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virus, for which there may be varying degrees of
homotypic and heterotypic immunity (32). Sec-
ondary infections may occur only when individ-
uals encounter a strain that substantially differs
from the one causing primary infection. Further-
more, the true effect of vaccination may differ
slightly from that suggested by our model. If vac-
cination conferred highly protective immunity com-
parable to that exhibited after two natural infections,
our model suggests that the level of herd immunity
generated by vaccination could lead to the elimina-
tion of the infection from the population at very high
coverage levels (10). However, one cannot rule out
the possible emergence of new rotavirus strains in
response to vaccine pressure, and information on
rotavirus genetic diversity will be crucial to under-
stand the long-term effectiveness of any immuni-
zation program.

We can extend our U.S.-based analysis to the
context of developing countries, where rotavirus
remains a substantial cause of childhood morbidity
and mortality and disease dynamics differ. The high
birth rates typical of developing countries may help
explainwhy rotavirus exhibits less seasonal varia-
tion in such settings (33), although climatic factors
could also play a role. In addition, rotavirus vaccine
efficacy remains somewhat unclear in developing
country settings and could be lower than in the
United States because of several factors that might
interfere with vaccine performance (e.g., presence
of maternal antibodies, high levels of coinfection
with other enteropathogens, higher rates of mal-
nutrition, and greater prevalence of uncommon
rotavirus strains). Efficacy trials of rotavirus vac-
cines are ongoing in several countries of Asia and
Africa, and results are expected in the next 6 to 12
months. Differences in population demographics,

epidemiology of rotavirus disease, and, potentially,
vaccine effectiveness, would need to be carefully
considered when predicting the benefits of vacci-
nation in developing countries, and the vaccine ex-
perience of industrialized nations may not directly
translate to countries with high rotavirus mortality
burden. Introducing vaccination would likely de-
crease the overall burden of disease but could have
important dynamic consequences, which are key
to explore in future research.
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Nonlocal Transport in the
Quantum Spin Hall State
Andreas Roth,1 Christoph Brüne,1 Hartmut Buhmann,1 Laurens W. Molenkamp,1*
Joseph Maciejko,2,3 Xiao-Liang Qi,2,3 Shou-Cheng Zhang2,3

Nonlocal transport through edge channels holds great promise for low-power information
processing. However, edge channels have so far only been demonstrated to occur in the quantum
Hall regime, at high magnetic fields. We found that mercury telluride quantum wells in the
quantum spin Hall regime exhibit nonlocal edge channel transport at zero external magnetic
field. The data confirm that the quantum transport through the (helical) edge channels is
dissipationless and that the contacts lead to equilibration between the counterpropagating spin
states at the edge. The experimental data agree quantitatively with the theory of the quantum
spin Hall effect. The edge channel transport paves the way for a new generation of spintronic
devices for low-power information processing.

The search for topological states of quantum
matter has become an important goal in
condensed matter physics. Inside a topolog-

ical insulator, the conventional laws of electro-
dynamics are substantially altered (1), which may
have applications in constructing novel devices
for the processing of (quantum) information. The

quantum spin Hall (QSH) state (2, 3) is a topo-
logically nontrivial state of matter that exists in
the absence of any external magnetic field. It has
a bulk energy gap but gapless helical edge states
protected by time reversal symmetry. In the QSH
regime, opposite spin states forming a Kramers
doublet counterpropagate at the edge (4, 5). Re-

cently, the QSH state was theoretically predicted
in HgTe quantum wells (6). There is a topolog-
ical quantum phase transition at a critical thick-
ness dc of the quantum well, separating the trivial
insulator state for d < dc from the QSH insulator
state for d > dc. Soon after the theoretical pre-
diction, evidence for the QSH state was observed
in transport measurements (7). In the QSH re-
gime, experiments measured a conductance G
close to twice the quantum unit of conductance
G = 2e2/h (where e is the charge on the electron
and h is Planck’s constant); this value is con-
sistent with quantum transport due to helical edge
states. However, such a conductance quantization
in small Hall bar geometries does not allow us to
distinguish experimentally between ballistic and
edge channel transport in a convincing manner.
Thus, it is important to be able to prove experi-
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mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length × width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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is largest). Measurements were performed at a
lattice temperature of 10 mK for samples D1,
D2, and D3 and at 1.8 K for sample D4, using
low-frequency (13 Hz) lock-in techniques under
voltage bias. The four-terminal resistance (Fig. 1)
shows a maximum at about h/2e2, in agreement
with the results of (7). The contact resistance should
be insensitive to the gate voltage and can be mea-
sured from the resistance deep in the metallic region.
By subtracting the contact resistance, we find that
the two-terminal resistance has its maximum at
about 3h/2e2 (Fig. 1). This value is exactly what is
expected from the theory of QSH edge transport
obtained from the Landauer-Büttiker formula.

Transport on the edge. Within the general
Landauer-Büttiker formalism (10), the current-
voltage relationship is expressed as

I i ¼ e2

h
∑
j
ðTjiV i − TijV jÞ ð1Þ

where Ii is the current flowingout of the ith electrode
into the sample region, Vi is the voltage on the ith
electrode, and Tji is the transmission probability
from the ith to the jth electrode. The total current is
conserved in the sense that∑ iIi = 0. Avoltage lead
j is defined by the condition that it draws no net
current (i.e., Ij = 0). The physical currents are left
invariant if the voltages on all electrodes are shifted
by a constant amount m, implying that∑iTij =∑iTji.
In a time reversal–invariant system, the transmis-
sion coefficients satisfy the condition Tij = Tji.

For a general two-dimensional sample, the
number of transmission channels scales with the
width of the sample, so that the transmission matrix
Tij is complicated and nonuniversal. However, a
tremendous simplification arises if the quantum
transport is entirely dominated by the edge states.
In the QH regime, chiral edge states are respon-
sible for the transport. For a standard Hall bar with
N current and voltage leads attached (compare the
insets of Fig. 1 with N = 6), the transmission
matrix elements for the n = 1 QH state are given
by T(QH) i+1,i = 1, for i = 1, …, N, and all other
matrix elements vanish identically. Here we peri-
odically identify the i =N + 1 electrode with i = 1.
Chiral edge states are protected from backscatter-
ing; therefore, the ith electrode transmits perfectly
to the neighboring (i + 1)th electrode on one side
only. In the example of current leads on electrodes

1 and 4, and voltage leads on electrodes 2, 3, 5,
and 6, one finds that I1 = –I4 ≡ I14, V2 – V3 = 0,
and V1 – V4 = (h/e2)I14, giving a four-terminal
resistance of R14,23 = 0 and a two-terminal resist-
ance of R14,14 = h/e2.

In the case of helical edge states in the QSH
regime, opposite spin states form a Kramers pair,
counterpropagating on the same edge. The helical
edge states are protected from backscattering due to
time reversal symmetry, and the transmission from
one electrode to the next is perfect. From this point
of view, the helical edge states can be viewed as
two copies of chiral edge states related by time re-
versal symmetry. Therefore, the transmission matrix
is given by T(QSH) = T(QH) + T†(QH), imply-
ing that the only nonvanishing matrix elements are
given by

T(QSH)i+1,i = T(QSH)i,i+1 = 1

Considering again the example of current leads
on electrodes 1 and 4 and voltage leads on elec-
trodes 2, 3, 5, and 6, one finds that I1 = –I4 ≡
I14, V2 – V3 = (h/2e2)I14, and V1 – V4 = (3h/e2)I14,
giving a four-terminal resistance ofR14,23 = h/2e

2

and a two-terminal resistance of R14,14 = 3h/2e2.
The experimental data in Fig. 1 confirm this
picture. For both micro–Hall bar structures D1
and D2 that differ only in the dimensions of the
area between voltage contacts 3 and 4, we ob-
serve exactly the expected resistance values for
R14,23 = h/ 2e2 and R14,14 = 3h/ 2e2 for gate
voltages where the samples are in the QSH regime.

Dissipationless transport. Conceptually, one
might sense a paradox between the dissipation-
less nature of the QSH edge states and the finite
four-terminal longitudinal resistance R14,23, which
vanishes for the QH state. We can generally as-
sume that the microscopic Hamiltonian governing
the voltage leads is invariant under time reversal
symmetry; therefore, one would naturally ask
how such leads could cause the dissipation of
the helical edge states, which are protected by
time reversal symmetry. In nature, the time re-
versal symmetry can be broken in two ways: at
the level of the microscopic Hamiltonian, or at
the level of the macroscopic irreversibility in
systems whose microscopic Hamiltonian respects
the time reversal symmetry. When the helical edge

states propagate without dissipation inside the
QSH insulator between the electrodes, neither form
of time reversal symmetry breaking is present.
As a result, the two counterpropagating channels
can be maintained at two different quasi–chemical
potentials, leading to a net current flow. However,
once they enter the voltage leads, they interact
with a reservoir containing infinitely many low-
energy degrees of freedom, and the time reversal
symmetry is effectively broken by the macroscop-
ic irreversibility. As a result, the two counterprop-
agating channels equilibrate at the same chemical
potential, determined by the voltage of the lead.
Dissipation occurs with the equilibration process.
The transport Eq. 1 breaks the macroscopic time
reversal symmetry, even though the microscopic
time reversal symmetry is ensured by the relation-
ship Tij = Tji. In contrast to the case of QH state,
the absence of dissipation of the QSH helical edge
states is protected by Kramers’ theorem, which
relies on the quantum phase coherence of wave
functions. Thus, dissipation can occur once the
phase coherence is destroyed in the metallic leads.
By contrast, the robustness of QH chiral edge
states does not require phase coherence. The result
of a more rigorous and microscopic analysis on
the different role played by a metallic lead in
QH and QSH states (11) agrees with the simple
transport Eqs. 1 and 2. These two equations, which
correctly describe the dissipationless quantum
transport inside the QSH insulator and the dis-
sipation inside the electrodes, can be subjected
to more stringent experimental tests than the
two- and four-terminal experiments of Fig. 1 by
considering devices D3 and D4 (Fig. 2).

Helical versus chiral. A further difference
between helical and chiral edge channels is evident
fromour experiments on the six-terminal deviceD3
(Fig. 3).When the longitudinal resistance of device
D3 is measured by passing a current through con-
tacts 1 and 4 and by detecting the voltage between
contacts 2 and 3 (R14,23), we find, similar to the
results of Fig. 1, a resistance value of h/2e2 when
the bulk of the device is gated into the insulating
regime (Fig. 3A). However, the longitudinal resist-
ance is markedly different in a slightly modified
configuration, where the current is passed through
contacts 1 and 3 and the voltage is measured be-
tween contacts 5 and 4 (R13,54) (Fig. 3B). We now
find R13,54 ≈ 8.6 kilohms, which is markedly
different from what one would expect for either
the QH transport or the purely diffusive transport,
where this configuration would be equivalent to
the previous one. Application of Eqs. 1 and 2
actually predicts that the observed behavior is
indeed what one expects for helical edge chan-
nels. This resistance value can again be expressed
as an integer fraction of the inverse conductance
quanta e2/h: R13,54 = h/3e2. This result shows that
the current through the device is influenced by
the number of ohmic contacts in the current path.
These ohmic contacts lead to the equilibration of
the chemical potentials between the two counter-
propagating helical edge channels inside the
contact. There are also some devices for which

Fig. 4. Nonlocal four-terminal resist-
ance and two-terminal resistance mea-
sured on the H-bar device D4: R14,23
(red line) and R14,14 (green line). Again,
the dotted blue line represents the the-
oretically expected resistance value.

(2)
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the maximal resistance does not match the the-
oretical value obtained from Eqs. 1 and 2, but still
remains an integer fraction of the quantum h/e2.
This result can be naturally understood as due to
inhomogeneities in the gate action (e.g., due to
interface trap states) inducing some metallic drop-
lets close to the edge channels while the bulk of
the sample is insulating. A metallic droplet can
cause dephasing of the electronic wave function,
leading to fluctuations in the device resistance.
For full dephasing, the droplet plays the role of an
additional ohmic contact, just as for the chiral
edge channels in the QH regime (8). More details
on the effects of additional ohmic contacts in the
QSH state are given in (11).

Another measurement that directly confirms
the nonlocal character of the helical edge chan-
nel transport in the QSH regime is in Fig. 4,
which shows data obtained from device D4, in
the shape of the letter H. In this four-terminal
device, the current is passed through contacts
1 and 4 and the voltage is measured between
contacts 2 and 3. In the metallic n-type regime
(low gate voltage), the voltage signal tends to zero.
In the insulating regime, however, the nonlocal
resistance signal increases to ~6.5 kilohms, which
again fits perfectly to the result of Laudauer-
Büttiker considerations: R14,23 = h/4e2 ≈ 6.45
kilohms. Classically, one would expect only a
minimal signal in this configuration (from Pois-
son’s equation, assuming diffusive transport, one
estimates a signal of about 40 ohms), and cer-
tainly not one that increases so strongly when
the bulk of the sample is depleted. This signal
measured here is fully nonlocal and can be taken
(as was done 20 years ago for the QH regime) as
definite evidence of the existence of edge chan-
nel transport in the QSH regime. A similar non-
local voltage has been studied in a metallic spin

Hall system with the same H-bar geometry (12),
in which case the nonlocal voltage can be under-
stood as a combination of the spin Hall effect
and the inverse spin Hall effect (13). The quan-
tized nonlocal resistance h/4e2 we find here is
the quantum counterpart of the metallic case.
For example, if we assume that the chemical po-
tential in contact 1 is higher than that in contact
4 (compare to the layout of D4 in Fig. 2B), more
electrons will be injected into the upper edge
state in the horizontal segment of the H-bar than
into the lower edge state. Because on opposite
edges the right-propagating edge states have op-
posite spin, this implies that a spin-polarized cur-
rent is generated by an applied bias V1 – V4,
comparable to a spin Hall effect. When this spin-
polarized current is injected into the right leg of
the device, the inverse effect occurs. Electrons
in the upper edge flow to contact 2 while those
in the lower edge flow to contact 3, establishing
a voltage difference between those two contacts
due to the charge imbalance between the edges.
The right leg of the device thus acts as a detector
for the injected spin-polarized current, which cor-
responds to the inverse spin Hall effect.

Concluding remarks. The multiterminal and
nonlocal transport experiments on HgTe micro-
structures in the QSH regime demonstrate that
charge transport occurs through extended helical
edge channels. We have extended the Landauer-
Büttiker model for multiterminal transport in
the QH regime to the case of helical QSH edge
channels and have shown that this model con-
vincingly explains the observations. Logic de-
vices based on the complementary metal oxide
semiconductor design generate considerable heating
due to the ohmic dissipation within the channel.
Our work on conductance quantization demon-
strates that electrons can be transported coherently

within the edge channel without ohmic dissipa-
tion. Such an effect can be used to construct logic
devices with improved performance.
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REPORTS
Higher-Order Photon Bunching in a
Semiconductor Microcavity
M. Aßmann,1 F. Veit,1 M. Bayer,1* M. van der Poel,2 J. M. Hvam2

Quantum mechanically indistinguishable particles such as photons may show collective behavior.
Therefore, an appropriate description of a light field must consider the properties of an assembly
of photons instead of independent particles. We have studied multiphoton correlations up to
fourth order in the single-mode emission of a semiconductor microcavity in the weak and strong
coupling regimes. The counting statistics of single photons were recorded with picosecond time
resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our
results show bunching behavior in the strong coupling case, which vanishes in the weak coupling
regime as the cavity starts lasing. In particular, we verify the n factorial prediction for the
zero-delay correlation function of n thermal light photons.

The discovery of two-photon bunching in
thermal light byHanburyBrown andTwiss
(1) marked a turning point for the develop-

ment of quantum optics (2) and has also found appli-

cations in a variety of fields, from particle physics
(3) to ultracold quantum gases (4). Photon bunch-
ing is the tendency of indistinguishable photons,
emitted by a thermal or chaotic light source, to show

an enhanced joint detection probability compared
with statistically independent particles that are
emitted, for instance, by lasers. The explanation of
this bunching relies on quantum interference be-
tween indistinguishable n particle probability ampli-
tudes leading to excess joint detections if the photon
number follows the Bose-Einstein distribution (5, 6).

The quantity describing bunching for two
photons is the second-order intensity correlation
function defined as

gð2Þðt,tÞ ¼ 〈:n%ðtÞn%ðt þ tÞ:〉
〈n%ðtÞ〉〈n%ðt þ tÞ〉 ð1Þ

where n% ¼ a% †a% is the photon number operator, t
and t + t are the detection times of the two

1Experimentelle Physik II, Technische Universität Dortmund,
D-44221 Dortmund, Germany. 2DTU Fotonik, Technical Uni-
versity of Denmark, DK-2800 Kongens Lyngby, Denmark.
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