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Abstract-The mechanisms of space-charge-limited (XL) current in solids are discussed. The 
practical case is taken of a wide band-gap, high-resistivity material containing empty shallow 
trapping states but in which empty deep trapping states are eliminated by the mechanism of defect 
compensation described by LONGINI and GREEN (1956). One-dimensional and one-carrier (electron) 
current through a plane parallel crystal is considered for the case when one contact is ohmic and one 
contact is blocking. 

At small forward voltage, current occurs by the predominant mechanism of carrier diffusion and 
increases approximately as the exponential of applied voltage; in this range, current is very sensitive 
to temperature changes. At large forward voltage, current occurs by the predominant mechanism 
of carrier drift and, after a voltage threshold due to the work-function difference between anode 
and cathode metals, increases very nearly as the square of applied voltage; this result confirms the 
simplified analvsis of MOTT and GURNEY (1940) and is the solid-state analogue of the three-halves 
power law for space-charge-limited current in vacuum. In this range current varies as the inverse 
cube of crystal thickness and is relatively insensitive to temperature changes. Between these two 
current ranges a smooth transition occurs from a diffusion to a drift mechanism of current and a 
“virtual cathode” is established in the crystal; there is no evidence for the existence of a negative- 
resistance region during the transition as predicted by SKINNER (1955). Simple and accurate analytic 
expressions are derived describing forward current-voltage characteristics in the exponential and 
square-law ranges; they show that, depending mainly on crystal thicknesses, high forward con- 
ductance or high forward resistance can be achieved. With a strongly blocking anode, reverse current 
is always very small and very high rectification ratios can be achieved. 

For current in the square-law range the Fermi-level is nearly constant through the crystal, except 
near the cathode and anode contacts. This justifies the distinction made by ROSE (1955) between 
shallow traps, which lie above the Fermi-level and do not affect the form of the current-voltage 
characteristics, and deep traps, which lie below the Fermi-level and profoundly modify the current- 
voltage characteristics. 

The discussion is illustrated with numerical results calculated on the basis of an electron mobility 
of 1000 cm2/V-set which is intermediate between the value of 200 cm2/V-set for cadmium sulohide 
and 9300 cr&/V-set for gallium arsenide. In conclusion, some possible applications are considered 
for space-charge-limited current in fundamental solid-state research. 

RBsumb-Les mecanismes du courant a charge d’espace limitbe dans les solides sont d&r&. Le 
cas pratique est consid& pour un material, ayant une haute r&i&v& et une large zone 
interdite, contenant des Ctats de trappe vides et bas, mais dans lequel les Ctats de trappe vides et 
profonds sont Climin& par le mCcanisme de compensation de dCfaut d&rit par LONGINI et GREEN 
(1956). Le courant d’une dimension et d’un porteur (6lectron) est d&rit pour le cas oh un contact 
est ohmique et un contact est de verrouillage. 

A une petite tension de sens avant, le courant est determine par le mecanisme predominant de 
diffusion de porteurs et augmente approximativement en fonction exponentielle de la tension 
appliquee; dans cette gamme, le courant est tr& sensible aux variations de la tempkrature. A une 
haute tension de sens avant, le courant est determin6 par le mbcanisme predominant d’apport de 
porteurs et, apr&s une certaine limite de tension, due B la diffkrence de fonction de travail entre les 
metaux d’anode et de cathode, augmente pratiquement en fonction du carrC de la tension appliqube; 
ce r6sultat confirme l’analyse simplifiCe de MOTT et GURNEY (1940) et est l’analogue B 1’6tat solide de 
la loi de puissance g 3/2 pour un courant a charge d’espace limithe dans un vide. Dans cette gamme, 
le courant varie en fonction de l’inverse cubique de 1’6paisseur du cristal et est relativement insensible 
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aux variations de la temperature. Entre ces deux courants existe une transition regulibre d’un mecan- 
isme de diffusion a un mecanisme d’apport de courant et une cathode virtuelle est etablie dans le 
cristal; il n’existe aucune preuve confirmant l’existence d’une region a resistance negative durant la 
transition comme le prevoyait SKINNER (1955). Des expressions analytiques simples et exactes sent 
derivees pour decrire les caracteristiques (courant de sens avant-tension) dans les gammes expo- 
nentielles et de loi carree; elles demontrent que, dependant principalement de l’epaisseur des cristaux, 
une haute conductance ou une haute resistance du sens avant peut-&tre obtenue. Avec une anode de 
fort verrouillage, le courant a sens inverti est toujours trh petit et de t&s hauts rapports de re- 
dressement peuvent &tre obtenus. 

Pour le courant dans la gamme de la loi carree, le niveau Fermi est presque constant a travers le 
cristal, exception faite pres des contacts de l’anode et de la cathode. Ceci justifie la distinction faite par 
ROSE (1955) entre les trappes basses qui sont sit&es au-dessus du niveau Fermi et n’affectent pas 
la forme des caracteristiques courant-tension et les trappes profondes qui sont sit&es au-dessous du 
niveau Fermi et qui modifient sensiblement les caracteristiques courant-tension. 

L’article contient des resultats numeriques calcult% sur la base dune mobilit d’electron de 
1000 ems/V-set, qui est intermediare entre la valeur de 200 cm2/V-sec. pour le sulfure de cadmium 
et 9300 cm2/V-set pour l’arseniure de gallium. Pour conclure, certaines annlications nossibles dam 
les recherches fondamentales de l’dtat solide sont considerees pour un iourant a charge d’espace 
limitee. 

Zusammenfaasung-Die Entstehung eines durch die Raumladung begrenzten Stromes in Fest- 
kijrpern wird behandelt. Als praktisches Beispiel dient ein Material mit einer breiten Energielucke 
und hohem spezifischem Widerstand, das hochliegende leere Einfangsniveaus enthalt, bei dem aber 
die tiefliegenden leeren Einfangsniveaus durch den von LONGINI und GREEN (1956) beschriebenen 
Mechanismus der Defektkompensation beseitigt wurden. Ein eindimensionaler Eintriiger-Strom 
(Elektron) durch einen Kristall mit parallelen Fliichen wird fiir den Fall eines ohmschen und eines 
Sperrkontakts behandelt. 

Bei kleiner Vorwlrtsspannung entsteht der Strom in iiberwiegendem Masse durch TrPgerdiffusion 
und nimmt mit der Spar-mung nahezu exponentiell zu. In diesem Bereich ist der Strom stark 
temperaturabhiingig. Bei grosser Vorwiirtsspannung entsteht der Strom vorwiegend durch Trtiger- 
wanderung. Nach Erreichung einer Spannungsschwelle, die durch den Unterschied der Arbeits- 
funktionen der Metalle der Anode und Kathode entsteht, wlchst der Strom nahezu mit dem Quadrat 
der aufgewandten Spannung. Dieses Ergebnis bestltigt die vereinfachte Analyse von MOTT und 
GURNEY (1940) und entspricht fiir den Festkiirper dem Raumladungsgesetz fur einen durch die 
Raumladung begrenzten Strom im Vakuum. In diesem Bereich ist der Strom der dritten Potenz 
der Kristalldicke umgekehrt proportional und ist gegen Temperaturverlnderung relativ empfind- 
lich. Zwischen beiden Bereichen erfolgt ein glatter tfbergang von dem auf Diffusion zu dem auf 
Triigerwanderung beruhenden Strom, und im Kristall entsteht eine “virtuelle Kathode”. Das von 
SKINNER (1955) postulierte Auftreten eines Gebietes mit negativem Widerstand w&rend des 
‘Ubergangs liess sich nicht bestatigen. Einfache und genaue analytische Beziehungen liessen sich 
fiir vorw&tsgerichtete Strom-Spannungs-Kennlinien fiir die Bereiche mit exponentiellem und 
quadratischem Verlauf ableiten. Es ergibt sich, dass je nach der Kristalldicke ein hoher Vorwtis- 
leitwert oder hoher Vorwlrtswiderstand erreicht werden kann. Bei stark sperrender Anode ist der 
Riickw%rtsstrom immer klein, und man kann ein hohes Rektifikationsverhlltnis erzielen. 

Fti Strome im Bereich des quadratischen Verlaufs ist das Ferminiveau im Kristall nahezu konstant, 
ausser in der Nahe der Kathoden- und Anodenkontakte. Dies bestiltigt die Unterscheidung von 
ROSES (1955) zwischen hochliegenden Einfangsniveaus, die iiber dem Ferminiveau liegen und 
die Gestalt der Strom-Spannungs-Kennlinie nicht beeinflussen, und tiefliegenden Einfangsniveaus, 
die unterhalb des Ferminiveaus liegen und einen starken Einfluss auf die Strom-Soannungs- 
Kennlinie ausiiben. 

Der Artikel gibt numerische Ergebnisse, die unter Annahme einer Elektronenbeweglichkeit von 
1000 cm2/V-set berechnet wurden. Dieser Wert liegt zwischen dem von 200 cm2/V-see fur Cad- 
miurnsulfid und 9300 ems/V-set ftir Galliumarsenid. Zum Abschluss wird die Mijglichkeit prak- 
t&her Anwendungen des durch Raumladung begrenzten Stromes in der Festkiirperforschung 
erortert. 

NOTATION d 
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f2 integration constant 

;Y(s) 

current 
modified Bessel function 

f(z) Bessel function 

. 
current density 
reduced-current density 
Boltzmann’s constant 
density of mobile electrons 
density of trapped electrons 
effective integrated density of conduction 
states 
density of trapping states 
reduced distance 
integration constant 
temperature 
inner potential difference 
reduced inner potential difference 
applied potential difference 
reduced applied potential difference 
Fermi-level 
trap depth 

expC-- (u- U0)Pl 
2/(2)(js+cr2)3/2/3j or d(2)( -js-a2)3/2/3j 
integration constant 
integration constant 
permittivity 
trapping factor 
work function 
electron affinity 
electron mobility 

greatest where the carrier concentration is greatest. 
Because of these variations in partial pressure, 
carriers tend to diffuse into regions of low con- 
centration at a rate proportional to the carrier 
mobility, to the existing concentration gradient of 
the carriers and to the mean thermal energy of the 
carriers. Accordingly, the diffusion-current density 
along the concentration gradient is 
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1. INTRODUCTION 

T~IE conduction of electric current in solids norm- 
ally takes place by the movement of mobile charge 
carriers which are already present within the 
material. The situation most usually encountered 
is ohmic conduction as in metals where the mobile 
carriers consist of the valence electrons in the top 
layers of the Fermi sea. These have a high and 
uniform density 7t and a constant mobility p so that 
under the influence of an applied field E the drift 
current density is 

Jdriit = WE (1) 

In semi-conductors the mobile carrier density is 
generally much less than in metals and it is possible 
for significant non-uniform carrier distributions to 
exist. In this event the partial pressure of the 
mobile carriers varies from place to place being 

Jdin. = M’(- dn/dx) (2) 

Since both metals and semiconductors contain 
mobile charge, it is not possible for an excess 
charge density to build up within the material. 
Consequently electrical neutrality is maintained 
throughout the material and the current-voltage 
relations are relatively simple. However, experi- 
ments by ROSE(~) and by SMITH(~) have shown that 
transient currents can be observed in high- 
resistivity materials, and ALEKEY and COOKEc3) and 
RUPPEI.(~) have observed steady currents which 
were very small but which were larger than ohmic 
currents. Recent experiments in the author’s 
laboratories@-8) have shown that large, steady 
currents can be obtained in insulating dielectric 
crystals which, unlike metals and semiconductors, 
contain no significant density of thermally gener- 
ated mobile charge carriers. Current is achieved 
by injecting electrons from an external source into 
the conduction band of the crystal and applying 
an electric field to move the electrons through the 
crystal. An insulating dielectric crystal provided 
with an electron-injecting contact (cathode) and 
an electron-collecting contact (anode) has been 
termed a “dielectric diode”(7?3); it is the solid- 
state analogue of the thermionic vacuum diode. 

In this paper a theoretical investigation is made 
of the steady-state mechanisms of space-charge- 
limited current in solids. The practical case is 
taken of a thin, plane, parallel crystal provided 
with an injecting (ohmic) cathode and a blocking 
anode. It is shown that, at small forward voltages, 
current is carried predominantly by carrier 
diffusion and depends on the applied voltage in an 
approximately exponential fashion; at large for- 
ward voltages current is carried predominantly by 
carrier drift and has an approximately square-law 
dependence upon applied voltage. High reverse 
resistances can be obtained and high rectification 
ratios are possible. 
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2. BASIC CURRENT EQUATIONS 

Since the case of practical interest is the plane, 
parallel crystal, we shall consider one-dimensional 
and one-carrier (electron) current. The interior of 
the crystal is not electrically neutral and the elec- 
tron density falls from a high value at the cathode 
to a low value at the anode so that both electric 
potential gradients and carrier potential gradients 
exist. Accordingly the total current density is the 
sum of drift- and diffusion-current densities and is 
given by* 

J = penE+pkTg (3) 

In these equations the potential difference Y is 
measured with respect to the cathode metal as zero 
and it should be noted that the reduced potential 
Y and the reduced current j are both positive for 
forward current. Making the appropriate sub- 
stitutions we obtain 

The cathode contact is placed at the origin of x and 
the anode contact at x = d, where d is the crystal 
thickness. For forward current the electric poten- 
tial increases positive as x increases; the forward 
current is thus negative in sign. 

In this case of space-charge-limited (SCL) cur- 
rent, the interior of the crystal is not electrically 
neutral; current is carried by mobile carriers which 
are injected from an external source and which 
form an excess space-charge in the crystal. Con- 
sequently, Poisson’s equation must be satisfied at 
all points in the crystal and we have 

dE en 
-= -- 
dx 

(4) 
E 

The current equation (3) and Poisson’s equation 
(4) may be combined conveniently by eliminating 
the electron density n to give 

The various constants which appear in this equa- 
tion may be eliminated now by changing to the 
#dimensionless variables 

(6) 

e%FNo 
j = e2dsJ ; 

b=----.- 

,pk2T2 ckT 
(7) 

l The negative algebraic signs of electron mobility ~1 
:and electron charge e have been taken into account in 
,deriving this equation; accordingly these quantities are 
-now to be regarded as positive numbers. 

d28 1 d&2 
-+-_ 
ds2 2 ds 

-j = 0 (8) 

This is the basic equation describing SCL current 
in solids. 

In order to use the current equation (3) and 
Poisson’s equation (4) in this way for describing 
SCL current in solids, the basic problem is simpli- 
fied to some extent. 

All materials possess small amounts of impurities 
some of which are able to act as donor or acceptor 
centres and provide mobile charge carriers in the 
crystal in addition to those injected as space- 
charge from an external source. If the impurity 
content is high as in impurity-activated semicon- 
ductors then injected space-charge is only signi- 
ficant in the vicinity of the contacts, and in the 
bulk of the crystal the mobile carrier density is 
determined predominantly by the density and 
depth of the impurity centres. In thin crystals or 
thin layers or under conditions of high current 
density, however, injected space-charge can be- 
come significant as, for instance, in the p-n junc- 
tion at high forward bias, but this is a situation not 
normally encountered. If SCL current is to be ob- 
served it is preferable for ohmic conductivity due 
to carriers generated thermally from impurity or 
valence levels to be small. This requirement can be 
expressed quantitatively by saying that the di- 
electric relaxation time of the crystal, PE, must be 
large compared with tr, the transit time of the 
injected carriers through the crystal, in order that 
the injected charge does not decay significantly 
while in transit. This condition is implied in the 
equations given since thermal generation of car- 
riers is neglected. These considerations show that 
fairly wide band-gap materials are necessary if 
SCL current is to be observed free from ohmic 
current. The conditions are barely satisfied, for 
example, by silicon with a band gap of 1-l eV, an 
electron mobility of 1200 ems/V-set and an in- 
trinsic resistivity of about 105 Q-cm, but are satis- 
fied, for example, by gallium arsenide with a band 
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gap of 1 a34 eV, an electron mobility of 9300 
ems/V-see* and an intrinsic resistivity of about 
107 Q-cm. 

Empty trapping levels in the crystal are able to 
reduce the space-charge current considerably be- 
cause much of the space charge injected into the 
crystal is immobilized in traps and is unable to 
contribute to current; the influence of trapping on 
SCL current has been discussed by ROSE(~). If 
the density of initially empty electron traps is Nt at 
a depth Wt then, when current occurs, the density 
of filled traps is 

nt = N/[l+ exp{(Wf- W)/Wl 

and the ratio of mobile to trapped electrons is 

n/%t = No[exp( - IQ/K?) + exp( - WW)]/N 

If the traps lie at least several kT above the Fermi- 
level then 

n/nt = iV0 exp( - Wt/kT)/A$, 

such traps may be regarded as shallow, and have 
the property of leaving free a fixed proportion 

8 = n/(n+nt) = No/[No+N exp(W/kT)] 

of the space-charge injected into the crystal. 
Evidently, such traps will reduce the magnitude 
of the current but, since the ratio of free to trapped 
charge always remains constant, will not affect the 
form of the current-voltage characteristics. Their 
influence may therefore be taken into account 
simply by defining an effective permittivity EB 
instead of c in equation (4); this has the effect of 
reducing the amount of charge in the crystal 
which is available for carrying current. Traps 
which lie at least several kT below the Fermi- 
level may be regarded as deep traps and are able to 
alter completely the current-voltage character- 
istics. For such traps the ratio of free to trapped 
electrons is 

n/nt = iV0 exp( - W,/kT)/Nt 

in this case hMPERT(9) has shown that the pro- 
portion of injected space-charge which remains 
free is extremely small, varies from place to place 

l This is a calculated lattice mobility (H. EHRBNRBICH, 
Prague Conference on Semiconductors, August, 1960) but 
present measured values approach this figure. 

in the crystal and depends on the magnitude of 
current. 

Although all materials possess donor centres and 
deep trapping levels to some extent, the experi- 
mental evidence suggests that almost complete 
mutual compensation of these centres can occur 
under suitable conditions of crystal growth. This 
has been discussed by LONGINI and GREENE, by 
KAYALW) and by ALLEN( LONGINI and 
GREENE, in particular, show that if the crystal- 
growing atmosphere contains impurities capable of 
producing shallow donor centres in the crystal, 
these can be incorporated in the crystal lattice 
much more easily if deep empty electron states 
exist than if such levels are not present. This is 
because the deep-lying level provides a state of 
lower energy for the donor electron than does the 
donor centre itself, thereby reducing the total 
energy of donor incorporation by an amount 
(Wt- Wd) where Wt is the depth of the empty 
level and Wd is the depth of the donor level. Thus, 
as the crystal grows, with an unavoidable content 
of deep electron-trapping states formed by thermal 
defects and acceptor impurities, the simultaneous 
incorporation of shallow donor impurities ensures 
that these deep-lying states become filled. Over- 
compensation is avoided since, as soon as all the 
deep electron traps are filled, the total energy 
required for donor incorporation is increased. 
LONGINI and GREENE show that, in wide band- 
gap materials in which ( Wt- Wd) can be large if 
the traps are deep and the donors are shallow, 
compensation is almost exact. Thus, under suitable 
conditions of crystal growth, shallow donor centres 
incorporated in the crystal ionize to become shal- 
low traps, and fill deep traps; the result is that 
residual ohmic conductivity is much reduced and 
the density of empty deep traps is reduced to the 
very low level required for large SCL current to be 
obtained. Thus, in the practical situation, residual 
ohmic conductivity is negligible and the influence 
of deep traps has been eliminated, but shallow 
traps almost certainly do exist. The equations 
which have been given and the discussion which 
follows refer to this practical situation. 

It is assumed throughout this discussion that 
thermodynamic equilibrium is maintained at all 
times between the electron space-charge and the 
crystal lattice. At small applied electric field 
strengths this condition is satisfied; the excess 
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energy gained from the field by the electrons 
between collisions with the lattice is much smaller 
than the mean electron thermal energy and can be 
satisfactorily dissipated to the lattice at each 
collision by excitation of acoustic mode vibrations. 
This is the situation normally existing in semi- 
conductors, for instance, in which the mobile 
carrier density is sufficiently large that relatively 
small applied fields are able to produce large cur- 
rent. Under SCL conditions, however, carrier 
densities are smaller and applied field strengths 
are greater; conditions are thus more favourable 
for the mean carrier temperature to rise above that 
of the crystal lattice. This is likely to occur when 
the energy gained from the applied field by the 
individual carrier in moving a mean free path 
between collisions, becomes comparable with KT 
and cannot be wholly dissipated by collisions with 
the lattice. In germanium at room temperature this 
situation is reached and the carrier mobility begins 
to decrease when the applied field is of the order of 
103 V/cm. At higher fields the carriers are able to 
dissipate excess energy satisfactorily by exciting 
optical-mode vibrations of the lattice, and the 
carrier drift-velocity becomes constant and in- 
dependent of applied field. However, in the wider 
band-gap, higher-resistivity materials, such as 
cadmium sulphide and gallium phosphide which 
are suitable for the observance of SCL current, 
carrier mobilities are lower and field dependence of 
mobility should not occur until rather higher field 
strengths are reached. The experimental evidence 
for cadmium sulphide indicates that electron 
mobility remains constant up to field strengths of at 
least a few times 104 V/cm, so that under normal 
circumstances it seems justified to accept that the 
electron space-charge remains in thermal equilib- 
rium with the crystal lattice. However, under SCL 
conditions, field strengths of this order can be ex- 
ceeded, particularly under pulse or transient opera- 
tion, and the possible decrease of carrier mobility 
at the higher applied voltages should be borne in 
mind. The influence of field dependence of 
mobility on SCL current in germanium has been 
discussed by DACEY~~) and in wide band-gap 
materials, by LAMPERT( 

A number of previous studies have been made of 
electron atmospheres and current in insulators. 
For instance, VON LAUE(~~) and FOWLER(~~) have 
discussed conditions in the crystal in the zero- 

current case in which the Fermi-level remains 
horizontal through the crystal. More recent 
studies have been made by SKINNER et uZ.(17Js), 
wE.Yr(lg), MoRANT(~O) and particularly SKINNER 
in connexion with the contact charging of insula- 
tors. These authors show that the charge trans- 
ferred into the insulator and the form of the charge 
distribution in the insulator are controlled largely 
by the work functions of the contact metals. They 
distinguish particularly between the case in which 
all the transferred charge comes from one contact 
and the electric potential rises steadily through the 
insulator and the case in which both contacts 
contribute to the transferred charge and the 
electric potential has a maximum within the 
insulator. 

The current-carrying case is more difficult to 
describe. A formal mathematical solution of the 
basic equation (8) may be obtained readily in terms 
of Bessel functions.* However, an evaluation of the 
two integration constants, which is necessary if a 
useful physical description of current mechanisms 
is to be obtained, is not possible in explicit form. A 
simplified treatment of the current-carrying case 
has been given by MOTT and Gums who have 
considered the situation appropriate to large 
applied voltages when carrier diffusion can be 
neglected. These authors show that under these 
circumstances the SCL current should follow a 
square-law dependence on applied voltage; this is 
the solid-state analogue of the three-halves law for 
SCL current in vacuum. This approach has the 
merit of simplicity but does not provide an accurate 
description of current mechanisms particularly 
near the cathode and anode contacts and is not 
applicable in the case of small applied voltages. 
SHOCKLJXY@~) has given an approximate discussion 
of the movement of mobile carriers over a potential 
maximum, and SHOCKLEY and PRIM@~) give a 
more accurate discussion of the same case. These 
authors simplify the problem by considering cur- 
rent in a crystal of undetermined extent and by 
assuming that, at large distances, drift mechanisms 
become predominant so that the approximate 
solution derived by MOTT and GURNEY is ob- 
tained. This approach provides a useful account of 
physical conditions in the crystal for the case of 

* A first integration of equation (8) gives a particular 
form of Riccati’s equation; this is discussed by 
MCLACHLAN(22). 
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large currents in which a potential maximum does 
exist in the crystal. However, it cannot be used to 
discuss current mechanisms at small or large 
applied voltages, to discuss physical conditions 
near the cathode or anode contacts, or to provide 
an account of current-voltage characteristics. 

Current mechanisms in a finite crystal bounded 
by metallic electrodes have been discussed by 
SKINNER@~). This author shows that the current- 
voltage characteristics are influenced markedly by 
the nature of the electrodes; in particular, the 
expected rectification characteristics are obtained 
if the work function of the cathode and anode 

used by these authors is complex and does not 
provide a description of physical conditions in the 
crystal, of current mechanisms, or a usable ac- 
count of current-voltage characteristics. 

The present paper is an attempt to provide a 
clear and useful description of SCL current in 
solids. In particular the two integration constants 
which arise in the formal mathematical solution of 
equation (8) are evaluated in a manner which 
enables the underlying physical processes to be 
kept in mind. Before discussing the current- 
carrying case, however, it is appropriate to review 
briefly the zero-current case, since this enables a 

x=0 

FIG. 1. Energy-level diagram for an insulator crystal bounded by two metallic contacts 
of unequal work functions. The variations of electric potential, conduction-band level, 
and Fermi-level are shown respectively by the lines marked E.P., C.B. and F.L. Electric 
potential is measured positive downwards. # = electron affiity of crystal; $0 = work 
function of cathode metal; 41 = work function of anode metal; &I-# = cathode 
potential step eVo; &-I/I = anode potential step eVr ; 41-40 = contact potential differ- 
ence between cathode and anode metals. (Wf = Fermi-level measured downwards 

from conduction band.) 

metals are different. A further and most interesting 
result is the predicted existence of a negative- 
resistance region in the current-voltage character- 
istics. The particular case when cathode and 
anode metals are identical has been treated by 
SUITS@~). In this case no rectification is obtained; 
the current is proportional to voltage at low 
applied voltage, but, if space charge is significant, 
follows a square-law dependence on voltage at 
high applied voltage. Unfortunately the approach 

clearer understanding of current mechanisms to 
be obtained. 

3. ZERO-CURREN’I’ CASE 

When an insulator which contains no appreci- 
able density of mobile electrons is placed in con- 
tact with a metal, electrons diffuse into the insulator 
until the space-charge field set up in the insulator 
is sufficient to balance the diffusion of electrons 
from the metal. The equilibrium situation is 
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illustrated qualitatively in Fig. 1 which shows the 
energy-level diagram for an insulator crystal 
bounded by two metallic contacts. The variation 
of electric potential through the system is also 
shown; this is to illustrate in particular that there 
is no discontinuity of potential at the ideal contact. 
In this and all subsequent energy-level diagrams 
the electron energy is measured positive upwards 
and electric potential is therefore measured 
positive downwards. The curvature of the con- 
duction band of the crystal near the contact with 
the metal of lower work function is caused by the 
space-charge field of the electrons which have 
diffused from the metal. The Fermi-level in the 
crystal is measured downwards from the conduc- 
tion band of the crystal; this is mainly for con- 
venience in the current-carrying case discussed 
subsequently. For generality we have taken the 
case in which the contact metals have different 
work functions. Since the greater charge is trans- 
ferred into the crystal at the contact with the metal 
of the lower work function, it is evidently appro- 
priate to take this metal as the cathode. 

In equilibrium, the diffusion of electrons away 
from the contact is balanced by the drift of elec- 
trons toward the contact. Accordingly we may put 
j equal to zero in equation (8) when a first integra- 
tion gives 

db 62 
s+2=g2 

In this expression gs is an integration constant. 
Under zero-current conditions there is no potential 
difference between anode and cathode and the 
Fermi-level is horizontal throughout the insulator 
crystal. Consequently the density of electrons in 
the conduction band at any point in the crystal is 
given by 

n = Ne exp( -Wf/KT) = No exp(eV/‘lkT) = Nse’ 
(10) 

Using equations (6) we have 

dY- dd 
8 = - -; - = -be”L’ 

ds ds 
(11) 

so that equation (9) gives for the electric-field 
intensity 

d = + (2beY+ 2g2)1i2 (12) 

The appropriate sign to be used in this equation 
depends on the sign of the electric-field intensity. 

From equation (12) we obtain for the electric 
potential 

exp(V -Vs) = 
sinhs(ga/2)1/sss 

sinhs(gs/2)1/2(s+ss) 
(33) 

In these equations the quantity eV refers, as 
usual, to the total energy of the electron. It is not 
usually necessary or desirable to separate the 
thermal and electric components of the total energy, 
but it should be borne in mind that the potential 
steps eVs and eV1 at the contacts are not necessarily 
caused by a change of electric potential. This is of 
relevance when considering boundary conditions. 
The Fermi-level of the system, in particular the 
Fermi-level of the cathode metal, is a convenient 
level from which to measure the electron energy 
and if this is done the actual electric potential in 
the crystal relative to the cathode metal is 

V+(+o-#)/e = V- VO 

Now the integration constants gs and SO can be 
found from the equilibrium boundary conditions 
on the electron-charge density at the contacts; at 
cathode and anode we have respectively 

and 
VO = eVo/kT = -(&-$)/kT 

??“-I = eVl/kT = -(h-$)/k7 

Unfortunately the constants cannot be expressed 
explicitly in terms of the boundary conditions and 
it is therefore necessary to derive approximate 
expressions. 

Consider the case when Vs is small (ohmic or 
injecting cathode) and VI is large (blocking anode) 
which is the case to which this paper particularly 
refers. The electron density in the crystal at the 
cathode contact is large under these circumstances, 
but it must evidently decrease rapidly further into 
the crystal; if this were not so then large amounts 
of charge could be transferred into the crystal and 
this is contrary to the observed effects of contact 
charging of insulators. Thus d&/as is significant 
only near the contact, and consequently the term 
2b exp V in equation (12) is negligible except near 
the contact. Now G 21 VI-V-0, so we conclude 
that the integration constant gs is large and 
positive. Combining now equations (10) and (13), 
it is evident that SO must be small if the electron 
density is to decrease rapidly away from the 
contact. Using that gs is large and SO is small, 
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equation (13) for the potential may be approxi- is obtained from equation (13) and is shown in 
mated in the vicinity of cathode and anode re- Fig. 2. The following typical physical parameters 
spectively and we obtain, to a first approximation, have been used: crystal thickness d = 10~; 

si = 2 exp( -Ye)/6 (14) 
temperature T = 300°K; eVs = 0.1 eV. Various 
values of eVr have been taken appropriate to the 

2/(2)g = - v-1+ wwq1 (15) cases of a blocking anode (g2 positive, eVr = 1.0 
eV); a semi-infinite crystal (gs zero, eJ+ = O-472 

It should be remembered that Ys and Yr in these eV which is the potential at a distance of 10 pinto a 
equations are negative. semi-infinite crystal); and an injecting anode 

The smallest value which can be used for eVs (gs negative, eVr = O-1 eV). The integration con- 
without becoming involved in electron degeneracy stants gs and SO for the latter two cases can be ob- 

Distance. p 

FIG. 2. Variation of conduction band through the crystal for the 
zero-current case. The zero of reference is the Fermi-level of 
the cathode metal. Cathode potential step eVs = 0.1 eV; anode 
potential step evl = l*O eV (curve A), 0.472 eV (curve B) and 

0.10 eV (curve C). 

at the cathode is about O-1 eV, and a suitable value 
of eVi to provide a blocking contact is 1-O eV. It is 
unlikely of course that eVs would be as small as 
this at a normal contact between a metal and an 
insulator. However, by suitable formation of the 
cathode contact it is possible to arrange for the 
effective value of eVs to be small; this is done in 
the dielectric diode in order that SCL current may 
be achieved. 

The variation of electric potential in the crystal 

tained by arguments similar to those used for the 
case of the blocking anode. In this connexion one 
finds references in the literature(ls,sl) to the exist- 
ence of three solutions to the basic zero-current 
equation. This is unnecessarily confusing; there is 
only one solution but this transforms from hyper- 
bolic to logarithmic and then trigonometric form 
according as the integration constant gs is positive, 
zero or negative. However, the diagram shows well 
that conditions near the cathode are not much 
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influenced by the nature of the anode. It is also 
apparent that the injected charge density decreases 
very rapidly at small distances into the crystal so 
that most of the injected charge lies within the 
surface layers of the crystal. 

These various forms of electron atmosphere 
have been discussed in some detail by SI<INNER@~) 
and will not be considered further here since our 
main interest is in the current-carrying case. 

4. CURRENT-CARRYING CASF 

The discussion given above of zero-current con- 
ditions in the insulator crystal is very useful for 
visualizing qualitatively the conditions obtaining 
when current occurs. In this connexion the varia- 
tion of electric potential and electric field intensity 
through the crystal are shown qualitatively in Fig. 
3 for the particular case of an ohmic cathode con- 
tact and a blocking anode contact. For zero current 

r 

Dfstonce 

FIG. 3. A qualitative illustration of the variation of 
electric potential V and field intensity E through an 
insulator crystal for the zero-current case (full lines) and 

the current-carrying case (broken lines). 

the potential rises steadily and the electric field 
falls steadily as shown by the full lines. When a 
positive voltage is applied to the anode, however, 
electrons are drawn from the cathode space-charge 
and travel through the crystal towards the anode so 
that forward current occurs; conditions are now 
qualitatively as shown by the broken lines. The 
electron potential energy has a maximum near the 
cathode which acts as a “virtual cathode” for the 
emission of electrons into the crystal; this is 
analogous to the virtual cathode which exists in the 
thermionic vacuum diode. Up to this point the 
electron potential energy rises positive like the zero- 
current case, but beyond this point it falls rapidly, 
pssses through zero and increases negative towards 
the anode. The electric-field intensity will pass 
through zero at the position of the virtual cathode 
and will then increase negative towards the anode. 

With this diagram in mind we may return to 
discuss the basic equation (8). The formal mathe- 
matical solution will first be given and the appro- 
priate boundary conditions then discussed. 

A. Formal mathematical solution 

The current density is constant throughout the 
crystal; consequently equation (8) may be :nte- 
grated directly to give 

_ -T -(js+a2) = 0 
as (16) 

The quantity a2 is a constant of integration. At 
this stage the algebraic sign and numerical mag- 
nitude of a2 are not known; consequently it is not 
known whether the quantity (is+ a2) is positive or 
negative. However, if we now change the variables 
by writing 

logy=&1 &ds= -+2 (17) 
0 

we may select the real part of x if (js+a2) is 
positive and the imaginary part of z if (js+as) is 
negative. The discussion will be continued on the 
assumption that this quantity is positive and will 
be transformed as necessary if it should be negative. 
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Making the substitutions we obtain 

(19) 

This equation has the solution 

y = const. x .s@[PL~ ,3(z) + 11,3(x)] (20) 

where /I is a second constant of integration. By 
taking (Jo+ az) positive and using the real part of Z, 
the solution has been obtained in terms of Bessel I 
functions rather than in terms of J functions. This 
seems more appropriate, since the I functions are 
non-oscillatory and conditions in the crystal must 
evidently be non-oscillatory. The constant serves 
to determine the absolute level of potential and is 
fixed as soon as the reference zero of potential is 
decided on. As in the zero-current case, the Ferrni- 
level of the cathode metal will be taken as the zero 
of electron energy. The electric potential difference 

(V- VO) = (KT/e)(V -Vs) 

between any point in the crystal and the cathode 
metal is then given by 

x0 z/5 
exp(V-V0) = - 0 [ /%,3(~0)+11,3(~o) e 

z P~-1,3(4+h,3(~) I 

(21) 

The electric-field intensity in the crystal is 
given by d = 2d(logy)/ds from which 

d = [2(js+a2)]1/2 
[ 

@12,3(4+I-2,3(z) y PI-1,3(4+h,/3(4 1 (22) 
The density of electrons in the crystal is given by 

bn/Na = --d&ids from which 

b?t @I2,3(d+1-2,3(2) ' = 

No(js+z2) PI-1 /3(4fh,3(4 1 -1 (23) 

The discussion which follows becomes much 
less cumbersome if we now define the quantity B 

bv 
d 

B = k?12/3(x)+I-2,3(z) 

I 

2 

wl/3(~)+~1,3(2) 
(24) 

so that we may write for the electric-field intensity 

8 = [2(jSfa2)B]1/* = [2(js+ a2) + 26n/Ne]t/a 

(25) 

and for the electron density 

bn = Ns[j~+az)(B-1) (26) 

To proceed further it is necessary to evaluate the 
integration constants as and /3. This can be done 
through proper choice and utilization of boundary 
conditions 

B. Boundary condition 

Under zero-current conditions the electron 
atmosphere in the crystal is in thermodynamic 
equilibrium throughout with the electron atmo- 
spheres in cathode and anode metals. In particular 
this is true in the crystal at the actual cathode and 
anode surfaces. This circumstance was used to pro- 
vide the boundary conditions for the zero-current 
case, and the same boundary conditions may be 
used for the current-carrying case. 

Consider first the cathode contact. The cathode 
metal acts as an effectively infinite reservoir of 
electrons, and any practical current will not 
appreciably affect the equilibrium electron atmo- 
sphere at the actual cathode contact itself. Thus 
in the surface of the crystal in contact with the 
cathode metal, the electron density will always 
remain constant and equal to 110 = NO exp Vs. In 
the vicinity of the cathode the electron density is 
large ; consequently drift- and diffusion-current 
tendencies are large. When forward current occurs 
the diffusion-current tendency becomes larger than 
the drift-current tendency and we may consider 
that, near the cathode, forward current is carried 
by diffusion. 

At the anode contact conditions are rather differ- 
ent. When current occurs, electrons move through 
the crystal towards the anode and evidently the 
electron density increases considerably over most 
<If the crystal. However, any practical current will 
not appreciably disturb the equilibrium electron 
atmosphere in the anode metal, and at the actual 
anode contact the electron density will remain 
constant and equal to nt = NO exp VI. In effect, 
and because -Y; is large, the anode metal acts as a 
sink for electrons. Thermal equilibrium will not be 
reached in the anode metal, of course, over a 
distance of the order of a collision mean free path, 
but this is so small compared with any practical 
crystal thickness that it is quite permissible to 
assume equilibrium conditions to exist at the actual 
anode contact. The consequence of this is that in 

M 
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the crystal near to the anode the electron density 
falls off very rapidly to the very small value 111 at the 
actual anode contact. Near the anode, therefore, 
there is a large concentration gradient of electrons. 
Since the electric field cannot change very much 
over this region, whereas the electron density falls 
considerably, it is evident that near the anode as 
well as near the cathode forward current is carried 
by diffusion. 

In the ideal contact, the energy steps eVs and 
eVr are due entirely to the discontinuity in the 
type of crystal lattice which results in a different 
energy system on either side of the contact. This 
is the situation, which has been illustrated in Fig. 
1, which shows a discontinuity of electron energy 
at the contacts, although there is no discontinuity 
of electrostatic potential. In any real contact, how- 
ever, the situation may be modified by the existence 
of surface states for electrons and by surface con- 
tamination. 

Surface states can arise in a variety of ways and 
it is not possible to do more than make a qualitative 
estimation of their effects. Tamm surface states 
will arise at the surface of the free crystal because 
of the abrupt discontinuity in the periodic potential 
of the crystal lattice. SHOCKLEY(~*) has considered 
the circumstances under which surface states 
originate from valence levels and concludes that 
in this case each surface atom gives rise to one 
surface state and that these states are half occupied. 
Discussions of this sort based on the simplified 
model of a semi-infinite one-dimensional crystal 
are useful for visualizing qualitatively the situation 
in a real crystal, and it seems certain that surface 
states do exist. In semiconductors, for instance, in 
which the surface charge is compensated by the 
underlying fixed space-charge of ionized donors or 
acceptors, BARDEEN@~) has shown that surface 
states can play a significant part in establishing 
contact potentials. However, in wide band-gap 
insulator-type materials in which the Fermi-level 
lies far from conduction or valence levels, no 
appreciable curvature of the electron-energy levels 
near the surface can be caused in this way. 
Nevertheless, if the crystal surface possessed a 
high density of empty states, it is presumable that 
on contact with a metal there could be sufficient 
transfer of electrons to these to set up a significant 
space-charge layer of atomic thickness in the crystal 
surface. The rise of electric potential through this 

layer would introduce an electrostatic component 
into the energy step at the contact. 

In all real contacts the situation is modified by 
impurity atoms or molecules adsorbed on to the 
surface before contact. These surface layers pre- 
vent intimate contact between metal and crystal 
and, moreover, if the ionization potential of the 
absorbed impurity is lower than the work function 
of the underlying material so that there is a 
tendency for electron exchange to occur by ioniza- 
tion of the impurity, or if the adsorbed impurity 
has a strong electron affinity and so is able to accept 
an electron from the underlying surface, then an 
electric dipole layer may be set up at the surface 
which, as before, would introduce an electrostatic 
component into the potential-energy step at the 
contact. A situation similar to this is deliberately 
produced in the dielectric diode.@) Here the 
cathode energy step is made very small by intro- 
ducing a high density of shallow donor centres into 
the surface layers of the crystal so that a very thin 
electric double layer is produced at the cathode 
contact. This is sufficiently thin as to be trans- 
parent to electrons which penetrate the resultant 
electric potential spike by quantum-mechanical 
tunnelling.(ss) The result is that the conduction 
band of the crystal at the cathode contact is 
brought down near to the Fermi-level of the 
cathode metal; the zero-current inner potential 
difference across the crystal is now ($I-#--w)/e, 
where w is the Fermi-level in the crystal in the 
highly doped surface layers, instead of (+1--&)/e. 

Provided that any potential hump produced in 
these ways between metal and crystal is very thin, 
as it will be since adsorbed surface layers are 
generally only of atomic thickness and electrons in 
surface states are effectively localized at the surface, 
the electron atmospheres on each side of the con- 
tact will remain in thermal equilibrium although 
the over-all effective energy step for the contact 
will not be the true value for the ideal contact. 
Accordingly, it is quite justifiable to consider that 
the over-all effect of the contact is to produce an 
energy step and that the electron atmospheres on 
either side of the contact remain in thermal equilib- 
rium, although the magnitude eV of the energy 
step will not necessarily be equal to (4-G) the 
true difference between the work function of the 
metal and the electron affinity of the crystal. 

Using these boundary conditions on the electron 
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density we can in principle obtain the integration 
constants from equation (23) for the electron 
density. 

In this way we obtain 

1-z ,3(x0)-( *)z/(Bo)h,s(~o) 

+ = '~2,3(20)-(~)Z/(B0)I-1,3(20) 
Pa) 

-p = I-2/3@'1)-_(+)d@l)h3(~1) (27b) 

r2,3(21)-_(f)1/(Bl)I-l,3(21) 

where the subscripts 0 and 1 refer respectively to 
cathode and anode conditions. Either of these 
equations provides the value of /3; by eliminating @ 
between them, the equation defining CG is obtained. 
However, there is an ambiguity in these equations 
for cc2 and p, since it is not known whether the 
positive or negative sign is required for z/(B). 
This ambiguity may be resolved by using the fact, 

are not very different from the zero-current case. 
Thus equation (16) should describe conditions 
which are not very different from zero-current 
conditions. This shows that for small current 
aa N g2 and, since the maximum value of s is unity, 
that j < ~2. Accordingly the quantity (js+a2) is 
positive over the whole range of s from cathode to 
anode. This means that x is positive and real over 
the whole range of s so that Bessel I functions may 
be used throughout, Further, since we are con- 
sidering small currents, z is large and the asymp- 
totic expansions for the I functions may be used 
throughout, The electric-field intensity remains 
positive from cathode to anode; consequently the 
positive sign is required for Z/(B) in the evaluation 
of the integration constants. 

For small currents, therefore, and to the degree 
of accuracy required, equation (27) can be ex- 
pressed 

(28) 

from equation (25), that the sign of d(B) is the Since z is very large, it is apparent that -p is 
same as the sign of the electric-field intensity. Con- almost equal to unity; it is in fact just less than 
sequently the sign required depends on whether unity. However, the slight deviation of - /3 from 
cathode or anode conditions are being discussed unity is significant, because in equation (21) for the 
and on the magnitude and direction of current. electric potential we are concerned with the very 

Using these results we may proceed to discuss small difference between two Bessel I functions 
current mechanisms. which are extremely large and almost equal in 

magnitude. Introducing cathode and anode con- 
5. C-T MECHANISMS IN THE RECTIFYING ditions in turn into this equation, equating the two 

DIELECTRIC DIODE results, and using that B1 N 1, Bo B 1 and 
For a discussion of the current-carrying case we x0, z1 B 1, we obtain 

shall take the practical situation of a crystal pro- 
vided with an ohmic cathode (no large) and a block- =p[-2(zl--x0)] = {[z/(Bl)-1]/2+1/12a}x 

ing anode (711 small). The forward current case is (29) 
the more interesting and will be considered first; x [I+ 1lI[d(Bo>-11 
reverse characteristics will be discussed sub- 
sequently. This result is valid provided 72x0 9 51/(Bo), 

A. Forward-current case 
which is certainly true for small currents. These 
two equations (28) and (29) may be used to provide 

At small applied voltages current is carried pre- the integration constants a2 and /3 and hence to 
dominantly by diffusion and, except at very small obtain a description of physical conditions in the 
currents, follows an approximately exponential crystal. 
dependence upon applied voltage. The electric potential in the crystal is obtained 

(a) Exponential current range. When a small for- from equation (21). Using the asymptotic ex- 
ward voltage is applied the current is sufficiently pansions of the Bessel I functions together with the 
small that conditions in the crystal near the cathode value of p given by equation (28), we obtain 

M* 
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sinhs(x1 --so++ log[(&- l)/4+ l/l2~1]> 

exp(‘~-Vo) = sinhs(z1-z+fr log[(B1-l)/4+l/l221]} (30) 

For the particular case of zero current this reduces 
to equation (13) previously derived for zero-current 
conditions. 

In order to obtain the current-voltage character- 
istics of the crystal, we put z = x1 in equation 
(30). Using equation (29) this then gives 

B1-1 1 
exp(V, -Vs) = ----+ 

Bo-I 3s1(Bo - 1) 
(31) 

In this result Vy-, -Vs is the reduced inner potential 
difference across the crystal; this is the reduced 
potential difference between the cathode surface 
of the crystal and the anode surface of the crystal. 

It follows that 

-J = 2/(2)anlCLkT[exp(e~~/kT) - l]/d (32) 

In this equation V, denotes the external applied 
voltage between cathode and anode metals (ex- 
ternal voltages will be dashed throughout to 
distinguish them from inner potentials). This 
result implies the rectifying action of the diode 
although it is strictly valid only for small forward 
current. Provided that the quantity G does not 
vary rapidly, it is evident that the current increases 
approximately exponentially with the applied 
voltage. This is a useful result for the thinner 
crystals and thin insulating layers (d < 1 [L) in 
which current of practical magnitude can be 
reached at applied voltages small enough that 
carrier-diffusion mechanisms remain predominant. 

For very small currents, conditions in the crystal 
will not be very different from zero-current con- 
ditions, and we may write x3 = g2. This is con- 
sistent with equation (29) which then reduces to 
the zero-current case provided the current is 
sufficiently small that l/1221 < [2/(B1)- 11/Z. 
This condition requires that j < 2/(2)gb/Ns; thus 
equation (32) can be used with u* = gs only if 
eVi < kT so that 

-J = dG%wd’;P (33) 

For larger but still small currents so that we still 
have j < a2 it is evident, as the current increases, 
that ~1 becomes smaller and eventually l/1221 < 

[d(B1) - 1]/2. Equation (29) now reduces to 

j exP[VPbl = WW (34) 

This equation provides the value of a2 to be used 
in equation (32) when d(2)gb/Ns < j < a*. By 
examination of this equation it is found that the 
largest value ofj for which a solution is possible is 
j = 2.68 corresponding to a2 = 4.47. Using these 
corresponding values of j and a2, it is apparent that 
the requirementj < as is not satisfied. Accordingly, 
it is not safe to consider that the exponential 
current range extends up to values of j greater than 
unity. 

For smaller values of j the solution of equation 
(34) has two branches, one of which provides 
decreasing values of as as j decreases while the 
other provides increasing values of a2. Considering 
the decreasing branch first, it is found that it is 
never possible to have j < as, as required in the 
small current range. Thus this branch of the solu- 
tion is not consistent with the original equations 
and may be disregarded. Considering now the 
increasing branch it is found that aa increases 
slowly as j decreases and except for values of j near 
unity, it is true thatj < a2. This branch may there- 
fore be accepted and we have that the exponential 
current range lies within the limits 4(2)gb/Ns < 
j< 1. 

In the exponential current range discussed here 
the electric field intensity has remained positive 
throughout the crystal from cathode to anode. 
This follows from equation (25), since j 4 G. 
Consequently current occurs against the direction 
of the electric field. Thus the diffusion-current 
tendency is everywhere greater than the drift- 
current tendency, and current takes place by 
diffusion. When the applied voltage is large, how- 
ever, so that eVA 9 kT, the drift-current tendency 
is larger than the diffusion-current tendency. Thus 
between the small-current and large-current 
ranges a transition occurs from a predominant 
diffusion mechanism to a predominant drift mech- 
anism. The current range over which this occurs 
may be termed the transition range and is discussed 
below. 

(b) Transition-current range. As the current rises 
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through the exponential current range, xs and x1 
are decreasing; when j is approaching unity u2 is 
quite small and zs and ~1 have decreased to quite 
small values. Accordingly, in the transition- 
current range it is not possible to use the asymp- 
totic expansions of the Bessel functions. The 
integration constants c$ and /3 cannot be evaluated 
explicitly and a quantitative account of current 
mechanisms in this range cannot be given easily. 
However, it is in this range that the current 
mechanism changes from being predominantly 
carrier diffusion to predominantly carrier drift and 
it is in this range that the negative-resistance 
characteristics predicted by SKINNER should be 
found. Thus it is of value to discuss the transition 
range in some detail in order to obtain an under- 
standing of the physical processes involved. 

First we may consider the behaviour of the 
integration constant as. Turning to equation (16) 
we may write this in the form 

6s = 2(js + a2) - 2 d &Ids (35) 

Now MOTT and GURNEY@~) have shown that, if the 
space-charge equations are solved on the basis of a 
drift-current mechanism alone, d = -(2js)t12. 
Electron diffusion does exist, however, and assists 
forward current. Thus if diffusion mechanisms are 
taken into account the electric field existing for a 
given current will be smaller than required on the 
basis of a drift mechanism alone. Since the 
quantity d&‘/ds is negative, it follows that the 
quantity aa becomes negative in the large-current 
range and is numerically larger than d cF/ds. An 
estimate of the numerical magnitude of as in the 
large-current range may thus be obtained from 
equation (4) which gives d &/ds= - h/No. On 
the basis of a drift mechanism alone the space- 
charge capacitance of the diode is 3cA/Zd giving 
that the mean space-charge density of electrons is 
3cVi/2ed where VL is the applied voltage. Com- 
bining these estimates we conclude that the average 
value of d&/ids is of the order of 3eVA/2kT showing 
that, for large currents where the applied voltage is 
certainly greater than unity, we have - a2 > 102. 
This is only a very rough estimate of the magnitude 
of a2 but it is sufficient for our present purpose. 
We conclude therefore that in the transition- 
current range the quantity a2 continues to decrease 
positive, passes through zero and then becomes 
large and negative. 

For the particular case of as = 0 we have 
zo = 0 and equation (27a) for /? simplifies to give 
/3 21 0. Using this value of /3 in equation (27b) 
with z/(Br) 1: 1 we find ~1 = l-04(2). The slight 
deviation of fl from zero and 2/(&) from unity 
does not affect this result significantly. We thus 
have j = 4.88 to provide a first fixed point in the 
transition current range. Using that /3 II 0, zs = 0, 
we find from equation (21) that for this value of j 
the inner potential across the crystal is given by 

exp(va -vo) = 2~2/[21’3r(~)Il,3(21)]2 (36) 

When the current is sufficiently large that x2 has 
passed through zero and become negative, the 
imaginary part of z is required [from equation (18)] 
in the cathode regions of the crystal where s is 
small enough that numerically js < as. Under 
these conditions equation (19) transforms to 

d2y 
z+;g+y=o (37) 

and equations (21-24) for the electric potential, 
electric-field intensity, electron density and the 
quantity B, respectively, must be expressed in 
terms of Bessel J functions instead of I functions. 

Since a2 remains negative for large currents, it is 
apparent that conditions in the cathode regions of 
the crystal must be described in terms of the 
imaginary part of z through the remainder of the 
transition range and for large currents. 

Now we have seen that for large currents the 
electric field at the anode has passed through zero 
and become negative. Equation (25) shows that 81 
can become zero only if the quantity B1 becomes 
zero which requires that (j-t_ a”) = -bnl/No. Thus 
while the electric field at the anode is near zero the 
quantity (j+a2) is negative and numerically very 
small; under these circumstances the situation is 
described in terms of Bessel J functions through- 
out the whole crystal. Using that (j+ a2) and there- 
fore ~1 are very small while &I is near zero, the 
equations for /I can be simplified and the be- 
haviour of this integration constant followed. The 
detailed examination is lengthy and is therefore 
omitted, but the interesting result is that B 
possesses a singularity just before &I becomes 
zero. This is illustrated in Fig. 4., which shows the 
behaviour of the integration constants as and B 
through the transition-current range. As the anode 
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electric field goes to zero, /3 rapidly increases large equation (23) together with the relation n = 
and positive and finally becomes positive. and Na exp( - WfjkT) and is also shown in the figure. 
infinite; it then changes sign and returns from These curves refer to a crystal 1 p thick at a tem- 
negative infinity as the anode electric field passes perature of 300°K. A typical value of E = lo-10 F/m 
through zero and increases negative. At this has been used for the permittivity of the crystal 
singularity of /3 the electric field at the anode (dielectric constant K = 11) and the electron 
changes sign, and drift mechanisms now begin to mobility has been taken as 0.1 ma/V-set (1000 c.g.s. 
assist the forward diffusion current. Accordingly it units) which is intermediate between the value 
is convenient to regard this as the point of transi- 0.02 mz/V-set for cadmium sulphide and 0.9 ma/V- 
tion from a predominant-diffusion mechanism of set for gallium arsenide. 
current to a predominant-drift mechanism. In order to make this diagram more useful the 

This discussion of the transition range has potential variation and Fermi-level for zero current 

-40 ! 

0 IO 

Reduced current, j 

FIG. 4. Dependence of the integration constants ~3 and ,!I upon the magnitude of 
the reduced-current density j through the transition-current range. The singu- 
larity of /3 marks the transition from a predominant-diffusion mechanism of 

current towards a predominant-drift mechanism. 

shown that, for the particular case when as = 0, a 
fixed point can be established at which corres- 
ponding values of the integration constants and of 
the current and applied voltage can be evaluated. 
This can also be done and a second fixed point 
established for the particular case when I/3/ = co 
although the detailed derivation of each has been 
omitted for brevity. However, the potential varia- 
tion through the crystal for each of these points 
has been calculated from equation (21) and is 
illustrated in Fig. 5. The position of the Fermi- 
level in the crystal has been calculated using 

and for a current above the transition range are 
also shown. The values of the integration constants 
for the latter case have been evaluated as described 
in the next sub-section. It is interesting to observe 
from this diagram how physical conditions in the 
crystal alter as the current mechanism changes 
from being predominantly carrier diffusion to pre- 
dominantly carrier drift. In particular, as the 
current increases from zero through the ex- 
ponential and transition-current ranges and the 
electron space-charge spreads into the crystal from 
the cathode there is very little movement of the 
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FIG. 5. Variation of conduction band (full lines) and 
Fermi-level (broken lines) through the crystal for the 
current-carrying case; crystal thickness 1 cc. Curves A, 
a: zero-current case; curve B: first transition point; 
j = 4.78 giving -J = 2.46 A/cmz; curves C, c: second 
transition point, j = 15.3 giving -J = 9*16A/cm2; 
curves D, d: j = 3 x 10s corresponding to -J = 200 

A/cm2. 

absolute position of the Fermi-level except near to 
the anode where the electron density falls ex- 
tremely rapidly. It is not until drift mechanisms 
become predominant in the large-current range 
that there is any appreciable movement of the 
absolute position of the Fermi-level over most of 
the crystal. 

We have seen that for currents above the transi- 
tion range carrier drift is the predominant mech- 
anism; it is now appropriate to discuss this range 

in which current follows a very nearly square-law 
dependence on applied voltage. 

(c) Square-law current range. We have seen that 
in this range the quantity us is large and negative 
but j 9 us numerically. Accordingly, the situation 
must be described in terms of Bessel J functions in 
the cathode regions of the crystal and in terms of I 
functions in the anode regions. Since j $ cc2 we 
have ~1 large, and once again the asymptotic ex- 
pansions of the I functions may be used in equation 
(27b) for p to obtain to the degree of accuracy 
required 

12,~r& + cos i * e-21 

-/g = WY 
77 

12~#1- cos - - e-21 
6 

In deriving this expression the negative sign for 
d(&) has been used because & is now negative. 
This expression is valid provided 

which is true in this current range. Since zr is 
large it is evident that - /3 is again almost equal to 
unity; this time, however, - B is slightly greater 
than unity. As before, the slight deviation of - B 
from unity is significant in evaluating conditions 
in the anode regions of the crystal, since we are 
once again concerned with the very small difference 
between two very large quantities. 

Considering now conditions near the cathode, we 
have, since j > us, that z Q ~1; thus it is suffici- 
ently accurate to take - ,B as equal to unity in the 
cathode regions of the crystal. Turning now to 
equation (23) for the electron density it is apparent 
that the quantity 

U-1 /3@0) +h &o>l 

must be near zero, because Bs is very large. Since 
Bs is so large it is sufficiently accurate to take x0 to 
be a zero of this quantity. Taking the first zero to 
avoid potential infinities in the crystal we find 
~0 = 2.38(3) giving 

-_crs = 2.946j2/3 (39) 

This result provides the value of uz in the square- 
law current range. 

Returning to equation (21), the electric potential 
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in the crystal is given by This shows that the current follows an approxi- 

x0 2’3 J-1,3(20) +J1,3(20) 
exp(V-Vo) = - 0 [ z P~-1,3(4+J1,3(4 1 2 

mately square-law dependence upon the applied 
inner potential difference. The external applied 
potential difference is given by Vi = I’,- VI 

In this expression the quantity where VI = --+1/e. This expression is useful for 
the thicker crystals (d> 10~) in which current of 

k ,3(x0) +h /3@0!1 practical magnitude is not reached until drift 

is very small and it is preferable to substitute for it 
mechanisms become effective; it provides an 

in terms of Bs from equation (23) for the electron 
accurate description of current-voltage relations 

density. We then obtain 
for large currents for which drift-current mechan- 
isms are predominant. The range of validity of this 
result is determined by the requirements that 
I $ 1 and (1 + /3) N 0; provided thatj > 100 

(40) 
these requirements are satisfied and equation (42) 

In the vicinity of the cathode where js < c? 
is accurate. Unfortunately this equation is tedious 

numerically, this result must be expressed entirely 
to use for the calculation of current-voltage char- 

in terms of Bessel J functions. In the anode regions 
acteristics because of the complicated nature of the 

of the crystal z is sufficiently large that the 
quantity D. However a considerable simplification 

asymptotic expansions of the I functions may be 
can be effected by neglecting the slight dependence 

used. In order to obtain the current-voltage 
of the logarithmic term upon temperature and 

characteristics of the crystal we put z = zr to 
applied voltage. In this way we obtain 

obtain 3 

2.40~ 
exp(V,-Vs) = B, xre2zl (41) 

- J( 1 --) 
s 9EjLV2 2 

a 
pkT 

--- - If-- 
jU3 6d3 

( 
eVa 

) (43) 

This expression is readily manipulated for the 
In this result Va-“t’s is, as before, the reduced purposes of calculation. The reduced-current den- 
inner potential across the crystal. It may be noted sity j is given in terms of the physical parameters 
that this expression is now independent of nr, the by equation (7). The quantity p is equal to 
electron density at the anode contact. Thus, in this 
current range, physical conditions and current log [d2e2No/7*2d(2)mkTjl/3(j+ ~2)1/2] 

mechanisms in the crystal are independent of the 
precise nature of the anode contact provided that 

It varies only slowly with temperature and applied 

it is a blocking contact, for which the ratio nl/‘Ns is 
voltage and a value p = 11 calculated for T= 3OOk, 

very small. However, it should be remembered 
j = 1000, covers practical ranges of temperature 

that the magnitude of the external applied voltage 
and applied voltage. Asj increases, the magnitude 

which is required to produce a given current den- 
of Bs falls and a2 begins to deviate from the value 

sity does depend on the nature of the anode con- 
given by equation (39). However, when the current 

tact since the external voltage must include the 
density, and therefore the applied voltage, is large 

work-function difference between anode and 
equation (42) reduces to 

cathode metals. 
Combining equations (39) and (41) we obtain -J = ~(V;+Vl-Vo,” (44) 

/ ? \3 

-J(l- j$) and is independent of aa. Except for the introduc- 
tion of the work-function threshold -(VI- Vs) 
this is in fact the approximate result obtained by 
MOTT and GURNEY on the basis of a drift mechan- 
ism alone. 

The physical meaning of this result is clear and 
can be discussed with reference to Fig. 3. In the 
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vicinity of the ohmic contact to the crystal a space- 
charge cloud of electrons forms. Current occurs 
when electrons are drawn from this space-charge 
reservoir by the applied voltage. Accordingly, 
electron emission into the crystal occurs from a 
“virtual cathode” within the crystal. The effective 
thickness of the crystal is thus reduced by a factor 
(l -3/jr/3). At the virtual cathode the electric 
potential rises to a maximum (negative) value and 
then falls rapidly to the anode. Accordingly the 
effective voltage across the crystal is increased by a 
factor 

[l .t kT(log D)/e( vcz - Vo)] 

Both of these effects are caused by diffusion mech- 
anisms and assist forward current.* 

The variation of electric potential through the 
crystal is shown in Fig. 6 for various increasing 
values of current through the large-current range. 
These results have been obtained from equation 
(40) and show very well the existence of the 
virtual cathode and the way in which it gradually 
becomes eliminated as the current increases. These 
curves refer to a crystal 10 p thick at a tempera- 
ture of 300°K for which, as before, the electron 
mobility p = 0.10 ms/V-set and the permittivity 
E = lo-10 F/m. 

The current-voltage characteristic of the crystal 
is shown in Fig. 7. The abscissa of this diagram gives 
the external applied voltage and the ordinate gives 
the square-root of the SCL current density. The 
diagram shows that there is a small voltage thres- 
hold before significant forward current is obtained. 
This threshold arises basically in the work- 
function difference (+I-&) between anode and 
cathode metals but is reduced to some extent by 
the effects of carrier diffusion in the crystal. Above 
this threshold current follows a very nearly square- 
law dependence upon applied voltage. This is, of 
course, the solid-state analogue of the three-halves 
law for SCL current in vacuum. Slight deviations 
from the exact square-law relation are caused by 
the contribution of carrier-diffusion mechanisms 
to the current. At larger currents, for thicker 
crystals, or at lower temperatures, carrier diffusion 
becomes less important and the exact square-law 
characteristic is more nearly approached. 

* This does not imply, of course, that the virtual 
cathode is at a distance 3d/j1 j3 from the actual cathode or 
that the height of the potential maximum is kT(log D)/e. 

The broken curve in this diagram gives the 
current-voltage characteristic for a crystal pro- 
vided with a more highly blocking anode for 
which -(&-+0)/e is 2 eV. As expected, the only 
difference this makes is to shift the curve by 1 V to 
higher voltages. 

The Fermi-level in the crystal may be found by 
using equation (23) to obtain the electron density 
in the crystal and then using the relation n = NO 
exp(- W#T). The variation of Fermi-level is 
shown in Fig. 8 for the same values of current as 
used in Fig. 6. The interesting feature of these 
curves is that the Fermi-level increases rapidly on 
leaving the cathode then becomes almost constant 
but increasing slowly over the greater part of the 
crystal and finally rises extremely rapidly near the 
anode. This diagram illustrates that near the 
cathode the electron density falls rapidly from the 
very large value no to a much lower value which 
does not vary much over the greater part of the 
crystal until the vicinity of the anode is reached 
where the electron density falls extremely rapidly 
to the very low value nl. The increase in Fermi- 
level near the anode occurs extremely sharply over 
a distance much smaller than an electron mean free 
path and therefore does not have any physical 
significance. Because the Fermi-level is so nearly 
constant over most of the crystal it is justifiable to 
make a distinction between shallow trapping levels 
and deep trapping levels as discussed in Section 2; 
for all practical purposes electron traps at a depth 
Wt less than O-3 eV below the conduction band 
may be regarded as shallow. 

In the immediate vicinity of the cathode and 
anode contacts, current is carried predominantly by 
carrier diffusion even though carrier drift is the pre- 
dominant mechanism over most of the crystal Since 
physical conditions in the vicinity of the contacts 
are considerably different from those obtaining 
over the bulk of the crystal it is of interest to con- 
sider the contact regions in more detail. 

In the vicinity of the cathode the electron space- 
charge density is high and the electron atmosphere 
is very little affected by the occurrence of current. 
Thus in the cathode region of the crystal, con- 
ditions deviate only slightly from the zero-current 
situation. This may be demonstrated with refer- 
ence to the electric field at the cathode; for large 
currents we obtain from equation (35) that 

80 = (2bno/Na+ 2&91/s (45) 
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FIG. 6. Variation of conduction band through the crystal 
for large currents; crystal thickness 10 p. Curve A: 
-J = 0.20 A/cm2; curve B: -J = 2.0 A/ems; curve C: 

-J = 20 A/cm2; curve D: -J = 200 A/cm2. 

Now in this current range us < bno/No; conse- 
quently this is very nearly the same as the zero- 
current result 

~?e = (2bno/N,, + 2g2)1/2 (46) 

The situation near the anode is more interesting. 
As the current increases the electron space-charge 
density spreads towards the anode; in the im- 
mediate vicinity of the anode, however, the elec- 
tron density falls rapidly to the relatively very 
small value nr. Since z is large near the anode we 
may use the asymptotic expansions of the Bessel I 
functions in equations (23) and (27b)* to obtain 

* Equation (38) for ,!l is not sutliciently accurate for 
this purpose; additional terms must be included from 
the expansion of the Bessel functions. 

t- 
0 3 I” 

Applied potential difference, V 

FIG. 7. Forward current-voltage characteristic of space- 
charge-limited current; crystal thickness 10 ~1. Curve A: 

(41-40) = 1.0 eV; curve B: (q%l-40) = 2.0 eV. 

expP(a -41 

3x1 
(47) 

This expression provides an accurate description of 
the electron density in the anode regions of the 
crystal where .z is large. At the anode contact itself, 
however, it gives the value nl/Ns = 0 instead of the 
true but very small value nr/Ns = lo-ls*rs. As we 
have already seen, however, the precise value of nl 
at the anode contact is immaterial in this current 
range. 

As the current increases through the square-law 
current range, equation (39) shows that the 
quantity -as increases. The magnitude of Bo, 
therefore, gradually decreases and the value of zs 
required to satisfy equation (23) gradually de- 
creases. This does not significantly affect the result 
given by equation (42) because at the larger 
currents the applied voltage is large. However, this 
variation of Bo must be taken into account when 
discussing current mechanisms in the immediate 
vicinity of the cathode contact. 
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If the applied voltage is increased to very large range, the quantity as increases negative as the 
values it will eventually become sufficiently large current increases. Referring again to equation (25) 
to move the whole cathode space-charge reservoir this shows that the field intensity at the cathode is 
across the crystal and the current will saturate and decreasing and does in fact become zero when 
become proportional to applied voltage. CG ‘= bne/iVe. If 9 became larger than bns/l\ro the 

(d) Saturation-current range. At very large equation would imply an imaginary field intensity 
applied voltages the electric-field intensity in the at the cathode. This is not physically permissible 
crystal will be very nearly uniform, and equal to and we conclude therefore that the maximum 

Distance, p 

FIG. 8. Variation of Fermi-level through the crystal for cur- 
rents in the square-law range; crystal thickness 10 p. Curve 
A: -J = 0.20 A/ems; curve B: -J = 2.0 A/ems; curve 

C : -J = 20 A/cm2; curve D : -J = 200 A/ems. 

- Vi/d. Turning to equation (25) this can provide a 
suitable result only if ~2 is positive and very large 
and if the magnitude of the reduced field intensity 
is given by -2/(2)x. We thus have that 

d = -Vi = -d(2) CC (48) 

in the saturation-current range. In particular, the 
electric-field intensity at the cathode has decreased 
from positive values in the large-current range, 
passed through zero, and is now going large and 
negative. 

Now we have seen that, in the square-law current 

negative value of us is &e/No which it reaches as 
~$0 becomes zero. Subsequently as decreases 

negative, passes through zero, and increases large 
and positive into the saturation-current range. 

While the integration constant us is varying in 
this way xl is increasing steadily and equation (38) 
shows that - j3 remains very nearly equal to unity. 
Referring now to equation (23) we see, when 
us = bne/iVs and Bo is zero, that the quantity 

[J2 P(~o) + J-2 i&o)1 
is zero. Accepting the first zero as before we have 
ze = O-685. This provides a fixed point between 



186 G. T. WRIGHT 

the large-current and saturation-current ranges. 
Taking again the case of a crystal 10 p thick at a 
temperature of 300°K with p = O-1 ms/V-set and 
E = lo-10 F/m, and using eV0 = 0.1 eV, we 
obtain, when the electric field at the cathode is 
zero, that j = 4.07 x 100 giving -J = 2.74 x 100 
A/cm2. Evidently when the crystal is provided with 
an ohmic cathode the saturation-current range is 
far above any practical current range; accordingly 
it will not be discussed further. 

So far this discussion has been concerned with 
forward current; it is now appropriate to discuss 
the reverse-current case. 

B. Reverse-current case 
With a blocking anode, current in the reverse 

direction will always be very small. For small 
reverse voltage in particular, conditions near the 
cathode will not be significantly different from the 
zero-current case. Once again therefore we deduce 
that aa is not very different from gs. At very large 
reverse voltage, however, the electric-field inten- 
sity in the crystal will be effectively uniform and 
very nearly equal to - vi/d. Turning to equation 
(25) for the field intensity this can only provide the 
correct result if CX~ is very large and positive and if 
the magnitude of the field intensity is given by 
+ d(2)a. At large reverse voltages, therefore, x2 is 
very large and positive and we always have 
j < as. It follows from this that z is everywhere 
large and real so that Bessel 1 functions may be 
used throughout. 

Turning to equations (27a) and (27b) for fi it is 
necessary to use the positive sign for 1/(B0) and 
2/(Br) since the electric-field intensity is every- 
where positive. However, since the quantities z0 
and x1 are negative in the reverse-current case, we 
obtain the same result for fl by using the negative 
sign for d(B) and taking x positive. This case has 
been evaluated previously to provide equation 
(38); to the rather greater degree of accuracy re- 
quired here we have 

Using cathode and anode conditions and equating 
the two expressions for /3 obtained from equation 
(49) we have: 

exp[2(zl -z0)] = [(Bl- 1)/4 - 1/12x1] x 

x ~dPO)+~lI[d/(~o)-~l (50) 

For the particular case of zero reverse current this 
expression reduces to the zero-current case dis- 
cussed in Section 3. 

Equations (49) and (50) may be used to provide 
the integration constants a2 and /I relevant to the 
reverse-current case. In particular the current- 
voltage characteristic of the crystal is obtained 
using equation (21) together with equation (50) to 
give 

B1-1 1 
exp(Va--V0) = B - 

3z1(Bo-1) 
(51) 

0 
which reduces to 

-J = ~(2)aCLkTnl[exp(e~,~/lKT) - II/d (52) 

For very small reverse current, conditions in the 
crystal are not very different from zero-current 
conditions and we may write a2 = gs. Thus we 
have the same result as for very small forward 
current except that the signs of current and 
applied voltage have reversed. This shows that the 
current-voltage characteristic has the same slope 
on either side of zero voltage. 

When the reverse voltage is large (eI$ 9 kT) 
equation (52) shows that 2/(2)a = jNo/bnl. Com- 
bining equations (50) and (51) we obtain 

4 exp[-4(2)a] = [d(B0)+112 exp(Va-Vo) 

(53) 
This equation provides the value of a2 for large 
reverse voltage. In particular, when 

-(?fra -Yo) 9 (2bn0/N0)1/2 

we have 

-4(2)a = (Ya-Yo) 

_p = [2/(B)+ l]e~-{2/(B)-l--[7+5~(B)1/72~) (cos7@++ 

[z/(B)+l]s+{2/(B)-1-[7+52/(B)]/72x} (cos+++ 
(49) 

In this result of course the quantities d(B) and z from which it follows that 
are to be regarded as positive because algebraic 
sign has been taken into account in the derivation. 

J = nlep[--v~-(vl--Vo)l/d (54) 
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In this expression Vi is the reverse applied voltage 
and is negative, and VI and Va are each negative as 
usual. This result shows, as expected, that, at large 
reverse voltages, current is proportional to applied 
voltage. With a blocking anode, for which the 
ratio nl/Na is very small, the reverse current is 
always very small. 

6. REMARKS 

The experimental achievement of SCL current 
in cadmium sulphide crystals has shown that the 
mechanism of defect compensation is very success- 
ful in eliminating the influence of empty, deep 
trapping levels. Possible practical applications for 
SCL current in the development of high-frequency, 
low-noise and temperature-insensitive solid-state 
devices have been discussed elsewhere(ssJr-3s) and 
it is of interest here to consider some possible 

. . 
apphcatrons m fundamental solid-state research. 

ROSE(~), LAMPERTfg) and SMITH(34), in particular, 
have pointed out that in uncompensated crystals 
the voltage dependence and temperature depend- 
ence of SCL current are sensitive to extremely 
small densities of deep trapping defects. It has 
been suggested by them that this could be used to 
provide information about the density and energy 
distribution of trapping levels. An alternative 
approach for the investigation of trapping levels, 
particularly in compensated crystals in which 
large SCL current can be obtained, may be to 
study the temperature and frequency dependence 
of current fluctuations. In this connexion, the 
intrinsic level of fluctuations caused by variations 
in stored charge and by variations in transit time 
should be extremely small under SCL conditions. 
Accordingly if the trap density is sufficiently high 
the predominant mechanism of current fluctua- 
tions will be variations in the number of mobile 
carriers due to exchange of carriers between con- 
duction and trapping levels. Further information 
about trap depths, densities and lifetimes may be 
obtained by studying the frequency dependence 
of current, particularly for the case of shallow 
traps.@* 3s) These methods for studying electron 
traps are complementary and could form the basis 
of a useful technique for studying some aspects of 
the defect solid state particularly in wide band- 
gap materials. 

In compensated crystals the magnitude of 
current in the square-law range is a direct measure 

of carrier mobility and can be used to provide the 
magnitude of this quantity over a wide range of 
temperature and applied field strength. This is of 
interest because the density of such additional 
scattering centres as ionized donor centres can be 
brought to a minimum and the observed mobility 
be more truly representative of lattice scattering. 
In this connexion, the number of carriers available 
for current is not influenced much by temperature 
changes; consequently measurements can be 
made readily over wide temperature ranges. 
Furthermore, by using the thicker crystals 
(d> 10 p), high electric fields can be applied with- 
out resulting in undue power dissipation in the 
crystal, and the investigation of field dependence 
of mobility facilitated. 

The voltage threshold for forward current in the 
square-law current range provides a measure of 
the zero-current inner potential difference across 
the crystal. In the practical case, in which the 
cathode energy step is made as small as possible, 
this gives the magnitude of the anode energy step 
which for the ideal contact is equal to the difference 
between the work function of the anode metal and 
the electron affinity of the crystal. In principle, 
therefore, this can provide the absolute position of 
the electron-energy band system of the crystal, 
information which at present is virtually non- 
existent for wide band-gap materials and is 
necessary to complement theoretical studies of 
electron band structures and to aid understanding 
of surface and contact phenomena. 

Electrical properties such as photoconductivity 
and breakdown are influenced partially and in 
some instances predominantly by contact effects. 
The measurement of forward SCL characteristics 
can provide information about defects in the crystal 
and about the magnitude of the anode energy step 
to assist the interpretation of measurements of 
photoconductivity, high field conduction, or 
electric breakdown subsequently made in the 
reverse direction and for which the anode contact 
would act as a normal contact. 

7. CONCLUSIONS 

This discussion of SCL current in solids has 
produced some clarification of the physics of the 
metal-insulator contact. Carrier-concentration 
gradients and space-charge inevitably exist in the 
vicinity of any contact, and this detailed discussion 
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of the simplest case, showing that current is carried 
predominantly by carrier diffusion near ohmic and 
blocking contacts, provides qualitative information 
about more complex cases as, for example, the 
metal-semiconductor contact and the metal- 
photoconductor contact. 

The discussion has shown that a number of 
current ranges can be defined on the basis of the 
physical conditions existing in the crystal. Simple 
and accurate expressions have been obtained 
describing in particular current mechanisms and 
characteristics for small forward currents when 
diffusion mechanisms are predominant, and for 
large forward currents when drift mechanisms are 
predominant. The overall current-voltage char- 
acteristics are illustrated in Fig. 9 which shows the 
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FIG. 9. Current-voltage characteristics of space-charge- 
limited current; crystal thickness 1 /J (full lines) and 
10 p (broken lines). Forward characteristic: (a) ex- 
ponential range, (b) transition range, (c) square-law 

range. Reverse characteristic: (d). 

calculated characteristics of two crystals with 
thicknesses of 1 p and 10 CL, respectively, and 
having permittivity 10-10 F/m and electron mobility 
O-1 m2/V-sec. 

At small forward voltage [region (a)] current 
occurs against the direction of the electric field in 
the crystal and takes place by the predominant 
mechanism of carrier diffusion. The current in- 
creases approximately exponentially with applied 
voltage and is very sensitive to temperature. For 
thin crystals and thin insulating layers (d < 1 CL), 
current of practical magnitude can be achieved in 
this current range. 

With larger applied voltages [region (b)] the 
electric field reverses sign in the anode regions of 
the crystal and carrier drift now begins to assist 
carrier diffusion. This is the transition region in 
which the predominant current mechanism is 
changing from diffusion to drift and in which the 
virtual cathode begins to appear. The current 
increases steadily and smoothly with applied 
voltage although less rapidly than exponentially 
and there is no evidence for the existence of a 
negative-resistance region. The external applied 
voltage is still less than the work-function differ- 
ence between anode and cathode metals. 

When the applied voltage is of the order, or 
larger than, the work-function difference between 
anode and cathode metals [region (c)l, the electric 
field over most of the crystal assists current, and 
carrier drift is the predominant mechanism of 
current. In this range, current is of practical mag- 
nitude and is very nearly proportional to the square 
of the applied voltage. Electron emission into the 
crystal takes place from a “virtual cathode” which 
exists in the cathode regions of the crystal. Since 
the effective density of carriers available for current 
is independent of temperature, current depends on 
temperature only through the variation of carrier 
mobility and the extent to which diffusion mech- 
anisms contribute to current. Each of these effects is 
relatively small, and in any event they act in opposi- 
tion; consequently in this range current is not very 
sensitive to temperature. The diagram illustrates 
well the sensitive dependence of current upon 
crystal thickness; in this square-law range current 
is proportional to the inverse cube of crystal 
thickness. 

The Fermi-level in the crystal is nearly constant 
except near the cathode and near the anode. This 
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justifies the distinction made by ROSE between 
shallow traps which lie above the Fermi-level and 
deep traps which lie below it. This is significant 
because empty shallow traps merely reduce the 
magnitude of the current-voltage characteristics 
without affecting their form, whereas empty deep 
traps can reduce the magnitude and change the 
form of the current-voltage characteristics. Near 
the anode the Fermi-level rises extremely sharply 
as the electron density falls. However, most of this 
increase occurs over a distance which is much 
shorter than an electron mean free path and there- 
fore cannot be used to describe the space-charge 
electron atmosphere in a real crystal. This means 
that in the practical case, and providing that the 
electron density at the anode contact is small com- 
pared with the electron density in the central 
regions of the crystal, the nature of the anode will 
affect only the magnitude of the forward voltage 
threshold and will not affect current mechanisms. 

At very large forward voltage the whole of the 
space charge in the crystal is moved across the 
crystal, and saturation current is obtained pro- 
portional to the applied voltage. However, with an 
ohmic cathode this current range is far above any 
practical current range. 

With a blocking anode for which the ratio 
nr/Ars is small, reverse current is small [region (d)]. 
As the applied voltage increases the zero-current 
space charge of electrons in the crystal is gradually 
swept out through the cathode contact and the 
resistance of the crystal increases; for large 
applied voltages it becomes constant and current is 
proportional to applied voltages. Since the electron 
space-charge density at the anode. is very sensitive 
to temperature, the reverse current is very 
sensitive to temperature. Very high reverse re- 
sistance and consequently high rectification ratio 
can be achieved by using anode contacts of high 
work function. 

The numerical calculations used to illustrate 
this discussion have been made on the basis of an 
electron mobility of 0.1 ma/V-set; this is inter- 
mediate between the value of 0.02 ma/V-set for 
cadmium sulphide and 0.9 ma/V-set for gallium 
arsenide. Although large and steady SCL current 
has so far been observed only in cadmium sulphide 
there seems no fundamental reason why it should 

not eventually be achieved in a wide range of 
materials. This would considerably increase the 
value of SCL current for basic research and for 
device development. 
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