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Abstract

Mathematical formulations of the effects of squeezed films of gas have been available for some years We compare
the theoretical predictions for two 1solated rectangular plates oscillating normal to each other with measurements on
a silicon microstructure that approximates such plates A range of pressure from vacuum to atmospheric, and
frequencies from dc to 50 kHz are employed, representing squeeze numbers between zero and 1000, and flow
regimes from molecular, through transition to substantially viscosity dominated Generally the agreement with
predictions 1s good, though there 1s a small but sigmficant difference mn effective plate separation between low
frequencies ( <10 kHz) and high frequencies (> 10 kHz) Attention 1s drawn to the high degree of gas trapping
between the plates at resonance, for all pressures mvestigated, the possibility of using this effect as a presssure sensor
1s noted Phase measurements at low frequency provide a simple measurement of gas viscosity

Introduction

Small oscillating structures can be profoundly
influenced by the gas which surrounds them The
significance of these effects becomes greater as
micromachined structures decrease in size Follow-
mg work on the resonating gate transistor [1],
Newell [2] discussed the effect of the surrounding
air on the Q-value of a resonator He observed
that the ever-present damping due to the ambient
air would be increased when the oscillator was
near a second surface due to the pumping action
of the gas betwgen the surfaces Howe and Muller
[3] constructed a resonating beam device that con-
tamned perforations to minimize damping caused
by the air trapped between the beam and the
substrate In this work, we present a detailed
comparison between the predictions based on the
theory of squeezed gas films, and experimental
measurements on a mucrostructure that approxi-
mates two 1solated plates oscillating normal to
each other It will be seen that mn general the
agreement 18 quite good though there are dis-
crepancies

Prior to the advent of microstructures, an exten-
sive literature has been developed relating to gas-
film lubrication [4], which had apphcation m
bearings and levitation systems Most of this work
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related to the parallel motion of the containing
surfaces, with less attention being given to the
‘squeeze film’ effect caused by normal motion of
the surfaces (e g, Salbu [5]) The realization that
squeeze films could have a significant effect on
bearng stability prompted a more detailed analy-
sis [6] and experiments to test the theory

Traditionally, 1t 1s the damping provided by
squeeze films that provides therr technological n-
terest Thus, Gnffin e al [7] investigated the use
of a squeezed gas film as a controlled damper for
pneumatic machines Blech [8] refers to their use
to tatlor the frequency response of seismic ac-
celerometers, and more recently their use 1n tailor-
ing the response of micromachined sensors has
been described by Allen ez a/ [9], and 1n more
detail by Starr [10] Seidel et a/ [11] have pub-
lished details of an accelerometer whose resonance
frequency rose shightly and whose damping n-
creased with increasing awr pressure The results
were modelled quantitatively by the empirical as-
sumption of a pressure-dependent phase lag n the
damping force More recently, the frequency re-
sponse of a micromachined accelerometer has been
modelled n terms of a fixed damping parameter at
atmospheric pressure [12]

A pressure-dependent rise in the resonance fre-
quency of structures contaming a trapped film of
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gas and a decrease in the relative importance of
damping were recogmzed in the early work Salbu
[5], for example, describes how with increasing
drive frequency, the region of viscous damping
due to parallel flow out of the trapping structure
will be increasingly confined to the edges of the
structure, leaving a growing region at the centre
dominated by compression effects In their mnvesti-
gation of the viscous damper, Griffin et al [7]
noted that at sufficiently high frequency, the
damper acts as a spring and fails to perform its
damping function This can be made use of i
capacitor microphone structures, where the stiff-
ness of the trapped gas can be used to raise the
structure resonance frequency [13]

Clearly, the relative importance of damping and
compressibility effects 1s frequency dependent, and
any analysis must take this into account A solu-
tion of the Reynolds equation governing gas films
trapped between plates was given n convenient
form by Blech [8] In the following, we measure
the damping and spring coefficients of a mu-
crostructure consisting of two oscillating plates
separated by a small gap as functions of pressure
and frequency The results are compared with the
predictions of Blech In general the agreement
between theory and experiment 1s good, but there
are some discrepancies 1n the fitting parameters
deduced at high and low frequencies Despite the
fact that the highest frequency used 15 50 kHz,
there 1s little evidence that the compressions m the
2 um gap structure are other than isothermal

Theoretical background

Consider a plate of area 4 and mass m oscillat-
mg 1n air close to a second fixed plate of equal
size, driven by a periodic forcing function £ and
subject to a restoring force that 15 hinear wih
displacement y and a damping force that 1s pro-
portional to the plate velocity The system can be
described by the second-order differential equation

my +by+ky=F (D

The parameters b and k will consist of a combina-
tion of the inherent stiffness and damping of the
mechanical structure, with the restoring and dissi-
pative forces arising from the gas film For small-
amplitude oscillations, b and & can be expected to
be constant, but for large amplitudes, such as

might occur near resonance, they could be amplh-
tude dependent and produce a non-linear response
to the drive To predict the system frequency
response, these frequency-dependent components
must be evaluated and added to the frequency-in-
dependent structural parameters

At a given frequency the response of the system
1s periodic and can be expressed in terms of an
amplitude y, and phase ¢, 1 ¢,
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where b and k are the values appropriate to the
frequency and w, 1s defined by w,? =k/m

The behaviour of the gas between the plates 1s
described by the compressible-gas-film Reynolds
equation, a smgle expression which relates pres-
sure, density and surface velocity for the specific
geometry of a bounded film (e g, [4], p 38) This
equation assumes that mertial forces are small
compared to viscous forces, that shear velocities
over a mean free path are small compared to the
thermal velocity, and that the gap 1s large com-
pared to the mean free path ([4], p 33,p 38, [10])
While the first two conditions are vahd over the
range explored here, the last, which 1s a measure
of the breakdown of continuum behaviour of the
gas, 1s seriously violated and 1s discussed later

Under the assumption of 1sothermal conditions,
Blech [8] has derived solutions for the pressure
within the gap between two oscillating rectangular
plates The pressure has two components one m
phase with the drive, which represents the spring-
like behaviour of the gas, and one in quadrature
(1e, in phase with the velocity), which represents
damping The integrals of these pressures over the
plates (eqns (25) and (26) in [8] lead directly to
expressions for the air spring and damping contri-
butions For square plates the air spring coefficient
18 given by

6462P, A 1
ST, B (mn)*{[m* + n?)* + ¢*[n*} )
and the air damping coefficient by
b= 646 P, A m? + n?
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where P, 1s the ambient pressure and d the plate
separation Note that i these solutions, an ideal
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boundary 1s assumed mn which the gas pressure
falls to ambient and there 1s no turbulence associ-
ated with the plate edges

The central parameter in these expressions 1s the
non-dimensional squeeze number, o, defined by

o = 12pa’w|P,d?

where u 1s the gas viscosity and a the plate side
length A relevant interpretation of the squeeze
number n the present context 1s the ratio of the
gas velocity needed to be set up between the plates
to ensure no compression, to the velocity which
can be achieved under viscous flow Low squeeze
numbers means gas escapes readily, hgh values
mean that gas 1s trapped n the structure by 1its
VISCOSIty

The behaviour of the microstructure will be
determined largely by the squeeze number At
sufficiently high pressure u 1s constant, and the
squeeze number will nse with frequency and fall
with pressure At lower pressures the gas be-
haviour 1n the gap 1s not collision dominated and
the effective viscosity becomes proportional to
pressure [14], so that while the squeeze number 1s
still proportional to frequency, it 1s not a function
of pressure The value of the pressure at which this
transition occurs will be considered later

There are three limiting cases of eqns (4) and
(5) At low squeeze numbers, the air 15 squeezed
from the gap without compresston, hence k, —+0
The oscillation time 1s sufficiently long that the air
behaves as 1f 1t were incompressible The damping
coefficient becomes

b, =0 035P, Ac/wd
=0424%/d? (6)

At high squeeze number, the air spring constant
simply converges to

k,=P,Ald (N

The damping coeflicient does not converge to a
limit, but falls approximately as 1/6°¢ Curves
presented by Blech [8] show that for low o, the
damping force exceeds the spring force, the damp-
ing reaches a maximum for ¢ ~ 10, while the spring
force continues to rise and become the dominant
force This cross-over 1s the cut-off of the pneu-
matic damper mentioned win the Introduction
Two questions arise i applying these expres-
sions The first 1s the extent to which the underlying
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assumption of 1sothermal conditions applies, con-
sidering that frequencies of up to 50 kHz will be
used 1n the experiments The second relates to the
pressure below which collective molecular be-
haviour fails in the essentially two-dimensional
films explored here At very low pressures, gas
collistons within this film are unimportant and
momentum 1s transferred between gas and surface
by ballistic trajectories and wall colhisions In this
regime, momentum transfer 1s proportional to gas
pressure [14] Thus while the true gas viscosity i1s
not pressure dependent, an effective viscosity that
1s proportional to pressure can be defined

Between this molecular-flow regime and the hgh
pressure constant-viscosity regime there 1s no theo-
retical description of the gas-flow behaviour As
pressure 1s decreased from high values, a decrease
1n momentum transfer between gas and walls below
the value expected for a constant viscosity 1s ob-
served The effect 1s described mn terms of slip as
molecules suffer decreasing numbers of collisions 1n
crossing the structure Knudsen, quoted n ref 14,
Table 2 8, gives values of capillary pipe conduction
as a function of pressure When the Knudsen
number falls below 001 (1e, a molecule would
experience more than 100 collisions 1n crossing the
pipe), the flow 1s almost entirely viscosity domi-
nated When the pipe size equals the mean free
path, viscous flow accounts for only 14% of the
observed flow as a result of interactions with the
system walls being more important than gas—gas
collisions This can be interpreted as a pressure-de-
pendent fall in the effective viscosity, bridging the
region between the pressure-proportional effective
viscosity of the molecular region and the constant-
viscostty, high-pressure, viscous-flow region In this
work we have assumed that the effective viscosity
rises linearly with pressure from zero, reaching the
viscous-flow value at a pressure of 250 Torr While
there 1s no reason to suppose that pipe flow data
should be 1dentical to data for flow in a gap, this
gives an approximate fit to the Knudsen data at the
pressures used here At 250 Torr, air molecules
would experience 10 collisions 1n crossing the gap
of the structure used here

Experiments

The test structure used 1s shown n Fig 1 It
consists of a mass-loaded silicon plate supported
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Fig 1 Beam-supported mass-loaded plate and Pyrex substrate com-
prising the test microstructure

by four beams, each 7 pm thick, 50 um wide and
190 um long The chip to which these beams are
anchored 1s electrostatically bonded to a Pyrex
base on which a system of 3 um high spacers has
been etched The metal pattern on the diaphragm
18 1 um thick, providing an air gap of 2 pum be-
tween the silicon plate and the base The surfaces
of the movable sihicon plate and the beam are
n*-doped to provide high conductivity A side
effect of this doping 1s to produce a tensile stress,
which raises the resonance frequency above that
expected for undoped sihcon The movable plate
and metalhzation form a vanable capacitor The
gaps between the support beam allow air to escape
when the plates are brought together, so that the
system 1s a reasonable approximation to the 1so-
lated pair of oscillating plates described 1n the
previous Section

The device was shaken by a small ac voltage
superimposed on a larger dc offset Since the
force between the plates 1s proportional to
(voltage)?, this combination produces a drive pro-
portional to the product of the dc and ac
voltages at the dnve frequency, together with a
small second-harmonic term Plate motion was
detected via capacitance changes measured using a
Boonton model 72AD meter, modified to extend
its useful range to 15kHz Capacitance fluctua-
tions were detected synchronously in the Boon-
ton output using a Princeton Apphed Research
Lock-in Analyser (model 5204) The phase and
amplitude response of the Boonton/Princeton

combmation was calibrated using a vanable ca-
pacity diode, and this response has been sub-
tracted from the measurements presented
Measurements of resonance frequency at higher
pressures were made using an HP impedance
analyser At resonance, the plate amplitude rises
and more work 1s done against the ambient air
Since this work must be supphed by the analyser,
a peak 1s seen 1n the real part of the admittance

Comparison with squeeze-film theory requires
that the parameters of the structure, 1¢, the plate
separation, silicon spring constant and mass of the
oscllating plate, be known Of these, the separa-
tion 1s critical since the damping vares as d° (eqn
(6)) The measured capacitance C, and the accu-
rately known plate area imply a plate separation
of 18 um, compared with the design value of
20pum Smce C, will include a lead-in contribu-
tion, we regard 1 8 ym as a lower hmut Weighing
a number of broken plates and masses yielded a
value of 04 mg + 10% for the oscillating mass

Information on the remamming structural para-
meter, k,, can be obtained in three ways The ratio
k,/m 1s found from the vacuum resonance fre-
quency

0)02 = ksn /m (8)

The measurement 1s highly accurate provided that
the mode of oscillation at resonance 1s the simple
parallel motion measured at d ¢ and low frequen-
cies This has not been proved, but two observa-
tions suggest that 1t 1s probable First, the
measured frequency 1s close to the expected one,
and computer modeling indicates that higher
modes would have significantly different frequen-
cies Secondly, these devices have been shocked
into resonance by a short electrostatic pulse The
existence of a smoothly decaying wavetrain (de-
tected capacitively) indicates that one mode 1s
dominant In other devices, this test has produced
beats mn the decay tram, indicating that multiple
modes could be excited

A dc¢ value for k,/m can be obtamed from the
capacitance change AC when the structure 1s n-
verted It 1s readily shown that

_ 2eg4
— ACA?
Finally, a third measurement comes from the

capacitance change seen when a dc or low-fre-
quency electric field 1s apphed, giving a value of

ka/m &)



TABLE 1 Comparison of measured and predicted vacuum reso-
nance frequencies

Method Vacuum Grawity Electric
oscillation force

Resonance 90 104 120

frequency (kHz)

Error source oscillation mode JAC, d \/_ . d?

dC/dV The electrostatic force between the plates
1s given by

g4
F=V

daF
dd

_dFdvdac

“dvdC dd

_&v4ardv

dt dc

While in prmnciple %, can be found independently
of m from eqn (10), the accuracy can be compro-
mused by the 4 term

Table 1 compares the vacuum resonance fre-
quency predicted by eqns (9) and (10) with that
measured, assuming d =1 8 ym

Since the errors in both AC and m are about
10%, 1t 1s tempting to conclude that the value of 4
1s too low by about 10% In the squeeze-film
measurements to follow, 1t will be seen that at
frequencies below 10 kHz, a gap d =2 1 pm gives
an excellent agreement between predictions and
measurements At higher frequencies, however, a
gap of 21 pum leads to significant discrepancies
between theory and experments, and the lower
value gitves much better agreement

Measurements of amphtude and phase have
been made at pressures of 50 mTorr, 10 Torr,
80 Torr and 760 Torr, for frequencies from dc to
15kHz Vacuum data (50 mTorr) showed a con-
stant amplitude and phase to a relatively narrow
resonance peak, as expected Amplitude and phase
data for pressures of 10, 80 and 760 Torr are
shown m Figs 2-4, along with responses com-
puted by combimning the squeeze-film expressions
(4) and (5) with the siicon parameters m the
response functions (2) and (3) Swince the data m
these Figures are obtamed at constant pressure,
the frequency axis can be rescaled i terms of

km: -

(10)
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Fig 2 (a) Amphtude and (b} phasc response of the structure at
10 Torr pressure The lines are the predicted response for the two
values of gap discussed From these data and Figs 3 and 4, best
agreement 18 found for a spacing of 21 um The squeeze numbers
shown correspond to a 2 pm gap, approximately midway between the
two values of spacing used in the calculations

squeeze number An alternative presentation 1s to
use the amplhitude and phase measurements to
extract the underlying spring and dampmng co-
efficients These are compared with the computed
values in Figs 5 and 6 for a pressure of 80 Torr It
was confirmed experimentally that the parameters
dertved were not amphitude dependent over the
range of excitation used

Fimnally, the resonant region at frequencies
above 15 kHz, which was not accessible by direct
capacitive measurement, was explored by the
mpedance analyser to give a measure of the high-
frequency spring constant via the system losses
Figure 7 shows typical measurements, agamn plate
motion at the drive frequency 1s induced by super-
imposing a small ac on a larger d ¢ voltage The
plate dnive 1s proportional to the product of the
two, and the losses measured by the analyser
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Fig 3 Asfor Fig 2, pressure 1s 80 Torr

indicate this Resonance frequencies were derived
m this way to an accuracy of 2 kHz for pressures
up to 1atm They are compared m Fig 8§ with
predicted values Data are plotted as (frequency)’
versus pressure, since eqn (7) indicates that at
high squeeze numbers, there should be a hnear
relation between these quantities

Discussion

The data in Figs 2-6 show a good agreement
with the theory over a wide range of pressure if the
plate separation 1s taken to be 21 uym The gap
value of 18 um, determined from static capaci-
tance measurements and expected to be a lower
himat, clearly seems to be too small This conclu-
sion 1s in agreement with that drawn from the
data of Table 1 The range of operation of this
structure goes from molecular flow, through the
transition region and almost into the viscosity-
dominated region It 1s perhaps surprising that the
Reynolds equation, modified only by an empinical
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Fig 5 Companison of the measured and theoretical spring co
efficients as a function of frequency for a pressure of 80 Torr The
value at low squeeze number corresponds to the spring constant of
the silicon structure alone

slip correction to viscosity derived from capillary
flow, gives such good agreement

A value of the air damping coefficient b, can be
found rather easily at low frequencies from the
variation of phase with frequency (eqn (3)), wher
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Fig 6 Measured and theoretical air (squeeze film) damping as a
function of frequency for a pressure of 80 Torr
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Fig 7 Resonance effects seen in measurements of electrical loss as
the structure 1s shaken electrostatically The amplitude of the motion
(and hence the loss) nises with the d ¢ bias
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Fig 8 The square of the device resonance frequency as a function of
pressure The two lines are the predicted values for two assumed
values of the air gap. Unlike the low-frequency data, better agreement
1s obtained if the gap 15 taken to be the lower it (1 8 um) The
squeeze-number scale corresponds to an air gap of 2 um
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this 1s combined with eqn (6), a value of effective
gas viscosity 1s readily obtained Below 300 Hz, for
example, the 760 Torr phase data yield a value of
air viscosity equal to 15 3 x 10~% kg/m/s at 20 °C
According to the Knudsen-corrected data [14], the
effective viscosity for air in a 2 pm diameter pipe 1s
0 85 times 1its true value, or 156 x 107 kg/m/s,
which 1s 1n rather good agreement with the de-
duced value A microstructure shaken at low fre-
quency could be used m this way to explore the
variation 1n effective viscosity through the transi-
tion region With calhibration, 1t could be used to
measure the wviscosity of a gas, or perhaps to
distinguish one gas from another As a device to
measure viscosity, the present structure could be
scaled to produce full viscous flow at atmospheric
pressure This could be done by increasing the gap
to 7 um, while increasing the plate side dimension
to 2500 um to achieve the same convemently mea-
surable phase shifts below 1 kHz With these di-
mensions, the Knudsen number at 1 atm pressure
would be 0 01

The low-frequency approximation (eqn (6)) in-
dicates that b 1s independent of frequency This 1s
true only up to a squeeze number of about five,
which occurs at frequencies of several hundred
hertz 1n these experiments The damping actually
falls rapidly with frequency and the fall in amph-
tude response as the frequency 1s increased 1s due
to the rapid stiffening of the air spring constant
This 1s seen particularly clearly in the 80 Torr
pressure data (Figs 3(a), 5 and 6) Any modelling
of such a structure 1 terms of frequency-indepen-
dent parameters is unlikely to be very accurate and
1s physically unsound The concepts of ‘maximally
flat response’ or ‘cntically damped’, which derive
from eqn (1) with constant coefficients, would
seem to have little relevance to squeeze-film
damped systems The present structure at atmo-
spheric pressure, for example, has an amplitude
response which falls from d ¢ and has a 3 db pont
at 400 Hz It continues to fall for a number of
frequency octaves, and 1s therefore ‘overdamped’
However, judged from the immpedance measure-
ments, 1t still shows a small resonance peak near
50 kHz with a Q-value, defined by

o =.f;es/Af

where Af 1s the local 3 db bandwidth, of four or
five The response of this system to a step function
may be aperiodic on long time scales, but on a
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short time frame nnging effects from the reso-
nance can be detected

The data of Fig 8 are mteresting in that they
are little affected by uncertainties in the silicon
spring constant at the upper end of the fre-
quency axis at atmospheric pressure the silicon
contributes only 4% to the combined stiffness
Obviously the assumed gap of 21 pum, a value
which yelded a good fit to the experimental data
at lower frequencies, now gives a significantly
low resonance frequency However, the lower
himait to the gap, 1 8 um, provides an excellent fit
The reason for this discrepancy 1s not clear
Damping 1n this particular structure 1s quite
high at high pressures The effect of dampmng on
the resonance frequency 1s to lower 1t (eqn (2))
and this effect 1s ncluded m the theoretical data
of Fig 8 The data all correspond to high
squeeze numbers, when approximation (7) for
the spring constant 18 beginming to apply The
ar spring constant 1s simply related to the -
verse of the gap, and the simplest explanation of
the 15% discrepancy 1 spring constant 1s to as-
sume that at high squeeze numbers an effective
gap must be used, which i1s smaller than the
physical gap

However, the Blech analysis 1s for 1sothermal
conditions, which historically appear to be the
dominant mode of bearing structures [4] Griffin
et al [7] analysed squeeze films using a poly-
tropic gas law, 1e, the possibiity of adiabatic
behaviour was admitted The result, n the hmit
of large o, 1s simply to multiply the spring con-
stant 1n eqn (7) by y, the spectfic heat ratio,
which 1s 14 for air An alternative explanation
of the greater air stiffness at high frequencies 1s
that the effective gap remains 2 1 um, but the
behaviour of the gas film 1s partially adiabatic
A strong argument agamst this comes from data
presented elsewhere [15] for different gases (and
different values of y), which indicate that the be-
haviour 1s m fact 1sothermal even at high fre-
quencies

The resonant data of Fig 8 all correspond to
high values of ¢ As the pressure rises, so does
the resonance frequency Thus over a wide range
of pressure, the parallel-plate structure maintains
a high squeeze number and at resonance, there-
fore, the plates are effectively confining the gas
This has been made the basis of a wide-range
and accurate pressure sensor [15]

Conclusions

The characteristics of gases within cavities 1n
microstructures are relevant to a number of recent
micromachimed devices The squeezing of air be-
tween close-spaced plates leads to highly fre-
quency-dependent behaviour We have taken
expressions for the spring and damping effects
caused by this air, oniginally developed 1n connec-
tion with gas-film lubrication, and compared them
with measurements on a silicon-based microstruc-
ture Squeeze numbers ranged between zero and
1000 Qualitatively, the expressions given by Blech
[8] give excellent descriptions of the data, and an
expression for the damping at low frequencies 1s
given The goodness of fit of the squeeze-film
expressions depends critically on the air-gap thick-
ness Below 10kHz, a gap value shightly above
that expected, but within the uncertanty of the
plate spacing, gives good quantitative agreement
between theory and experiment, but the same
value underestimates the air stiffness at high fre-
quencies In this regime, a gap close to the lower
hmit of the plate spacing 1s indicated The reason
for the discrepancy could relate to the failure of
1sothermal behaviour at higher frequencies, but
other evidence indicates that this explanation 1s
unlikely

Two applications are suggested from this work
At low frequencies, the phase charactenstics of a
driven mucrostructure have been shown to have
potential for measuring gas viscosity reasonably
accurately More significantly, the well-behaved
form of the resonance frequency versus pressure
curve for closely spaced plates oscillating normal
to each other shows that the gas 1s effectively
trapped (1 e, the squeeze number remains large) at
pressures from vacuum to atmospheric pressure
The possibility of a resonant pressure sensor based
on this principle 1s mentioned
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