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Abstract-A simplified method is described to evaluate the minority-carrier diffusion length L from 
electron beam induced current measurements in Schottky diodes at normal irradiation. The method relies 
on the analysis of the high-energy part of the plot of the charge-collection efficiency q of the device vs 
the primary electron range R, on the basis of approximate theoretical expressions valid for large R. For 
a known depletion layer width, the value of L and the associated error are obtained by a single parameter 
fit, independently of the value of the metallization thickness. Very small values of L can be estimated 
directly from the maximum of the plot of Rq vs R. The applicability of the new procedure is illustrated 
by evaluating data available from the literature on GaAs and Si. 

1. INTRODUCTION 

The minority-carrier diffusion length in a semicon- 
ductor can be determined by electron beam excitation 
using a number of geometries[ 11. In the configuration 
introduced by Wu and Wittry[2], the electron beam 
is incident normally to the semiconductor surface, 
where a Schottky diode with a thin metallization has 
been formed (Fig. 1). By measuring the ratio between 
the beam-induced current and the total generation 
rate, one obtains the fraction of the beam-injected 
charge that is collected by the Schottky barrier, i.e. 
the charge-collection efficiency q of the device. The 
determination of q as a function of the electron beam 
energy E yields a plot q(E), which contains the 
information about the diffusion length L. This 
configuration offers the advantage of allowing the 
measurement of local values of L and is also not 
affected by the surface properties of the semicon- 
ductor. 

Usually, to extract the value of L from collection 
efficiency measurements, theoretical r](E) curves are 
compared to the experimental ones. This fitting pro- 
cedure involves as unknown paramaters L and the 
thickness h of the metal layer; the width W of the 
depletion region is more often assumed to be known 
independently[2,3], but sometimes is regarded as an 
additional parameter of the fit[4]. 

However, it has been observed that the value of L 

chiefly affects the high-energy portion of the q(E) 
curve[2], so that it appears reasonable to attempt 
to determine L using high-energy data only. The 
expected advantages of this procedure are a simplifi- 
cation of the theoretical expressions of q(E) in the 
limit of large E and an easier evaluation of L by a 
single-parameter fit to experiment. 

In this study, such expressions are derived and 
applied to the graphical or numerical evaluation of 

charge-collection efficiency data. The practicability of 
the new evaluation techniques is demonstrated by 
applying them to published experimental measure- 
ments performed both on GaAs and Si. 

2. THE MODEL 

2. I. Theory 

Because of the planar symmetry, the treatment of 
charge-collection in the device of Fig. 1 can be 1-D 
and involves only the depth coordinate z. Let 4(z) be 
the charge-collection probability in the device, i.e. the 
probability that a carrier generated at a depth z will 
be collected, and g(z, E) [cm-’ s-‘1 the normalized, 
energy-dependent, depth distribution of the electron 
beam generation in the semiconductor. The charge- 
collection efficiency q(E) is then given by[5]: 

V(E) = 
s 

m 4(z)&, E) dz. (1) 
II 

It has been shown that g(z, E) can be expressed 
through a function ,4 of the single variable c = z/R, 

I 
electron 
beam 

Fig. 1. Schematic diagram of charge-collection efficiency 
measurements in a Schottky diode. 
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where R = R(E) is the range of primary electrons in 
the semiconductor at the energy E; the pertinent 
expression for n has been given by Wu and Wittry[Z] 
for GaAs and by Everhart and Hoff[6] for Si. Thus 
eqn (1) can be written in general as: 

q(R)=; 
s 

= 4 (z)A(z/R) dz. (2) 
0 

According to the usual models for c#J(z)[~,~], it is 
assumed that 4(z) = 0 for 0 < z < h, where h is the 
thickness of the metal layer (or the equivalent thick- 
ness, if the density or the atomic number of the metal 
and semiconductor are very different). In the de- 
pletion layer h < z < h + W complete collection, i.e. 
4 (z) = 1 is assumed; in the bulk of the semiconductor 
z > h + W, t$(z) = exp[-(z - h - W)/L]. With this 
specification, and introducing the variable 5, eqn (2) 
becomes: 

i 

(h + W/R 

v(R) = n(i) d5 + w[(h + WI/L1 

h/R 

s 

22 

X ew(-KlLVK) di. (3) 
Ch + N?IR 

The values of h, L and possibly of W are usually 
obtained by fitting to experiment this expression, with 
a proper choice of A. 

The attempt made here is to find an approximation 
to eqn (3) for large values of R, i.e. for R >>h + W, 
and to use this approximation for evaluating the 
high-energy r](R) data. Thus the lower limit of the 
first integral in eqn (3) can be replaced by 0, by 
simultaneously subtracting the additional contri- 
bution of the interval (0, h/R), which is approxi- 
mately hA(O)/R. The second integral over the range 
[(h + W)/R, co] can be written as the difference be- 
tween two integrals over (0, co) and [0, (h + W)/R]. 
Hence: 

V(R) 2: -(hlRM(O) + exp](h + W/L1 
r (h+ WR 

X 

s 
exp(-RClLY(i)di - 

s 
A(i) 

0 cl 

x {exp[-(R< -h - W)/L] - 1) di. (4) 

We may evaluate approximately the second integral 
of eqn (4) by observing that the smooth function A (<) 
changes little in the small interval [0, (h + W)/R], and 
can therefore be approximated by A (0). Thus: 

q(R) = -(hlRM(O) + exp](h + WI~lrldR) -A(O) 

c 
(h + W’)IR 

X {expf- WC - h - WI/L1 - 11 di, 

where 

r/o(R) = 
s 

Zexp(-RSIL)A(i)di (6) 
0 

represents the collection efficiency of an ideal surface 
barrier with h = W = 0. The value of the integral in 
eqn (5) is (L/R){exp[(h + W)/L] - (h + W)/L - 1); 

since usually (h + W)/L < l/3 (higher resistivity ma- 
terials, where W is larger have also larger L; see e.g. 
Table l), this expression can be approximated to the 
second order of (h + W)/L by i(h + W)*/(RL). 
Hence: 

q(R) z -A(O)[h/R +;(h + W)*/(RL)] 

+ exd(h + WILlMO (7) 

We may reduce this expression further by estimating 
the relative weight of its terms. It is convenient to 
consider separately the two cases where, in the high- 
energy interval examined, L cc R or L 2 R. 

When L CR, the value of q,,(R) can be estimated 
through the leading term of its asymptotic expansion 
with respect to R/L >> 1, which is A(O)L/R. Since 
(h + W)/L < l/3, we can approximate the expo- 
nential in eqn (7) by 1 + (h + W)/L. Thus: 

V(R) = - fA(O)(h + II’)*/ 

+ (1 + WILM(O)LIR, (8) 

where the term -A(O)h/R of eqn (7) has cancelled 
out with an opposite contribution arising from the 
term involving qO. The ratio of the first addend of eqn 
(8) to the second one is f(h f W)*/L’ < l/18. There- 
fore, with a relative error less than -5% we can 
simplify eqn (7) to: 

q(R) = exp( W/L)qo(R); R >>/I + W, L<< R. (9) 

If L !: R, being (h + W)/R << 1 we also have 
(h + W)/L << 1. Keeping only first-order terms, with 
some rearrangement, eqn (7) can be written as: 

V(R) = -A(O)hlR + @lLMR) 

+ (1 + WILMR). (10) 

Since L 2 R, the sum of the first two terms of 
this equation is less than, or about equal to 
(h/R).[-A(0) + q,(R)]. In addition, A(0) and q,(R) 
(for R/L 6 1) are both of the order of magnitude of 
unity (see later), therefore we may write with a 
relative error less than h/R : 

q(R) 1: (1 + W/L)q&R); R >>h + W, L & R, (11) 

which is the same as eqn (9), being here W/L << 1. In 
conclusion, the approximation for r~ of eqn (9) holds, 
in the limit of (h + W)/R cc 1, for any L larger than 
3. (h + W), though with better accuracy in the case of 
long diffusion lengths. 

The peculiar structure of eqn (9) brings an ad- 
vantage, which can be better seen by taking the 
logarithm: 

In q(R) N W/L + In qo(R/L). (12) 

Equation (12) shows that in the high-energy region 
the semi-logarithmic r) vs R curves for a given value 
of L, but different W, are identical in shape but 
shifted vertically over a distance W/L with respect 
to the reference curve with W = 0. This property 
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suggests an easy graphical method of estimating the 
value of L from high-energy q(R) data. 

A family of theoretical curves of In q0 vs R for 
different values of L is drawn on a transparent sheet, 
which is superimposed on a similar (i.e. with the same 
semilogarithmic scale) plot of the experimental q(R) 
data. The best-fit theoretical curve is then selected by 
shifting upwards the template with respect to the 
experimental plot. The amount of this translation, 
according to eqn (12) is W/L and should therefore 
be consistent with the (even roughly) known value of 
W and the value of L that labels the best-fit curve. 
Consistency is obtained by trial and error; the esti- 
mate of L obtained by this procedure can be refined 
by numerical fitting, as illustrated in the next section. 

2.2. Fit to experiment 

The experimental data typically consists of N 
values of the collection efficiency yi obtained at 
Ri = R(E,), and are to be fitted with the model 
function [see eqn (9)]: 

rl(R, L, W) = exp(WIL)%,(RlL), (13) 

with ‘lo given by eqn (6). Since W is considered here 
as known, the required fit involves only L, though not 
in a linear way. Let us write the model function of 
eqn (13) as q(R, A), with 1 = l/L. A best fit in the 
least-squares sense requires the minimization with 
respect to 1 of: 

I’(l) = 2 [Y, - v(& ~)I*. (14) 
,=1 

This nonlinear problem can be converted to a linear 
one[7] by writing 1 = 1, + t, where 1, is a starting 
value of 1, possibly obtained with the graphical 
procedure described in the previous paragraph, and 
6 is a correction to be determined. According to the 
Gauss-Newton method[8], the model function is then 
approximated by its linear expansion about &: 

The values of rip and gp can be calculated using the 
expressions for Q, and dq,,/dp of Sections 3.1, 3.3 and 
eqn (13). Substituting eqn (15) into eqn (14) it is easy 
to find that the solution of the linearized problem is 
given by: 

% = 5 (.!A - d%P 5 (be)‘. (16) 
i=: , ,=I 

The resulting value of 1 is 1, = 1, + tO, which is then 
used as a starting value of a new Taylor’s expansion 
to yield a new correction t,. At each iteration the 
value of V(n) is computed to check that the minimum 
is being approached. The procedure is repeated until 
the change in 1 between successive steps becomes 
small in comparison to its standard deviation, which 
is estimated as explained shortly. The last-step value 
& + , yields the best fit value of the diffusion length 
i = l/i= I/&+,. 

An estimate of the error by which this deter- 
mination of L is affected, as a consequence of the 
scatter of the values y, about the best-fit curve, can 
be obtained by analogy with the linear regression, 
although the related arguments are expected to hold 
here only approximately[8,9]. Thus assuming that the 
yi’s are random variables normally distributed about 
q(R,, j) with common variance cr2, we may estimate 
rr* by[8]: 

s* = & i$, [vi - rl(& &I’. (17) 

By treating & as a non-random variable[7,9], we 
have: 

a*(j) = al& + Q) = a*(Q). (18) 

Writing eqn (16) at 1, yields: 

L*=i$, (Yi-Vfkf f (d)'. 

ii' 

(19) 
i=, 

Since qk will be close enough to q”“=q(R,,fi), 
yi - q” will also be approximately normally distrib- 
uted with mean zero and variance a*; hence: 

with s2 given by eqn (17). Since N may not be large 
(c lo), s* may differ significantly from a*, and it is 
better to give a confidence interval for ck using the 
known fact (strictly valid only for the linear case) 
that: 

(6 -%)/Q(Q), (21) 

when Q is estimated from the sample, has the Student 
t distribution with N - 1 degrees of freedom[7]. If c1 
is the probability that ) t 1 based on N - 1 d.f. is larger 
than t,, we may write the 1 - CI confidence interval for 
tk as Q f t,a(c,); since 1, has been regarded as a 
non-random variable, the corresponding confidence 
interval for 1 = 1, + tk is i 1 taa(ck). From this 
result, being 6L = -l/2*61, we can give the 1 - tl 
confidence interval for i as i + i*t,a(~). 

3. APPLICATION TO EXPERIMENTAL DATA 

In the approximate expression of eqn (9) the form 
of the function qo(R) is still unspecified and actually 
depends through A([) on the semiconductor being 
considered [see eqn (6)]. We analyze here published 
measurements on GaAs and Si; since the analytical 
expressions for n(c) of GaAs and Si are different, it 
is convenient to discuss the two cases separately. 

3.1. Measurements on GaAs 

For GaAs the function A([) has the form[2]: 

n(5) = A exp]-(i -Ld2/N21 - B exp(-Kh (22) 

with <,, = 0.125, Al; = 0.350, /3 = 32, B/A = 0.4; the 
normalization condition for A yields A = 2.3948, 
B = 0.9579. From the expressions of Ref. [2], or 
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directly from eqn (6), we have: 

vi,(p) = fAJ;;ANp) - Bl(B + P), 

where p = R IL, and 

(23) 

F(P) = ev[-pi, + (PA<P)~I 

x erfc(pAiP - MW (24) 

As suggested in Ref.[2], for the purpose of evaluating 
numerically F(p), it is convenient to use the asymp- 
totic expansion of the erfc function[lO] when its 
argument is large and positive. We will also need the 
derivative of ‘lo: 

- tAA12exp]-(i,/Ai)21 + BI(P + ~12. (25) 

Figure 2 is a semilogarithmic plot of qo(R/L) vs R for 
various L; the upper horizontal axis has been labelled 
with the corresponding values of E in GaAs, accord- 
ing to the relation R = 0.0148 El-’ (R in pm, E in 
keV)[2]. A similar plot, possibly with smaller steps 
in L, can be used to estimate rapidly L with the 
graphical procedure described in Section 2.1. 

Figure 2 shows that for large L the plot approaches 
a straight line; the limit value of the slope of this line 
can be obtained by developing in powers of p the 
exponential in eqn (6) and integrating term-by-term: 

(26) 

where 

pk = 
5 

*j’A(<)d[; k=0,1,2,... (27) 
0 

is the moment of n of order k, being h = 1 since n 
is normalized; a numerical evaluation yields 
p1 = 0.257, pL2 = 0.0952. To the first order of p we also 
have: 

lntlo(P)= -hp. (28) 

Hence we see that for p = R/L c-c 1 the semi- 
logarithmic plot of q. vs R is a straight line with slope 
p, /L; this result can be stated equivalently by saying 
that in the above limit the extended generation A([) 
is equivalent to unit a point source at a depth 
z = p, R, since for this source no = exp( - z/L). This 
property, however, is useful in practice only for large 
L, since for small L the condition R/L s 1 can be met 
only near the origin, where the basic assumption 
R >> h + W may not hold. 

tThe asymptotic expansion of qO(p) relies on the fact that 
in eqn (6) for large p, exp( -pi) changes much more 
rapidly than A([) near [ = 0. This property does not 
hold for the second term of eqn (22), because of the 
large value of p = 32; however, the contribution of 
this term to ttO can be evaluated exactly. Hence 
Q, _ n,(O)/p - 0.96/(32 + p), where A,(O) = 2.1 is the 
value at c = 0 of the first (Gaussian) term of eqn (22). 
This explains why the product pi for large p is -2 
and not en(O) = 1.15. 
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R Urni 
Fig. 2. Theoretical charge-collection efficiency Q, for an ideal 
Schottky barrier on GaAs as a function of the range R of 
primary electrons, for various diffusion lengths I,. Dashed 

lines correspond to the approximation of eqn (28). 

To analyze the curves of Fig. 2 in the opposite case 
of p >> 1, it is useful to recall that qo(p)cc l/p for large 
p [see the derivation of eqn (8)]. This result suggests 
that a plot of Rqo vs R should become approximately 
constant for large R, the value of this constant being 
proportional to Lt. The plots of Fig. 3 confirm this 
expectation; in addition, we see that the function 
RqO(R/L) has a broad maximum at R/L = 10, with 
a maximum value close to 2L. This property can be 
used to evaluate rapidly small values of L, as will be 
explained shortly. 

3.2. Experiments by Wu and Wittry[2] 

Wu and Wittry[2] published a number of collection 
efficiency profiles obtained on Au/GaAs Schottky 
diodes. The profiles to be analyzed here have been 
selected so as to cover the widest range of diffusion 
lengths; the parameters of the corresponding diodes, 
as given in Ref. [2], are listed in Table 1. Collection 
efficiency data have been obtained by measuring as 
accurately as possible from their graphs, and con- 
verting the original 1 (E) profiles to q(R) by using the 
known range-energy relation mentioned in Section 

Table 1. Parameters of some Au/&As Schottky diodes investigated 
in Ref. [2] and comparison with the values of L obtained in the 
present study. The equivalent metal thickness is here hcq = hp,/p,[2], 
where p, and pa are the densities of the metal and semiconductor, 

respectively. The other symbols are defined in the text 

h (mn) L (rm) L (rm) 
expt. L (nm) W (pm) Ref. [2] this study 

IO 36 0.03 0.41 0.40 f 0.02 
25 91 0.1 0.64 0.64 f 0.02 
II 40 0.06 I.1 I.10 + 0.03 
25 91 0.15 1.7 1.67 f 0.06 
9 33 0.22 4 3.8rtO.15 

I3 47 0.4 12.2 12.2 _+ 0.6 
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Fig. 3. Plot of the function Rr),, vs R for different values of 
L, as calculated from eqns (23) and (24) for GaAs. 

3.1. In consideration of the theoretical trends of 
Fig. 2, only the decreasing, high-energy part of the 6 
selected profiles has been considered, and the corre- 
sponding experimental points have been plotted in 
Fig. 4. The curves drawn through the experimental 
points are the best-fit theoretical curves; the values 
of L and the related errors have been obtained with 
the fitting procedure described in Section 2.2. Only a 
few iterations were required to reach a stable value of 
L. The errors have been calculated by assuming 
tl = 0.1, i.e. by establishing a 90% confidence level for 
L. Although the absolute error of L increases with L, 
the relative error is seen to be fairly constant, ranging 
from 3 to 5%. There may be some uncertainty 
whether some of the first points of the plots of 
Fig. 4 should be included in the fit; a simple criterion 

E (keV) 

1.0 
10 20 30 40 50 60 m 

r 

0.8 

0.6 

? 

0.4 

0.3 

0.2 

0.1 0’ _I 
5 10 15 20 

R (Mm1 

Fig. 4. Selected collection efficiency data obtained in Ref. [2] 
on Au/GaAs Schottky diodes; refer to Table 1 for the diode 
parameters. The data have been fitted with eqn (13) for 
known W; the best-fit values of L and related errors (90% 

confidence intervals) are given on each curve. 

is to disregard a point at low R if its inclusion changes 
significantly (i.e. more than the error) the value of L 
obtained by fitting the remaining points. 

The present results and those obtained in Ref. [2] 
by fitting the whole profiles are compared in 
Table 1. The agreement is good, the largest difference 
(about 5%) being observed in the sample with 
L =4pm. Following the discussion of the previous 
section, the profile with L = 12pm also has been 
fitted using the approximation of eqn (28) for qO; the 
resulting value L = 13 f 0.5 pm indicates that in this 
case the approximation is adequate. 

Now that L has been determined, we can rewrite 
eqn (9) as 

r~ exp(- w/L) = r,+#IL), (29) 

and evaluate its left-hand side for the experimental 
points of Fig. 4. A plot of the resulting values vs R/L, 
according to eqn (29), is expected to fall on the single 
curve qo(R/L); this property, which is demonstrated 
clearly by the plot of Fig. 5, is a direct consequence 
of the possibility of representing the generation func- 
tion at different electron beam energies by a unique 
function A (z/R): the scaling property of ,4 is reflected 
in a similar property of qO, according to the basic 
relation (6). 

A plot similar to that of Fig. 5, but for the function 
(R/L)q,(R/L), is shown in Fig. 6. The experimental 
points reach the maximum of pq,,(p), which occurs at 
p = 10, only for shorter diffusion lengths; in fact, 
since here R,,,,, = R(70 keV) = 20 pm, the maximum 
will fall in the experimental range of values of R only 
if L < R,,,,,/lO = 2 pm (see Fig. 3). 

This result shows that it is possible to estimate 
quickly values of L less than 2 pm by plotting Rq vs 
R; the value of the local maximum of Rq, granting 
that this maximum is present in the plot, is 
2L exp( W/L), since that of Rq, is 2L. Hence L can 

1.0 

0.8 

Q6 

9 

0.4 

03 

0.2 

0.1 
0 

D 
. 

I 

5 10 15 20 
R/L 

Fig. 5. Comparison between the function qo(R/L) for GaAs 
and its “experimental” values, as calculated using the data 
of Fig. 4 and eqn (29). Some of the data for L = 12.2pm 
have been omitted to improve the readability of the plot. 
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3.0 I 

Ga As 
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. 1.67 
a 1.10 
. 0.64 
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0.5 18 I 
0 5 10 15 20 

R/L 

Fig. 6. Comparison between the universal function 
(R/L)q,(R/L) and its “experimental” values. 

be found by solving numerically the simple transcen- 
dental equation: 

L exp(WIL) =%Rvl),,,, (30) 

where W, as before, is assumed to be known. If the 
maximum available energy of primary electrons is 
less than 70 keV, the maximum L that can be deter- 
mined by this method will be reduced accordingly. 

3.3. Measurements on Si 

For silicon, the function ,4(c) has been given 
by Everhart and Hoff[6] in form of a third-degree 
polynomial: 

,~l([)=0.6+6.21[-12.54[2+5.69<‘; O<[<l.l 

=o [ > 1.1 

(31) 

The integration required to evaluate q0 [see eqn (6)] 
can be performed analytically; however, for numeri- 
cal computations, especially for large L, it is more 
convenient to develop exp( - pi) in power series and 
write: 

“A(()i’ 
(32) 

This series involves the moments of A [see eqn (27)], 
which can be easily expressed analytically. Anal- 
ogously, we have: 

h-o c- = (-‘)’ k “A([)<k+ld{. 
dp=-,=, k! p s 

(33) 
0 

Figure 7 is a semilogarithmic plot of Q vs R for 
various L; the upper horizontal axis is labelled with 
the corresponding values of E in Si, according to the 
relation by Everhart and Hoff[6] R = 0.0171 E”’ 
(R in pm, E in keV), which has been extrapolated 
here up to 56 keV. The curves have been drawn for 
larger values of L than in the corresponding Fig. 2 for 
GaAs, since diffusion lengths in Si are usually sub- 
stantially larger than in GaAs. For large L the plot 
of Fig. 7 approaches a straight line with reciprocal 
slope ~1, /L = 0.41/L. 

E ikeV) 
10 20 30 40 

0.6 

I L=Pum\ I 
0.2 1 I I\ I 

0 5 10 15 20 
R M-n) 

Fig. 7. Theoretical charge-collection efficiency for an ideal 
Schottky barrier on Si as a function of the range R of 
primary electrons, for various diffusion lengths L. Dashed 
lines correspond to the approximation of eqn (28) with 
,u, = 0.41; for L > 50pm the dashed and continuous curves 

are practically indistinguishable. 

Numerical calculations show that the function 
pqO(p) has a maximum value of 1 .l, which occurs at 
p N 5; therefore a relative maximum will appear in 
the plot of Rqo vs R with R,,, = 15 pm only for 
L < 3 Brn. This is a rather small value for Si, so that 
the method of evaluating L from the maximum of Rq 
(see Section 3.2) will be here less useful than in the 
case of GaAs. 

3.4. Experiments by Kittler et al.[lI,lZ] 

Some collection efficiency profiles published by 
Kittler et a/.[1 1,121 on AljSi Schottky diodes have 
been analyzed as done in Section 3.2 for GaAs. The 
relevant parameters of the four selected diodes are 
summarized in Table 2. Figure 8 shows the decreasing 
part of the related r](R) profiles, with the experi- 
mental points and the best-fit (with known W) theor- 
etical curve. As in Fig. 4, larger values of L are seen 
to be affected by larger errors, but the relative error 
ranges again between 2-5%. The present evaluations 
of L and those of Refs [I 1,121 are compared in Table 
2: for short diffusion lengths the results are practically 
coincident, but for large L a maximum difference of 
about 15% is observed. This is most probably related 
to the known difficulty of determining with precision 
diffusion lengths larger than the electron range at 
the maximum energy available[2]. The profiles with 
L = 21.8 pm and L = 33 pm could be fitted equally 
well using the approximation q0 = exp( -0.41 R/L), 
obtaining L = 22 pm and L = 34 pm, respectively. 

Table 2. Parameters of some Al/Si Schottky diodes in- 
vestigated in Refs [I 1,121 and comparison with the values of 

L obtained in the present study. For Al on Si h,, 2 h 

L (Pm) L (Pm) 
h (nm) w (Pm) Refs [II,121 this study 

50 0.15 6.5 6.6 f 0.2 
140 0.76 7.7 Ref. [I I] 7.7 _t 0.4 

100 0.4 24 21.8iO.4 
loo 0.4 38 

> 
Ref. [I21 33 * I 
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Fig. 8. Selected collection efficiency data obtained in 
Refs [ll, 121 on Al/Si Schottky diodes; refer to Table 2 
for the diode parameters. The fitting procedure and the 

meaning of the errors are the same as in Fig. 4. 

Using the experimental data of Fig. 8 and the 
best-fit values of L, the values of r] exp( - W/L) have 
been computed and are plotted vs R/L in Fig. 9. 
According to eqn (29) and the related discussion, the 
plotted points are expected to follow the universal 
curve q,(R/L) for Si; Fig. 9 confirms this expectation. 
As in the case of GaAs, the scaling property demon- 
strated in Fig. 9 is a consequence of the functional 
dependence of the generation function on [ = z/R 

[see eqn (31)J. 

4. DISCUSSION AND CONCLUSIONS 

The method proposed here to analyze energy- 
dependent collection efficiency measurements has 
some analogy with the procedures that have been 
suggested for evaluating induced current profiles at 
fixed beam energy[l3-151. The modelling of these 
experiments generally leads to rather unwieldy ex- 
pressions for the induced current as a function of the 
beam-collector distance x0; therefore, for application 
purposes, simplified expressions have been derived 
for .x0>> L, i.e. for the condition where the generation 
region is more than a few diffusion lengths away from 
the junction. 

9. 

0.6 

0.5 

0.4 
I / I I 
0 0.5 1.0 1.5 2.0 2.5 

R/L 

Fig. 9. Comparison between the function Q(R/L) for Si and 
its “experimental” values, as calculated from the data of 

Fig. 8 and eqn (29). 

In the geometry of interest here, a large (average) 
distance between the generation region and the junc- 
tion edge corresponds to high beam energies; this 
suggested examining the possible simplifications of 
the general expression for q in the limit of large R. 
The resulting eqn (9) [eqn (11) is essentially the same] 
holds for this condition, although here R is only 
required to be large in comparison to h + Wand not 
to L. The simplified expression (9) has the advantage 
of approximating the profile q(R) of an actual device 
in terms of the function Q(R/L) of an ideal surface 
barrier; moreover, eqn (9) does not contain the metal 
thickness h and the second geometrical parameter W 
appears through a simple exponential factor. This 
latter circumstance suggested the possibility of an 
easy graphical analysis of the collection efficiency 
data. 

By examining the behaviour of q,,(R/L) in the two 
limiting cases where R is either much smaller or much 
larger than L, it has been found that the diffusion 
length determines the slope of the plot of In q vs R for 
R/L CC 1; in the opposite case of R/L >> 1, where the 
slope changes continuously (see Figs 2 and 7), the 
value of L was shown to be related to a different 
property of q(R), i.e. to the maximum value of the 
product R?(R). 

In addition, the closed form expressions for r~,, and 
dqO/dp (and hence for q and aq/an) simplified the 
non-linear numerical fitting required to determine L, 

and also allowed a specification of the statistical error 
of this determination, an information that is usually 
not given. The present estimates of L and those 
obtained by fitting the whole q(E) profile are gener- 
ally within this error for L less than about 10pm. 
Nevertheless, it remains difficult to assess the 
absolute accuracy of this determination since, for 
instance, the values of L obtained by the electron 
injection method considered here seem to be system- 
atically smaller than those obtained by optical 
excitation on the same samples[3,11]. 
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