi

potential36 provides the qualitatively correct behavior of the

interlayer interaction energy. However, it displays a significant

root-mean-square deviation from the potential energy relief

obtained using our DFT-D calculations of about 2.6 meV per

atom (see Fig. 1).

The form of the potential (3) is similar to that of the

Kolmogorov–Crespi potential.35,36 However, we modified

the dependence of the anisotropic part of the potential on

the interlayer spacing z to reproduce the dependences of the

relative energies DEAA and DESP of the AA and SP stackings

on the interlayer spacing obtained using the DFT-D calcula-

tions (see Fig. 2). According to our DFT-D results, these

dependences are approximated by exp(�l2z2) better than by

exp(�l3z). The Kolmogorov–Crespi potential36 gives the

dependence of the barrier to relative motion of graphene

layers DESP on the interlayer spacing essentially different from

the dependence found from our DFT-D calculations (see Fig. 2).

Furthermore, we found that to fit the relative energies DEAA

and DESP of the AA and SP stackings and the frequency of the

small relative translational vibrations of the layers f0 obtained

using the developed potential to the values following from our

DFT-D calculations at the same time it was necessary to

increase the contribution of long-distance atoms of the oppo-

site layer. In consequence of this, we obtained a relatively low

value of the parameter l1 for the developed potential, so that

long-distance atoms separated from a considered atom by the

distance up to three bond lengths of graphene in the transverse

direction contribute to the anisotropic part of the potential.

This is opposed to the Kolmogorov–Crespi potential35,36 for

which the main contribution to the anisotropic part is

provided by the nearest atoms of the opposite layer within

the distance corresponding to a single bond length in the

transverse direction.

The Lennard-Jones potential

ULJ ¼ 4e
s
r

� �12
� s

r

� �6� �
ð4Þ

was also considered for comparison. The parameters of the

Lennard-Jones potential e = 2.757 meV, s = 3.393 Å were

fitted to reproduce the interlayer binding energy,22 interlayer

spacing16,17 and c-axis compressibility18 for graphite. The

cutoff distance of the potential was equal to 25 Å. Though

the Lennard-Jones potential reproduces the experimental

data16–18,22 for graphite, the magnitude of corrugation of the

potential relief of the interlayer interaction energy is under-

estimated by an order of magnitude (see Fig. 1, Fig. 2 and

Table 2).

As the in-plane and out-of-plane directions should be

distinguished in order to fit both the experimental graphite

compressibility and the corrugation against sliding, any pair-

wise potential similar to the Lennard-Jones potential also

strongly underestimates the magnitude of corrugation of the

potential relief of the interlayer interaction energy in graphite

or few-layer graphene. In particular, we performed the calcu-

lations of the potential energy relief for bilayer graphene using

the MM3 and MM4 force fields.58,59 The calculations showed

that for these potentials, the minimum of the interlayer

binding energy of �49.54 meV per atom is reached at an

interlayer spacing of 3.433 Å. At this interlayer spacing, the

magnitude of corrugation of the potential energy relief of

bilayer graphene and the barrier for relative motion of the

layers are only DEAA = 0.510 meV per atom and DESP =

0.0542 meV per atom, respectively. These values are more than

an order of magnitude smaller than the results of the DFT-D

calculations, similar to the Lennard-Jones potential (see Fig. 1,

Fig. 2 and Table 2).

4. MD simulations of the graphene-based

nanoresonator

To investigate the influence of the potential on dynamic

behavior of graphene-based systems, we performed

simulations of the nanoresonator based on the small relative

translational vibrations of graphene layers similar to the

recently proposed ultra-high frequency nanoresonator based

on the small relative vibrations of carbon nanotube walls.14,15

We compared the dynamic behavior of the systems in which

the interlayer interaction is described using three different

potentials: the potential developed in the present work,

Kolmorogov–Crespi36 and Lennard-Jones potentials. The

system used in the MD simulations consisted of two infinite

graphene layers. The size of the model cell was 5.1 nm� 5.2 nm.

The periodic boundary conditions were applied along

mutually perpendicular armchair and zigzag directions of the

graphene layers. The covalent carbon–carbon interactions in

the layers were described by the empirical Brenner potential,60

which was shown to correctly reproduce the vibrational

spectra of carbon nanotubes61 and graphene nanoribbons62

and has been widely applied to study carbon systems.10,14,63–65

Microcanonical MD simulations of the small vibrations of the

graphene layers were performed at the liquid helium tempera-

ture 4.2 K and at the liquid nitrogen temperature 77 K. An

in-house MD-kMC code66 was implemented. The code used

the velocity Verlet algorithm. The integration time step was

0.4 fs. The simulation time was 0.5–1.0 ns. To start the

vibration, one of the layers was shifted by 0.2 Å from the

energy minimum in the armchair direction and released with

zero center-of-mass velocity. During the simulations, both of

the layers were free.

The relative displacement of the centers of mass of the layers

as a function of time is shown in Fig. 3. To estimate the

frequency and the Q-factor of the vibrations, the Fourier

transform of the relative displacement of the centers of mass

of the layers was calculated (see Fig. 4). The frequency f of the

vibrations was found as the center of the main peak and the

Q-factor was estimated by the width Df of the peak as

Q ¼ f

2pD f
: ð5Þ

The frequencies of the vibrations and the Q-factors obtained

through the MD simulations using different potentials are
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listed in Table 4. The frequencies of the relative translational

vibrations of the graphene layers observed in the MD simula-

tions (see Table 4) are in agreement with the values derived

from the steepness of the minima of the calculated potential

relief of the interlayer interaction energy (see Table 2). The

small discrepancy is related to anharmonicity of the vibrations

of the considered amplitude. As it is seen from Table 4, the

Q-factor of the graphene-based nanoresonator is relatively

small, Q E 10–100, for all the considered potentials. The

Q-factor strongly decreases with temperature.

The small Q-factor values of the nanoresonator are related

to the intensive energy exchange of the considered relative

vibrations of the graphene layers with other vibrational

modes. The relative translational vibrations of the layers are

excited in the direction perpendicular to the considered

vibrations (but parallel to the layer). This is due to degeneracy

of the vibrations in the perpendicular directions, which is a

result of the graphene symmetry. The excitation of the vibra-

tions in the perpendicular direction is an intrinsic property of

graphene and is not sensitive to the choice of the potential.

Furthermore, the high dissipation in the nanoresonator can

be provided also by the excitation of other low frequency

vibrational modes, such as the flexural vibrations of the

graphene layers. The fundamental frequency of the flexural

vibrations of the layers can be found as

fb ¼
2pcb
L2

; ð6Þ

where the coefficient cb was found to be cb = 5.6 � 10�7 m2 s�1

(see ref. 67) and L is the length of the graphene layers (or the

length of the model cell in our simulations). The effective

excitation of the flexural vibrations should be observed at

fb r f, i.e. for lengths L > 2 nm for the developed potential

and L > 3 nm for the Kolmogorov–Crespi potential.

It is seen from Table 4 and Fig. 4 that the dynamic behavior

of the nanoresonator is strongly influenced by the choice of the

potential. The developed potential provides the highest

frequency of the small relative translational vibrations of the

graphene layers, as it follows from the performed DFT-D

calculations. Furthermore, the Q-factor is in general higher

for the developed potential compared to those for the

Kolmogorov–Crepsi and Lennard-Jones potentials (see Table 4).

The degeneracy of the translational vibrations in the

perpendicular directions and fast energy transfer to the

flexural vibrations of the graphene layers provide the relatively

small Q-factor values for the nanoresonator based on the

relative translational vibrations of the graphene layers. This is

opposed to the nanoresonator based on the relative vibrations

of the walls of the (9,0)@(18,0) carbon nanotube, for which

the high Q-factor values (Q E 500 at the liquid helium

temperature 4.2 K and Q E 200 at the liquid nitrogen

temperature 77 K) were obtained14 using the Lennard-Jones

potential. Carbon nanotubes are one-dimensional structures,

so the translational vibrations of the walls along the axis are

not degenerate. Since nanotubes are stiffer than graphene, the

flexural vibrations of nanotubes should get in the resonance

with the translational vibrations of the walls and, therefore,

become important for energy dissipation only at long nano-

tube lengths (the analogous conclusion was drawn for nano-

tube-based gigahertz oscillators).64 This explains highQ-factor

values for the nanoresontators based on the relative vibrations

of nanotube walls as compared to the nanoresontators based

on the relative vibrations of graphene layers.

The low Q-factor values for the nanoresonator based on the

small relative translational vibrations of graphene layers

demonstrate that graphene is not suitable for such an application.

Fig. 3 Relative position x (in Å) of the centers of mass of the

graphene layers as a function of time t (in ps) at temperature 4.2 K

calculated using the potential developed in the present work.

Fig. 4 Calculated Fourier transforms of the relative displacement of

the graphene layers along the armchair direction at temperatures 4.2 K

(solid lines) and 77 K (dashed lines) for different potentials: Lennard-

Jones potential (LJ), Kolmogorov–Crespi potential (KC) and potential

developed in the present work (New). Frequency f is given in THz.

Table 4 Calculated frequency f and Q-factor Q of the nanoresonator
based on the small relative translational vibrations of graphene layers
at temperatures 4.2 K and 77 K

Potential New potential KC potential LJ potential

T = 4.2 K
f/THz 1.0278 � 0.0005 0.5811 � 0.0004 0.2051 � 0.0004
Q 150 � 80 110 � 80 40 � 30
T = 77 K
f/THz 1.0236 � 0.0012 0.5774 � 0.0011 0.2087 � 0.0008
Q 70 � 30 41 � 16 21 � 12
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However, this allows elaborating the nanorelays and memory

cells which are based on relative motion of graphene layers

and are fast-responding due to fast damping of mechanical

oscillations after switching.

5. Conclusions

The potential relief of the interlayer interaction energy of

bilayer graphene was investigated in the framework of the

DFT-D approach using the recent PBE-D functional. Based

on the methodological study, it was found that the 24 � 36 � 1

k-point sampling and a cutoff energy of 400 eV are required to

achieve the sufficient accuracy of calculations. This allowed us

to revise the results of the previous DFT calculations without

the dispersion correction.35,36 In particular, the magnitude of

corrugation of the potential relief of the interlayer interaction

energy for bilayer graphene DEAA and the barrier for relative

motion of graphene layers DESP were found to be DEAA =

19.5 meV per atom and DESP = 2.07 meV per atom. The

contributions of the dispersion correction to quantities DESP

and DEAA were shown to be 1.4% and 0.6%, respectively. So

though the dispersion term strongly affects the overall

interlayer binding energy, the influence of the dispersion term

on relative motion of graphene layers is negligible. This

conclusion is also of high importance for carbon nanotubes,

for which a number of DFT calculations of the barriers to

relative motion of nanotube walls were performed without the

dispersion correction.14,36,49–52

It was also shown that the results of the DFT-D calculations

can be fitted with sufficient accuracy using the simple

expression for interaction of graphene layers containing only

the first Fourier components (see eqn (2)). Therefore, such

approximations are adequate for interpretation6,8 of the

experiments on superlubricity of graphene using the friction

force microscope.

Based on the DFT-D calculations, a new classical potential

for the interaction between graphene layers was developed.

The potential accurately reproduces the experimental data on

the interlayer binding energy, interlayer spacing, c-axis

compressibility of graphite as well as the data obtained from

the DFT-D calculations on the magnitude of corrugation of

the interlayer interaction energy, barrier for relative motion of

graphene layers and frequency of the small relative transla-

tional vibrations of graphene layers. Therefore, the developed

potential should be useful for modeling graphene-based

nanodevices,2,11 superlubricity6–9 and diffusion10 of graphene

flakes, ripples,5 thermal conductivity4 and mechanical

properties of few-layer graphene.3

The influence of the choice of the classical potential on the

dynamic properties of graphene-based systems was investi-

gated by the example of the nanoresonator based on the small

relative translational vibrations of graphene layers. The MD

simulations of the graphene-based nanoresonator were

performed using the potential developed in the present work,

Kolmogorov–Crespi35,36 and Lennard-Jones potentials for the

interlayer interaction. The developed potential was found to

provide the highest frequency of the relative translational

vibrations of the graphene layers and the highest value of

the Q-factor. The calculated low values of the Q-factor of the

graphene-based nanoresonator Q E 10–100 show that

graphene should be perfect for the use in fast-responding

nanorelays and nanoelectromechanical memory cells, for

which fast dissipation of mechanical oscillations after

switching is necessary.
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