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Abstract—A simplified method is described to evaluate the minority-carrier diffusion length L from
electron beam induced current measurements in Schottky diodes at normal irradiation. The method relies

on the analysis of the high-energy part of the plot of the charge-collection efficiency # of the device vs
the primary electron range R, on the basis of approximate theoretical expressions valid for large R. For
a known depletion layer width, the value of L and the associated error are obtained by a single parameter

fit, independently of the value of the metallization

thickness. Very small values of L can be estimated

directly from the maximum of the plot of Ry vs R. The applicability of the new procedure is illustrated

by evaluating data available from the literature on

1. INTRODUCTION

The minority-carrier diffusion length in a semicon-
ductor can be determined by electron beam excitation
using a number of geometries[l] In the conﬁguration
iniroduced by Wu and Witiry{2j, the eieciron beam
is incident normally to the semiconductor surface,
where a Schottky diode with a thin metallization has
been formed (Fig. 1). By measuring the ratio between
the beam-induced current and the total generation

Aana shtning tha frantian Af tha hanm _iniantad
|a|~ one oovtains the ifraction of tne olalli-ingliica

charge that is collected by the Schottky barrier, i.c.
the charge-collection efficiency n of the device. The
determination of  as a function of the electron beam
energy E yields a plot n(E), which contains the
about the diffusion lenoth 1. This
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configuration offers the advantage of allowing the
measurement of local values of L and is also not
affected by the surface properties of the semicon-
ductor.

Usually, to extract the value of L from collection
efficiency measurements, theoretical #(E) curves are
compared to the experimental ones. This fitting pro-
cedure involves as unknown paramaters L and the
thickness /4 of the metal layer; the width W of the
depletion region is more often assumed to be known
independently[2,3], but sometimes is regarded as an
additional parameter of the fit[4].
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chiefly affects the high-energy portion of the n(F)

curve[2], so that it appears reasonable to attempt
to determine L using high-energy data only. The
expected advantages of this procedure are a simplifi-
cation of the theoretical expressions of #(F) in the
limit of large E and an easier evaluation of L by a
single parameter fit to experiment
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applied to the graphical or numerical evaluation of

GaAs and Si.

charge-collection efficiency data. The practicability of
the new evaluation techniques is demonstrated by
applying them to pubiished experimentai measure-
ments performed both on GaAs and Si.

2. THE MODEL

2.1, Theory

Because of the planar symmetry, the treatment of
charge-collection in the device of Fig. 1 can be 1-D
and involves only the depth coordinate z. Let ¢(z) be
the charge-collection probability in the device, i.e. the

nrahohility that a fcarriar canaratad at a danth » unll
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be collected, and g(z, E) [cm~'s™!] the normalized,
energy-dependent, depth distribution of the electron
beam generation in the semiconductor. The charge-
collection efficiency #(E) is then given by[5]:

n(E) = J $ (g2, E) dz. 0

0

It has been shown that g(z, E) can be expressed
through a function A of the single variable { = z/R,
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Fig. 1. Schematic diagram of charge-collection efficiency
measurements in a Schottky diode.
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where R = R(E) is the range of primary electrons in

the semiconductor at the energy E: the nFrthnt

expression for A has been given by Wu and W1ttry[2]
for GaAs and by Everhart and Hoff[6] for Si. Thus
eqn (1) can be written in general as:

&=+ [ s@acme @
R J,
According to the usual models for ¢(z)[2,5], it is
assumed that ¢{z)=0 for 0 <z < A, where £ is the
thickness of the metal layer (or the equivalent thick-
ness, if the density or the atomic number of the metal
and semiconductor are very different). In the de-
pletion layer h <z < h+ W complete collection, i.e.

Al — 1ig aeenimad: in the hullk af tha camicanductar
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z>h+ W, ¢(z) =expl—(z —h — W)/L]. With this

specification, and introducing the variable {, eqn (2)

becomes:
n(R) =

(YA + exnlth + W)Y/L]
\ VAt TR o AU Iaed

i

XJ exp(—R{/L)A()dl. (3)
¢+ W&

The values of A, L and possibly of W are usually
obtained by fitting to experiment this expression, with
a proper choice of A.

The attempt made here is to find an approximation
to eqn (3) for large values of R, i.e. for R»>h + W,
and to use this approximation for evaluating the
high-energy #(R) data. Thus the lower limit of the
first integral in eqn (3) can be replaced by 0, by
simultancously subtracting the additional contri-
bution of the interval (0, 2/R), which is approxi-
mately hA(0)/R. The second integral over the range
[(2 + W)/R, co] can be written as the difference be-
tween two integrals over (0, o) and [0, (A + W)/R].

Hence:

n(R) ~ —(h/R)A(0) + expi(h + W)/L]

[d fh+ WYR

xJ exp(—RC/L)A(z)dc—J AQ)
0 0
x {expl—(R{ —h — W)L]—1}dl. (@)

We may evaluate approximately the second integral
of eqn (4) by observing that the smooth function 4 ({)
changes little in the small interval [0, (# + W)/R], and

can therefore be approximated by 4(0). Thus:

n(R) = —(h/R)A(0) + exp[(h + W)/LIn,(R) ~ A(0)

{"th+ WYR
x J {exp[—(R{ —h — W)/L} -1} d(,

0
(&)

where

no(R) = Jf exp(~RULAQ A (6)

0

represents the collection efficiency of an ideal surface

havreiar withh L — 7 __ N Tha valisa of ¢tha tatageal
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eqn (5) is (L/R){expl[(h + W)/L]1—(h + W)/L — 1};
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since usually (A + W)/L < 1/3 (higher resistivity ma-

terials, where W is larger have also larger ’
ierials, where ¥ H

Table 1), this expression can be approx1mated to the
second order of (h+ W)/L by i(h+ W) /(RL).
Hence:

n(R) = —A(O){A/R +3(h + W)} /(RL))
+expl(h + W)/LIny(R). (7)

see e o
arger nave aso arger L) seC €.g.
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We may reduce this expression further by
the relative weight of its terms. It is convenient to
consider separately the two cases where, in the high-
energy interval examined, L« R or L 2z R.

When L « R, the value of 7o(R) can be estimated
through the leading term of its asymptotic expansion
with respect to R/L > 1, which is A(G)L/R. Since
(h+ W)L < 1/3, we can approximate the expo-

7 13 7aY0 2 o A

nential in eqn (7) by 1+ (h + W)/L. Thus:
n(R) ~ —3A(0)(h + W) /(RL)

+ (1 + W/L)AO)L/R, (8)
where the term — A(0)2/R of eqn (7) has cancelled
out with an opposite contribution arising from the
term involving 1,. The ratio of the first addend of eqn
(8) to the second one is §( + W)?/L? < 1/18. There-
fore, with a relative error less than ~5% we can
simplify eqn (7) to:

n(R) = exp(W/L)no(R);

If LzR, being (h+ W)/ R«1 we also have
(h + W)/L «1. Keeping only first-order terms, with

R»h+ W, L&R. (9)

some rearrangement. ean (7)) can be written as:

SOIINC Raliaipliiciiy, o4hl 7y alk o% ien

n(R) = —A(0h/R + (h/L)ny(R)
+ (1 + W/Lmn(R). (10)

Since L 2 R, the sum of the first two terms of
this equation is less than, or about equal to
(h/R)-[—A(0) + n,(R)]. In addition, A(0) and n,(R)
(for R/L < 1) are both of the order of magnitude of
unity (see later), therefore we may write with a
relative error less than A/R:

n(R)~(1+ W/Lny(R); R»h+W,L2zR, (I1)

which is the same as eqn (9), being here W/L « 1. In
conclusion, the approximation for n of eqn (9) holds,
in the limit of (A + W)/R «1, for any L larger than
3:(h + W), though with better accuracy in the case of
long diffusion lengths.

The peculiar structure of eqn (9) brings an ad-
vantage, which can be better seen by taking the
logarithm:

Inn(R) ~ W/L + Inno(R/L). (12)

Equation (12) shows that in the high-energy region
the semi-logarithmic n vs R curves for a given value
of L, but different W, are identical in shape but

cmand i a Aictasema T/ T cesitbe cncenmn
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to the reference curve with W =0. This property
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suggests an easy graphical method of estimating the
value of L from h msu-energy i \n} data.

A family of theoretical curves of In#, vs R for
different values of L is drawn on a transparent sheet,
which is superimposed on a similar (i.e. with the same
semilogarithmic scale) plot of the experimental #(R)
data. The best-fit theoretical curve is then selected hv

shifting upwards the template with respect to the
experimental plot. The amount of this translation,
according to eqn (12), is W/L and should therefore
be consistent with the (even roughly) known value of
W and the value of L that labels the best-fit curve.
Consistency is obtained by trial and error; the esti-
mate of L obtained by this procedure can be refined

eyl Ll

Uy numcrl(,cu mnng, as illustrated in the nexi seciion.

2.2. Fit to experiment

The experimental data typically consists of N

values of the collection efficiency y, obtained at

R DL\ nd ara tn kn fttad with tha adal
l\’ = l\\l.‘ /, auu alw w v YWiLls l.ll\t lllUU\;l

function [see eqn (9)]:

ni(R I W)=avn
n{R, L, W) =exp(W,

ince W is considered here
involves nnlv L, fhnnoh not

with 5, given by eqn (6). S
as known, the required fit
in a linear way. Let us write the model function of
eqn (13) as n(R, A), with 4 =1/L. A best fit in the
least-squares sense requires the minimization with

respect to 4 of:

V(i)=Y [n—nR, DL

i=1

(14

This nonlinear probiem can be converied to a linear
one[7] by writing A = Ay + ¢, where 4, is a starting
value of A, possibly obtained with the graphical
procedure described in the previous paragraph, and
€ is a correction to be determined. According to the
Gauss—Newton method[8), the model function is then
approximated by its linear expansion about 4,:

n(R.,i)—rz(R,,/loH e=n+gle. (15)

>a|-=

The values of n

ues of #? and g? can be calculated using the
expressions for 1, and dn,/dp of Sections 3.1, 3.3 and
eqn (13). Substituting eqn (15) into eqn (14), 1t is easy
to find that the solution of the iinearized probiem is
given by:

%=ZUfWM/Z®V (16)

i=1 i=1
The resulting value of 4 is 4; = A, + &, which is then
used as a starting value of a new Taylor’s expansion
to yield a new correction ¢,. At each iteration the
value of ¥ (4) is computed to check that the minimum

is being approached. The procedure is repeated until
the change in 1 between successive steps becomes

small in comparison to its standard dev1atlon, which

is estimated as explained shortly. The last-step value

Ak+| ylelas the best fit value of the diffusion length
=11 =1/,
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An estimate of the error by which this deter-
as a consequence of the
scatter of the values y; about the best-fit curve, can
be obtained by analogy with the linear regression,
although the related arguments are expected to hold

here only approximately[8,9]. Thus assuming that the

Vi s are random variableg nnrmnllv distributed abount

n(R,, 4) with common variance o7, we may estimate
a? by[8]:

e P S ey Py yovee: |
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By treating A, as a non-random variable[7, 9], we
have:

(D) =0 (h + &) = 0(er). (18)
Writing eqn (16) at A, yields:
N N
=3 (y,-~rif-‘)gf~‘/2 (85). 19)
i=1 [i=1
Since n* will be close enough to 5**'=n(R,, 1),

y; —n* will also be approximately normally distrib-
uted with mean zero and variance ¢2; hence:

with s? given by eqn (17). Since N may not be large
(< 10), s? may differ significantly from ¢?, and it is
better to give a confidence interval for ¢, using the
known fact (strictly valid only for the linear case)
that:

(€ —e)/ale),

when o is estimated from the sample, has the Student
t distribution with N — 1 degrees of freedom(7]. If &
is the probability that || based on N — 1 d.f. is larger
than ¢,, we may write the 1 — a confidence interval for

(21

cince 1. hac hoon rocarded ag a
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non-random variable, the corresponding confidence
interval for A =4,+¢, is A +¢,0(¢). From this
result, being L = —1/4284, we can give the | —«a

confidence interval for L as L + £21,0(¢,).

3. APPLICATION TO EXPERIMENTAL DATA

700N

In the approximate expression of eqn (9), the form
of the function #,(R) is still unspecified and actually
depends through A({) on the semiconductor being
considered [see eqn (6)]. We analyze here published
measurements on GaAs and Si; since the analytical

cxprcsawnb lUl /1 \g} Ul Udﬂb auu Dl alc ulllClCllL, ll.
is convenient to discuss the two cases separately.

3.1. Measurements on GaAs
For GaAs the function A({) has the form[2]:
A(L) = A expl—({ —{o)*/AL*] — Bexp(—BL). (22)

with {,==0.125, A{ =0.350, § =32, B/4 =0.4; the
normalization condition for A yields 4 = 2.3948,
B =0.9579. From the expressions of Ref. [2], or
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directly from eqn (6), we have:
no(p) =3A4/TALF(p) —B/(B +p),  (23)
where p = R/L, and
F(p) = expl—plo + (pAL/2)]
x erfc(p AL /2 — {,/AL).

As suggested in Ref.[2], for the purpose of evaluating
numerically F(p), it is convenient to use the asymp-
totic expansion of the erfc function[10] when its
argument is large and positive. We will also need the

24)

Aaciimtioin ~ .0 o
uslivauvo vl fjp.

A
ap

= A# AL(p AL —20)F(p)

—3AA exp[—((o/ALP]+ B/(B +p). (25)

Figure 2 is a semilogarithmic plot of ,(R/L) vs R for
various L; the upper horizontal axis has been labelled
with the corresponding values of E in GaAs, accord-
ing to the relation R =0.0148 E'7 (R in um, E in
keV)[2]. A similar plot, possibly with smaller steps
in L, can be used to estimate rapidiy L with the
graphical procedure described in Section 2.1.
Figure 2 shows that for large L the plot approaches
a straight line; the limit value of the slope of this line
can be obtained by developing in powers of p the
exponeniial in eqn (6) and integrating terim-by-term:

M) =1—wmp +mp*/2~..., (26)
where
[ ) ]
#k=J {*AQ)dd; k£=0,1,2,... 27
0
is the moment of A of order k, being u, = 1 since A

is normalized; a numerical evaluation vyields
u =0.257, p, = 0.0952. To the first order of p we also
have:

Inny(p) = —pp. 28)

Hence we see that for p =R/L«1 the semi-
logarithmic plot of n, vs R is a straight line with slope
/L this result can be stated cq'urvaleﬁtly by saying
that in the above limit the extended generation A({)
is equivalent to unit a point source at a depth
z =, R, since for this source n, = exp(—z/L). This
property, however, is useful in practice only for large

L, since for small L the condition R /L <1 can be met

only near the origin, where the basw assumption
R>»h + W may not hold.

+The asymptotic expansion of n,(p) relies on the fact that
in eqn (6) for large p, exp(—p{) changes much more
rapidly than A({) near { = 0. This property does not
hold for the second term of eqn (22), because of the
large value of f =32; however, the contribution of
this term to n, can be evaluated exactly. Hence
Mo~ 4,(0)/p —0.96/(32 + p), where 4,(0)=2.1 is the
value at { = 0 of the first (Gaussian) term of eqn (22).
This explains why the product pne(p) for large p is ~2
and not ~A(0)=[.15.
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Fig. 2. Theoretical charge-collection sFﬁmpnm: %o for an ideal

Schottky barrier on GaAs as a function of the range R of
primary electrons, for various diffusion lengths L. Dashed
lines correspond to the approximation of egqn (28).
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of p>»1, it is useful to recall that ny(p)ocl/p for large
p [see the derivation of eqn (8)]. This result suggests
that a plot of Rn, vs R should become approximately
constant for large R, the value of this constant being

prnr\nrhnnal to L+. The n]ntc of Pny 3 confirm this

oportional to The plots of confirm this
expectation; in addltron, we see that the function
Rno(R/L) has a broad maximum at R/L = 10, with
a maximum value close to 2L. This property can be
used to evaluate rapidly small values of L, as will be
explained shortly.

3.2. Experiments by Wu and Wittry[2]

Wu and Wittry{2]j published a number of coliection
efficiency profiles obtained on Au/GaAs Schottky
diodes. The profiles to be analyzed here have been
selected so as to cover the widest range of diffusion
lengths- the parameters of the corresponding diodes,
as given in Ref. [2], are listed in Table 1.
efficiency data have been obtained by measuring as
accurately as possible from their graphs, and con-
verting the original n(E) profiles to #(R) by using the
known range-energy relation mentioned in Section

FalPS | POy
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Table 1. Parameters of some Au/GaAs Schottky diodes investigated
in Ref. [2} and comparison with the values of L obtained in the
present study. The equivalent metal thickness is here ., = hp.,/p,[2],
where p,. and p, are the densities of the metal and semiconductor,
respectively. The other symbols are defined in the text

h (nm) L (pm) L (um)
expt. heq (nm) W (um) Ref. [2] this study
10 36 0.03 0.41 0.40 + 0.02
25 91 0.1 0.64 0.64 +0.02
11 40 0.06 11 1.10 £ 0.03
25 91 0.15 1.7 1.67 +0.06
g 33 0.22 4 3.8+40.15

13 47 0.4 12.2 122+ 0.6
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Fig. 3. Plot of the function Rn, vs R for different values of
L, as calculated from eqns (23) and (24) for GaAs.

Fig. 2, onl the decreasmg, hngh-energy par
selected profiles has been considered, and the corre-
sponding experimental points have been plotted in
Fig. 4. The curves drawn through the experimental
points are the best-fit theoretical curves; the values
of L and the related errors have been obtained with
the fitting procedure described in Section 2.2. Only a
few iterations were required to reach a stabie vaiue of
L. The errors have been calculated by assuming
a = 0.1, i.e. by establishing a 90% confidence level for
L. Although the absolute error of L increases with L,
the relative error is seen to be fairly constant, ranging
from 3 to 5%. There may be some uncertainty
whether some of the first points of the plots of

Fig. 4 should be included in the fit; a simple criterion

E (keV)
1010 20 30 40 50 60 70
08 | n‘;\, 1

rd L- 12 2:06 um
06 \
" i
38 015
04} .
03} \ 167:006
110 £003
o2} . .
+ 064 £ 002
040 £ 002 . GaAs
01 L i L i
0 5 10 15 20
R (um)

Fig. 4. Selected collection efficiency data obtained in Ref. [2]
on Au/GaAs Schottky diodes; refer to Table | for the diode
parameters. The data have been fitted with eqn (13) for
known W; the best-fit values of L and related errors (90%
confidence intervals) are given on each curve.
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isto disregard a point at low R if its inclusion changes
significantly (i.e. more than the error) the value of L
obtained by fitting the remaining points.

The present results and those obtained in Ref. [2]
by fitting the whole profiles are compared in
Table 1. The agreement is good, the largest difference
fahant §504) heina onhcervad in

(about 5%) being observed in
L =4 um. Following the discussion of the previous
section, the profile with L =12 um also has been
fitted using the approximation of eqn (28) for »,; the
resulting value L = 13 + 0.5 ym indicates that in this
case the approximation is adequate.

Now that L has been determined, we can rewrite
eqn (9) as

the csamnle with
tng samp:¢ wiil

n exp(—W/L) = no(R/L), (29)

and evaluate its left-hand side for the experimental
points of Fig. 4. A plot of the resulting values vs R/L,
according to eqn (29), is expected to fall on the single

onrua » (D /T thic nranarty  whish demmangtratad
Luive 1,0\1\/‘_./, this Propefty, wiilini lo agemonstratea

clearly by the plot of Fig. 5, is a direct consequence
of the possibility of representing the generation func-
tion at different electron beam energies by a unique
function A (z/R): the scaling property of A is reflected
in a similar property of »,, according to the basic
relation (6).

A plot similar to that of Fig. 5, but for the function
(R/L)ne(R/L), is shown in Fig. 6. The experimental
points reach the maximum of pn,(p), which occurs at
p =~ 10, only for shorter diffusion lengths; in fact,
since here R_,, = R(70 keV) = 20 um, the maximum
will fall in the experimental range of values of R only
if L <R, /10=2pyum (see Fig. 3).

This result shows that it is possible to estimate
quickly values of L less than 2 um by plotting Ry vs
R; the value of the local maximum of Ry, granting

‘that this maximum is present in the plot, is

I a 71T Y gimna that

i T ~F is 2L. Hence L can
Ld CAP\PY L), DSLIILC LAl 01 l\”o lD &Ly, 1CIHLC L Lall

10 T T T

1
| Lm ]
08} ° .38 :
i . 167 ]

K “ s 110

04 |
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02t \ ]
GaAs \ .
o1 . ! . u
0 5 10 15 20
R/L

Fig. 5. Comparison between the function ,(R/L) for GaAs
and its “experimental” values, as calculated using the data
of Fig. 4 and eqn (29). Some of the data for L = 12.2 um
have been omitted to improve the readability of the plot.
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(R/L)no(R/L) and it

be found by solving numerically the simple transcen-
dental equation:

L exp(W/L) = 3(R7)pax. (30)

where W, as before, is assumed to be known. If the
maximum available energy of primary electrons is
less than 70 keV, the maximum L that can be deter-
mined by this method will be reduced accordingly.

3.3. Measurements orn Si
For silicon, the function A({) has been given

by Everhart and Hoff[6] in form of a third-degree

polynomial:

AL)=0.6 + 621 —12.54L24-5.69¢°;

— N
—_—u

0<{<1.1

1

€);

The integration required to evaluate n, [see eqn (6)]
can be performed analytically; however, for numeri-
cal computations, especially for large L, it is more
convenient to develop exp(— p{) in power series and
write;

V
-

r
5

o« ])k 11

we =3 S Ao 6
k=0 k ‘ Q

This series involves the moments of A [see eqn (27)},

which can be easﬂy expressed analytically. Anal-

x (] k 1.1
L ‘,Z.( ,,,) p"[ AQCH AL (33)
kP

Figure 7 is a semilogarithmic plot of #, vs R for
various L; the upper horizontal axis is labelled with
the corresponding values of E in Si, according to the
relation by Everhart and Hoff{6] R =0.0171 E'7”
(R in um, E in keV), which has been extrapolated
here up to 56 keV. The curves have been drawn for
larger values of L than in the corresponding Fig. 2 for
GaA:s, since diffusion lengths in Si are usually sub-
stantially larger than in GaAs. For large L the plot
of Fig. 7 approaches a straight line with reciprocai
slope p,/L = 041/L.
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Fig. 7. Theoretical charge-co‘le tion efficiency for an ideal
Schottky barrier on Si as a function of the range R of
primary electrons, for various diffusion lengths L. Dashed

of ean (28} with

n of eqn (28) with
#, = 0.4); for L > 50 um the dashed and continuous curves
are practically indistinguishable.

lines corresnond to the annroximatio
anes correspond ¢ (e approximatio

Numerical calculations show that the function
p1o(p) has a maximum value of 1.1, which occurs at
p =~ 5, therefore a relative maximum will appear in
the plot of Ry, vs R with R, =15um only for
L <3 ym. This is a rather small value for Si, so that
the method of evaluating L from the maximum of Ry
(see Section 3.2) will be here less useful than in the

case of GaAs.

3.4. Experiments by Kittler et al.[11,12]

Some collection efficiency profiles published by
Kittler et al[l1, 12] on Al/Si Schottky diodes have
been anaxyzeu as done in Section 3.2 for GaAs. The
relevant parameters of the four selected diodes are
summarized in Table 2. Figure 8 shows the decreasing
part of the related #(R) profiles, with the experi-

mental points and the best-fit (with known W) theor-

etical curve Ac in Fio A larager valuee of J ars gaon
euca: curve, As in rig. 4, arger vaiues ol L are seen

to be affected by larger errors, but the relative error
ranges again between 2-5%. The present evaluations
of L and those of Refs [11,12] are compared in Table
2: for short diffusion lengths the results are practically
coincident, but for large L a maximum difference of
about 15% is observed. This is most probably related
to the known difficulty of determining with precision
diffusion lengths larger than the electron range at
the maximum energy available[2]. The profiles with
L =218 um and L =33 um could be fitted equally
well using the approximation n, = exp(—0.41 R/L),
obtaining L =22 um and L =34 um, respectively.

Table 2. Parameters of some Al/Si Schottky diodes in-
vestigated in Refs (11,12] and comparison with the values of
L obtained in the present study. For Al on Si A, ~h

L (um) L (um)
h (nm) W (um) Refs [11,12] this study
50 015 65 6.6+0.2
140 0.76 7.7} Ref. 11 77304
160 04 23 20.8+04
100 0.4 38 RO Ty
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Fig. 8. Selected collection efficiency data obtained in
Refs [11,12] on Al/Si Schottky diodes; refer to Table 2
for the diode parameters The ﬁtting procedure and the

meanmg of the errors are the same as in I‘lg 4.
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best-fit values of L, the values of n exp(— W/L) have
been computed and are plotted vs R/L in Fig. 9.
According to eqn (29) and the related discussion, the
plotted points are expected to follow the universal

curve n (R /1) for Si: Fig. 9 confirms this exnectation

CRiVe T/ Ly 100 31, g, 7 CONLTIIS ulls CRpllilatloil.

As in the case of GaAs, the scaling property demon-
strated in Fig. 9 is a consequence of the functional
dependence of the generation function on { =z/R
[see eqn (31)].

4. DISCUSSION AND CONCLUSIONS

The method proposed here to analyze energy-
dependent collection efficiency measurements has
some analogy with the procedures that have been
suggested for evaluating induced current profiles at
fixed beam energy[13-15]. The modelling of these
experiments generally leads to rather unwieldy ex-
pressions for the induced current as a function of the
beam-collector distance x,; therefore, for application
purposes, simplified expressions have been derived

for xy>» L, i.e. for the condition where the generation
region is more than a few diffusion lenegths away from

cgion s rore tian a CUIRSION KIgs & 70

the junction.

10 T = - T

05 |

04 1

Fig. 9. Comparison between the function #,(R/L) for Si and
its “experimental” values, as calculated from the data of
Fig. 8 and egn (29).
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In the geometry of interest here, a large (average)
distance between the generation region and the junc-
tion edge corresponds to high beam energies; this
suggested examining the possible simplifications of
the general expression for # in the limit of large R.
The resulting eqn (9) [eqn (11) is essentially the same]

halde for thies candition

althnuoh hare R ic onlvy
1CiGS ICr als ¢ondgiuon,

although here R is only
required to be large in comparison to A + W and not
to L. The simplified expression (9) has the advantage
of approximating the profile #(R) of an actual device
in terms of the function n,(R/L) of an ideal surface
barrier; moreover, eqn (9) does not contain the metal

thickness A and the second geometrical parameter W
appears through a simple exponential factor. This
latter circumstance suggested the possibility of an
easy graphical analysis of the collection efficiency
data.

By examining the behaviour of #,(R/L) in the two
limiting cases where R is either much smaller or much
narger than L, it has been found that the diffusion
length determines the slope of the plot of In # vs R for
R/L «1; in the opposite case of R/L > 1, where the
slope changes continuously (see Figs 2 and 7), the
value of L was shown to be related to a different

nronerty of n(R) i1e to the max: value of tha
Properly ©f (&), 1.6, ¢ (€ maximum Va:uc o1 tng

product Rn(R).

In addition, the closed form expressions for 5, and
dne/dp (and hence for n and dn/6A) simplified the
non-linear numerical fitting required to determine L,
and also allowed a specification of the statistical error

of this determmatlon, an information that is usually
not given. The present estimates of L and those
obtained by fitting the whoie n(E) profile are gener-
ally within this error for L less than about 10 gm.
Nevertheless, it remains difficult to assess the
absolute accuracy of this determination since, for
instance, the values of L obtained by the electron

.......... LA oot Ao P P
lllJCLI.lUIl metnoa LUIIDIUCICU llClC seem to UC Systcm-~

atically smaller than those obtained by optical
excitation on the same samples[3,11].
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