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Irreversible deposition/adsorption processes
on solid surfaces

P. Schaaf!2, J.-C. Voegel®> and B. Senger?

Abstract

In this article, we summarize the knowledge in the field of irreversible deposition
processes of large molecules or colloidal particles on solid surfaces. An irreversible
adsorption process is defined as a process in which, once adsorbed, a particle can
neither diffuse along, nor desorb from the surface. We first introduce the basic
tools used in these studies, one of the most important being the concept of available
surface function. General results relative to these processes are then presented. We
discuss, in particular, the connection between the reduced variance of the number
density fluctuations of adsorbed particles and the available surface function. We
then review the main models which were introduced in the literature to account
for these phenomena. They can be divided in two classes: (i) the models which are
based entirely on statistical and geometrical grounds. The best known and most
widely studied of them is the Random Sequential Adsorption (RSA) model which
is discussed in details. For the processes in which gravity plays an important role
one uses the Ballistic Deposition (BD) model. We also present models which are
aimed at accounting for the behavior lying between the ballistic deposition and
the RSA. (ii) The second type of models corresponds to those which take explicitly
the diffusion of the particles in the vicinity of the adsorption plane into account.
The results relative to these models, called diffusional models, are discussed in
details. Finally, the last part of the review is devoted to experimental results. We
show, in particular, that the Langmuir model, which is the most widely used model
in the literature to account for the protein adsorption kinetics, does not predict
correctly the experimental observations. We present and discuss in a critical way
experimental evidence which seems to indicate the validity of the RSA and ballistic
models.
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2 Irreversible deposition/adsorption processes on solid surfaces

Résumé

Processus d’adsorption irréversible sur des surfaces solides

Cet article présente une synthese des connaissances dans le domaine des proces-
sus d’adsorption irréversible de grosses molécules ou de particules colloidales sur
des surfaces solides. Par adsorption irréversible nous entendons les phénomenes
d’adsorption au cours desquels, une fois adsorbée, une molécule ne peut plus ni
diffuser en surface ni se désorber de la surface. Nous décrivons d’abord les outils
utilisés dans 1’étude de ces phénomenes, en particulier la notion de fonction de
surface accessible. Nous présentons ensuite quelques résultats généraux relatifs a
ces processus d’adsorption. Nous discutons plus particulierement du lien entre la
variance réduite du nombre de particules adsorbées et la fonction de surface acces-
sible. Nous passons ensuite en revue les principaux modeles qui ont été introduits
dans la littérature pour rendre compte des phénomenes d’adsorption. Ces modeles
peuvent étre classés en deux catégories : (i) les modeles qui reléevent uniquement
de considérations statistiques et géométriques. Le plus connu et le plus étudié
est celui de 1" Adsorption Séquentielle Aléatoire (RSA) qui est discuté en détails.
Pour les processus dans lesquels la gravité joue un role important on utilise le
modéle du dépot balistique. Enfin nous abordons des modeles qui doivent rendre
compte de comportements intermédiaires entre le comportement balistique et le
comportement RSA. (ii) Le second type de modeles correspond & ceux qui tien-
nent compte de la diffusion des particules au voisinage de la surface d’adsorption.
Les résultats relatifs a ces modeles, appelés modéles diffusionels, sont discutés en
détails. Enfin, la derniere partie de cet article de revue est consacrée aux résultats
expérimentaux. Nous montrons, en particulier, que le modele de Langmuir, qui est
le plus utilisé dans la littérature pour rendre compte des cinétiques d’adsorption
de protéines, ne permet pas une bonne correspondance entre expérience et pré-
dictions théoriques. Nous présentons et discutons de fagon critique les indices
expérimentaux qui semblent indiquer la validité des modeles RSA et balistique.
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Introduction

Adsorption and deposition phenomena play a fundamental role in many physical,
chemical and biological processes: solid catalysts function often through adsorp-
tion processes; the first event that takes place when a solid surface is brought
into contact with a biological fluid is the adsorption of proteins on the surface;
coagulation of colloidal particles can be prevented by adsorbing polymers onto the
particles. Due to their great diversity, adsorption phenomena do not all exhibit
the same features and a first rough classification leads to two main types of pro-
cesses: (i) reversible adsorption processes and (ii) irreversible ones. By irreversible
we mean processes in which, once a particle has interacted with the surface it will
no longer be able to diffuse along the surface or be desorbed from it. The first
class of adsorption processes can be analyzed by means of the methods of statisti-
cal mechanics. Indeed, due to the possibility for the adsorbed particles to desorb
from the surface or at least to diffuse along the surface, the system can explore all
the possible configurations and thus be described within the framework of equilib-
rium statistical mechanics. This is typically the case for the adsorption of small
molecules on surfaces and the name of Langmuir is closely related to this problem.

On the other hand, macromolecules in contact with surfaces can establish a
great number of links with the surface, the interaction energy being thus usually
much larger than the thermal energy £T. This leads to the fact that adsorbed
macromolecules usually do not desorb from the surface and if so only very slowly.
The same behavior is often observed for the adsorption or deposition of colloidal
particles on solid surfaces. In addition to the fact that the adsorbed particles do
not desorb from the surface, it is also often observed that they do not diffuse along
the surface. Thus, they undergo “irreversible” deposition/adsorption processes. It
is clear that the classical methods and postulates of statistical mechanics do no
longer apply for such irreversible processes.

It is the aim of this article to review some results that have been obtained in
the description and comprehension of these phenomena. Our presentation will not
be exhaustive, recent reviews perfectly fulfill this objective [1,2]. We will merely
present a view based on the results of our group and which were obtained over
the last ten years. Moreover, as for equilibrium statistical mechanics, many 1D
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4 Irreversible deposition/adsorption processes on solid surfaces

irreversible deposition processes can be solved exactly. The resolution of these
1D problems has allowed to get a better understanding of these processes and
to test the validity of different approximations introduced for the treatments of
deposition processes on surfaces for example. We will however not discuss these
one-dimensional cases and focus our attention on the irreversible deposition on
planar surfaces which has a closer connection to experimental results.

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



2

General concepts used in the study of
irreversible deposition processes

As it has been pointed out in the introduction, equilibrium statistical mechanics
does not apply to systems of particles deposited on surfaces through irreversible
deposition processes. However, some concepts and tools that have been devel-
oped in equilibrium statistical mechanics still remain useful for the description of
irreversible deposition processes and will be briefly introduced.

1. Available surface function

The available surface function @(6), which is a function of the surface coverage
0 (ratio of area covered to total area), was first introduced by Widom [3,4]. He
defined this function in the following way: consider an assembly of spheres which
can interact through a pair interaction potential u(r;;) assumed to be additive, r;;
being the length of the vector joining the centers of the two interacting particles
labeled 7 and j. Now let a “wandering particle” explore all the positions of the de-
position plane. At each position determine the Boltzmann factor exp(—U (r)/kT),
where U(r) is the total interaction potential energy of the wandering particle lo-
cated at the position r with all the deposited particles, k and T representing the
Boltzmann constant and the absolute temperature, respectively. The available
surface function @(6) for this particular surface, which is assumed to be a function
of the coverage only, is then defined as the mean value of the Boltzmann factor
taken over the deposition plane:

(9) = (exp[~U(x)/KT)). (2.1)

Widom applied this definition to equilibrium configurations as well as to the Ran-
dom Sequential Adsorption (RSA) case which constitutes the minimum model for
irreversible processes and will be defined precisely in Chapter 4. For the RSA, as
well as for the equilibrium case of hard spheres, the available surface function ¢()
is given by the ratio of the undashed area to the total area in Figure 1. For the
equilibrium case ¢(0) is directly related to the thermodynamic activity z of the
deposited particles by the relation [3]:

z = pd(0) (2.2)

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



6 Irreversible deposition/adsorption processes on solid surfaces

Figure 1. Available surface function: a typical configuration of hard spheres adhering
irreversibly on a surface. The black disks represent the particles themselves, whereas the
dashed zones indicate the additional areas excluded by the particles for the center of a
new particle. In contrast, any point located in a white region can be occupied by the
center of a new particle. The ratio of the white area to the total area corresponds to the
available surface function.

where p is the number density of the adhering particles. For the RSA case as
we will see, the available surface function is directly related to the adsorption
probability of a particle on a surface.

We will define the available surface function in another and more general way
which is better adapted to adsorption processes and which is equivalent to Widom’s
definition in the equilibrium and RSA cases. If the thickness of the deposition layer
is well defined and if no desorption occurs from the surface, the available surface
function is equal to the ratio of the adsorption flux onto the surface, at a given
coverage 0, to the adsorption flux onto the empty surface (6 = 0). It is assumed
that the concentration of particles in the bulk, up to the interface, is fixed and
equal in both cases. Moreover both fluxes have to be determined in steady-state
conditions. The quantity 1 — &(#) thus represents the probability that a particle,
present in the vicinity of the adsorbing surface, will not adhere on it due to the
presence of particles already deposited. This implies that, if the probability of
adherence of a particle in the vicinity of an empty surface is equal to 1, ®(6)
corresponds to the probability of adhesion of a particle in the presence of already
deposited particles, the surface coverage being 6. If no desorption occurs, each
successful adsorption trial increases irreversibly the covered area by mR? which
corresponds to an increase of the coverage by an amount equal to mR?/A where
A is the area of the adsorbing surface and R the radius of the depositing disks or
spheres. Using the property #(0) = 1, one can write the kinetic equation of the
process as:

TR?

do = - 0(0)dt (2.3a)
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General concepts used in the study of irreversible deposition processes 7

which expresses the increment of the coverage 6 during the time interval dt’. Note
that it is assumed here that exactly one adsorption trial occurs within dt’. The
redefinition of the time by t = (7R?/A)t’ leads to the simple differential equation:

df
= = P(0). (2.3b)

Conversely, the rescaled time necessary to reach the coverage 6 is given by:

0 del
t:/o —QS(Q/) . (2.4)
2. Radial distribution function

The radial distribution function g(r) is defined in the following way. Let us take
any particle deposited on the surface as a center (or reference) particle and let p
be the number density of deposited particles on the surface. Then, 2mpg(r)rdr
represents the probability to find the center of another particle in the circular
shell of radii » and r + dr centered on the reference particle. In fact, it represents
also the mean number of particles having their centers in the circular shell of area
2ntrdr. This mean number can be written as:

2mpg(r)rdr = p1 + 2p2 + 3p3 + ...

where p; represents the probability to find one and only one particle in the circular
shell, ps the probability to find exactly two particles in the circular shell, etc. When
the area of the shell becomes vanishingly small, the ratios p,/p; — 0 for n > 1
and thus the mean number of particles in the circular shell becomes equal to the
probability to find a particle in this shell.

The radial distribution function plays a central role in liquid state theory. If
the particles were deposited in a totally random way (no interactions between the
particles), g(r) would be equal to 1 everywhere. A value of g(r) > 1 means that
at the distance r from the reference particle, the probability to find the center of
another particle is higher when compared to a fully random deposition process.
It is obvious that for hard spheres, g(r) = 0 for any distance r smaller than the
diameter of the spheres. The function g(r) thus constitutes one way to characterize
the structure of an assembly of deposited particles.

3. Density fluctuations of deposited particles

As for systems at equilibrium, the number density of deposited particles, and
in particular the reduced variance of the distribution of the number of particles
deposited on sub-systems of the adsorbing surface, is also a characteristic property
of the system. The reduced variance can be obtained from experiments and from
computer simulations in the following way. Consider a large system which can
be subdivided in an ensemble of smaller sub-systems, the size of the latter being
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8 Irreversible deposition/adsorption processes on solid surfaces

still large compared to the size of the particles. The sub-systems have also to be
independent one from each other. One can determine the number n; of particles in
each sub-system labeled by i. From the distribution of the number of particles in
the sub-systems for a given coverage of the large system, one defines the reduced
variance of the number as:

L S () S 2~ viny?
o _ i=1 =Y =1 (2.5)

1 v v —1 v
— E n; E ng
vV “ ,

i=1 i=1

where the sums are performed over the v sub-systems constituting the whole sys-
tem and where (n) represents the mean value of the n;. When exactly one particle
is deposited on the surface, we have obviously Y- n; =1, (n) = 1/v and > n? =1,
hence, 02/(n) = 1. It follows that 0?/(n) — 1 when 6 — 0, whatever the mech-
anism involved in the deposition. In the special case where no interaction at all
exists between the particles, 0% /(n) = 1 for any number of particles on the surface.
This corresponds to a binomial distribution of the n; among the v sub-systems.

It can be proven in a general way that the reduced variance is related to the
radial distribution function g(r) by [5]:

Ll
(n)
This relation neglects all the effects which are due to the finite size of the sub-

systems. If one takes such finite size effects into account, one can show that the
reduced variance takes the following form [6, 7]:

o? ( o? ) 1 o? o?
2 () (2 o (2) o
(n) \(m)/, (n) /1 (n) /4
where a = A/v represents the area of a sub-system. (02/(n))o corresponds to the
reduced variance of the number of particles for a large sub-system in which border

effects can be neglected, whereas the two other terms originate from the border
effects.

=1+ p/ooo[g(r) — 1)27rdr. (2.6)

4. Jamming limit coverage

For a system at equilibrium in which the particles diffuse along the surface, the
maximum coverage is reached when the particles organize themselves on the sur-
face as a hexagonal crystal. Then, when each particle has six neighbors at contact,
the fractional area covered amounts to 7/ 2v/3 ~ 0.91. This, however, is not possi-
ble for irreversible deposition processes because once deposited, the particles can
no longer move along the surface. This leads to a reduction of the maximum sur-
face coverage which is observed for irreversible deposition processes if compared

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



General concepts used in the study of irreversible deposition processes 9

to a crystallized assembly. For an infinitely large surface, this value, called the
jamming limit coverage, usually denoted by 6., is a well-defined number which
characterizes partially the deposition process. For systems with finite area, the
deposition process leads in general to a different value of the saturation coverage
for each system. Indeed, the jamming limit is a stochastic quantity. Hence, the
term “jamming limit” or “saturation coverage” is to be understood as the mean
value of the highest coverage reached on a series of equal surfaces covered with the
same particles under identical conditions. In other words, in contrast to systems at
equilibrium which form crystals at high coverage, for sub-systems of finite area, the
coverage in the jammed state fluctuates from one sub-system to another around
its mean value 0,,. The relative fluctuations are usually larger, the smaller the
size of the sub-systems. This implies that for such systems, the reduced variance
of the number of particles does not decrease to zero when the coverage reaches the
saturation value.

Ann. Phys. Fr. 23 ¢ N° 6 e 1998
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Kinetic treatment of irreversible deposition
processes by a master equation approach

The evolution of a small system S (a sub-system) which is part of a much larger
one, R, can be described by a master equation [8,9]. In this approach, the evolution
of the probability g(n+ 1, N 4+ 1) to find n+ 1 particles in the sub-system .S, when
N + 1 particles are deposited on R, is expressed as a function of the probabilities
q¢(n,N) and g(n + 1, N) by the relation:

Q(n+l7N+1) ZQ(n7N)p(n+l7N+l|n7N)
+q(n+1,N)p(n+1,N+1n+1,N). (3.1)

Note that the (n + 1) particles deposited on S are part of the (N + 1) particles
deposited on R. In this equation, p(n + 1, N 4+ 1|n, N) and p(n + 1, N + 1|jn +
1, N) represent respectively the conditional probabilities that when n (resp. n +
1) particles are deposited on S and N particles on R, there will be n + 1 particles
adsorbed on S after the (N + 1)th particle has adsorbed on R. For irreversible
deposition processes, these conditional probabilities can be expressed in terms
of the available surface function @(#). More specifically p(n + 1, N + 1jn, N) is
approximated by:

ad(6,)

p(n+1,N+1[n,N) = A5(0)

(3.2)

where a (resp. A) is the area of the system S (resp. R) and 6, (resp. ) is the
coverage of the system S (resp. R). The particles are assumed to be of unit
area, therefore the coverages coincide with the number densities, § = N/A and
0, = n/a. Expression (3.2) constitutes a mean field approximation because it is
assumed that the deposition probability is only a function of the coverage of the
system even for the small system S. This is certainly valid for systems of large
area, but not for smaller systems, which can contain at the jamming limit less
then a few tens of particles, where this probability becomes an explicit function of
the “microscopic” configuration. In fact, the fluctuations of the available surface
function, at a given coverage, from one configuration of deposited particles to
another on the surface, become important once the exclusion surfaces associated
with the deposited particles overlap. Then, @ is no longer uniquely determined
by 6.

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



12 Irreversible deposition/adsorption processes on solid surfaces

Anyhow, in the following, we assume the mean field approximation to be valid,
i.e., we neglect the fact that configurations of adsorbed particles, corresponding to
the same coverage, can have different available surface functions. We expect this
hypothesis to be fairly correct as long as the jamming limit regime is not reached
and the area a of the sub-systems not too small.

Using (3.2) and taking into account that

p(n,N+1|n,N):1—p(n+1,N—|—1|n,N),

the master equation (3.1) can be rewritten as:

a n n+1
e ,N@(—)— 1, N)® . (33
gy |1 (5) ~atn+ 1m0 ()] 63)
The system R being assumed to be infinitely large, the addition of one particle
produces an infinitesimal change of its coverage. The master equation can then
be written in differential form:

0ot (52) non(]

When the sub-system S is also large (but much smaller than R), the probability
distribution ¢(n, ) is expected to be strongly peaked around the average value (n)
(proportional to a), and to have a width of order a'/2. In these circumstances it is
possible to make a large-system expansion of the master equation (3.4) [10]. The
leading terms of that expansion yield a deterministic evolution equation for the
average particle number, (n), and a linear Fokker-Planck equation for the distri-
bution of the fluctuations. Consequently, in this limit the probability distribution
becomes Gaussian and is completely characterized by its first and second moments.

The first moment of ¢(n,0) gives the mean particle number, (n) =
Ym0 na(n,0), and its evolution equation is easily obtained from (3.4):

WS (D)5t o

In the same way, for the second moment one obtains

dizn;) = @@ 02 (2)) (3.6)

Provided that @ is in general a non-linear function of 6, these equations cannot
be solved analytically. However, if the area a is large enough, the fluctuations
of n will be relatively small, and only values of n near (n) will contribute to the
averages. In that case, one can expand ®(n/a) as a Taylor series around (n)/a:

o(3) = (5)+ () o (B) w0 (1) ] e
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Kinetic treatment of irreversible deposition processes 13

where @'(z) denotes the derivative of @(z) with respect to z. Using this expansion
in (3.5) one obtains the equation for the evolution of the mean particle number:

e (Do) oo

The obvious solution, neglecting finite size effects, is (n)/a = 0, and expresses the
fact that the mean coverage of the sub-system S is the same as the coverage of the
large system R. In the same way, inserting the expansion (3.7) into equation (3.6)
yields an equation for (n?). From that equation, one can write the evolution
equation for the variance 02 = (n?) — (n)? (if the number v of sub-systems is not
infinitely large, refer to Eq. (2.5) for the definition of the variance):

1do? @' (0) o 1
ad0_1+2¢(0)a+0<a>. (3.9)
This equation gives the relation between the variance of the adsorbed particle
number and the available surface function. It is applicable, in principle, to all
irreversible adsorption models whose kinetics can be described as a Markov pro-
cess. Its validity is limited by the mean field assumption implied in the master
equation (3.1), which fails near the jamming limit, while leading to good results
for low and intermediate coverages.

For any value of the coverage, the solution of the first order differential equa-
tion (3.9), satisfying the proper initial condition for an empty surface, i.e., 02 = 0
for =0, is:

o oX0) (7 dv
(n) 0 /0 2(0")
where (n)/a = 6 has also been used. Therefore, if $(6) is known, the variance
of the number of deposited particles on sub-systems out of a large surface can be
obtained by a simple quadrature. The comparison between the reduced variance
determined directly from computer simulations and calculated by using the mean
field relation (3.10) is shown in Figure 2a for the Random Sequential Adsorption
and in Figure 2b for the Ballistic Deposition processes (these processes will be
defined in the next section). These two examples illustrate the fact that the mean
field approach is only valid at low to intermediate coverages and in particular that
it is unable to predict the non zero value of 02/(n) at the jamming limit.

If the available surface function is of the form ®(6) = 1+ a10 + a20? + a36® +
O(6*), using (3.9) or (3.10) leads to the following expansion for the reduced vari-
ance:

(3.10)

2

i 4024 (L 300 ) 68 4
<n> =1+a:60+ 3a20 + <6a1a2+ 2&3) 0 +O(0 ) (311)

In the particular case where a1 = as = ... = ax—1; = 0 and ay # 0, equation (3.11)

takes the form:

0.2

2k
— =1+ ko k1), 12
) A 1ak9 o) (3.12)
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14 Irreversible deposition/adsorption processes on solid surfaces

0.8 - -
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0.0 1 1 1 1 1
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Figure 2. (a) Reduced variance of the number of particles adsorbed as a function of the
coverage in the framework of the RSA model: simulations (e e ¢), mean field approxima-
tion (—) calculated by using expressions (4.12, 4.13) for the available surface function
and relation (3.10) between o”/{n) and &, third order expansion (Eq. (4.15)) (- — -).
(b) Reduced variance of the number of particles adsorbed as a function of the coverage
in the framework of the BD model: simulations (e  «), mean field approximation (—).

Another demonstration of relation (3.12) based on the general relation (2.6) and
on the evolution of the radial distribution function g(r) due to the adsorption of
a new particle can be found in the article of Bafaluy et al. [9]. Since this latter
demonstration is rigourous, it appears that expression (3.12) is exact although it
can be found by using the approximation (3.10).

The problem of the reduced variance of the number density has also been
investigated by Adamczyk et al. [11,12] by a method based on a combinatorial
calculation of the number of possibilities that exist to deposit n particles on the
sub-system S and N on the system R. They have also introduced a mean field
approximation similar to that used in the master equation approach. They have
found that:

g : (3.13)

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



Kinetic treatment of irreversible deposition processes 15

This expression leads then to:

T 1+ kagd® + O(0"+Y) (3.14)
(n)
in the particular case where a1 = a3 = ... = ax—1 = 0 and ay, # 0. This expression

has been applied by the group of Adamczyk to the RSA case where k = 1. It
is then equivalent to expression (3.12). For values of k # 1 it does, however,
not agree with expression (3.12) so that the relation (3.13) cannot be correct in
general.
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Statistical geometry deposition models

All the models that have been developed to describe the irreversible deposition
processes share a common property: the particles are deposited sequentially onto
the surface and the initial location of the deposition trial is chosen randomly and
uniformly above the adsorbing surface. One can then distinguish roughly between
two types of models: (i) the models for which the initial position of the particle
above the plane determines totally its final position if one takes the microscopic
configuration of the already deposited particles into account. These models cannot
account for the diffusion effects. They can be called “statistical geometry models’
because they are exhaustively governed by the laws of statistics and geometry.
The RSA and the Ballistic Deposition (BD) models are two examples of them. (ii)
The “diffusional models” in which, even if the initial position of the trial particle
is known, its final position can only be determined statistically. These models are
usually developed to account for the diffusion of the particles in the bulk before
reaching the deposition plane.

1. The simplest irreversible deposition model
with excluded volume effect: the Random
Sequential Adsorption (RSA) model

1.1. General results relative to the RSA of spheres

The simplest of all these models, which takes the irreversible nature of the ad-
sorption process and the surface exclusion effects into account, is the Random
Sequential Adsorption (RSA) model. We will now review some of the results rel-
ative to it. One must distinguish between RSA deposition processes on a lattice
and RSA processes on a continuum surface. We will focus our attention mainly on
this second category, the first one having been reviewed extensively by Evans [1].
The RSA model was first defined for hard spheres as follows: (i) particles are
deposited sequentially; (ii) the first step of an adsorption trial consists in choosing
the adsorption position of the new particle randomly over the deposition plane. If
the incoming particle overlaps with an already deposited one the adsorption trial
is rejected and a new trial is started, independent of the previous one; (iii) if the
incoming particle does not overlap with already deposited ones it is irreversibly
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18 Irreversible deposition/adsorption processes on solid surfaces

fixed on the surface and can neither diffuse along the surface nor desorb from it.
Adamczyk et al. [13,14] have proposed to extend the model to particles interacting
through a repulsive potential u(r). We will denote this model as the “repulsive soft
core RSA”. They modified the rule (ii) accordingly as follows: (ii’) for the incom-
ing particle labeled n + 1, one calculates the total interaction potential between
this particle and the n particles already deposited:

n

Uni1 =Y u(Tni1)- (4.1)

j=1

The probability for this adsorption trial to be successful is then given by the
Boltzmann factor exp(—Uy,+1/kT).

The RSA model was first introduced by Flory [15] to account for chemical
reactions taking place along a polymer chain. The continuous version of the one
dimensional RSA problem is also known under the name “car parking problem”.
As many other one-dimensional problems it can be solved exactly: the kinetic law,
the structure of the system and the jamming limit coverage have been determined
rigorously [16-19]. One of the first major contributions relative to the continuous
RSA model in a space of dimension larger than one is due to Widom [3]. He showed
that an RSA deposition process does not lead to the same configurations as the
ones predicted by the laws of equilibrium statistical mechanics of hard spheres.
He also introduced the concept of available surface function ¢() and showed that
if the available surface function can be developed in a virial expansion:

B(0) =1+ a10 + a260° + a36® + O(6*) (4.2)

the coefficients a; and as are identical for RSA and for equilibrium configurations.
It is only for the coefficients of order higher than 2 that differences between these
two cases appear. We will give a quantitative demonstration for this result in
the paragraph 1.3. One can however propose a rapid argument for the fact that
a1 and ao are identical for the RSA and the equilibrium cases. Let us illustrate
it by the example of hard spheres. For the RSA, as well as for the equilibrium
case, the available surface function is given by the mean value of the Boltzmann
factor exp(—U(r)/kT) where U(r) represents the interaction potential between a
wandering particle on the surface and all the deposited particles (see Sect. 1 of
Chap. 2). In the case of hard spheres, U(r) is equal to either 0 or co. If the surface
is empty, & = 1 in both the RSA and equilibrium cases. When there is only one
particle on the surface, in both cases the exclusion surface is equal to 47R?, R
being the radius of the particles so that in both cases a; is equal to —4 because
§ = mR? /A for an area A covered by only one particle. The minus sign comes from
the fact that a particle excludes some area on the surface. From Figure 3 one sees
that if there are two particles deposited on the surface, the exclusion area is not
always equal to 87 R2, but it can be smaller because the overlapping area, denoted
by Aa(r), has been counted twice in the first order contribution. The coefficient
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n Statistical geometry deposition models 19

Figure 3. Schematic representation of two particles adhering on a plane. The heavy
circles represent the particles themselves. The crosshatched lens-shaped area represents
the overlapping area of the two exclusion disks, noted Ax(r).

az is thus given by:

1

ag = S ERE /000 g(r)Ax(r)2mrdr. (4.3)

In the equilibrium case, all the configurations are equiprobable so that g(r) =
H(r — 2R) at order zero in the particle density, H(r — 2R) being the Heaviside
step function equal to 0 for » < 2R and equal to 1 for » > 2R. In the case of RSA,
if only one particle is deposited on the surface all the positions in which a new
incoming particle would not overlap with the one already present are equivalent.
This implies that, when only two particles are present on the surface, g(r) must
also be equal to H(r — 2R). Thus, according to relation (4.3), the coefficients as
are identical for the RSA and the equilibrium cases: as = 6v/3 /7.

The fact that ®rga becomes different from @ g only from the third order on
in the coverage implies that experimentally it will not be possible to distinguish
between the RSA and the equilibrium available surface functions at low coverages.
Differences become significant for coverages larger than 25%. The coefficient as
has been determined for the RSA process of hard spheres [20,21] and is equal to
(40/7/3 — 176 /37%) ~ 1.4069. The expression of the available surface function
for the RSA of hard spheres in the low to intermediate coverage range takes thus
the form:

Prsa(0) =1—40 + 8v3 92 4 1.40696° + 0(6%). (4.4)
™

Later on, Given found that the coefficient of the fourth order term was ay =
0.720565 [22]. Expression (4.4) is to be compared with the equilibrium virial
expansion of @ [21]:

6v/3

Ppo(0) =1—460 + ——6* +2.42430° + O(6*). (4.5)
™

For particles interacting through a pair potential u(r), the available surface
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20 Irreversible deposition/adsorption processes on solid surfaces

function is given in terms of a diagrammatic expansion by [23]:

2
Prsa(f) =1+ % /Adrf(r) + (%) /AdmAdrzf(T01)f(To2)[f(Tl2) +1]

* (%)3 {%/Adrl/Adm/A drs f(ro1) f(roz) f(r13) f(ras)[f(r12)+1]

+%/AdI'l/Adrg/Adr3f(’r01)f(r02)f(r03)

<[ftris) + UlF ) + 1) + 10} 40 () (16

md?
In this expression f(r) represents a Mayer function defined by
f(r) = exp[—u(r)/kT] — 1.

The particle labeled 0 is fixed and all the integrations extend over the whole surface
whose area is denoted by A. This expression will be derived in the paragraph 1.3.

The result of Widom proving that the RSA configurations are different from
equilibrium ones is particularly well illustrated at the jamming limit. Indeed, one
of the characteristic properties of an irreversible deposition process is to lead to
a maximum coverage 0, (the jamming limit coverage) above which one can no
longer add new particles to the system and which is much smaller than the two
dimensional random close packing coverage. For the two dimensional RSA case
of hard spheres, 0, is equal to 0.547 [24]. This value is found from computer
simulations: no exact theory exists up to now to predict its value for two or higher
dimensional RSA processes. Some approximate methods have been proposed to
get an estimate of 6. For example Dickman et al. [25] used a low coverage
series in time in conjunction with the asymptotic power law to construct Padé
approximants. This leads to a predicted value of the jamming limit coverage of
0.547 88 which is very close to the value found from computer simulations. This
method, however, fails to predict the jamming limit coverage of the RSA of non
spherical hard objects [26] which shows that the method is by far not general.

It has also been shown independently by Pomeau [27] and Swendsen [28] that,
for hard spheres, the kinetic law describing the evolution of the coverage toward
the jamming limit is a power law:

oo — O(t) ~ Kt—1/2 (4.7)

where K is a constant (K = 0.236) determined from computer simulations [24].
Since the available surface function @(#) isrelated to the coverage by relation (2.3b),
it follows that:

Prsa(f) ~ Koo — 0)2 (4.8)

with Ko = 1/2K? ~ 8.98. The proof of relation (4.7) is based on the fact that,
once reaching a certain time t; characterizing the beginning of the asymptotic

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



n Statistical geometry deposition models 21

(

Figure 4. Schematic representation of three particles adhering on a plane, with their
exclusion disks delimiting a curvilinear triangle which may be occupied by the center of
at most one new particle.

regime, the area that remains available for the center of a new sphere consists
only of isolated targets. These targets are disconnected and can be occupied by
the center of only one particle each (see Fig. 4). Most of these targets are defined
by three deposited particles and thus by one linear dimension, denoted by h,
and by two angles. The areas of the targets characterized by the dimension h are
proportional to h? and the kinetic equation describing the evolution of the number
ns(h,t) of targets at time ¢t characterized by h is:

d

(1) = —a b2, (h,1) (4.9)

where « is a constant. The solution of this equation is:
ns(hyt) = ng(h,t = tg)e @ h (t=ts) (4.10)

Thus the coverage follows the kinetic law:
h )
O — 0(t) = a/ (h,t = 0)e~ M (t=t)gp (4.11)
0

where hg is the largest value of h at time ts. Finally, ns(h,t = t;) must be
a smooth function in h and since only small values of h are relevant, one can
assume that ns(h,t = ts) = ng(h = 0,t = t5). After performing the integral in
relation (4.11) one gets the kinetic law (4.7). We have given this demonstration of
the relation (4.7) to emphasize the fact that it is of purely statistical and geometrical
nature. It must be realized that the power law dependence comes from the fact
that the area of the targets becomes infinitely small when ¢ — oco. The behavior
is then totally controlled by the probability that the center of a particle directly
lands in such a target, which is of purely statistical and geometrical nature.
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22 Irreversible deposition/adsorption processes on solid surfaces

Experimentally, various attempts have been made to verify the power law ki-
netics and we will review these studies later. It must, however, already be pointed
out that it is very difficult to verify this law due to the fact that in the asymptotic
regime, near the jamming limit, the adsorption kinetics is very slow so that the
experiments have to be performed over very long periods of time. Moreover, the
asymptotic regime concerns only a very limited proportion of deposited particles
and thus the deposition kinetic law has to be measured with great precision over
a long period of time. This represents usually the worse experimental conditions.

On the other hand, one can follow quite easily kinetic laws over a very large
range of coverage in the low to intermediate regime. The comparison of the ex-
perimental data to the RSA model then requires to know an expression of the
available surface function over a large coverage range. This can be obtained by
using an interpolation procedure between expressions (4.4, 4.8) which are valid at
low and high coverage, respectively. One chooses ®rsa to be of the form:

Prsa(f) = (1 —z)*f(x) (412)

where © = 0/0 and f(zx) is a function which depends on x and on adjustable pa-
rameters. The adjustable parameters are determined by imposing that the Taylor
expansion of expression (4.12) is identical to expression (4.4). Choosing f(z) of
the form:

fl@)=1+cz+ cox?

allows both ¢; and ¢s to be determined. In addition, one can estimate the jamming
limit coverage 6. One finds ¢; = 0.7877, co = 0.3751 and 0, = 0.5531 [29]. Note
how accurate the jamming limit coverage is predicted by this procedure. This
result seems to indicate that we thus possess a method to determine analytically
the jamming limit coverages of RSA processes. Unfortunately, a similar method,
applied to the 3-dimensional RSA case gives 0., = 0.365 compared to 0., = 0.382
determined from computer simulations [30]. In this case the method does not lead
to a very accurate estimate of the jamming limit coverage.
One can also chose f(z) to be of the form:

f(x) = (14 1z + cox® + c3x®) 1. (4.13)

One then imposes the value of 6, to be equal to the value found from computer
simulations (0.547). This leads to the following values of the adjustable parame-
ters: ¢; = —0.8120, co = 0.2336 and c3 = 0.0845 [21].

The evolution of ®rsa as a function of the coverage 6 is represented in
Figure 5. One can see, in particular, the comparison between the function di-
rectly determined from computer simulations and the values calculated from ex-
pressions (4.4, 4.13). In Figure 6 one compares the adsorption kinetics determined
by integration of equation (2.3b) for different expressions of ®rga. From this
figure one can point out that apparently small differences in the available surface
functions can lead to large deviations in the adsorption kinetics. One can also get
a good idea of the accuracy of expressions (4.4, 4.13) to describe the RSA kinetics.
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Figure 5. Available surface function as a function of the coverage for the RSA model:
simulation (e e ), rational function (Eqgs. (4.12, 4.13)) (—), Taylor expansions of the first
order (— — —), second order (- - -) and third order (...) (Eq. (4.4)). The inset shows the
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Figure 6. RSA adsorption kinetics showing the evolution of the coverage as a function of
time obtained by integration of the reciprocal (Eq. (2.4)) of the various approximations
of the available surface function given in Figure 5.
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75 : . : . :

g(r)

05 1 1 1 1 1
r/d

Figure 7. Radial distribution function as a function of the center-to-center distance
derived from RSA computer simulations (d = 2R). From bottom to top, the curves
correspond to coverages of 0.05, 0.10, 0.15, ..., 0.50. Each curve is shifted by half a unit
with respect to the preceding one for the sake of clarity.

The determination of the kinetic law is one way to characterize the deposi-
tion process. It is often taken to analyze the adsorption of proteins or very small
particles which are not visible by optical microscopy usually employed for larger
particles. For such particles one determines also structural properties of the assem-
bly of deposited spheres and in particular the evolution of the radial distribution
function g(r) with the coverage. For the RSA case it is usually obtained by com-
puter simulations and some examples are shown in Figure 7. On this figure one can
see that at low coverage almost no peak is visible. A first peak shows up for cover-
ages of the order of 0.10 and, at coverages higher than 0.40, a second peak can be
distinguished. However, the RSA deposition process never leads to correlation dis-
tances between the deposited particles exceeding two or three particle diameters.
It has been shown theoretically and by computer simulations that at the jamming
limit, the radial distribution function diverges at contact as In(r/2R—1) [24]. This
property is, however, very difficult to verify experimentally for various reasons such
as the particle polydispersity or the precision in the measurements of the particle
positions. Moreover, as we will discuss, such a behavior does certainly not exist in
real physical situations due to hydrodynamic interactions between depositing and
adsorbed particles.

Almost all these results have been determined from computer simulations.
However, starting from a diagrammatic expansion of the kinetic equations on the
n-particle distribution functions, Tarjus et al. [23] proposed an approximate inte-
gral equation equivalent to the equilibrium Percus-Yevick equation. This equation

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



n Statistical geometry deposition models 25

can be written in the form:

10

200p [P*h(r12)] = C(r12) +p/dr3C(r13)h(r32) (4.14)

with h(r) =1 — g(r) and C(r) corresponds to the mixed correlation function [31];
r;; represents the distance between particle ¢+ and particle j. This equation has
also been derived for the RSA case by Given and Stell [32]. Introducing an ad-
ditional closure condition relating C'(r) to the n-particle distribution functions,
this equation could be solved numerically for the RSA of hard spheres in the 1, 2
and 3-dimensional cases [31] and provides a numerical approximation of g(r). The
g(r) thus determined appears to be accurate in a large range of coverage. At the
highest physically meaningful coverages, the approximate pair correlation function
displays, however, a small dephasing compared to the exact result and does not
show the logarithmic divergence at contact which is a characteristic feature of the
RSA radial distribution function at the jamming limit.

As it was mentioned, the reduced variance of the number of particles deposited
in sub-systems also constitutes a parameter which characterizes the deposition
process and which can be determined experimentally. Inserting the third order
expansion of @ given by equation (4.4) into the general relation between 0% and &
(expression (3.10)) leads to:

0> + 0(6%). (4.15)

—~

2 1
0_21—49+8\/§02+< 6\/?_)—8—2)
’/T e

In the low coverage regime, this expression reduces to 02/(n) ~ 1 — 46. It can be
noticed that this means that the reduced variance decreases linearly with 6 in this
low coverage range, exactly as does @ itself. This is a signature of a process where
one particle deposited on the surface is sufficient to hinder a new one to adsorb.
By using the expression (4.13) for the available surface function and again the re-
lation (3.10) one can get an approximation of the evolution of the reduced variance
of the number density over a large coverage range as shown in Figure 2a. From
this figure one can also see that near the jamming limit, the approximation based
on relation (3.10) fails because it predicts that o2 /(n) vanishes at f.,, whereas for
the real irreversible process it remains strictly positive. Indeed, the relation (3.10)
implies that 02 /(n) vanishes at the jamming limit as 2. However, for irreversible
deposition processes the jamming limit varies from one surface to another and
thus, even at the jamming limit, the density fluctuation can never become zero.
Thus, all the mean field approximations used to derive the evolution of o2 /(n) with
0 fail in the asymptotic regime. Similar conclusions can be drawn from the com-
parison between the value of 02 /(n) determined from the general expression (2.6),
the radial distribution function corresponding to the Percus-Yevick like g(r) and
the reduced variance directly determined from computer simulations [31].
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1.2. Extension to non spherical hard objects

We have, up to now, described the RSA model of hard spheres. However, a large
variety of molecules, especially proteins, are non spherical and can often, in first
approximation, be considered as spherocylinders (e.g., fibrinogen) or ellipsoids
(e.g., albumin). This constitutes one of the major reasons why the RSA model
has been extended to non spherical but still hard objects. These objects can be
characterized by a length and an aspect ratio o which is defined as the ratio of
the longest to the shortest dimension of the particles in the case of ellipses and
spherocylinders. Thus, an aspect ratio of 1 corresponds to spheres, whereas a large
aspect ratio indicates that the particles are needle-like.

The methods developed for hard spheres to determine the available surface
function have been extended to non-spherical hard objects. Ricci et al. [26] cal-
culated the coefficients of the low coverage expansion (4.2) up to the third order.
They found that, whereas the expression of @ truncated at the third order term
in the coverage provides a better approximation over a wider coverage range than
the expression truncated at the second order term for values of a < 5, the contrary
is observed for a > 5.

The asymptotic kinetic law of non spherical objects, first mentioned by Swend-
sen [28], has also been investigated. This author stated that, as for hard spheres,
adsorption kinetics of hard ellipses, or more generally of elongated objects, should
follow the power law (4.7). It has been shown later on, however, that an additional
degree of freedom has to be taken into account during the adsorption of elongated
particles: instead of two degrees of freedom corresponding to the two coordinates
of the center of the particles, one has for elongated objects a third degree of free-
dom corresponding to the angular position of the object. The asymptotic power
law thus becomes [33]:

0(c0) — O(t) oc t~ /4 (4.16)

where d is the number of degrees of freedom which is equal to 3 in the case of
elongated particles. Viot et al. [34] refined this analysis and found that, in fact,
there exist two classes of targets in the asymptotic regime: non selective and
selective targets. A target is said to be non selective if an object placed in this
target can be freely rotated by any angle ranging from 0 to 27 with only slightly
displacing the center of the particle. A selective target, on the other hand, is such
that it is only in a limited range of orientations that the target can accommodate
a particle. The first class of targets corresponds to the case d = 2 whereas for the
selective targets d = 3. The non selective targets thus disappear much more rapidly
than the selective ones, according to the asymptotic power law (4.7), whereas the
selective targets disappear following the power law t~1/3.

The asymptotic regime can thus also be roughly subdivided in two regimes.
Viot et al. [34] have shown that the characteristic crossover time where the system
changes from one behavior to the other goes as (a— 1)~1/2. The t~'/3 time domain
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Figure 8. Jamming limit coverage as a function of the elongation parameter o corre-
sponding to an RSA process of spherocylinders and ellipses (taken from Refs. [26, 34]).
See also Table 1.

thus shrinks as @ — 1. Finally, it has also been shown by these authors that the
t~1/2 term has an additional time dependence:

exp [—(ox —1)%t] '
Vi

This additional exponential term is responsible for the fact that for a > 1.5, the
t—1/2 behavior could not be observed in computer simulations.

The evolution of the jamming limit coverage with the aspect ratio « has also
been investigated. It was found that 6, (co) passes through a maximum and de-
creases strongly when « becomes large. For spherocylinders and ellipses, this
maximum is found at a« = 1.75 as can be seen in Figure 8. For rectangles, also
studied by Viot et al. [34], the jamming limit coverage goes through a maximum for
a equal to approximately 1.618. It may be interesting to mention that this value
corresponds to the golden section but we have no explanation for this observation.

Finally, as for hard spheres, one can obtain an approximate expression for the
available surface function by using an interpolation procedure between the low
coverage and the asymptotic expressions of #(f). Due to the fact that in the final
asymptotic regime the kinetic law is given by expression (4.16) with d = 3, one
finds:

0(c0) — 0(t) x (4.17)

(8) = q[6a(00) — (1)) (4.18)

where ¢ is independent of the coverage and varies slowly with the aspect ratio a.
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Table 1. Jamming limit coverage 0 (c0) for spherocylinders and ellipses as a function
of the elongation parameter « [26,34]. Note that when o = 1, both spherocylinders and
ellipses reduce to spheres or disks for which 6(c0) = 0.547.

spherocylinders
a  simulation  equation (4.19) equation (4.19)
with exponent +1  with exponent —1
1 0.547 0.553 0.503
1.25 0.569 0.644 0.624
1.5 0.580 0.633 0.613
1.75 0.583 0.620 0.605
2 0.581 0.607 0.596
2.5 0.577 0.579 0.569
3 0.569 0.552 0.547
4 0.554 0.504 0.501
6 0.524 0.426 0.440
10 0.482 0.326 0.348
15 0.445 0.252 0.274
ellipses
a  simulation  equation (4.19) equation (4.19)
with exponent +1  with exponent —1
1 0.547 0.553 0.503
1.25 0.568
1.5 0.580
2 0.583 0.606 0.589
3 0.569
4 0.552 0.492 0.499
5 0.536 0.446 0.462

As for the hard sphere case, two fitting functions were proposed:
&= (1—2)*(1+ ce12 + ca2a®)t? (4.19)

where © = 60,,/0,(00). The parameters 0,(c0), c11, cio, are determined by match-
ing the Taylor series of these fitting functions with the known low coverage expan-
sion to third order. It was shown that both expressions provide a good estimate
of the available surface function @ over the whole coverage range. Nevertheless,
the expression (4.19) with the exponent —1 constitutes a better approximation.
We have seen that for the hard sphere case, this procedure allowed to get a good
estimate of the jamming limit coverage. As can be seen in Table 1, this is no
longer the case for elongated objects.
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1.3. Diagrammatic treatment of the RSA adsorption kinetics

We will now give the diagrammatic treatment of the RSA adsorption kinetic of
hard spheres. We will focus our attention only on the terms up to third order in
the number density p of adsorbed particles, but the method is general and can
be extended to higher order terms. We will make use in this paragraph of the
n-particle distribution function [35] denoted by p(™ (ry,ra,...1r,). The quantity
p(”)(rl,rQ, ...Tp)dridrs ... dr, represents the probability to find the center of a
particle in the surface element dr; around the position ry, the center of a second
particle in the surface element dr, around the position ro, ..., the center of a nth
particle in the surface element dr, around the position r,. In order to simplify
the notations, the following shorthand notation will be used:

p(”)(rl, ra, ..., Iy )dridrs...dr, = p(”)(l, 2...,n)d1d2...dn.

Let us take a portion S of the adsorption surface. We will first derive a fundamental
relation due to Reiss et al. [36] which relates the probability to find the surface
S empty of particles to the mean number of particles, of pairs of particles, ...
adsorbed on S. This relation will serve in the derivation of the master equation
characterizing the kinetic process.

Let pg be the probability to find the surface S empty of particles, p; the
probability to find ezactly one particle in S, ... p, the probability to find exactly
n particles adsorbed on the surface S. One then has the trivial relation:

o
Po + an =1
n=1

This relation can be rewritten as:
o0
po— > {ll+(-D"=1}p, =1.
n=1

By applying the binomial formula one gets:

po=1+Y (=1)™ ) Cip,.
m=1 n=m
This reads:

po=1—(p1+2p2+3ps+...)+ (p2+3ps+6ps+...)—(...). (4.20)

The second term of the right hand side of relation (4.20) represents the mean
number of particles in the area S, the third term corresponds to the mean number
of pairs of particles in S... Relation (4.20) constitutes the fundamental relation
that we were looking for.

Let us now turn to the kinetic equation of the adsorption process on a surface
whose area we chose equal to unity without loss of generality. We will follow a
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procedure which is discussed in more general terms in reference [23]. We will, in the
first stage of this analysis, take into account the possibility of particle desorption
from the surface. According to the generalization of the relation (2.3b) to the
adsorption/desorption case, and using an appropriate time rescaling, the number
density p of adsorbed particles follows the equation:

dp

pri D —kp (4.21)
where k corresponds to the desorption constant. As shown in Chapter 2, the
available surface function @ represents the probability that, when a particle arrives
randomly over the surface, it will find space to adsorb. Hence, to determine ¢ one
has to answer the question: by choosing a position r randomly over the adsorption
surface, what is the probability that there is no center of a particle in a disk C' of
radius 2R, centered on r, R being the radius of the hard spheres? The available
surface function @ is then equal to pg, where pg represents the probability that the
disk C' is empty of particles.

To calculate the probability pg let us place a virtual particle at the center
of the disk C. We will choose the origin of the surface at this position. Each
adsorbed particle whose center lies in the disk of radius 2R overlaps with this
virtual particle. Let us introduce the Mayer function defined by f(r) = —1 when
|r|] < 2R and f(r) = 0 otherwise. The Mayer function associated with a particle is
thus equal to —1 when the center of the particle lies in the disk of radius 2R, and
is equal to 0 otherwise. The fundamental relation (4.20) can then be written as:

Po =1+/p(1)(2)f(1,2)d2+%//p<2>(2,3)f(1,2)f(1,3)d2d3
+%///p(3)(2,3,4)f(1,2)f(1,3)f(1,4)d2d3d4+... (4.22)

where f(1,2) stands for f(ri2). The integrals extend over the whole adsorption
surface of area unity and r; corresponds to the position of the center of the disk
C'. The second term of the right hand side of relation (4.22) represents the mean
number of particles in the disk C'. The minus sign appearing in relation (4.20)
is taken into account by the fact that the Mayer function is negative. The third
term of the right hand side of relation (4.22) corresponds to the mean number of
pairs in the disk C'... It is clear from the expression (4.22) that one needs to know
the distribution functions p™ (1), p®(1,2)... to determine the available surface
function.

The equation (4.21) is in fact the kinetic equation for p(!)(1) because p)(1) =
p, the surface being assumed homogeneous, and pg in expression (4.22) corresponds
to the available surface function @. Let us now write the kinetic equation for the
two particle distribution function. One has:

Lp2(1,2) = O P() + oV Q)P211) — 2k (1,2) (4.23)
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where P.(1]2) represents the conditional probability that knowing that there is a
particle at position ry, a particle can adsorb at the position ro. Let us denote by
e(1,2) the function defined by:

6(17 2) = EXP[—u(rlz)/kT] =1+ f(]-v 2)

By using the fundamental relation (4.20) to express the conditional probabilities
P.(1]2) and P.(2]1), relation (4.23) can be rewritten as:

(2)
i @(1,2) = pM(1) [e(l,?)—i—/%]‘(?,?y)e(lj)di’)

(3
//p <11) 3,4) F(2,3)f(2,4)e(1,2)d3d4 + . ..
2)

(
+pM(2) {6(1,2)+/%?’2§’)f(1,3)e(1,2)d3

T // & 2 3 5 1,3)£(1, )e(1, 2)d3d4 1. | — 2k, (1,2).
i (4.24)

Due to the fact that the different integrations are not performed over the variables
r; and ro, relation (4.24) can be rewritten as:

%p@)(l, 2) =e(1,2) |:p(1)(1) + /p@)(l, 3)£(2,3)d3
+a // PP (1,3,4)£(2,3)f (2, 4)d3dd + ...

+p(1)(2)+/p(2)(2,3)f(1,3)d3+..l —2kp®(1,2).  (4.25)

The term e(1,2) assures that the particles located at the position r1 and ry do not
overlap. One can write similarly the kinetic equation for the 3-particle distribution
function. One finds:

%p“’)(l, 2,3) = e(1,2)e(1,3)e(2, 3>{p<2>(1, 2) +p(1,3) + p(2,3)
+ [0z 5@ [ /00205600
+/p(3)(2,3,4)f(1,4)d4+%/ p™M(1,3,4,5)f(2,4)f(2,5)d4d5

T } — 3kp®)(1,2,3). (4.26)

Similar kinetic equations exist for all the n-particle distribution functions. One
thus ends-up with a hierarchy of kinetic equations which constitute the kinetic
counterpart of the Kirkwood-Salzburg equations describing equilibrium configura-
tions [23]. These Kirkwood-Salzburg equations are found from our hierarchy by
assuming equilibrium, i.e., dp(™ /dt(1,...,n) = 0 as we will see later on.
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Let us now first concentrate on the RSA case which corresponds to k = 0 (no
desorption). Our goal is to derive the density expansion of the available surface
function @. Let us introduce the function y,(1,...,n) defined by:

P, )= | ] el,d) | un(L,. . n)p™ (4.27)
1<j<n

The advantage of the y, functions is that they tend to 1 when p — 0 whatever
the positions ry,...,r, on the adsorption surface. The expression (4.22) can then
be rewritten as:

45:1+p/f(1,2)d2+g—T/e(2,3)y2(2,3)f(1,2)f(1,3)d2d3+... (4.28)

In order to get the density expansion we have to determine the evolution of the
n-particle distribution functions with the density and not with time. Using equa-
tion (4.25) one gets, for example for the two particle distribution function:

qﬁd% {P*u2(1,2)} = 2p + p / ys(1,3)e(1,3)£(2,3)d3
+p2/y2(2,3)e(2,3)f(1,3)d3

+ g—?//y3(1,3,4)e(1,3)6(1,4)6(3,4)f(2,3)f(2,4)d3d4+...
(4.29)

Similar expressions can be found for the other n-particle distribution functions.
Let us now define the functions ﬁ,in)(l, ...,n) by:

o= gk (4.30a)
k=0
and
(1, o) = BV (1, n)pt. (4.30b)
k=0

By substituting these expressions into the equations (4.28, 4.29), and by using the
fact that ﬁ(()n)(l, ...,n) =1, one can determine all the § functions.

Let us determine the available surface function up to the third order in the
coverage. By introducing the relation (4.30b) for y2(1,2) up to the first order in
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the density in expression (4.28) one gets:

P = 1+p/f(1,2)d2+ '0—2//e(2,3)f(1,2)f(1,3)d2d3
/// (2,3)e(2,4)e(3,4) £(1,2) £(1,3) f(1,4)d2d3d4
+& [[ e e9 0,050,908+ . (1.31)

It remains to determine the function ,6%2) (2,3). This can be achieved by comparing
the terms of second order in the density p in relation (4.29). One then obtains:

{1+p/f(1,2)d2+...}{2p+3p2ﬂ§2>(1,2)+...} -
2p+2p2/e(1,3)f(2,3)d3+... (4.32)
which leads to:
P(1,2) = /f13 £(2,3)d (4.33)

This gives finally the following expression for the available surface function &:
e=1+ p/f(1,2)d2 + ';—T//6(2,3)f(1,2)f(1,3)d2d3
0 [[] etz e6,050,270,9)70, )02
* %3 ///6(2’3>f(2»4)f(3,4)f(1,2)f(1,3)d2d3d4+ (4.34)

This expression is identical to (4.6) and all the coefficients appearing in it can be
calculated and lead to the expression (4.4). It must be pointed out that expres-
sion (4.4) has first been obtained by a simpler, but in spirit equivalent, procedure
as the one outlined here. On the other hand, this method is more general and
gives, in principle, the full diagrammatic expansion of the available surface func-
tion relative to the RSA adsorption process. From this expression one could also
derive the integral equation which has served in the derivation of the Percus-Yevick
like distribution function.

One can now also perform a calculation of the available surface function for
the equilibrium case when desorption is allowed. By setting the equations (4.21,
4.25, 4.26) to zero, one gets:

pe(1,2) {2p—|— 2/p<2>(1, 3)f(2,3)d3+ ... } =28p?(1,2) (4.35a)
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and
pe(1,2)e(1, 3)e(2, 3){,0(2)(1, 2) + p(1,3)

+ 0P (2,3) + /p<3>(1,3,4)f(2,4)d4+ . } =38p(1,2,3). (4.35h)
Similar equations can be found for higher order distribution functions. This hier-
archy of equations constitutes the Kirkwood-Salzburg equations which character-
izes the equilibrium state [35]. One can then follow a procedure similar to that

developed for the RSA case to calculate the expansion of @ in the coverage. Re-
lation (4.31) remains valid for this case. Let us determine, here too, the function

§2)(2, 3). By using relations (4.35a, 4.35b) one gets:

20° + 2p3/e(1,3)f(2,3)d3 =
2 {1 +p/f(1,2)d2+...} {p2 +282(1,2) +} (4.36)
This leads to
2(1,2) = / f(1,3)£(2,3)d3 (4.37)

so that one finally gets the expression of the equilibrium available surface function:
2
=1+ p/f(l,2)d2 + % // e(2,3)f(1,2)£(1,3)d2d3
3
+ % ///e(2,3)e(2,4)e(3,4)f(1,2)f(1,3)f(1,4)d2d3d4
3
+ % ///e(2,3)f(2,4)f(3,4)f(1,2)f(1,3)d2d3d4+ (4.38)
Comparing the expressions (4.34, 4.38) one finds, as it was stated previously, and
proven by Widom [3], that $rs4 is equal to Prg up to the second order in the den-
sity (or coverage). It is only from the third order term on that differences appear.

As for the RSA case, all the terms appearing in relation (4.38) can be calculated
to give the expression (4.5) for the equilibrium available surface function.

2. Generalized RSA models

2.1. Random site model

The usual random sequential adsorption model can further be extended to account
for non homogeneous adsorbing surfaces. In other words, in contrast with one of
the basic rules of the RSA model, a given point on the surface is not equivalent to
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any other point [37]. Point sites, separated by at least a distance d’ > 0, are first
distributed randomly over the surface. Then, one of these points is selected at
random and receives the orthogonal projection of the center of a spherical particle
if this latter does not overlap with a preadsorbed particle. If overlap occurs the trial
is rejected and a new site is chosen. The adsorption is considered as irreversible
as in the usual RSA model. This model is aimed at the description of affinity
chromatography, where ligands immobilized on the adsorbent bind selectively with
a desired solute.

Clearly, the number of available sites decreases when the number of adsorbed
particles increases and becomes eventually zero. Then, as for the usual RSA, the
jammed state is reached. It must be realized that, in general, only part of the
sites are the locations of particle centers, but all the others are inhibited due to
the volume excluded by other adhering particles. In the limit of an infinite surface
density of sites (which can only be achieved if d’ = 0), this model (called RSA-RS)
is identical with the classical RSA (or continuous surface RSA). Note also that
if the minimum site spacing d’ is larger than the particle diameter d, the process
follows simply the Langmuir model.

In the case where d > d’, one of the striking results found by Jin et al. [37] is
that the kinetics of the coverage process in RSA-RS is connected to the kinetics of
RSA by a so-called mapping. More specifically, the coverage 6(7) reached in RSA
after a time 7, is obtained in RSA-RS after a time ¢, these times being related by:

T =a(l—e /). (4.39)
In this relation, the parameter « is the dimensionless site density defined by:

d2
a= WT ps (4.40)

where p, is the number of sites per unit surface area.

2.2. RSA of soft spheres. The equivalent hard sphere concept

The hard core interaction constitutes a first approximation to capture the essential
features of the deposition process. However, particles, and even molecules, do never
behave exactly as hard spheres but interact for example through electrostatic or
van der Waals forces. It is to take the influence of these forces during the deposition
process into account that Adamczyk et al. [13,14] have extended the definition of
the RSA process to “soft particles” (repulsive soft core RSA). As mentioned in
paragraph 1.1, in the repulsive soft core RSA model, the deposition probability of
a particle at a position r characterized by a potential energy ¢(r) is proportional
to the Boltzmann factor exp[—¢(r)/kT]. Studies relative to this extended RSA
model have been extensively reviewed in reference [2] and we will only mention its
essential features.

In the studies of the RSA of soft particles, the interaction potential between
particles has always been an exponentially decaying Yukawa potential originating
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from the double layer interactions:

P(r) = 2;& exp(—rR(z —2)) (4.41)
with © = r/R where R corresponds to the radius of the particles and r to the
center-to-center distance of two spheres. In addition, it has been assumed that the
potentials are additive. The parameter x corresponds to the inverse of the Debye
length of the fluid and ¢( represents the interaction potential energy between two
particles at contact. The comparison between experimental results and the pre-
dictions of this model is, however, not easy because there exist neither analytical
results for the first coefficients of the coverage expansion of the available surface
function nor an estimate of the jamming limit coverage as a function of the param-
eters entering in the potential (i.e., ¢¢9 and kKR). To circumvent these difficulties,
Adamczyk et al. [2,13,14,38] introduced the concept of equivalent hard sphere ra-
dius r*. To this end they introduced the dimensionless effective interaction range
defined by:

r* = R(1+ H"). (4.42)

They have given an estimate of H* by assuming that r»* corresponds to the in-
terparticle distance at which the potential (4.41) reaches a critical value ¢, that
they have taken equal to 10k7T". The estimate of H* is given by:

.1

1 1

where £ = ¢g/¢cp [2]. The repulsive soft core RSA model is then approximated by
a hard sphere RSA model of particles interacting through a hard core potential,
the radius being 7*. The coverage of the surface is, however, estimated with the
geometric radius R. In particular, the first and second coefficients of the coverage
expansion of the available surface function are given by:

ar = ay ge—o(1 + H*)? (4.44)
ag = ag’H*:()(]. + H*)4 (445)
where aq pr+—¢ and as p-—o correspond to the coefficients at /* = 0. The jamming

limit coverage 0,,; is also estimated by a simple scaling:

foo

Omae = m : (4.46)

Furthermore, this model predicts that for long adsorption times the kinetic law is
of the form:

at=1/2
0(cc) — O(t) = (lfriH)Q (4.47)

where « is a constant independent of H*.
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This approach seems, at first sight, very crude and there is no theoretical basis
for its validity. Nevertheless, it can constitute a first empirical approach whose va-
lidity can only be tested by comparing its predictions to those determined directly
from computer simulations using the repulsive hard core RSA. Using the repulsive
soft core RSA, Adamczyk et al. have indeed shown that 6(¢) varies linearly with
t~1/2 over a significant range of time. However, for very long adsorption times,
the adsorption kinetics deviates systematically from this power law. Moreover,
they have compared the jamming limit coverage relative to the repulsive soft core
RSA to the predictions given by expression (4.46) relative to the equivalent hard
sphere concept. A problem emerges at this point: in the repulsive soft core RSA
model, like in any other model devised to describe the irreversible adsorption, the
available space for adsorbing new particles consists in small targets, when the ad-
sorbing surface approaches the jammed state. Even the lowest (repulsive) potential
in these targets can be very high. As a consequence, the adsorption probability
in these targets becomes extremely small. From the experimental point of view,
an infinite (hence unrealistic) experimental time would be required to have these
targets filled. This problem is related to the fact that there exists an additional
parameter, i.e., the maximum adsorption time, which should be introduced for
this model to become complete. This problem will also be found in the diffusional
models discussed in the next paragraph. Adamczyk et al. [13] have chosen to
define the jamming limit coverage by extrapolating the t~/2 law of the coverage
with time up to ¢ = co. This coverage was compared over a large domain of values
of kR to expression (4.46). A fairly good agreement was observed for values of
kR > 10, whereas for smaller values (kR < 10) the value predicted by (4.46) was
systematically smaller than the value found by means of computer simulations,
the difference being of the order of 10% for kR = 4. On the other hand, as far as
the radial distribution function is concerned, one can expect that the two models
(repulsive soft core RSA and equivalent hard sphere RSA) will give different re-
sults, the g(r) being sensitive to the short range interactions. Such a comparison
has, however, not been published to our knowledge. The equivalent hard sphere
concept thus seems to appear as a useful, but empirical, first approach to analyze
experimental results relative to irreversible deposition processes of small particles.

Recently, Oberholzer et al. [39] extended this generalized RSA algorithm to
take not only the interactions between the depositing particle and the particles
already adsorbed on the surface into account but also the interactions between the
depositing particles and the adsorption plane into account. To do so they define an
adsorption trial as follows: they select a random position over the deposition plane.
They then assume that the particles follow a straight line toward the surface. At
each position of the particle they calculate the interaction energy between the
depositing particle and the adsorbed particles as well as the deposition surface.
They assume pairwise additivity of the interaction potentials to determine the
maximum U4, of this potential. Two procedures are then proposed. In a first
one, if Upnqr < Up the particle is irreversibly adsorbed at the surface at the position
of contact between the depositing particle and the surface. Otherwise the particle
is rejected and a new trial is started. The value of U, constitutes a parameter
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which can be varied when comparing the simulation results to experimental data.
In a second procedure, the adsorption trial is rejected as previously if U,,q. > Up
whereas if Upar < Up it is accepted with a probability exp(—AU/kT) where
AU = Upaz — Up. They have determined for both algorithms radial distribution
functions and have shown that in first approximation both lead to a power law
dependence for the asymptotic kinetic regime which goes as t—1/2.

One can thus conclude that, even if these approaches are neither rigorous nor
based on firm theoretical grounds, they constitute a first practical approximation
to predict the behavior of irreversible deposition processes of soft particles. The
validity of these extended RSA models has, however, also to be proven. We will
discuss this point in Chapter 5 dealing with the influence of the diffusion of the
particles in solution on the deposition process.

2.3. Particle spreading — conformational change

All the models discussed so far assumed explicitly that the particles deposited on a
surface were rigid bodies. However, in some cases (e.g., proteins) it may be desir-
able to account, not only for the deposition itself, but also for the configurational
change that the particles may undergo due to their strong interaction with the
adsorbent. In particular, spreading at the surface renders desorption less probable
and constitutes an argument in favor of models of irreversible adsorption.

The classical RSA, taking into account both the irreversibility and the ge-
ometrical exclusion effects, can be extended to account also for conformational
changes of the particles once in contact with the collector [40]. Three variants of
this model (symmetric spreading, asymmetric spreading, tilting) were elaborated
and discussed in the one-dimensional case where, as often, the problem is exactly
solvable. Nevertheless, in order to stay within the scope of the present paper, we
restrict the discussion to the two-dimensional case [41]. This is all the more jus-
tified since many similarities exist between one and two dimensions, as suggested
by van Tassel et al. themselves.

On the basis of experimental evidence, van Tassel et al. proposed a model
capable of interpreting the effects of symmetric spreading on the adsorption kinet-
ics, saturation coverage and particle distributions. This model rests on the rules
defining the standard RSA model, with the additional feature which consists in
allowing an adsorbed particle to grow to a larger size on the surface if enough
space is available. In the following, particles with their original diameter, d,,, are
called a-particles. Those that can grow up to a preset diameter dg become (-
particles. If this size transition is not possible (i.e., if the full spreading up to the
diameter dg is not possible), they stay a-particles with the corresponding diame-
ter d,. This means explicitly that each particle can a priori exist only in one of
two mutually exclusive states (a or 3). It is important to realize that adsorbed
particles (whether « or 3) serve to block both the adsorption of new particles («)
and the spreading of neighboring particles (o — £3).

The spreading occurs at a rate characterized by the rate constant ks;. For
instance, the increase of the number density pg of 3-particles as a function of time
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t is given by:

% = kspaPa (4.48)
where p,, is the number density of unspread particles at time ¢ and ¥, denotes the
probability for a given a-particle to have space available to spread. In the most
general case where the spreading is not instantaneous, an exponentially distributed
“life time” t is assigned to each newly adsorbed particle; this time is evidently
related to the spreading rate k;. This means that the particle tries to spread at
the time t; after its arrival on the surface. But during this waiting time, other
particles may have reached the collector and may hinder the transition from the
a- to the (-state. Therefore, in the model where spreading is not instantaneous,
less particles can spread than in the case where the spreading is attempted as soon
as the particle touches the surface.

Remarkably the asymptotic behavior of the density of a-particles is identical to
that of the standard RSA of monodisperse disks, i.e., the saturation is approached
as t~1/2. In contrast, the 3-particle density tends much faster to its limit, namely
it approaches its limit essentially in an exponential way. In the model based on an
instantaneous spreading, the total coverage, as well as the relative contributions
of the a- and (-particles to this total coverage, depend on the single parameter
Y = dg/da, as in the case of the filling of a surface with a binary mixture of
disks or spheres [42-44]. In the more general case of a finite spreading rate, the
kinetics, as well as the total and partial coverages, depend on X as well, but also
on the spreading rate or, more precisely, on the ratio of the spreading rate to the
adsorption rate per unit area.

Finally, it may be mentioned that one step further has been made very recently
by van Tassel et al. [45] who combined spreading and desorption. An adsorbed par-
ticle either desorbs or attempts to spread at prescribed rates. Successful spreading
events lead to irreversibly bound particles. Obviously, a supplementary parameter
(i.e., three parameters instead of two) is needed to completely specify the kinetic
profiles.

2.4. Random adsorption/desorption process

An interesting extension of the classical RSA model can be obtained by allowing
the particles to desorb. As a consequence the process thus described becomes a
reversible one. The kinetic equation (2.3b) must then be rewritten as a generalized
Langmuir equation including a desorption term:

do

— =@P(0) — pqb 4.49
= 3(0) ~ pa (4.49)
where pg is proportional to the probability per time unit for any particle to desorb
from the surface, while @() retains its usual meaning but is not identical to
Prsa [46]. Such a process leads eventually to equilibrium unless p, is strictly
zero [47]. The coverage Ogg characterizing this equilibrium state is a priori not
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Figure 9. RSA adsorption/desorption kinetics showing the evolution of the coverage as
a function of time for different values of the desorption probability ps (indicated on each
curve). The case pq = 0 corresponds to the RSA case.

equal to the jamming coverage predicted by the RSA model (0.547), but depends
on pg. Note also that df/d¢ = 0 implies ?(0gg) > 0 when pg > 0, whereas
in RSA & = 0 when df/dt = 0, i.e., at saturation. This is a particular case
illustrating the general rule which states that, in a reversible disordered system at
equilibrium, the available surface function is larger than its RSA counterpart at
the same coverage [48].

In practice, after each adsorption trial, whether successful or not, any particle
present on the surface has a probability pg to desorb. It is, however, faster from the
computational point of view to consider only one “candidate” desorbing with the
probability p;. Strictly speaking, this is not equivalent for the simple reason that
in this latter case exactly 0 or 1 particle is removed from the collector, whereas
in the former case several particles may desorb at a time. Nevertheless, if pg is
small, and if we define p; by

p1=1—(1—paqg) (4.50)

where ng,qs is the number of particles corresponding to the current coverage 6,
both methods tend to be equivalent because multiple desorptions become highly
improbable.

Simulation results using the multiple desorption algorithm are displayed in
Figure 9 which illustrates the prime importance of the choice of py. For “high”
values of pg (1072 and 10~* in this example), the kinetics level off at an equilib-
rium coverage smaller than that predicted by the RSA (pg = 0). For very small,
though non zero, desorption probabilities (10~6 and 10~%), the kinetics follows
that of the RSA model over a relatively long period of time. But, for even longer
times, the coverage rises above the RSA jamming limit. This means that over
the period of time where the kinetics with and without desorption are practically
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identical to the RSA case, we have ®(0) — py0 ~ Prsa(f). Furthermore, ps6 being
of the order of 106 or even 1078, it appears that & ~ ®rg4 until § begins to
increase to its final plateau value. This somewhat surprising observation originates
from the fact that locally one particle may block a target which can receive two
particles after the desorption of the former one. The replacement of one particle
by two particles occurs seldom, but over very long times it is efficient enough to
significantly increase the coverage if compared to the RSA. The results shown here
were obtained on only one surface and are therefore not very accurate. However,
the principle is clearly revealed. It may be stressed that the equilibrium coverage
increases continuously when p; decreases as long as p, stays strictly positive [47].
Setting py = 0 leads to an abrupt drop to the RSA jamming coverage. In other
words, turning a reversible process into an irreversible one can show up a discon-
tinuity in the evolution of the coverage with respect to the desorption probability
at a given time.

2.5. lrreversible adsorption with surface diffusion

In all the examples discussed up to now, once the particles are adsorbed on the
surface they cannot diffuse along the surface. This is of course an approximation
which is valid as long as the characteristic adsorption time 7, is small compared to
the characteristic diffusion time 74. The characteristic adsorption time 7, is given
by:

Ta = [ka®(6, )] " (4.51)

where @(6, t) corresponds to the available surface function at the coverage 6 at time
t. Indeed, the major difference between irreversible deposition processes with and
without surface diffusion is that in the latter case the available surface function is
only a function of the coverage whereas in the former case it depends also upon
the time: at a given coverage the system can evolve through the particle diffusion.
The characteristic diffusion time 74 is given by:

74 = (Dp)™! (4.52)

where D represents the self diffusion coefficient and p corresponds to the num-
ber density of adsorbed particles. This problem in which, once adsorbed, parti-
cles can no longer desorb but diffuse along the surface has been investigated in
reference [46]. The dimensionless parameter ¢ defined by:

Ta

¢= e (4.53)

has been introduced in order to characterize the process. This parameter lies al-
ways between 0 and 1. Small values of ( correspond to an RSA-like deposition
process. However, when the surface coverage increases, the available surface de-
creases so that at the end of the adsorption process, even if the surface diffusion
is small, the characteristic diffusion time becomes of the order of or smaller than
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Tq. The system thus relaxes to equilibrium configurations. It has been shown in
reference [46] that the available surface function ¢(9) is in fact a function of 6 and
¢. If one expands @ in a power series as given by equation (4.2), the coefficients
a1 and ag are identical to the RSA (and equilibrium) coefficients and a3(¢) is a
function of the parameter  only.

3. The simplest irreversible deposition model
taking excluded volume effects and gravity
into account: the Ballistic Deposition (BD) model

For large particles, the deposition process is mainly governed by the gravitational
field provided that the density of the particles exceeds that of the fluid. It is
described in first approximation by the Ballistic Deposition (BD) model. This
model is defined as follows: (i) as for the RSA model the particles are deposited
sequentially on the surface. (ii) For each deposition trial, a starting position is
chosen randomly over the adsorption plane. The particle then follows a vertical
trajectory until it reaches the adsorption plane or contacts a previously deposited
particle. In this latter case, it follows the path of steepest descent until it reaches
a stable position. (iii) If this position lies on the deposition plane, the particle is
irreversibly fixed on it. Otherwise the particle is removed from the system and a
new trial is started. This model was first introduced by Jullien and Meakin [49]
who determined, through computer simulations, the jamming limit coverage which
is equal to approximately 0.61. This value is larger than its RSA counterpart
indicating a more compact structure at the jamming limit. This observation can
be interpreted as follows: due to the rolling mechanism in a virtually infinitely
intense gravitational field, the probability to find two particles in contact is much
larger than in the RSA case. The one-dimensional BD problem has been solved
exactly by Talbot and Ricci [50]. The kinetics in the low to intermediate coverage
range for the two dimensional case has first been analyzed by Thompson and
Glandt [51] who found that the available surface function @(6) varies as:

B(0) =1+ az0® + O0(6*). (4.54)

The value —9.612 of a3 given by Thompson and Glandt has been corrected later
by Choi et al. [52] and is in fact equal to —9.949 78. The asymptotic kinetic law
has also been analyzed and is given by:

eclt

foo — 0() x (4.55)

ez
with ¢; = 2v/3/m and ¢ = 2. The origin of this law is, as in the RSA case, again
of purely statistical and geometrical nature. The exponential decrease is due to
the fact that the evolution of the coverage is not so much due to the evolution of
the mean size of the targets which, in contrast to the RSA case, remains different
from zero near the jamming limit, than to the evolution of the number of targets.
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Figure 10. Radial distribution function as a function of the center-to-center distance
derived from BD computer simulations (d = 2R). From bottom to top, the curves
correspond to coverages of 0.05, 0.10, 0.15, ..., 0.60. Each curve is shifted by one unit
with respect to the preceding one for the sake of clarity.

As for the RSA case, the knowledge of the low and high coverage behavior
allows the interpolation between both regimes and thus to obtain an approximate
expression of the available surface function or of the kinetics over the whole cov-
erage range. It has been shown that the expression:

coe”H/mSmt (1 + cqt)
14t + cot? + cst3

O — 0(2) (4.56)
with ¢y = 0o = 0.6105, ¢; = 0.714 18, ¢c; = 1.58056, c3 = 2.47424, ¢4 = 0.178 84
and S, = \/g/ 2, provides an accurate approximation for the evolution of the
coverage with time over the whole coverage range [52].

In contrast to the RSA case where one deposited particle can already hinder
the deposition of a new one, at least three particles need to be present on the
surface to hinder a new one to touch the deposition plane in the BD model. This
explains that the first non vanishing term in expression (4.54) is of order 3 in the
coverage and implies that the reduced variance o?/(n) varies as 1 + (3/2) a303
at low coverage (following relation (3.12) where k& = 3, in contrast to RSA for
which k& = 1) and thus presents an horizontal tangent at the origin. Finally
the radial distribution function has also been investigated as a function of the
coverage. As shown in Figure 10, it leads to much better defined peaks than does
the RSA process. However, as for the RSA case, there is no long range positional
correlation: the correlation length remains for all coverages of the order of two
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particle diameters. Since in both models particles interact only if they come into
mutual contact, no long range order can appear in the configurations build up at
the surface, which always are disordered ones, even at high coverage.

4. Generalized ballistic-deposition (GBD) model

Up to now we have discussed two geometrical models, RSA and BD, widely used
in the literature. These two models may be considered in fact as particular cases
of a unique random irreversible deposition model (generalized ballistic-deposition
model, GBD) as was shown by Viot et al. [53] in the one-dimensional case and
Choi et al. [54] in the two-dimensional case. Whether one- or two-dimensional,
the GBD model contains a parameter a, called tuning parameter, which measures
the efficiency of the restructuring due to the rolling mechanism. If a = 0, the RSA
model is recovered, whereas for a = 1, the GBD model reduces to the usual BD
model.

We focus from now on to the two dimensional problem. The basic idea is the
following: spheres start from positions uniformly distributed above the adsorbing
plane and follow vertical trajectories, unless they touch a preadsorbed particle.
If the new particle touches directly the plane it is adsorbed with a probability
(1 —p) and, conversely, removed with a probability p. If the new particle touches
first one preadsorbed particle, it follows the path of steepest descent. If this
path leads the particle into a trap, it is removed since no multilayer formation is
allowed. Otherwise, i.e., if the rolling particle succeeds in reaching the plane, it is
permanently fixed on it at the contact point with a probability p, or discarded with
the complementary probability (1 — p). The tuning parameter a is then simply
defined by a = p/(1 — p) and the kinetic equation has the form:

Z—f = &PP(0) + ad™ (9) (4.57)
where DD stands for direct deposition and RM for rolling mechanism.

Obviously, for a = 0, the above equation coincides with the RSA kinetic equa-
tion where, by definition, only direct deposition contributes to the formation of
the particle layer. If a = 1, direct deposition and rolling mechanism have the
same a priori statistical weight. This corresponds to the definition of the BD
model. While p approaches 1 or, equivalently, a tends to infinity, the GBD model
privileges more and more the adsorption after rolling to the expense of the direct
adhesion. Finally, when p is strictly equal to 1, deposition occurs exclusively via
the rolling mechanism and makes the GBD model an aggregation model. The
saturation coverage increases monotonically with a from 0.547 (a = 0) up to 0.691
(a = 00). The latter case corresponds to a unique cluster of particles, each of
which being connected to at least one other particle.
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Diffusional models

1. Extended RSA model taking diffusion
into account

If one observes the deposition of particles on a surface with a microscope one
realizes an important aspect which is not taken into account in the RSA model:
the Brownian motion of the particles in the vicinity of the adsorbing plane plays
an important role. This diffusion process implies that, even if a depositing particle
interacts with an already deposited one, it is not rejected from the system but, due
to the Brownian motion, it can diffuse around its initial position and eventually
still adhere to the surface by keeping the memory of its initial position. To account
for these observations computer simulation models and a theoretical approach have
been proposed [55-58].

1.1. Computer simulations

1.1.1. Diffusion RSA-like models

In the historically first model, called Diffusion RSA (DRSA) model, particles are
adsorbed randomly and sequentially on the surface [56,57]. The initial position of
the particle (more precisely of its center) is chosen randomly in a plane parallel
to the adhesion surface and located above it. The distance between this starting
plane and the plane of deposition must at least be equal to one particle diameter.
The particle then undergoes a Brownian motion and all the deposited particles
behave as hard spheres. The diffusion process can take place on a lattice, the
mesh size of the lattice being small compared to the size of the particles (typically
R/100 where R represents the radius of the particles), or can be considered as
continuous, the mean displacement at each step being again small compared to R.
If the diffusing particle touches the deposition plane, it is irreversibly fixed on it. In
addition, a third plane parallel to the deposition plane must be introduced. It lies
at a distance h above the starting plane. If the diffusing particle touches this third
plane, it is removed from the system. This plane had to be introduced in order
to avoid that the simulations become prohibitively long. This is a characteristic
feature of the diffusional models and will be discussed in Section 5 of this chapter.
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Figure 11. Radial distribution function as a function of the center-to-center distance
derived from RSA (o) and DRSA (e) computer simulations. From top to bottom, the
curves correspond to coverages of 0.24, 0.35, and 0, respectively.

As far as the structure of the deposited layers is concerned, the simulations lead
to the following conclusions: (i) the structures of the deposited layers generated
by taking the diffusion process of the particles in the solution into account are
different from their RSA counterparts for coverages smaller than the jamming
limit coverage. This is illustrated in Figure 11 representing the radial distribution
functions for two coverages different from jamming, obtained with the RSA and
DRSA models. (ii) The coverage at the jamming limit is almost indistinguishable
from the RSA jamming limit. Extensive computer simulations were performed in
the one dimensional case for the DRSA model to verify this result and it came
out that 6., = 0.7483 £ 0.0011 in the RSA case and 6, = 0.7529 4+ 0.0010 in
the DRSA case [58]. Both values are thus not identical but indistinguishable from
an experimental point of view. (iii) In addition, the structures of the layers at
jamming in the two cases are also indistinguishable (Fig. 11). These two effects
can be understood in the following way: at small coverages the diffusion plays its
full role in the deposition. However, near the jamming limit only a small number of
available spaces still remain and they are all of very small size. Over these small
areas, the deposition probability becomes uniform and the filling of the spaces
depends only upon geometrical constraints.

The deposition kinetic law has also been investigated [57]. It is, however, no
longer clear how to define the available surface function @. Indeed, if the available
surface function at a given coverage 6 corresponds to the ratio of the adsorption
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Figure 12. Schematic representation of the slab model. The particles start from the
mid-plane of slab 1 (i.e., at altitude 2R) and diffuse on a fine mesh lattice until they are
adsorbed at z = 0. Once a particle reaches the altitudes z = 4R or z = 0 it is rejected.
This allows the transition rates W1, and W12 to be determined.

flux in the presence and in the absence of particles on the surface, it is not clear at
which distance from the surface one assumes the particle concentration in the bulk
to be constant. This problem is intimately connected to the fact that the available
surface function will depend, not only upon intrinsic properties of the surface, but
also upon an additional parameter which, in computer simulations, is often the
time allowed to a particle to deposit. This aspect will be discussed extensively in
the Section 5. The first attempt to overcome this problem was to propose a master
equation approach in which the space is divided into slabs parallel to the adsorbing
surface and of thickness equal to the diameter of the particles (Fig. 12). The
lowest slab, labeled 0, corresponds to the diffusion layer of the particles between
the already adsorbed ones. One introduces then transition rates W j+1 from slab
j toslab j + 1. These transition rates are independent of j for j > 2. Only Wi o
and Wi o are functions of the structure and thus of the coverage of the interface.
The rate W ¢ corresponds in fact to the transition rate of adsorption. The values
of these rates could be determined from computer simulations on a fine mesh grid
as functions of the coverage, which allowed the whole master equation system to
be solved and thus to have access to the adsorption kinetics.

1.1.2. Cellular automaton

A more recent approach is based on Cellular Automaton (CA) modeling [59]. In
this approach the particles in the solution diffuse on a square lattice whose mesh
size is equal to 4R. This lattice extends from the surface up to a distance L
of the order of 250R. The simulation is carried out in such a way that many
particles move on the lattice at the same time, the particle concentration being
kept constant at the border plane of the solution located at the distance L from
the adsorbing plane. The adsorption is performed on a plane in a continuous way:
this is achieved by shifting the boundary lattice next to the surface of deposition
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by a value chosen randomly in an interval [—R, R]. On the lattice in the solution
the particles have a probability p; to move toward the surface, a probability ps
to move in the direction opposite to the surface and a probability ps to move
in either direction parallel to the surface. Once a particle touches the surface
without overlapping with an already deposited sphere, it has a probability ¢ to
remain adsorbed. If it is not adsorbed, it is taken back to its former position
and continues its diffusion. Once a particle is deposited it remains indefinitely
fixed in its position. The major differences between the CA model approach and
the DRSA approach are the following: (i) in the CA modeling many particles
can diffuse simultaneously in the volume and this can influence the deposition
process; (ii) once a particle touches the surface, even if it does not overlap a
previously deposited particle, it does not automatically adsorb on the surface;
in the same way, if an overlap occurs, the incoming particle is not automatically
rejected from the system, which is an improvement with respect to the RSA model;
(iii) the adsorption step does not, in the CA model, take the diffusion process of
the particle in the solution near already deposited once in a fine way into account:
it is a compromise between an RSA like adsorption and a diffusion process. It is
for this reason that one expects for the asymptotic kinetics of the process predicted
by the CA model a behavior similar to that of the RSA dynamics. In contrast, in
the DRSA model, the particle diffuses on a fine mesh grid (mesh size < R). This
feature gives the DRSA model the ability to imitate quite accurately the diffusion
in a continuous space not only in the bulk solution but also in the vicinity of
adsorbed particles and of the adsorbing plane. This higher degree of accuracy of
the description of the motion is of course obtained to the expense of the computer
time.

1.2. Theoretical approach

Widom introduced the concept of the function @ for equilibrium systems [3]. This
function corresponds, in the cases discussed up to now, to the available surface
function. He showed that @ is simply related, in that case, to the chemical potential
w1 of the particles in the system by the relation:

w=po(T) + kT In(p) — kT In(P) (5.1)

where p represents the number density of particles in the system. Let us now
apply this concept in the bulk but in the vicinity of the adsorption plane, when
the particles can still diffuse and have thus not interacted with the adsorption
plane. Divide the whole space into small slabs of thickness § much smaller than
the radius R of the particles. Each slab is considered to be a system on its own. A
particle is defined to be part of a slab if its center lies in the slab. It is defined as
“adsorbed” on the surface if its center lies on the plane z = 0, i.e., at a distance R
from the adsorbing surface (Fig. 13). Each slab is characterized by its height z and
the function @(z) which can be evaluated according to the procedure introduced by
Widom: freeze all the particles in all the slabs. Let then a probe particle wander
in the slab z. At each point, this particle feels a potential U(r). @ is then defined
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adsorbing surface

Figure 13. Schematic representation of the available volume in an infinitely thin slab
located at altitude z1. The ratio of the dashed volume to the total volume of the slab
represents the available volume function ®(z) for the case of hard spheres.

as the mean value of exp[—U(r)/kT] taken over the whole slab. For the case of
hard spheres, ®(z) represents the available volume for a particle in slab z. We will
now generalize the treatment of reference [55] to describe the equations allowing
the adsorption kinetics to be determined.

Let us assume that the diffusion process coupled with the adsorption phe-
nomenon can be described by a one-dimensional Markovian process obeying the
master equation:

0
apn = Wn+1,nPn+1 + anl,npnfl - (Wn,n+1 + Wn,nfl)Pn (52)

where n is given by n = z/d. P, represents the probability that a particle is in
the slab z = nd at a given time ¢t and W), ;41 represents the probability that a
particle located in this slab will diffuse to the slab n+ 1 per unit time. If reflecting
boundary conditions would hold on the planes z = 0 and z = zy (where zj is
arbitrary), equilibrium would be attained in which P, = P¢ where P¢ is given by
P¢(z) = p°(z)d. Moreover, at equilibrium, assuming detailed balance between the
different slabs, one finds the following relations:

Pign _pf(n+1)  Wansr  P(n+1)

Pe T o) Wann () (5:3)

where &(n) stands for #(nd). The last equality is a direct consequence of the fact
that & represents the available space for the center of the particles if they behave
as hard spheres. The equality remains however valid even if the particles interact
through other interaction potentials. The equality between the second and fourth
members is equivalent to say that the chemical potential of the particles in the
slab n and n+1 as given by expression (5.1) are equal. On the other hand, W, ;11
represents the ease with which a particle from slab n can diffuse to slab n + 1.

Let us now assume that W, 41 is only a function of &(n) and &(n + 1). One
can then write the general form of W, ,,41 as:

D P(n+1)
R? f(@(n), &(n + 1))

Wil = (5.4)
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where D represents the diffusion coefficient of the particles in the bulk at the
height z. This coefficient depends certainly on z. From equation (5.3) it follows
that f(®(n), P(n + 1)) must be symmetric in ¢(n) and $(n + 1). Moreover, if &
does not vary with z, W,, ,+1 will become independent of ¢. This implies that
f(@,0) = &. It can be shown that these properties imply that:

(Grow), (o)t o

B=3' B=a'

Expanding the relation (5.2) up to second order, taking relation (5.5) into account
and going to the limit § — 0, one obtains, after a lengthy but straightforward
calculation, a Smoluchowski equation:

o _ 9 {D (8—P—Paln(‘b>] (5.6)

ot 0z 0z 0z
This is the fundamental diffusion equation of the particles through the adsorption
plane. It shows that the particle distribution is evolving in a medium having an
effective potential equal to In®. Equation (5.6) has also been obtained recently
through irreversible thermodynamic arguments, starting from the expression (5.1)
of the chemical potential and knowing that —V(u/T') corresponds to the ther-
modynamic force conjugated to the flux of particles through a plane located at a
height z above the adsorption plane [60]. To get the deposition rate, this equation
must be solved with the correct boundary conditions. If the adsorption plane is
perfectly adsorbing, the boundary condition at the adsorption plane is:

P(z=0)=0. (5.7)
One has also to give the boundary conditions in the solution. Usually one assumes

that the concentration of particles at z = 2R is known. Moreover, the flux of
particles through the layer of particles at a height z is equal to:

Js = —

D [ 0 8lnq§] (5.8)

R (97" oy

where v = z/2R. Assuming steady state conditions, Jg becomes independent of
z and can be integrated by the classical method of variation of the constant. One
then gets:

1

Jsz—ﬁ

pBl(z) (5.9)

with

I(z) = (5.10)
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where © = 0/0,, and pp corresponds to the number density of particles in the
bulk. Relation (5.10) is a generalization of the result of Wojtaszczyk et al. [60] to
the case where the diffusion constant can vary with the position z. One can thus
write a kinetic equation of the form:

09
5 = Kappl(z) (5.11)

where K, represents a kinetic adsorption constant. This relation constitutes a
generalization of the Langmuir equation, which would be defined by I(z) =1 — =z
in equation (5.11), and had first been proposed in reference [60].

A few remarks are necessary at this point.

(i) This approach does not provide the evolution of the function @(x,z) with
the reduced coverage /6., and the height z. This function must be found
by another method. A first and reasonable approximation is to assume that
the structure of the adsorbed layer is similar to that of an RSA system
of adsorbed particles. We have seen that one possesses good approximate
expressions for @rg4(z) over the whole coverage range. These expressions
thus constitute an approximation for &(z,z = 0). Wojtaszczyk et al. [60]
have assumed the following form of the function &(z, z):

B(z,2) = Prsa [m (1 - (%)2)] . (5.12)

This, however, cannot describe correctly the evolution of the function &
with the height z even at low coverage. Indeed, for 1 < z/2R < /3/2, the
wandering particle of Widom can only interact with at most one particle
for each position. This implies that ®(z,z) is directly proportional to the
coverage in this range of z. The scaling law postulated in relation (5.12) can
thus not be correct as soon as second order terms appear in the available
surface function at the adsorbing plane.

(ii) This approach, as it is presented, is not valid near the jamming limit. In-
deed, near the jamming limit the available space on the adsorption surface is
constituted of small targets. The diffusion layer is thus formed of indepen-
dent channels each characterized, in first approximation, by its area at the
adsorption plane. All the channels can then be classified according to their
area and the diffusion equation (5.6) must be applied to each class of chan-
nels. The rate of adsorption then corresponds to the rate of disappearance
of the channels. This rate depends upon the area characterizing the channel.
It has been shown that for each channel a scaling law as the one postulated
in relation (5.12) applies approximately because, for these channels, it is the
diffusion of the particles in the vicinity of the adsorption plane which dom-
inates the deposition kinetics. The overall deposition kinetics is then given
by the average of the deposition kinetics for each class of channels, averaged
over all the classes. This procedure leads to the following deposition law [55]:

0(c0) — O(t) oc t=2/3, (5.13)
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(iii) The approach presented in this section can be extended to the case where the
particles are also submitted to an external field deriving from a potential such
as the gravitational field. In this case the chemical potential of a molecule
is given by:

w(z) = po(T) + kT In[p(z)] — kT In[P(2)] + V(2) (5.14)

instead of expression (5.1). V(z) represents the potential energy of a molecule
at the position z. One can thus extend the definition of the function @ to
include the effect of external forces: one has to replace @(z) by p(z) =
&(z) exp[—V(2)/kT] and the whole analysis remains valid.

2. Extended RSA model taking diffusion and gravity
into account

By taking not only diffusion but also gravity into account, one extends the previous
DRSA model and gets the DRSAG model (DRSA with gravity) [61]. In the cellular
automaton model approach this corresponds to an increase in the ratio pi/pa.
The hydrodynamic interactions are still neglected. One can then show that the
structure of the layer at a given coverage is uniquely determined by the reduced
radius R*, which depends notably on the buoyancy Ap of the particles with respect
to the bulk fluid and the acceleration g of the gravity. When colloidal particles
are of density different from the bulk fluid in which they diffuse, prior to their
adhesion to an interface, the movement results from the influence of the random
(Brownian) diffusion, the deterministic vertical displacement due to the gravity,
and the hard core repulsion between the particles. The mean maximum coverage
0~ depends also on the single parameter R*. The origin of this parameter is shown
up below.

The movement of spherical particles, of radius R, in a fluid can be described
by the Langevin equation which relates the position 1'(¢' + At’) of a particle at
time ¢’ + At’ to its position r'(¢’) at time ¢':

DF
vt + AY) =1'(t') + k—TgAt’ + Ar'g (5.15)
where D is the Stokes-Einstein diffusion coefficient. The vector Fg represents
the gravitational force, i.e., the only deterministic force acting on the particles
assumed in the present study; it is given by:

4
Fg = g7rR?’A,og (5.16)

where g represents the acceleration of the gravity. The vector Ar’; represents
the random (Brownian) displacement during the time interval A#'. As usual, it
is assumed that each component of the random movement (Az'y, Ay, Azf) is a
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normal deviate with mean equal to zero and standard deviation equal to /2D At'.
As a consequence

Ax'y = v, V2DAY;  Ayp =, V2DAY; Az =~,V2DAY (5.17)

where 7;, v, and 7, are normal deviates, with mean equal to zero and standard
deviation equal to one. Langevin’s equation, corresponding to a diffusion in a
three-dimensional space, separates into three independent equations:

ot + A) =2/ (') + Azl (5.18a)
V(# + A) = o' () + Ayl (5.18b)
2+ AY) =2 () — i?g + Azp (5.18¢)

where F, = (4/3)mR3>Apg appears only in the third component. The minus sign
in equation (5.18c) accounts for the fact that when Ap > 0, the gravitational
force tends to decrease the altitude of the particle. Applying the transformations
r=2/R,y=vy'/R, 2= 2'/R, t = Dt'/R?, and using the definitions (5.17), leads
to three equations describing the time evolution of the dimensionless Cartesian
coordinates (x,y, z) of the center of a diffusing particle:

x(t+ At) = z(t) + 7. V2AL (5.19a)
y(t + At) = y(t) + vy, V2AL (5.19Db)
2(t + At) = 2(t) — R* At + . V2At (5.19¢)
where
. (4mApg\!
— )

is a dimensionless parameter which contains all relevant physical characteristics of
the diffusion. Note that R** can be interpreted as the work of the gravitational
force necessary to elevate the particle by R, expressed in units of the thermal energy
kT. Equations (5.19a—5.19c¢) clearly demonstrate that the diffusion depends on the
unique parameter R*. Note also that R* is involved in the relation between the
horizontal and vertical displacements as follows. In the time interval A¢, the mean
horizontal square displacement ((Az)? + (Ay)?) equals 4At, and the mean vertical
displacement (Az) equals —R** At when Ap > 0. If Ap < 0, R** must be changed
into —R**. Eliminating At from these two expressions leads to:

4(Az)

(A2)* + (Ay)*) = -7 (5.21)
Approximate analytical solutions for the radial distribution function and for the
jamming limit coverage 0., (R*) have been obtained for the (1 + 1)-dimensional

case [62]. For the (2 4 1)-dimensional case, the jamming limit coverage has been
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Figure 14. Jamming limit coverage as a function of the reduced radius R* (Eq. (5.20))
obtained by simulation of the deposition of hard spheres on a line (o) and on a surface
(o) in a gravitational field. The error bars represent 95% confidence intervals.

determined from computer simulations as a function of R* and is represented in
Figure 14. This figure shows that 0 (R*) varies from its ballistic value to its RSA
value when R* varies approximately from 4 to 1. It can thus be assumed that a
system characterized by a value of R* larger than 4 behaves almost ballistically
whereas a system characterized by R* smaller than 1 behaves almost as predicted
by the DRSA model at least as far as the jamming limit coverage is concerned.
Interestingly, it has been shown [63] that by a suitable normalization, the values
of 6 (R*) follows a unique curve as a function of R* for one- and two-dimensional
collectors (Fig. 15). The renormalized jamming limit Oy o (R*) is defined by the
following relation:

O (R*) — 6 00
On oo (R7) — (R*) — UpRsa,

= 5.22
0BD,0c0c —9DRSA,00 (5:22)

where prsa,0o and 0pp o correspond respectively to the DRSA and the ballistic
deposition model jamming limit coverage. This result has been confirmed analyt-
ically in the limit of large values of R* [62]. In addition, it has been shown that
the jamming limit coverage varies with R* for large R* as:

0o (R*

O (B7) 1— BaR*8/3 (5.23)

0BD,c0
where (3; is a parameter depending only upon the dimension of the collector,
whereas the exponent —8/3 is invariable.
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Figure 15. Normalized jamming limit coverage (Eq. (5.22)) as a function of the reduced
radius R* obtained by simulation of the deposition of hard spheres on a line () and on
a surface (o) in a gravitational field. The error bars represent 95%-confidence intervals.
The solid line is a least squares fit of an empirical function to the data, i.e., On (oo, R*) ~
exp(—1.32R* " — 3.44R*7%).

3. Models taking interparticle forces deriving
from a potential into account

In all the models described up to now the particles were treated as hard spheres.
However, the group of Adamczyk [13,64] has shown that electrostatic interactions
between particles can also play an important role in the deposition process. To
account for these effects Adamczyk et al. have proposed the modified RSA model
discussed previously, which is based on the rule that an adsorption trial is accepted
with a probability proportional to the Boltzmann factor exp[—U(r)/kT] where
U(r) represents the potential energy that the particle feels at the position r. An
extension to take the forces in three dimensions into account has been introduced
more recently by Oberholzer et al. [39] but it corresponds in its spirit to the same
kind of approach as proposed by the group of Adamczyk. In order to verify the
validity of the rule of Adamczyk, Brownian Dynamics simulations were performed
with an extended DRSAG algorithm which takes interparticle interactions into
account during the deposition process [65,66]. The gravitational field was always
included in the simulations in order to assure that the particles will eventually
reach the surface in a reasonable computer time. The interaction potential between
particles was taken from the DLVO theory. A first study [65] led to the conclusion
that the ratio of the adhesion probabilities at a given location r, for the particles
subject to weak gravitation, in the presence and in absence of the interparticle
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interaction follows approximately a Boltzmann law. However, further studies [66]
in which the strength of the interaction potential was varied were less conclusive.
It seems, nevertheless, that the weaker the gravitational field, the closer is the
ratio to the Boltzmann factor. Further studies are still needed to investigate this
problem.

More recently, the group of Lenhoff [39] performed an interesting Brownian dy-
namics simulation in which the authors followed the evolution of a whole assembly
of particles in a volume in contact with the adsorbing surface. The chemical poten-
tial of the particles was kept constant in the volume at a given distance from the
surface. They took both particle/particle and particle/surface interactions into
account. The particle motion along the plane was subject to either unrestricted
diffusion or zero diffusion. In this latter case, once the particles were adsorbed
on the adsorption plane, the components of the forces acting on the particles and
parallel to the surface were set equal to zero, the component perpendicular to
the surface keeping its full value. Hydrodynamic interactions were not taken into
account. It was found that, due to the interplay between the repulsive parti-
cle/particle and the attractive particle/surface electrostatic interactions, different
behaviors can be observed by changing the ionic strength, i.e., the value of kKR
where K corresponds to the inverse of the Debye length. They found that, as
is predicted by the generalized RSA model described by Adamczyk, for colloidal
particles, in which kR is usually large, the jamming limit coverage decreases with
the ionic strength. An opposite conclusion emerges for small kR as it could be the
case for proteins. They found that the kinetics in the asymptotic regime seems
to follow the power law (5.13) [55]. The simulation results were also compared to
experimental results, especially the radial distribution function, and fairly good
agreement was found between simulation and experimental data. Unfortunately
no systematic comparison between these results and the extended RSA model pre-
dictions was performed. Such a comparison would be very useful because, even if
these more realistic simulations are very valuable, it is difficult to perform them
for each experimental system whereas from an extended RSA model, some aspects
can be calculated directly without turning to extensive computer simulations.

4. Models taking hydrodynamic forces into account

Up to now we have discussed models in which the hydrodynamic interactions (HI)
were restricted to those between the depositing particles and the fluid in a virtually
unlimited space. We shall describe models which take into account in the HI not
only the ambient fluid but also the deposited particles and the adsorbing plane.
The presence of these HI play an important role in sedimentation and adsorption
processes because (i) they are of long range and (ii) they can never be suppressed.
The HI between spheres and planar surfaces or between two spheres have been
extensively studied for a long time both theoretically and experimentally [67,68].
In contrast, their influence on the structure of the assembly of the deposited par-
ticles has only been taken into account recently. This originates partly from the
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difficulty to handle these interactions due to their non-additive character. Their
long range interaction also implies that the computer simulations which generate
assemblies of deposited particles become prohibitively time consuming.

The simulations taking HI into account are similar to the generalized DRSA
simulations in which one takes all kind of forces into account, apart from the fact
that the diffusion coefficient has no longer the constant value corresponding to the
Stokes law, but varies with the position of the depositing particle. More precisely,
the trajectory of the particle is simulated by using the classic algorithm of Ermak
and McCammon [69]. The diffusion coefficient becomes a diffusion tensor. In
order to take the HI between the depositing particle, the deposition plane and
the already deposited particles into account, one uses the approximation of the
additivity of the friction tensors:

£(r) =E&p(2) + Z(fss,i(ri) — o) (5.24)

where £(r) corresponds to the friction tensor of the particle at the position r,
&sp(z) represents the friction tensor relative to the particle/plane interaction of
the spherical particle suspended at a height z above the deposition plane. &5 ;(r;)
corresponds to the friction tensor relative to the interaction between the depositing
particle and the ¢th deposited particle located at the position r; and &y corresponds
to the Stokes friction tensor. Bossis and Brady have shown that this approximation
takes properly into account lubrication forces, which act when objects are close
together, and lead also to the correct behavior at long distances [70].

The first attempt to analyze this problem is due to Bafaluy et al. [71] who
investigated the deposition probability ¢(r) of a Brownian particle at a position r
in the presence of one or two particles on the surface. The simulations have shown
that the deposition probability ¢(r) becomes almost independent of r (Fig. 16).
This finding contrasts with the predictions relative to the DRSA model in which
¢(r) is maximum near the already deposited particles due to the diffusion process
around this particle. This behavior originates from the fact that the components
of the diffusion tensor describing the motion of the particle perpendicular to the
plane of adhesion decreases more rapidly than the component of the diffusion
tensor describing the motion parallel to this plane. This result seems to indicate
that the RSA model should account correctly for the structure of the assembly
of deposited particles. Indeed, even if from the simulations one can only draw
a conclusion up to a coverage of 0.30, where at most three body interactions
are important, at higher coverage the geometrical constraints become increasingly
important so that the RSA rules should remain valid as far as the deposition
location is concerned.

Hydrodynamic interactions have also been introduced in the BD model, by
simulating the trajectories of the particles until they reach the surface. This has
first been done by Pagonabarraga and Rubi for the (1 + 1)-dimensional case [72].
The spheres were constrained to fall in a vertical plane onto a line but the HI were
calculated as if the particles were in the three dimensional space. This approach
was extended to the (2 + 1)-dimensional case [73]. The conclusions which can be

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



58 Irreversible deposition/adsorption processes on solid surfaces

q(r)

o Jc L T T T Y A

2 3 R 4 5

Figure 16. Results of the simulation of the diffusion of a particle near an adsorbed
one showing that the introduction of the hydrodynamic forces (e) in the algorithm ren-
ders the probability of adsorption practically independent from the distance between the
spheres. In contrast, the DRSA (diffusion in the absence of HI) predictions (—) indicate
a preferential adhesion near the fixed particle.

drawn from this study are the following: (i) HI modify only slightly the radial
distribution functions of the assemblies of deposited particles (Fig. 17). This is
particularly the case at low to intermediate coverages where the peaks in the g(r)
become smaller and broader. This comes from the fact that HI act in the presence
of a gravitational field as a repulsive interaction. Indeed, during the deposition,
the particles have more difficulty to diffuse toward the fixed sphere than to diffuse
along this sphere. However, the higher the coverage the smaller are the differences
between the BD radial distribution functions with and without HI. This feature is
similar to that observed for the DRSA case in the presence and absence of HI. This
result seems even to be quite general: at high coverages, the geometrical constraints
play a leading role in the position of adhesion of the new incoming particles. (ii)
HI also modify the first non vanishing term a3 in the expansion of the available
surface function in the coverage. It has been shown that aZ#P /aBP ~ 0.5 where
BHD stands for Ballistic Hydrodynamic Deposition. But overall, the differences
induced in the available surface function by the HI are still small. (iii) Finally,
as a general conclusion one can say that, as far as average quantities such as the
density fluctuations, the available surface function, etc., are concerned, the BD
model without HI constitutes a good approximation. It is only for the detailed
analysis of the structure of the layer of deposited particles that HI play a significant
quantitative role.
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Figure 17. Comparison of the experimental () radial distribution functions correspond-
ing to melamine spheres, with simulation data. Figures a, c, e correspond to the ballistic
model, whereas figures b, d, f correspond to the ballistic model including the hydrody-
namic forces. Coverage: 0.15 (a, b), 0.35 (c, d), 0.50 (e, f).

It has been stated previously that, in the absence of HI, for a given coverage
the structure of an assembly of deposited particles, interacting through a hard
sphere potential, is only a function of the parameter R*. It has been shown
that the same parameter R* given by relation (5.20) also characterizes, at a given
coverage, the structure of a system of hard spheres sedimenting toward the surface
by taking the HI into account [74]. This result is based on the approximation
that the friction tensor of a particle interacting with different spheres and with
the deposition plane is given by relation (5.24). Two demonstrations have been
proposed for this result. One demonstration is based on the resolution of the
Langevin equation and on the relation between the random displacement of the
particle due to thermal motion and the diffusion tensor. The second demonstration
is based on the Smoluchowski equation for the diffusion-sedimentation process, the
boundary conditions being the following: the flux is zero perpendicularly to the
deposited particles and the particle concentration is zero at the surface (perfectly
absorbing barrier). Moreover, using this approach it could be shown that the
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deposition kinetics are only functions of the parameters R* and R?*/Dg where
Dg corresponds to the Stokes-Einstein diffusion tensor. It can be pointed out
that, at a given coverage, the structure of the deposited layer of hard spheres
is a function of R* only. In particular, it is independent of the viscosity of the
fluid supporting the particles. This, however, does not mean that this structure
is the same as the one obtained without taking HI between the moving particle
and the adsorbed ones and the adsorbing plane into account. Indeed, in one case
the diffusion is anisotropic, whereas in the other case it is isotropic. It may be
stressed that even if the viscosity tends to zero (as long as the concept of viscosity
keeps its significance), one does not recover the case in which HI are omitted. The
viscosity only changes the time scale of the deposition process as it comes out from
equation (7) of reference [74].

5. Problems related to diffusional models

Consider a particle in a semi-infinite fluid, initially located at the distance zp from
the adsorbing empty plane. It can be shown that the probability P,4s for this
particle to adsorb after a diffusion time ¢ is given by [75]:

Pas(z0,t) = erfc ( (5.25)

20
2v/Dgt
where Dg is the Stokes-Einstein diffusion coefficient and “erfc” the complementary
error function. From this probability one can derive the mean time needed to

adsorb:
o 8-Pad.s
) = /O O gy

20 - e %0/4Dst dt
2ﬁ 0 vV DSt

2

22 U
= du. 5.26
2/ Ds /0 ur (5:26)

This integral does not converge and therefore the mean adsorption time is infinite.
This justifies from the theoretical point of view the introduction in the DRSA
simulations of the upper rejection plane evoked in Section 1. Moreover, if the
particle, before touching the deposition plane, diffuses over a long distance, which
is possible if the height A of the rejection plane is chosen not too small, it looses
the memory of its initial position. In the simulations that were performed in
reference [57], the height of the rejection plane was usually fixed to five diameters.

Furthermore, even though (t) = oo, one can define the time t; /; after which, on
the average, half of a collection of particles, all starting from altitude zy above the
adsorbing plane at time ¢t = 0, will reach this plane. This median time is simply
defined by Paqs(t1/2) = 1/2, hence by erfc(z0/(2,/Dsty/2) = 1/2. It follows from
this definition that ¢,/ ~ 22/0.90989D.
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Figure 18. Simulated mean (white symbols) and median (black symbols) sedimentation
times as a function of the reduced radius R* for two starting heights: zo/R = 1 (circles),
zo/R = 2 (squares). The lines correspond to equation (5.27) for the mean time and to
equation (5.28) for the median time.

If the model takes diffusion and gravity into account, the deterministic grav-
itational force leads to the adsorption of the first particle with probability equal
to 1 and the average adsorption (or sedimentation) time is equal to zo/vs, where
vs is the sedimentation velocity (or Stokes velocity). In terms of dimensionless
quantities, this average time is given by

DS <t> - ZQ/R .
R2 ~—  R*4

Pure diffusion corresponds to R* = 0, hence the average time goes to infinity,
as already mentioned. As to the median time t,/5, it tends to coincide with the
average time when R* — oo, for then the distribution of the adsorption time tends
to a Dirac distribution centered on (t). In contrast, when R* = 0, the dimensionless
median time is given by Dgt1 5/ R?* &~ (z9/R)?/0.909 89. An interpolation formula,
spanning the whole range of R* from zero to infinity, is obtained by defining the
median time as the harmonic average of both its limiting values:

Dstio (z0/R)? '
R2  0.90989 + (z0/R)R*

(5.27)

(5.28)

Figure 18 compares the predictions of equations (5.27, 5.28) with simulation results
as a function of R*, for zo/R =1 and 2.
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Following equation (5.25), it appears that the adsorption probability tends to
1 when the time tends to infinity. That is, on an empty surface, the adsorption
probability equals 1 when the diffusion time is unlimited. Since any of the following
particles continues its diffusion even after collisions with preadsorbed particles, the
probability of adhesion is also equal to one if the allowed duration of diffusion is
assumed to be unlimited. This holds as long as at least one target is available on
the surface, i.e., as long as the jammed state is not reached. Once the last possible
particle has adhered, the probability drops abruptly to zero by definition of the
jammed state. This reasoning is true in the presence of gravity also. A particle
falling in a trap has a strictly positive probability to escape unless the particle is
infinitely heavy (BD model), hence will escape after an infinite time. The adhesion
probability is therefore simply a step function when represented as a function of
the coverage. Such a step function, however, gives no information on the kinetics
of the filling process, whereas it is intuitively evident that, on the average, the
time needed by a particle to adhere increases when the surface coverage increases.

Again following Landau and Lifchitz [75], the flux at an empty surface is given
by:

Z0 _ 2
J(O =0) = — = *0/4Dst 5.29
( ) 2t\/mDgt ( )
for a particle starting from z = zp at time ¢ = 0. This means that, on the

average, if ng particles start at z = zg there are Jng particles which will reach the
adsorbing surface per unit of time at time ¢. The integral of J over time leads
to the adsorption probability given by equation (5.25). As a consequence, if we
wish to use the definition of the available surface function given in Section 1 of
Chapter 2, i.e., the ratio of the adsorption flux to the surface, at a given coverage
0, to the adsorption flux on the empty surface ( = 0), we see that we have to
specify, on the one hand, the initial distance of the particles from the adsorbing
wall and, on the other hand, the time at which the flux is measured:

J(07 20, t)

(0, 20,t) = 70, 20,1)

(5.30)
In practice, can we determine the kinetics of the process in the absence of gravity
by computer simulations of sequential processes (see also paragraph 1.1)? Strictly
speaking, this seems to be impossible because (t) = co at § = 0, hence a fortiori
at @ > 0. Therefore, for practical purposes, we have to impose a limit somewhere.
There are two main possibilities: either the diffusion time or the distance at which
the particle can diffuse away from the adsorbing plane must be limited. An alter-
native to the time limitation is a limitation of the number of collisions. Time and
distance limitations are not mutually exclusive. The first criterion which is met
leads to the rejection of the particle, hence to a new adsorption attempt. In case
of rejection, the wasted time can be incorporated in the kinetics, but this biased
method causes an uncontrolled error in the estimation of the time actually needed
to reach a given coverage. What is ¢(0) in these circumstances? If we still wish
to write df/dt = ®(0), we have to realize that ¢ depends on the one hand on the
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geometrical structure of the surface and on the other hand on the limitation(s) im-
posed to the simulation procedure as indicated above. This suggests immediately
that @ must depend on the longest diffusion time allowed and/or on the farest
point a particle can reach before being withdrawn from the system, in addition to
the distance of the starting plane to the adsorbing plane.

A way to get around these conceptual difficulties was suggested in reference [57].
The diffusion cell was subdivided into horizontal slabs, each of height 2R (Fig. 12),
and the diffusing particles moved on a fine mesh three dimensional lattice. A
particle was located in a given slab if its center lay in the mid plane of this slab.
Assume that at a given time ¢, Ny, N1, Na, etc., particles are located in slabs 0,
1, 2, etc., respectively. Note that slab 0 corresponds to the lowest one, i.e., the
one immediately above the adsorbing plane. Therefore Ny represents the number
of irreversibly adhering particles. During the time interval At, all these numbers
N; change by an amount AN; depending on the transition rates Wj ;11 from slab
j to one neighboring slab, according to the following series of equations:

ANO = WLQNlAt
ANy = [(—Whi 0 — Wi2)N1 + WN;] At

AN, = [-2W Ny + Wi 2Ny + W N3] At
(5.31)

AN; = [-2N; + Nj_1 + N1 ]WAt, for j >3

Note that Wj ;+1 is independent from the coverage when j > 2 and is then simply
denoted by W. In contrast, Wi o and W; 3 depend on the coverage. Note also that
Wpy,1 = 0 since no particle can desorb. For a finite number of slabs, the system
of equations can be solved numerically starting from an arbitrary initial particle
distribution in the slabs. This leads in particular to the time evolution of Nj.
Taking the derivative of Ny with respect to time leads then in principle directly
to the available surface function, up to a scaling constant.

However, as indicated in paragraph 1.1, it is not clear at which distance from
the surface one has to assume the particle concentration in the bulk to be constant.
If we chose to keep N; fixed, i.e., to keep the average number of particles in the
slab located just above the adsorbing slab constant, the available surface is simply
proportional to the transition rate Wi o. In this latter case the numerical solution
of the system is even not necessary. The transition rate W o was obtained by
simulation as explained in reference [57]. This transition rate is shown in Figure 19
together with the best fit of the function:

Wit _ ao(l — )
Lo 4 a1z + asz? + aza®

(5.32)

to the simulated data, where x = 6/0.547. It may be mentioned that one obtains
p ~ 2.43 which is to be compared to 2.5 as can be deduced from the asymptotic
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Figure 19. Transition rates from slab 1 to slab 0, and from slab 1 to slab 2. Sym-
bols indicate simulation data, whereas lines represent least squares fits to these data
(Eq. 5.32).

behavior of §(t) established by Schaaf et al. [55]. This should stress the resemblance
between Wi o and 9.

In order to emphasize the importance of the choice of the distance at which the
bulk concentration is supposed to be constant, we have solved the system (5.31) in
the case where the diffusing cell has a height of 12R and is hence subdivided into six
slabs, with the initial occupation numbers Ng = 0, Ny = Ny = N3 = Ny = N5 = 1.
The last slab plays the role of a reflecting barrier, i.e., particles can diffuse up to
it and come back afterward. The first time the numerical solution of (5.31) was
obtained upon fixing N7 = 1, the second time N5 = 1 throughout the iterative
resolution procedure. The resulting kinetic evolution of the number of particles in
slabs 0 and 1 are shown in Figure 20. Obviously, the choice of the slab where the
occupancy is kept constant influences significantly the time evolution of Ny (and
of the other numbers as well, but this is less important); however, as could be
anticipated, after long enough an adsorption time, both kinetics converge toward
the same saturation number of particles on the surface.

6. Mixtures

A first step toward the description of polydispersed particle systems has been made
by studying the case of bidispersed mixtures [42,43,76] or mixtures of objects of
different shapes [77]. The more complicated situation provided by polydispersed
mixtures was analyzed by Tarjus and Talbot [78] and Meakin and Jullien [43].

Ann. Phys. Fr. 23 ¢ N° 6 e 1998



Diffusional models 65

L L 111 B 1 L )

T T

e

10!

T T T T

100 — E|

number of particles

T T T

T T T

TRUT

v vl vl ol o 1]
102 103 104 108 108 107
t(a.u.)

Figure 20. Number of particles located in slabs 0 and 1 as a function of time, as
determined by solving the system of coupled equations (5.31) (for details, see text).

In the particular case of a binary mixture of disks, deposited following the rules
of the RSA model, one species having a much smaller (or larger) radius than the
other species, the jamming limit could be determined on the basis of two coupled
first-order differential equations [42]. Moreover, the kinetics of the deposition of
the small disks proved to follow the usual RSA law, i.e., 05(t) = 0s(c0) — kt—1/2
(where the subscript “S” stands for small), whereas the kinetics of the deposition
of the large disks follows an exponential law.

For arbitrary particle radii, however, no precise prediction on the respective
contributions of the small and large particles to the total coverage can be made.
Therefore, only simulations can lead to the estimation of these respective contri-
butions, as well as to the kinetics of deposition of both species involved. Meakin
and Jullien [43] studied extensively the case of binary mixtures of hard disks ac-
cording to the RSA deposition rules. Let r = Ry /Rg be the ratio of the large
disk radius to the small disk radius. For various values of r, in the range 1.125-8,
simulations were carried out using several values between 0 and 1 of the composi-
tion parameter p which is the fraction of small disks selected for trial deposition
onto the substrate (note that the particle reservoir is assumed to be infinite which
means that the proportion p does not vary over the duration of the deposition
process). Meakin and Jullien [43] confirmed that g follows the RSA power law in
the asymptotic regime, while 7, approaches its limiting value exponentially, i.e.,
much more rapidly than does 0g.

On the other hand, the jamming limit contributions fs(co) and 6r,(c0), as well
as the total jamming limit coverage 07(c0), depend on both r and p. The highest
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Figure 21. Schematic representation of the deposition of two unequal disks at contact
(left) and two unequal spheres at contact (right). Although the small disk and the small
sphere have the same radius, and similarly for the large particles, the center-to-center
distance projected on the adsorption plane is smaller in the case of the spheres if compared
to the case of the disks.

total coverage is obtained for p — 0. In this case, practically only large disks are
drawn from the reservoir until their own jamming limit is reached; then, the gaps
formed by the large disks can only be filled by the small ones. This is obviously
the most efficient way to cover the surface as much as possible at fixed ratio r.
When the radius ratio r tends to infinity while p tends to zero but remains strictly
positive, the total coverage 61 (c0) is given by:

O (00) = 01,(00) + [1 — 01,(00)]01(c0) (5.33)

where 01, (c0) = 0.547 is the coverage obtained with monodisperse disks in RSA.
Clearly, the small disk contribution is given by the second term on the right hand
side: Og(c0) = (1 —0.547)0.547 =~ 0.248, hence 07(c0) &~ 0.795. Note also that if p
is set to exactly zero, 67(c0) drops abruptly to the RSA limit equal to 0.547. The
process is therefore not continuous with respect to p at p =07

The study of the deposition of spheres constituting a binary mixture was carried
out in the framework of the DRSAG model [66,79]. The results are qualitatively
the same as in RSA as far as the jamming limit is concerned. Here, however,
the jamming coverages are slightly higher due to the influence of the gravitational
force which tends to form configurations more compact than those obtained with
the RSA model. Also, diffusion allows a small particle to reach a position in
contact with a large particle such that the projected center-to-center distance is
only 2v/Rg Ry, which is always smaller than the sum Rg + Ry, of the radii, hence
smaller than the RSA counterpart for disks (Fig. 21). As an example, Figure 22
shows the contributions of the small and large spheres, as well as the total coverage,
at the jamming limit for a mixture of spheres of 4 and 6 pum in radius and a
buoyancy of 0.045 g/cm?, as a function of the composition parameter p.

Muralidhar and Talbot studied the kinetics of the adsorption of polydisperse
mixtures, assuming a continuous distribution of the radius [80]. They restricted
the analysis to the initial adsorption kinetics, i.e., to the small coverage of the
collector. This approach was devised for the description of both irreversible and
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Figure 22. Jamming limit coverage as a function of the composition parameter p for
a bidispersed mixture of spheres of 4 and 6 pm in radius. The particles are deposited
according to the DRSAG model. The buoyancy of the particles is Ap = 0.045 g/cm®.
0s and 0, represent the contribution of, respectively, the small and large spheres to the
total coverage 0. Note that the total coverage has a discontinuity when p becomes zero
(indicated by the dashed line). The symbols (dots and triangles) represent simulation
results and the lines are drawn to guide the eye.

reversible processes. The generalized kinetic equation is written:

w = ka(R)co(R)P(R, 1) — ka(R)p(R, 1) (5.34)

where p(R,t)dR is the surface density of adsorbed molecules of radius between R
and R+ dR, co(R)dR, is the corresponding bulk concentration, k,(R) and kq(R)
are the adsorption and desorption rates for particles of radius R, respectively.
Furthermore, (R, t) is the available surface function for an incoming molecule of
radius R. The authors determine analytically the moments of the particle radius
distribution on the surface and relate them to the moments of the radius distri-
bution in the bulk phase, this latter being of the form Re™%. In particular, it is
shown how the surface distribution moments deviate progressively with time from
the bulk moments in the case where the adsorption coefficients are size dependent.
The range of validity of the theoretical expressions derived for the size distribution
moments is established using computer simulation. Finally, it may be stressed that
this theory, although restricted to the small coverage regime, is considerably more
accurate than the multicomponent Langmuir equation, where it is assumed that
®;,=1-X0;.
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Figure 23. Typical configurations formed by a mixture of particles with short range
(hard core) repulsion (white-white and black-black) or long range repulsion (white-black)
adhering irreversibly on a surface, for increasing values of the repulsion parameter f
(f =1, 1.5 and 2 from top to bottom).
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Brilliantov et al. [81] have considered the RSA deposition process of a mixture
of hard particles having a continuous distribution of radii P(R) ranging from zero
up to some maximum size. They studied the case of a power law size distribution:

P(R) = aR*™* (5.35)

and found that such a process gives rise to fractal structures characterized by the
fractal dimension D; depending on the exponent o. For low values of «, these
authors proposed the series expansion:

D =2 —7a— (7%% + 7/2)a® + 0(a?). (5.36)

However, this expansion seems to not correspond to the values of D reported in
Figure 3 of reference [81]. Indeed, another small-a expansion, which seems to be
more correct, is proposed in an article to be published by the same authors in
Physical Review E.

Up to now we have implicitly considered that a suspension was a mixture if
it contained two or more species of particles differing by their sizes. A mixture
may be defined in several other ways. As an example, consider a two-component
mixture of particles (particles a and b) identical from the geometrical point of view
(disks of equal diameter) but with different mutual interaction. Assume that any
a-particle interacts with any other a-particle through a hard core potential and
similarly for the b-particles. In contrast, an a-particle and a b-particle repel each
other. In practice, in the RSA-like simulation, this is obtained using the diameter
d as the minimum distance between identical particles as usually in models dealing
with hard particles, but a minimum distance f x d, larger than the diameter, for
nonidentical particles. As in the non equally sized particle case discussed above,
the process is defined by two parameters: the composition parameter p and the
repulsion factor f (> 1). Obviously, when f = 1 one recovers exactly the classical
RSA. Figure 23 displays typical configurations obtained with f = 1, 1.5 and 2
(from top to bottom) for p = 1/2. In the three cases the total coverage equals
approximately 0.374. When f increases it is apparent that the configurations be-
come more and more inhomogeneous with, in particular, the formation of “islands”
of b-particles surrounded by a “sea” of a-particles (the reversed interpretation is
equally valid) and only a few isolated particles.

Ann. Phys. Fr. 23 ¢ N° 6 e 1998






Experimental results

1. Is there a need for other adsorption models
than the Langmuir model?

Adsorption kinetics of macromolecules or colloidal particles on solid surfaces have
been and are still usually described by the Langmuir model. A Langmuir system

follows the kinetic law:
db 0
E = kaCb (1 — 0mam> — de (61)

where k, and k4 represent respectively the adsorption and the desorption constant,
Omaz corresponds to the maximum attainable surface coverage and ¢, represents
the concentration of adsorbing species in the bulk but in the vicinity of the ad-
sorption plane. For this system, the available surface function @(9) is given by:

0

emam

P0)=1- (6.2)
The first question that has to be answered from experiments is the following: is
there a need for other adsorption models than the Langmuir model? A negative
answer to this question would clearly mean that the theoretical studies concerning
the RSA-like models are pure academic speculations!

This question has only started to be addressed rigorously over the last few
years. This is mainly due to the difficulties to determine precise kinetic curves
with all the boundary conditions well defined. For proteins, Jin et al. [48] have
clearly demonstrated that a Langmuir model cannot accurately describe break-
through chromatographic curves of lysozyme. A similar conclusion emerges out
of the breakthrough curves of colloidal particles obtained by Johnson and Elim-
elech [82]. Analyzing kinetic experiments of colloidal particles on planar surfaces,
Adamczyk et al. found that the Langmuir model cannot account for their experi-
mental data [14,38] over a long time scale. The Langmuir model accounts correctly
for the initial adsorption times but leads rapidly to adsorption kinetics which are
much faster than the observed ones. Experimental adsorption kinetics of colloidal
particles on solid surfaces near saturation also clearly exhibit a behavior different
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from the one predicted by the Langmuir model [2]. Ramsden et al. have also ob-
served that the adsorption rate of cytochrome P450 onto a lipid bilayer [83] and
of apotransferrin onto Si(Ti)Os surfaces [84] cannot be correctly described by the
Langmuir model which predicts a linear decrease of the adsorption rate with the
coverage. Such a linear behavior is, however, not observed. The Langmuir model
would also imply that the reduced variance of the number of adsorbed particles
on solid surfaces should, according to relation (3.10), follow the law:

) i (6.3)

and thus vary linearly with the coverage. This is, however, usually not observed
experimentally [8, 85].

These experimental observations thus clearly demonstrate that the Langmuir
equation cannot account correctly for the various adsorption behaviors of colloidal
particles or macromolecules on solid surfaces. The limitations of the Langmuir
model stem mainly from the fact that it does not account correctly for the sur-
face exclusion effect. This has certainly contributed to trigger the interest of the
scientific community to study the RSA model over the past years.

2. Validity of the RSA model

2.1. Experimental results relative to colloidal particles

The first experimental study in which the RSA model was proposed to describe
the adsorption process is due to Feder and Giaever [86,87]. They investigated
the adsorption of ferritine (an iron-storage protein) on a carbon surface. They
measured a maximum surface coverage of 0.518. Feder also determined the radial
distribution function g(r) near jamming which he found compatible with the RSA
model predictions. Onoda and Liniger [88] determined the maximum surface cov-
erage for spherical latex particles irreversibly fixed on a solid surface and found
for 0 a value of 0.55+ 0.01 which is in good agreement with the value predicted
by the RSA model (0. = 0.547).

Since these pioneering works, several studies concerning the adsorption kinet-
ics of colloidal particles on solid surfaces and the structure of these surfaces cov-
ered by the irreversibly adsorbed latex particles have been reported. The effects
of the ionic strength were in particular first investigated by the group of Adam-
czyk [2,13,14,38] who compared its experimental results with the predictions of the
extended RSA model taking the double layer repulsive forces into account. To an-
alyze their results, Adamczyk et al. compared them not only to the extended RSA
model, but they also introduced the concept of “equivalent hard sphere radius”
as discussed in paragraph 2.2 of Chapter 4. Lenhoff et al. [39,89] also investigated
the effect of ionic strength on the deposition process of positively charged amidine
latex particles on mica sheets. They determined the structure of the deposited
particle configurations through AFM imaging. Johnson and Elimelech [82] also
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investigated the effect of the ionic strength on the particle deposition by chro-
matographic means. Finally, Wojtaszczyk et al. [85,90] performed a systematic
study of the statistical properties (structure and density fluctuations) of assemblies
of deposited particles as a function of the coverage in the case where the screening
length of the electrostatic interactions between particles is small compared to their
radius (kR > 1). The main conclusions that can be drawn from these studies are
the following.

(i)

(i)

(iii)

The jamming limit coverage increases with the ionic strength. However, a
quantitative comparison between experimental data with the relations (4.44,
4.46) is still lacking.

The adsorption kinetics seem also to be compatible with the extended RSA
predictions. A few remarks are necessary at this point. To analyze the
kinetic results in the low to intermediate coverage range the experimental
data were often compared to kinetic functions obtained by the integration
of the kinetic equation (2.3b) by keeping only the terms up to the second
order in expression (4.5) of the available surface function modified according
to the equivalent hard sphere concept [2,14,38]. Since Widom, one knows,
however, that the RSA available surface function is indistinguishable from its
equilibrium counterpart up to the second order in the coverage. The group
of Adamczyk also found that, near the jamming limit, the adsorption rate of
colloidal particles seems to vary linearly with ¢=1/2 [14] as predicted by the
RSA model. A similar behavior was observed by the group of Lenhoff [89]
who studied the adsorption of positively charged amidine latex particles on
mica sheets. Recently, however, this group reanalyzed its data and claimed
that the asymptotic kinetic behavior is more compatible with a t~2/3 power
law as predicted by Schaaf et al. [55]. Unfortunately, no comparison between
the experimental curves and the theoretical predictions was provided.

Radial distribution functions have also been determined for such systems
and compared to the predictions of the repulsive soft core RSA model (see
paragraph 1.1 of Chap. 4) obtained from computer simulations. Again it was
shown that the experimental results are compatible with the repulsive soft
core RSA model. Unfortunately the experimental g(r) are usually compared
to the RSA predictions at only one coverage which is, in addition, often
low [2,13,38,39,89]. This agreement between experiments and theory is
mainly due to the experimental systems which were investigated, at low ionic
strength the maximum coverage being itself low. However, at low coverage,
no great difference exists between RSA-like and equilibrium structures. For
this reason Wojtaszczyk et al. [85,90] have investigated the evolution of
g(r) with the coverage. They found that the g(r) relative to an assembly
of deposited sulphate latex particles of radius 0.77 uym (R* = 0.66) with a
Debye length small compared to the radius (kR > 1) is in good agreement
with an RSA ¢(r) at intermediate and high coverages (coverages larger than
0.30). On the other hand, at coverages of the order of, or smaller than
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0.15 slight differences between the RSA and the experimental g(r) appear.
As we will see later, such a behavior seems to be valid for other systems
too. These differences can have different origins such as the polydispersity
of the medium, the influence of the hydrodynamic interactions during the
deposition process, etc.

(iv) The reduced variance of the number density has also been determined as a
function of the coverage. Adamczyk et al. found that 02 /(n) varies with the
coverage in accordance with the predictions of the extended RSA model
[11,12]. In particular, at low coverages the reduced variance decreases
linearly with 6. Such a behavior has not been observed by Wojtaszczyk
et al. [85] with the particles exhibiting a g(r) close to the RSA g(r). They
found that 02/(n) starts with an horizontal tangent at low coverage before
decreasing in a more or less linear way down to its jamming limit value. In
addition, they found that the available surface function for this system be-
haves similarly to that of larger particles in which gravity plays an important
role; in first approximation, this finding corresponds to a ballistic behavior.

How can these radically different behaviors observed by Wojtaszczyk et al. and
by the group of Adamczyk be explained? As we know from expression (3.12), the
first non vanishing term in the expansion of 02?/(n) with the coverage is of the
same order as the first non vanishing term in the expansion of ¢ with respect to
0. This order corresponds to the minimum number of deposited particles on the
surface which is required to eventually forbid a new particle to reach the plane and
thus to adhere on it [9]. It must be stressed that the adhesion experiments were
performed by the two groups following two different ways: Wojtaszczyk et al.
performed a sedimentation experiment with small particles (R* = 0.7). In this
case the Brownian motion dominates over the deterministic gravitational motion.
However, even if the influence of gravity is small, it is not completely absent and
if only one particle is deposited on the surface a new incoming sphere cannot be
excluded from the surface. Due to the influence of gravity, it will thus, ultimately,
still adhere on the surface. The situation is radically different for the experiments
performed by the group of Adamczyk in which the impinging jet method is used.
In principle, at the center of the cell, the particles feel — in spite of the flow — no
force toward the surface. However, even for particles in the micron size domain,
the gravity can play a small role. Furthermore the particles have to adhere on
the bottom of a mica sheet, which renders R* negative though near zero. With
these conditions it becomes clear that the presence of one particle can affect the
adhesion probability of a new one so that the reduced variance becomes linear in
the coverage. Finally, it can be pointed out that, in the experiments of Wojtaszczyk
et al., 0% /(n) varies differently from what is expected from the RSA model in spite
of the fact that the radial distribution function of the system is close to the RSA
g(r) at intermediate and high coverages. This is at first sight in contradiction with
the exact relation (2.6) between o2 /(n) and g(r). This apparent paradox has been
explained in reference [91]. It comes from the fact that very slight differences in the
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g(r), which cannot be detected on the experimental radial distribution function
itself, once integrated over space, lead to a large contribution to o2 /(n).

The adsorption probability of a particle on a solid surface, and thus the avail-
able surface function, plays also a great role in chromatography. Johnson and
Elimelech [82] have used this technique to investigate the dynamics of charged
colloidal particles in porous media as a function of the ionic strength and thus
of the screening length. They showed that their breakthrough curves cannot be
predicted by the Langmuir model but are, on the other hand, recovered when the
RSA expressions (4.4, 4.8) are used, the coverage 6 being replaced by 6(c0)36
where 6(c0) corresponds to the RSA jamming limit and (3 is a rescaling param-
eter. They have thus used the equivalent hard sphere concept. They have also
determined from their experiments the evolution of the coverage 6 as a function
of time. Figure 2 of reference [82] seems to indicate that at long times, in the
jamming limit regime, the coverage varies linearly with t~/2 as observed by other
authors. These experiments seem thus to demonstrate the validity of the RSA
model to describe the explored system. It is however not clear if other deposi-
tion processes, more specifically if an equilibrium rescaled hard sphere available
surface function would not have lead to a similar accordance between experiment
and theory. A partial answer to this question would have been obtained if the
experimental curves had been compared to the predictions obtained by assuming
an expression of the form (4.12) for the available surface function over the entire
coverage range.

2.2. Experimental results relative to the irreversible deposition
of spherocylindrical particles

Very recently, Ramsden and M&té [92] have reported a study of the irreversible
deposition of monodisperse spherocylindrical iron (III) hydroxide particles on a
hydrophilic silica-titania surface. To our knowledge, this constitutes the first ex-
perimental study of irreversible deposition processes of spherocylindrical particles.
They have shown that the Langmuir equation does not account for their experi-
mental results. These latter, in contrast, could be interpreted by introducing the
available surface function relative to an RSA process of spherocylinders, as well as
three parameters which had to account for the influence of the electrostatic and
hydration interactions. These parameters were the particle surface potential, the
silica surface potential and the polar (hydration) interaction energy between the
particles and the surface. Unfortunately, the values found for the three parameters
are far different from the values of these quantities measured in solution by other
means and no explanation was given for these large discrepancies. Additional ex-
periments would be of interest to verify if their model can account for a large range
of experimental conditions with these particles.
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2.3. Experimental results relative to macromolecules

We have up to now discussed the experimental results relative to colloidal particles
but the interest for the RSA model has really started from the experiments of Feder
and Giaever on the adsorption of ferritin on solid surfaces [86,87]. More recently,
the group of Pefferkorn [93] also used the RSA model to describe the adsorption
kinetics of macromolecules on solid surfaces. They constructed a function K (NV),
where N is the number of adsorbed macromolecules on the surface, which is a
specific adaptation of the available surface function to their experimental set-
up. This function becomes equivalent to & when the characteristic time of their
experiment (time of integration of the radioactive counting) is short compared to
the characteristic adsorption time. They have compared their experimental values
of K(N) directly to the values predicted by RSA simulations. They found a good
agreement between the RSA predictions and the experimental results for non-
charged polymers such as polystyrene adsorbing on silica. On the other hand, for
polyelectrolytes, they found that the model had to be adapted in such a way as to
allow for the possibility of some diffusion of the adsorbing particles in the vicinity of
their initial position before adsorbing irreversibly on the surface. They attributed
this difference in the behavior to the possibility for non-charged macromolecules to
relax rapidly once touching the surface and thus to create rapidly a great number
of links with the surface. On the other hand, polyelectrolytes are more rigid
entities than neutral polymers. At the beginning of their interaction with the
surface, polyelectrolytes act more or less as hard entities and thus interact with
the surface only through a limited number of links which still allow for some
mobility on the surface. Unfortunately, here too, the experimental results have
not been compared to the Langmuir model so that it is difficult to get an idea
on the sensitivity of the results with respect to the deposition model. This group
also investigated, by a similar method, the adsorption of poly(vinyl-4-pyridine) on
polystyrene latex particles [94]. For this study the authors compared their results
to an extended RSA model which allowed for the relaxation of the macromolecules
on the surface by increasing the area that they cover. Here too, they found good
agreement between experiments and simulations. They could even get access to
the relaxation time of the polymers.

The group of Ramsden used an integrated optic technique to determine the ad-
sorption kinetics of various proteins on a solid substrate. These authors compared
their results to the adsorption rates determined by integrating equation (2.3b) in
which the RSA available surface function up to third order (4.4) in the coverage
has been used. The only fitting parameters that they introduced in their treatment
were an adsorption constant (which is equivalent to a time rescaling) and the area
covered by a molecule on the surface which is equivalent to the use of the hard
sphere concept. They found that their experimental rates were all compatible with
the theoretical predicted rates according to the RSA model extended by the hard
sphere concept. The system investigated was iron-free transferrin [84,95] adsorbed
onto Si(Ti)Oz surfaces. For this system they investigated the effect of the ionic
strength on the area occupied by an adsorbed protein. For the adsorption of two
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proteins belonging to the family of cytochrome P450 on a lipid bilayer, Ramsden
et al. [96] found that at low bulk concentrations the system behaves according to
the Langmuir model, whereas at higher bulk concentrations the adsorption kinet-
ics become more RSA-like. This seems to come from the fact that the proteins
can slowly diffuse along the surface and have the tendency to aggregate. At low
bulk concentration the characteristic adsorption time 7, is long compared to the
characteristic diffusion time 7; of the protein along the surface. The adsorbed
proteins have thus the time to form large clusters on the surface before a new pro-
tein adsorbs. For this kind of configurations the available surface function should,
indeed, be given by ¢ = 1 — 6. On the other hand, at high bulk concentrations, 7,
becomes short compared to 74 so that the system behaves as predicted by the RSA
model. Such a crossover between an RSA and an equilibrium behavior has been
predicted theoretically by Tarjus et al. [46] which introduced the dimensionless
parameter ¢ as already discussed in paragraph 2.5 of Chapter 4. This parameter
has also been used by Ramsden et al. in their study. A similar behavior has been
observed for the adsorption of metallodendrimers at silica-titanium surfaces [97].
For other systems such as human and bovine serum albumin adsorbing on SiTiO,
surfaces [98] they used adsorption equations in which they allowed desorption:

W — kucsd — kaf (1) (6.4)
t
where I' represents the adsorbed amount (mass) per unit area and f(I") is a
function of this adsorbed amount. ¢, represents the concentration of the proteins
in the bulk in the vicinity of the surface and k, and k4 correspond respectively to
the adsorption and the desorption constants. Usually f(I") is taken equal to I,
but Kurrat et al. [98] indicated that they had to use the function f(I") = I'"*/2 in
order to be able to fit their data. Although they took the desorption into account,
they used the RSA available surface function in equation (6.4) to account for their
experimental data and found reasonable agreement between the experimental data
and the predicted rates. It must be pointed out that, from a strict theoretical point
of view, the use of equation (6.4) is incompatible with the use of the RSA available
surface function. However, due to the fact that ®rg4 differs from @gg only by
the terms of order larger than 2 in the coverage expansion, it becomes impossible
from an experimental point of view to discriminate between the two expressions of
the available surface function. Differences between an adsorption process in which
desorption can take place and an irreversible adsorption process can only become
apparent in the asymptotic behavior (Fig. 9). To analyze this behavior, Ramsden
plotted the adsorption rate in the asymptotic regime as a function of ¢t~1/2 [95]
and he claimed that this rate varies linearly with t~1/2. A careful inspection of
his data reveals, however, that the rate does not vary exactly linearly with ¢~1/2.
One can speculate if another time dependence (such as ¢~2/3) would not have led
to a better agreement with the experimental data.

The RSA concepts have also been used by Jin et al. [47] who analyzed break-
through curves of lysozyme obtained by Mao et al. [99]. They also used a kinetic
equation of the type (6.4) to compare experimental breakthrough curves to the
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theoretical prediction. They adapted both the RSA and the equilibrium available
surface function to the case of an adsorption on discrete sites distributed randomly
on the surface. They found, here too, good agreement between the experimental
results of Mao et al. and the predicted breakthrough curves. They also used an
RSA-like available surface function due to the fact that they could not evaluate
the equilibrium counterpart over the whole coverage range.

2.4. Discussion

From all these experimental results relative to the adsorption of macromolecules
or small colloidal particles on solid surfaces it clearly comes out that the major
achievement of the introduction of the RSA concept has been to demonstrate
that the available surface function entering in the adsorption kinetic equation can
usually not be approximated by the Langmuir type function but that RSA or hard
sphere equilibrium available surface functions are of great use. The experiments
seem not to be able to discriminate between both functions so that the knowledge
of the precise adsorption mechanism is not required to correctly account for the
adsorption rates. It is only in the asymptotic regime that differences should emerge
and more experimental data on a large number of systems are needed to be able
to get a better picture of the behavior of the systems in this regime.

Due to the interplay between the diffusion process of particles in the vicinity of
the adsorption plane and the hydrodynamic interactions, it is not really surprising
that the RSA model predicts accurately the structure of the deposited layer and
in particular the radial distribution function when the particles do not diffuse once
adsorbed. However, what is, in our opinion, more surprising is the fact that this
model predicts accurately the adsorption kinetics. Indeed, hydrodynamic inter-
actions should, at least for colloidal particles, influence strongly the adsorption
rate. This is especially expected at high coverage near the jamming limit. The
adsorption power law t~1/2 is of purely geometrical and statistical origin and has,
in our opinion, no reason at all to be followed by experimental systems. The power
law t~2/3 takes the diffusion process into account and is thus more likely to be
observed. However, it does not take hydrodynamic interactions into account. The
fact that experimentally these laws seem to be observed thus constitutes a real
mystery. However, before spending more effort to understand this observation,
more experiments are needed to verify this result. In particular, if possible, the
experimental data in the asymptotic regime should not be directly compared to
a given power law but one should plot In[I'(t) — I'(c0)] as a function of In(t),
where I'(t) represents the adsorbed amount at time ¢ and I'(co) corresponds to
the adsorbed amount at infinite time. This quantity must be estimated experi-
mentally and the eventual dependence of the slope of this curve on I'(o0) should
be investigated.
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3. The case of the deposition of large spherical
particles

Up to now we have discussed experimental results relative to the adsorption of
particles or proteins in which gravitational effect should not play a significant role.
We will now focus on the irreversible deposition of large colloidal particles in which
gravity is of importance. Wojtaszczyk et al. [8,85,90] investigated the statistical
properties of surfaces covered by such particles. The evolution of the radial dis-
tribution function ¢(r), and of the reduced variance of the number of particles
was investigated as a function of the coverage for various systems characterized by
values of R* ranging from 0.66 to 3.4. The evolution of the number of deposited
particles on the surface was investigated as a function of the bulk concentration
which is directly related to the available surface function @. The range of R* in-
vestigated covers the transition from an RSA to a ballistic behavior according to
Figure 14. As already mentioned, a fairly good agreement between the RSA-like
radial distribution functions and the g(r) relative to the system characterized by
R* = 0.66 was found. A fairly good agreement between the ballistic-like g(r) and
the radial distribution functions relative to the system characterized by R* = 3.4
was also observed. However, at low coverages the deposition probability seemed
to be slightly, but systematically, larger for values of the interparticle distance r
corresponding to the minimum in g(r) appearing after the first peak. These differ-
ences were first attributed for example to the hydrodynamic interactions between
the adsorbed and the deposited particles or to short range repulsive interactions.
Computer simulations taking hydrodynamic interactions into account in the bal-
listic deposition model have been performed and the radial distribution functions
have been compared to the experimental g(r) relative to the system characterized
by R* = 3.4. The hydrodynamic interactions reduced the differences between
experiment and theory but could not lead to a perfect agreement between them
(Fig. 17). For the systems characterized by R* between 3.4 and 0.66 one could see
that the g(r) evolve continuously from a ballistic behavior to an RSA behavior.
In contrast, such a continuous evolution was observed neither for the variation of
the reduced variance of the number of particles with the coverage (Fig. 24), nor
for the available surface function. For both entities a universal evolution with the
coverage was observed by varying R*. As already discussed in paragraph 2.1 such
a behavior can be explained by the fact that in all these systems, even if slight,
gravity always plays a role so that one deposited particle can never hinder a new
one to adhere on the surface: the presence of at least three deposited particles
is required on the surface to forbid a new one to reach it. Both ¢?/(n) and &
thus vary at small to intermediate coverages as 1 — af3. It would be interesting
to understand how the systems behave in the limit R* — 0 and even when R*
becomes slightly negative which can be achieved experimentally by adsorbing the
particles on the bottom of a surface. In particular, will ¢%/(n) and @ behave
as predicted by the RSA model? In case of a positive answer to this question,
how will the systems evolve from a ballistic behavior to an RSA behavior by vary-
ing R*?
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Figure 24. Reduced variance of the number of particles deposited on a surface as a
function of the coverage, for five types of particles: Pi, P>, Py and Ps correspond to
polystyrene spheres of radius equal to 0.77, 1.02, 2.10 and 3.38 pm, respectively, whereas
M, corresponds to melamine particles of radius 2.23 pm. Note that R* ranges from 0.66
up to 3.43. The continuous line represents the least squares fit to the experimental data
(o) of the polynomial 1 — (3/2)9.949 780° +b40" where by is a free parameter. The dashed
line represents the RSA first order expansion, i.e., 1 — 46.

Adamczyk et al. [100] determined the deposition kinetics of particles under
strong influence of gravity. Surprisingly they found a deposition rate which, at
intermediate coverages is faster than the rate predicted by the ballistic model,
whereas at coverages exceeding 0.50 it levels off more rapidly than predicted by the
BD model. This result is surprising because one expects the ballistic deposition
rate to be the upper limit of the deposition rate. On the other hand, the BD
model does not take the formation of multilayers into account. The presence of
such a layer can eventually lead to an increase in @ due to the fact that when a trap
formed out of three deposited particles is filled by a fourth particle it can no longer
act as a trap. The hypothesis of this result is currently under investigation in a
collaborative work between the groups of Adamczyk and the group of Strasbourg.
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4. Adhesion of red blood cells to a solid surface

In this section, we present experiments and simulations dealing with the sedimen-
tation of red blood cells (RBC) in a liquid, and their adhesion to a horizontal solid
surface. This constitutes a first example of the study of the adhesion of a system
of non ideal particles. Indeed RBCs are neither spherical nor perfect disks. In
addition, one cell differs slightly from its neighbors. However, this example shows
how useful the concepts introduced by the RSA-like models are even for such non
ideal systems.

In particular, the modeling of the adhesion of RBCs on a solid/liquid interface
by the ballistic deposition (BD) model will be outlined. Indeed, this model, al-
though appropriate for spherical particles only, hence in principle not applicable to
the deposition process of disk-shaped RBCs, allows to reproduce our experimental
data. This quite surprising observation will be discussed and analyzed, especially
in respect to another irreversible deposition model specifically developed for the
deposition of disks [101].

Suspensions of human RBCs previously fixed with glutaraldehyde were in-
jected in a diffusion cell. The buoyancy of the RBCs may be estimated to 0.06—
0.07 g/cm®. Once all RBCs had deposited, v non overlapping pictures (v ~ 100)
were taken. This experiment was repeated for different values of the cell concentra-
tion, Crpc, of the injected suspension in order to determine the mean (n), as well
as the variance O’% of the relative area 1 covered by the RBCs. In the image anal-
ysis of the pictures, RBCs located in higher layers were eliminated by a threshold
procedure, hence only RBCs in contact with the glass slide were retained.

If no overlap occurred between RBCs, the relative area covered by RBCs would
be equal to:

(TR?)p

w=(n) (6.5)

where (mR?), represents the mean area of an isolated deposited RBC and (n) the
average number of RBCs per picture directly proportional to Crpc. In fact, the
relationship between w and (n) is only linear for small concentrations (i.e., small
w), where overlaps occur seldom (Fig. 25). To study the fluctuation of the relative
area covered by RBCs, a normalized relative area variance was defined by:

v @
v—1(rR%), "

(6.6)

z =

which is equivalent to that of the reduced variance already introduced, but adapted
to the area covered by the particles rather than to their number. In spite of
the scattering of the experimental data (Figs. 26a and 26b), it appears that z is
approximately equal to (n) at low coverage where all the RBCs deposit without
mutual overlaps. Then (1) = w = z, which is characteristic of a binomial law from
the statistical point of view. However, as (n) increases, z deviates significantly
from its binomial counterpart all the more as (n) is large.
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Figure 25. Mean relative coverage as a function of the coverage which would be obtained
if no overlap between particles occurred and if no rejection took place. Without overlap
and rejection, the data points would align on the dot-dashed line which represents (1) =
w. The error bars on the experimental data (e) represent + one standard deviation. The
solid line corresponds to the simulation carried out with the RSA-MO model and the
dashed line to the BD model.

The deposition of the RBCs can be depicted by a model derived from the
random sequential adsorption (RSA) model where the RBCs are approximated
by monodisperse disks of radius R. In contrast to the classical RSA, this model
accounts for overlaps between deposited particles. Moreover, hydrodynamic in-
teractions of an incoming RBC with preadsorbed ones can phenomenologically be
taken into account by minimizing the overlap areas between the particles.

In the RSA-MO model (where MO stands for minimized overlaps), an impact
point is chosen a priori, at random, over the adsorbing surface for each new par-
ticle. If no overlap occurs with a preadsorbed particle, the incoming particle is
permanently fixed at this point. Otherwise, a minimum area search procedure is
started within a disk of radius ¢ centered on the initially selected impact point.
The new particle will be fixed at the point of lowest total overlap area. If the con-
tribution of a particle is lower than a given minimum, the particle is not taken into
account for the evaluation of the relative area covered. This minimum contribution
is quantified by the parameter f which represents the ratio of the supplementary
area covered by the new particle to its own area wR2. This algorithm mimics
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Figure 26. (a) Normalized variance of the relative covered area m as a function of the
mean relative coverage. The dot-dashed line corresponds to the binomial law (z = (n)).
Experimental data (e). Results of the simulation with the RSA-MO model (o). The solid
line is the fit of the polynomial z(1+ a1z + asx® + azz>® + asxt + asxs) to the simulated
values (x stands for (n)). (b) Normalized variance of the relative covered area 7 as a
function of the mean relative coverage. The dashed line corresponds to the binomial law
(z = (n)). Experimental data (e). Results of the simulation with the BD model (o).
The solid line is the fit of the polynomial x(1 4 bix + bax® + bsa® + bax* + bsx®) to the
simulated values (x stands for (n), by = b = 0 and bs ~ —14.92 [9,101]).

the threshold procedure used in the image processing of the experimental pic-
tures: particles located on the top of one or, more probably, several preadsorbed
particles are withdrawn from the evaluation of (n) and of 0%.

The Ballistic Deposition (BD) model has also been used as a complementary
tool aimed at a better understanding of our experimental results [102]. For a
description of this model the reader is referred to Section 3 of Chapter 4. In
spite of the impossibility of mutual overlaps in the BD model and of the rolling
mechanism which is a property of spherical particles, it may be interesting to
confront data derived from it to data derived from the RSA-MO model or obtained
experimentally. It may be noted that in the BD model, w is defined by:

TR2
w= <nb)% (6.7)

where (np) represents the average number of particles, originally located in the
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bulk fluid, used to reach a given mean coverage (n) of the surface. Therefore w
coincides with the dimensionless time usually defined in “geometrical” models such
as the RSA and BD models.

For the BD model, where particle rejection exists, (np) is not equal to the
average number (n) of deposited particles, in contrast to the RSA-MO model
where (n,) = (n) since no particle is rejected. In fact, the BD model leads to
a binomial distribution of the particles over the sub-systems, as does any other
hard particle model, as long as the probability of interaction between the particles
stays negligible. Once the trapping mechanism sets on, the curve representing (n)
vs. w displays a negative curvature, and reaches a plateau corresponding to the
saturation of the surface. As shown in Figure 25, the data derived from the BD
model are very close to those obtained with the RSA-MO model after optimization
of the parameters appearing in this latter (§/R = 1.2, f = 0.88), and both models
describe well the experimental data. As a consequence, we may assume that the
particles rejected after trapping in the BD model play roughly the same role as
the particles eliminated in the threshold procedure used in the processing of the
experimental pictures. An equivalent process occurs with the RSA-MO model
where particles that do not contribute a minimum increment to the coverage are
eliminated from the estimation of (). In addition, in this latter case, among the
particles kept for the estimation of (1), relatively small mutual overlaps exist and
tend also to reduce (n) in respect to (n) = w (binomial law). They are probably
responsible for the slight difference with the predictions of the BD model.

Figures 26a and 26b present the fluctuation of the relative area covered by
RBCs, expressed by z, as a function of (), on the one hand derived from the two
models and on the other hand determined experimentally. The data corresponding
to both models have been obtained on the basis of samples of sub-systems (i.e., of
pictures) of size equal to the experimental one (¥ = 100 sub-systems or pictures).
This relatively small number explains the large scattering observed. The fluctua-
tions provided by the BD simulation behave like those predicted by the RSA-MO
model and agree likewise with the experimental results. It is remarkable that not
only the general trend of z is nearly identical for the two models (compare Figs. 26a
and 26b), but also the scattering of the simulated data which, in addition, is in a
reasonable agreement with the experimental scattering.

P. Schaaf, J.-C. Voegel, B. Senger
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