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§ 1. INntrRODUCTION

THE purpose of this article is to review recent experimental and theoretical
work on the behaviour of electrons in disordered lattices. The experi-
mental work falls into three main groups, as follows :

(@) The electrical and optical behaviour of liquid and amorphous (or
glassy) semiconductors. Under this heading we include measurements
of the mobility of carriers injected into insulating materials (e.g. liquid
argon).

(b) The electrical and optical properties of liquid metals. On this, much
theoretical work has been done recently, following Ziman’s (1961) paper,
assuming a small amplitude for the electron wave scattered by each atom.
Most of this work is based on the ‘ one-electron model’ of non-interacting
electrons, although as we shall suggest correlation (electron—electron
interaction) may be important particularly at densities near that at which a
transition to the non-conducting state may be expected.

(¢) Electrical and optical properties of heavily-dopedsemiconductors, the
impurity centres being sufficiently close together to interact. We include
under this heading concentrated solutions of alkali metals in ammonia.
These phenomena will be discussed under two headings:

(i) The behaviour of weakly-interacting centres, in materials in which
there is some compensation (i.e. some p-type centres in an n-type
conductor). Here the conductivity is usually treated as temperature-
activated hopping from centre to centre (Miller and Abrahams 1960, Mott
and Twose 1961), and tends to zero with temperature.

(ii) Conduction in materials so heavily doped that the electrons in the
centresbehavelikeadegenerateelectrongas (i.e. ametal), with a value of the
conductivity tending to a finite value at the absolute zero of temperature.

The main purpose of the article is to examine how the behaviour of
non-crystalline materials changes as the interaction of the electrons
with the ions becomes stronger, orin other words as we go from the ‘ nearly
free electron’ to the ‘tight binding’ case. At one extreme we have
materials with along mean free pathlike liquid sodium, at the other materials
which do not conduct at all, like fuzed quartz. Of particular interest are
materials which are intermediate, such as liquid tellurium, some of the
intermetallic compounds and mercury at high temperatures. Most of this
is discussed in terms of the model of non-interacting electrons; the article
includes however a brief review of our present knowledge about the transi-
tion between the metallic and the insulating state, because nearly all the
evidence that this transition occurs is obtained from disordered systems.

Many of the arguments of this paper depend on the existence of solutions
of the Schrodinger equation for an electron in an aperiodic lattice which are
‘localized’. Such solutions are eigenfunctions and have quantized energy
values and the wave function decays exponentially with distance from a
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point in space which is characteristic of the particular solution. In one
dimension all solutions are known to be of this type; in three dimensions
the problem has proved intractable, but it seems probable that the position
is as follows:

(@) In disordered structures, if there are no large or extended density
fluctuations, there may be no localized states; all bounded solutions of the
time-independent Schrodinger eqn. (10) will extend throughout the lattice.

(b) In general, however, the lowest allowed states will be localized;
there will be a critical energy £, above which they arenot. Inthis case, an
electron initially in a localized state can move by thermally-activated
hopping to another localized state, if the wave functions of the two states
overlap enough to allow tunnelling between them ; at each hop energy is
given up or received through interaction with phonons. An electron can
also move by the same process as in crystalline semiconductors, namely by
thermal excitation to energies above ¥ .

(¢) Localized states may exist also in ranges of energy where the density of
states is low, which can replace the regions of forbidden energy which
exist for the electrons in a non-metallic crystalline solid. Such states are
important for the understanding of liquid insulators and semiconductors.

When an electron is moving with energy above ¥, it will have a mean
free path just as it would in a crystalline semiconductor or metal. If
the mean free path is long compared with the wavelength, we can calculate
it asisdone by Ziman (1961) or Edwards (1962). Ifnot, the theory of motion
in an imperfect lattice has not yet advanced enough to enable calculations
tobemade. We shall give some reasons, however, for believing that at the
critical energy ¥, the mean free path L is of the order of the electron wave-
length (calculated as for free electrons) and that values of L less than this
arenot possible. Mobilities less than eL/m v, 1.e. eL[hk, where kL ~ 1, are
due to hopping; k is here the wave number.

Throughout this report the emphasis will be on materials where the
conductivity is on the borderline between the two processes.

Since localized states are so important for the considerations of this
review, and since they are most completely understood in the one-
dimensional case, I shall start with a discussion of this problem.

§ 2. ELECTRONS IN A DISORDERED ONE-DIMENSIONAL LATTICE

2.1. Introduction

As far as I know, the suggestion that for an electron in a disordered one-
dimensional lattice all characteristic solutions of the Schrédinger equation
are localized was first made by Mott and Twose (1961) ; these authorsgavea
proof for a particular model (a disordered Kronig—Penney lattice). This
was extended by Borland (1961, 1963) and Borland and Bird (1964) to the
case of a random distribution of delta functions. We think it worth
while to set out the Mott—Twose argument in some detail.
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What do we mean by the statement that states are localized? We mean
that, if the Schrodinger equation for an electron in the field of a disordered
potential V is:

d¥  2m

L Em-VW=0, . . . . . . (Q

St 2 BTy )
then all bounded solutions in the range — o < < oo have a maximum value
for some value z, and decay exponentially to zero as

exp{—y|e—=,[}

as |z, —2]| tends to infinity. Each solution i, has a characteristic energy
value B,. Foraninfinitelatticetheenergies £, willform acontinuousrange ;
for a chain of length [ they will be spaced at intervals proportional to 1/I.

It may of course happen that a localized state has two (or more) peaks of
comparable height at a distance, say, X from each other. If so, we should
expect two states, in one of which ¢ would have the same sign in both peaks,
in the other opposite signs ; the energy separation between them would be of
order Fexp(—yX). As X increases, the proportion of configurations in
which this happens will decrease exponentially.

2.2. Strong Scatterers; the Model of Mott and Twose

The random Kronig—Penney potential V(x) is shown in fig. 1 (¢). First
consider an electron incident on a single potential step as in fig. 1 (a). Ttis
well known that the bounded solution, shown by the full line in the upper
diagram, is of the form sin (kx + ) for <0, and that » is determined by the
condition that ¢y should decay exponentially for x>0, which gives:

keotny=—y, y=+/{2m(H—E)}*2[R.

For all other values of 5 the solution increases exponentially for x>0 as
shown by the dotted line. Consider next a single Kronig—Penney step
(fig. 1b), and a wave function with the form sin (kx +7) for £ <0. Then,
except for a small range of 7, ¢ will increase on going through the step.
Thus for a random array of steps (fig. 1 ¢), and starting to the left again with
a solution ¢ = sin (kx +7), we see that at most steps an exponential increase
is expected, and that the amplitude of the solution will increase indefinitely
as x increases.

At first sight this conclusion does not make sense; we could start on the
right and by the same argument produce a solution which increases
exponentially as z decreases. The clue to the apparent contradiction
lies in considering the phases. It will be obvious from fig. 1 (b) that after
passing through a large step in which i increases, the phase 4’ of the wave
depends rather little on . The behaviour of ' as a function of % is
illustrated in fig. 2. The range AB of 7 is the range for which s decreases
as z increases through the barrier.
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Counsider now a large number of steps, and let 5, be the phase in a given
interval between steps, and 7, the phase in another interval some way to the
right. Then if n is large, there will be a range 4B of 7, for which
decreases, and A B tends to zero with n; moreover, if 5, does not lie in the
interval AB, the phase 7, has a value approximately independent of .

Fig. 1
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Potentials and wave-functions 4: (#) a single step, (b) a single barrier,
(¢) a disordered Kronig—Penney lattice.

Fig. 2

Phase %" at end of chain, a function of phase n at beginning.
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We see therefore that there is one value of n, and one only for which, if we
integrate (1) from left to right, b will decrease. For all other values it
will eventually increase.

It follows that if we take a solution sin (kx + 7,) in a given interval between
steps, we can choose 7, so as to make s decrease for increasing , or to
decrease for increasing z, but not both. But if we vary k (i.e. the energy &),
we can find solutions for a limited number of quantized values of K which
decrease in both directions. This can best be seen by taking, as in fig. 3,
solutions decreasing from left to right and from right to left and asking if
they fit in the interval AB. The amplitudes are at our disposal so they
will fit if the phases are the same. But for given energy the phases are
fixed at A and B, so that (for big steps) it is obvious that as we change the
energy we pass through a number of values for which the two do fit, with
0,1,2...zerosof sy in AB. These are the characteristic solutions of (1)
localized round 4 5.

Fig. 3
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Fitting the two halves of a localized wave-function if;
V() is the potential energy.

Lo e e~

2.3. Weak Scotterers

The argument of the preceding paragraph applies only to very strong
scatterers. The first proof that all states in any one-dimensional lattice are
localized was given by Borland (1963) and Borland and Bird (1964), who
treated a random chain of delta functions. Before considering this
work, we give a more general argument which in §3 we shall extend to
three dimensions.

We shall first show that a wave impinging from outside on a random
array of scatterers is totally reflected. Let the chain be as illustrated in
fig. 4, the scatterers Py, Py, . . . being (say) delta functions. Inthe interval
AB outside the chain take a solution of the Schrodinger equation which has
the form:

d=exp(thr—iwt). . . . . . . . . (2)

This represents particles going from left to right. Then, if L is the mean
free path calculated by normal procedures, it follows that at distances a few
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multiples of L to the right of P, the particle is nearly as likely to be moving
to the left as to the right; scattering will have made it forget its original
direction of motion. Thus the solution there must be of the form :

[A exp (ikx) + Bexp (—ikx)]exp (—iwil), . . . . (3)
where A and B are slowly-varying functions of z and (|4 P — | B [?)/| 4 [? is
small compared with unity. But the current is conserved; so for all :

|4 |B]=1.
Thus | 4 [2 must increase exponentially with x as some multiple of exp (x/L).

If the sign of k in (3) isreversed, the solution represents a wave incident at
P,,, nearly totally reflected and with a small amplitude transmitted.

Fig. 4

A B Py P, P3 Pn

Points on a random lattice.

The solution (2) in the range 4 B has a real and imaginary part, sin kz and
coskx. We have shown that one must increase, not necessarily both. In
fact one can always choose one solution sin (kz+7) that will decrease.
The demonstration that the only eigenstates for an infinite lattice are
localized ones follows as in the model of Mott and Twose.

Borland’s work considers in detail the behaviour of ¢ at each delta
function. The potential of a delta function at z = 0 is defined by :

(x) =0 xz=0,

v
f Vix) de= V.

The boundary conditions satisfied by i at 2 =0 are that i is continuous and
dIni/dz changes by 2mVc/h2.  Thus if we have a solution sin (kz +7) to
the left of =0, to the right s= A sin (kx+7’), where

sinm=Asiny’, cosn—Acosn =6,
where 0 =2mV jc/hk.
Hence
A?=1+420cosn+62 . . . . . . . (4
and
tany’=siny/(cosn—0). . . . . . . . ()
We can obtain the amount of scattering by each delta function by setting :
y=exp (thx) + A exp (—ikx) (x<0)
= Bexp (ikx) (x> 0)
and applying the above boundary conditions. We find easily :
A= —1i0/(2+10).
Thus the scattered intensity is 62, to the first order in 6.
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Ifthe delta functions are distributed at random at a mean distance a from
each other, the normal Boltzmann approach to a calculation of the mean
free path L would give:

L=a/ . . . . . . . . . (6

If, on the other hand, the distance between delta functions is distributed
about the distance ¢ with a mean square deviation Aa(Aa <a), then we
expect :

L=al(kAa)*e?, . . . . . . . . (7)
provided that ka does not lie near the values na for which Bragg reflection
takes place.

We now look again at formulae (4), (5). We see that the value of A2
averaged over all nis 1+ 62, Thus, if the scattering centres are distributed
at random, we expect (for small §) that [ | will increase on the average by
the factor 1 + £62 on passing each scatterer. Thus, the envelope of | |2 will
increase as exp (¢/L), where L is defined by (6).

A similar proof can be given for the case (7). Thus the quantity that
one would normally calculate as the mean free path appears as the length
determining the rate at which ¢ falls off or increases.

Turning now to the phase given by (5), it is obvious that after passing
many steps the phase 7, behaves as illustrated in fig. 2. For any value
of n, Borland shows that the successive application of this formula leads
ultimately to a value 7, which is independent of 7, unless one chooses the
unique initial value », of 5, for which s decreases. Localized states are set
up by the same argument as before.

Borland’s analysis has been discussed in detail in a review article by
Halperin (1966) and also by Hori (1967).

In this section we have considered the bounded eigensolutions in an
infinite chain. We can of course impose the cyclic boundary condition
for a chain of length 7 that y(x + ) = i(x) and ' (x +1)=4'(x). For a long
chain the effect on the form and energy of the eigenfunctions will be
extremely small. Intuitively this must be so because very small changes in
the energy and in the phase of ¢ in the interval 4B of fig. 3 will produce
very large changes in these quantities at distant points where the boundary
conditions must be applied.

Finally we emphasize that conductivity in a one-dimensional chain can
only ocecur by hopping. Ifan electron is to jump from one state to another
for which the orbitals overlap, energy must be exchanged with some heat
source such as phonons. If kL is large the energy will be small, but still
finite. This point is discussed further for the three-dimensional lattice
in §4.

2.4. Density of Stotes

This is one of the earliest problems in this field to have been treated
theoretically ; it is particularly suitable for machine calculations (James
and Ginzbarg 1953, Landauer and Helland 1954, Lax and Phillips 1958).
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An analytical treatment is given by Frisch and Lloyd (1960). These
papers use the following fact. For any real solution of the Schrodinger
eqn. (1) defined in the range 0 <z <[ with cyclic boundary conditions,
we denote by v the number of zeros in the range I and by i for the
corresponding wave function. If we write:

K =2mv[l,
then the density of states n(¥) is given by :
n(EY=1/2n(dE/dK)
and the integrated density :
N(B)= f " (B AB = 1K [2m = .
This conclusion is valid whether the solution is localized or not, and some

of the calculations quoted were made before the localized nature of the
wave functions was realized.

Fig. 5
N(E) N{(E}
(a) E (b) E
n(E) n(E)
(c} £ (d) E

Integrated density of states N(£) (¢) and (b) and differential density n()=N'(E)
(c) and (d) as calculated for one dimension by Frisch and Lloyd. (o) and
(¢) are for a high density of weak scatterers, (b) and (c) for a low density
of strong scatterers (tight binding case).

Both Lax and Phillips and Frisch and Lloyd make calculations for a
random distribution of attractive delta functions. At least one bound
state will always exist in the field of an isolated delta function, of which
these authors define the strength by the binding energy of the lowest state,
which they write —h2K2/2m. The energy of an electron is then denoted
by:

Y h2k?[2m, — B® k?[2m,
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for positive or negative values. The density of states thus depends on the
dimensionless parameter nK,, where n is the number of delta functions
per unit length. Figures 5(a) and 5 (b) show the plot of the integrated
density N against k, « (and thus /E or v/(—£)) for nKy=1, nKy=0-1.
Figures 5 (¢) and 5 (d) show the differential density n(Z). The occurrence
of a peak in the density of states when the atoms (delta functions) are well
separated is marked. This corresponds to the tight binding case for
periodic lattices. Landauer and Helland (1954) and Mackinson and Roberts
(1962) were the first to discuss whether forbidden energy gaps persist in a
disordered one-dimensional lattice. For a random distribution of centres
they will not; the minimum of fig. 5 (d) will not drop to zero. But if the
deviation from periodicity is small and limited, a gap may occur. In order
to understand this, we examine the form of the solutions of the Schrodinger
equation for values of E within the gap for a periodic structure with atoms
distant @ apart. These are of the form:

p=sin(kgxr+n)exp(£tyx), . . . . . . (8)

where ky=m/a, n varies by {7 within the gap and y varies from zero at the
extremities to a maximum value in the middle. The quantity y can easily
be calculated to the first order in the pseudopotential (Sommerfeld and
Bethe 1933, p. 491, eqn. (29.18)). The result is:

h2y*(2m = {V? — (B — Eo)*}[{2(E + E,)}.

Here E, is the energy of the middle of the gap and 2V is the width of the
gap. Thus approximately :

y= b (V2 ~ (B - BB,
and
~ ko V/E,.

'ymax

We see that y is of the first order in V, not the second order as is 1/L, where
L is the mean free path. The quantity y has recently been discussed in
some detail in connection with the theory of surface states (Heine 1965)
and for insulators can be measured experimentally by tunnelling (Lewicki
and Mead 1966).

Suppose now that we have a disordered lattice in which the mean
distance between the atoms ise and the width of the nth intervalisa + Aa,, ;
we denote by A the root mean square value of Ag.  Mackinson and Roberts
(1962) pointed out that, if large values of o are allowed, then even if Ag
is small the energy gap will disappear. States in the gap for which ¢ falls
off rapidly as exp ( + yx) (rather than slowly as exp ( £ /L)) will be located
in regions where large values of Ag occur. If however there is a limit to the
values that A¢ may have, the gap may persistt. Schematic £, K curves

+ Hiroike (1965) concludes that gaps can exist for a Gaussian liquid if Ag is
small enough. T do not think that this is correct and the conclusion depends
on the method of averaging.
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for these two cases are shown in fig. 6 (¢) and 6 (b). Curves of this
type were first computed by Landauer and Helland (1954). Taylor ( 1966)

has given conditions for the persistance of the energy gap in three
dimensions,

We may contrast the curves of the type shown in fig. 6(c), which are
published in Edwards’ paper on one-dimensional lattices (Edwards 1961);

here I is plotted against the expectation value of k, given say by 1/%% where

P=( [o@anpary,

the () denoting averaging over all configurations of the lattice. The
reason for the behaviour shown is that in the region of the energy gap

£~ K242

since y increases and then decreases as the energy increases, and K, is
unchanged, k2 varies in the way illustrated.

Fig. 6

(a) K (b) K

(c) i3
Curves plotting £ against K (density of zeros in wave-function) (¢) when the

energy gap remains, (b) when it disappears. (c) shows the behaviour of B
plotted against the expectation value of the momentum.

§ 3. DENsITY OF STATES IN THREE DIMENSIONS
3.1. Imiroduction

The purpose of this section is to discuss the nature of the solutions of the
three-dimensional Schrodinger equation ;

VAt S (E=V)=0, . . . . . . (10)
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and obtain the corresponding density of states. No complete solution of
this problem has been obtained and quantitative work is limited to the
use of perturbation methods (§3.2), discussion of the low energy tail and
Anderson’s (1958) tight binding model which will be discussed in this
section. We therefore put forward a number of conjectures in support of
which arguments will be given. These are:

(@) Within a given range of energies states are either localized or non-
localized. This is a qualitative difference ; if states are localized an electron
placed in a given region will not diffuse away; the Kubo-Greenwood
formula for the conductivity (§ 4.6) vanishes.

(b) There will thus exist critical energies K, dividing ranges in which
states are localized from those which are not (cf. fig. 7).

(¢) For localized states ¢ falls off as sin kr exp (—yr) and y tends to zero
as B> K.

(d) For non-localized states, the mean free path L tends roughly to the
electron wavelength A as KK, Values of L smaller than A (or A/27)
cannot occurt.

The only quantitative work on the condition for localized states is that of
Anderson (1958). Anderson considers essentially the tight binding model,
in which a single band of energy levels is formed from s-like atomic orbitals
with bandwidth 2JZ, where Z is the coordination number and J an overlap
energy integral. Instead of considering a random variation of J due to an
amorphous structure, Anderson imposes on each site a potential energy V,
V having a random spread of values (V). He finds that if (V)/J is large
enough, all eigenstates are localized ; for smaller values some are not. His
results are expressed in terms of the connectivity of the lattice, but it
appears that states become localized when (V') is greater than about six
times the band width. With this model there is no boundary X, between
localized and non-localized states.

The calculation can be applied to impurity -band conduction, of which a
review is given in § 7.10 and for which the assumption of localized states and
conduction by hopping has been madec for a decade at least. Consider for
instance n-type germanium, with a concentration of donors sufficient for
appreciable overlap between their orbitals. If there are no acceptors
present, one either has metallic conduction, or at lower concentrations, due
to the Coulomb repulsion e2/r;,, a non-conducting state; electrons can
move only by excitation into the conduction band. But if some acceptors
are present, some of the donors are unoccupied and e?/r;, will no longer
prevent electrons moving directly from one centre to another. At the
same time, the charged acceptors produce a random field and thus a

+ Toffe and Regel (1960) class the mobilities of semiconductors into those for
which #>100 em2 v-1sec!; for ‘these L is greater than the wavelength
hj+/(2mkT/3); those for which <5 em? v—'sec™! for which the mobility can
only be explained if L<a, which they consider impossible; and intermediate
values.
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random potential of order e2/xR at the donors; R is the distance between
them. Whether the states are localized, or whether a band exists with a
finite mean free path, will depend on Anderson’s criterion. In the usual
case, treated by Miller and Abrahams (1960), the states are localized
(cf. §7.10).

We turn now to the conduction band of a liquid metal or insulator.
There is ample evidence that at the Fermi surface of liquid metals or
disordered alloys the states are not localized; the conductivities of dis-
ordered alloys or amorphous metal films do not tend to zero with the
temperature (§6.5). Moreover electrons excited into the conduction band
of liquid argon have quite long mean free paths and the mobility is not
trap-limited (§6.2). On the other hand, various authors have suggested
that localized states may exist in a ‘ tail’ below the ‘ conduction band’ in
amorphous materials (Frohlich 1947, Gubanov 1963, Banyai 1964). We
think that this is so, though in materials like liquid argon where the tail is
due to density fluctuations it may be of little importance, while in glasses
and amorphous polar materials it may be more markedf.

Fig. 7

n(E) i n(E) l

(a) (b)

n(g) n{E)
!
E l E
(c) (d)

Suggested density of states for a three-dimensional lattice, with increasingly
strong interaction with the lattice. The arrow shows the divalent Fermi
energy. (@) is for nearly free electrons, showing a low energy tail,
{b) is for weak interaction, (¢) is for strong interaction, as for liquid
tellurium, (d) is for a liquid semiconductor. The regions in which states
may be localized are shown shaded.

Tails to the N(E) curve have recently been considered by Lifshitz
(1964), Bonch-Bruevich (1964) and Halperin and Lax (1966). What is
meant is shown in fig. 7 (¢). The tail in these treatments is due to density

1 In polar materials polarization round the trap will always increase the
depth of a localized state (cf. § 4.3).
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fluctuations, and it is assumed that compression lowers the bottom of
the conduction band. In a liquid (or for that matter a solid) volumes
in which the substance is compressed will contain potential wells. With
a Boltzmann distribution of energies of such volume fluctuations there
will be no limit to the depth of these wells. The energies of an electron
in them will thus form a tail to the N(E) curve of infinite extent, as in
fig. 7(a). Moreover, Anderson’s (1958) theorem is applicable to these
states; for the lower ones the spread of depths (V') will be large compared
with the overlap integral J and therefore the states are localized. There
will therefore be a boundary ¥, as shown in fig. 7 () between energies where
the states are and are not localized.

In § 4 we shall show that near this boundary the mean free path L and
electron wavelength are comparable. This becomes plausible if, as in
§2.3 for the case of one dimension, we relate the existence or otherwise of
localized states to the behaviour of a beam of electrons impinging on the
crystal from outside. Inthe region of non-localized states, we should treat
the passage through the crystal by a diffusion equation. If a beam of
particles (V per unit volume, velocity ) falls on a slab of disordered material
of thickness X, then one can achieve a steady state with a concentration
N(1 —px) at a distance & from the surface. The rate of flow is DNp, where
D is the diffusion coefficient, and the number emerging is »N(1—pX).
Equating these we determine p and find for the number coming out
»N/(1+ X/L), where we have written D =vL, L being the mean free path.
Intuitively we should expect this treatment to break down if L~A.  Also
we should expect an exponential decay to occur below the conduction
band in the tail of fig. 7(a). We postulate that our energy / , separating
localized from non-localized states, is also the energy where an exponential
drop in the density of particles replaces a linear drop. A more detailed
treatment of these considerations is given by Mott and Allgaier (1967).

Finally we have to ask in what way the density of states deviates from
the free electron form on account of the non-periodic field apart from the
“tail’. First we must emphasize that, unlike the crystalline case, the same
field is responsible for deviations and for the mean free path. Large
deviations will always be associated with short mean free path.

We expect increasing interaction with the ions to produce n(H) curves as
infigs. 7 (b), 7 (c)and 7(d). They are similar to what happens in the crystal
with increasingly strong interaction, or in other words as the distance
between the atoms increases. Curves like fig. 7 (b) can be obtained by
perturbation theory as in the next section. The transition to the tight
binding case has not yet been worked out for mixed s and p bands, which is
what is required here. Nevertheless the general behaviour is likely to be as
illustrated.

The interesting problem then arises as to under what conditions the
states in the minimum will be localized. Naturally the situation may be
different for liquid divalent metals, ionic crystals and so on. But in
general, as we shall see, a perturbation strong enough to lower N(E) by
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509, will produce a mean free path of the order of the interatomic distance.
We do not believe that mean free paths shorter than this can occur. Thus
it seems very likely that localized states occur when the factor g, defined by
g=N(H)/N(E)g,e,, falls below about 0-5. We shall see in § 6.7 that this
conjecture describes well the behaviour of liquid semiconductors.

3.2. Calculations of the Density of States using Perturbation Theory

In this section we review the methods that have been used to determine
the density of states by treating the non-periodic potential energy V as a
small perturbation.

In the crystalline solid, second-order perturbation theory gives for the
energy of a state with wave function of the type exp (ikr) u(r):

27.2 4 2
E=-h—£ +<k |V |k)+ Ew, Co.L (1)

2m I ]c
where the summation is over all points in % space for which the matrix
element does not vanish. Since V is periodic with the period of the lattice,
the vectors k’ are of the type:

k'=k+n,
where n are the points of the reciprocal lattice. It should be noted that
this formula is nof a good approximation for points such that |k |~ |k,’|
—i.e. near energy gaps.
For the liquid or amorphous material (11) may be replaced by :

Q KK oK) Ra( k—K[) d2F
=F%k2[2 k —
B =022 (2m + ( |Ulk>+87r3f y—

> (12)
where (k' |v|k) is now the matrix element:
Q1 f v(r)exp {i(k —k')r} d3z

of the scattering potential v(r) of a single atom, the integral being over the
atomic polyhedron of volume Q, and a(q) is the Fourier transform of the
pair distribution function.

Ifv(r) is a simple function of 7, (k' | v | k) is a function of g only and may be
written v(q), where g=|k—k’|. Animalu and Heine (1965) and other
authors make use of a ‘non-localized’ pseudopotential, that is one that
operates differently on the s and p components of the wave-function ; »(q)
will then be a function of . In either case we may write (12) in the form :

B2L2 [2(q) | a( 13)
E=__ 4y f . ... (13
2m B, — Ek+q

The density of states for a liquid or amorphous material can then be
evaluated from (13) using the formula (cf. Faber 1967):

n(B)=4nk?/873 dE/dk). . . . . . . (14)

We note that corrections to the free-electron value arising from »(0) will
be the same in the liquid as in the solid (at constant volume); Animalu and

A.P. E
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Heine give a table of calculated values of v(0) ; for mercury for example the
effective mass comes out to 4-69.

Most authors (e.g. Bdwards 1962) consider only the second-order term
and calculations of its magnitude have been made with various potentials
by Watabe and Tanaka (1964), Lackmann-Cyrot (1964) and Schuneider
and Stoll (1967). Similar calculations for disordered alloys have been
made by Jones (1966). We note that in the crystal, although »(q) at
reciprocal lattice points is seldom much greater than 1-5ev (i.e. a band
gap of 3ev), it can produce rather large changes of #(£) near the divalent
Fermi surface ; for instance in beryllium n(&)/n{H);,. is 0-45 (for references
to experimental and theoretical work see Mott 1966). It is not clear that
this is true for the liquid, at any rate to the second order of approximation.
The third term in (13), on integration over all directions of ¢, becomes :

S | Irobat

To obtain an estimate of its magnitude, we write | 92a(q)=F(q) and
assume it to be a sharply peaked function of the form A4 exp { q gl)z/a?1
Then we find :

2k+
o qdq-

d(AE)  2mQ [ F(g)qdgq
dk —  4x?RPk) q—2k
and dividing by A2k/m to find the correction to the free-electron form,
supposing ¢, is quite near 2ky, we find approximately :

dAE |R%  3y/m A (2k—q
dle /EzTn“ 2 ET2< )

g

wheret

=exp (—x?) f exp (#?) dt.

0

fl@)=

1 © exp (i) dt
2\/77_[ @ t—xo

The form of n(£) with this correction is illustrated in fig. 7(b); since ¢,
lies below the divalent Fermi surface, #n(#) should be less than the free-
electron value for a divalent metal. As regards the magnitude of the
deviation, 4 will be equal to |v(g;)|?alg,), or about 2-5|v(g,)|?; f has a
maximum value of about 0-5 when (2k —¢,)/o ~ 08, s0 a deviation of 509,
(as for crystalline beryllium) would imply that |v(g,) /B [P~ 0-15.

Within second-order perturbation theory this procedure is not exact
because—as already emphasized—one cannot treat the effect of v(¢) on the
band form separately from the effect of v on the mean free path. Edwards
(1958, 1961, 1962) was the first to treat the two together in a satisfactory
way. Edwards derived the density of states n(F), averaged over all
configurations of the liquid, from the formula:

n(E):f,;(E,k)d%, S s)

+See W. B. Thompson, An Introduction to Plasma Physics, p. 184.
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where p(k, £) is the ‘ mean square’ probability of an electron having energy
E and momentum k (Edwards 1961). Using a Green’s function technique,
factorizing the many particle correlation functions into products of pair
correlation functions and neglecting odd terms in the expansion, Edwards
(1962) sums the perturbation expansion and obtains :

p(E, k) =T|[{E —-h*k?|2m+ A(E, k)2+12]. . . . (16)
Here (Edwards 1962, p. 53) the quantity 4 is given by :
1 |2 () Pa(j) 4%
B, k)= N ¢
AE, ) 8n3QfE’—(h2/2m)(k—j)2’ (17)

and (Edwards 1962, p. 522)

T'(E, k)= f |vG) P () S — (F2j2m)(k— )3 d%. . . (18)

The term I' will be discussed further in the chapter on the conductivity ;
it is a measure of the scattering by the centres in the Born approximation,
and is just the expression used by Ziman (cf. §4.2) in his theory of liquid
metals.

If I' is reasonably small, the contribution to (16) is large near the zero of
the term in { }, and the main contribution to (16) comes from here. Since 4
is itself small, we may put & = /2k?/2m in the denominator of (16), so that p
may be written :

p B, k)=T|[{E—-E(k}}*+T2], . . . . . (19)

where H, (k) is just the quantity (13). Tt is thus easily seen that (15) gives
formula (14) for the density of states.

Calculation of the density of states using these formula, without the
assumption that I' is small, have recently been made for certain metals
by Ballentine (1966).

3.3. Does the Density of States Change on Melting ?

There is some evidence that for a number of metals the change in (&)
at the Fermi surface is small on melting; this comes from the constancy
of the Knight shift on melting of a number of metals shown in table 1
(Knight et al. 1959). The Knight shift should depend on the product of
n(fy) and the penetration factor £; the latter is unlikely to change much ;
for the alkalis calculations by Lackmann-Cyrot (1964) confirm this.
Ziman (1967) has suggested that this is because N(H,,) is very near to the
free-electron value for both solid and liquid, but we doubt if this can be the
complete explanation. As we have shown in the last section, the use of
perturbation theory does not suggest that there should be no change.

For one metal, aluminium, for which the band structure as shown by
the Ly X-ray emission differs considerably from the free-electron form,
there is little change in the emission spectrum on melting (Catterall and
Trotter 1963). We may add that any large change in the density of states
would be difficult to reconcile with the small latent heats of fusion.

E2
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Another piece of evidence for a small change is the work of Enderby et al.
(1964) on the E.8.R. spin susceptibility of lithium, a metal for which there
is thought to be a considerable deviation from the free-electron value of
n(Hy). These authors find that the change on melting is 1-:04 £ 0-05.

Table 1.  Change of Knight shift AH/H on melting (Knight et al. 1959)

|
‘ T 23N a, 87Rb 133CS 199Hg 27A1 IIQSn

| Solid 0-0261 0-116 0-662 1-46 2-45 1-69 0-73
Liquid 0-0261 0-114 0-654 1-49 2-45 1-64 0-75

§ 4. ConpUcTIvITY; THEORY
4.1. Metals, Semiconductors and Insulators

The model illustrated in fig. 7 extends to non-periodic structures the
explanation in terms of non-interacting electrons of the difference between
insulators, semiconductors and metals first given for crystalline structures
by Wilson (1931). If the Fermi energy lies in the non-shaded region the
material is a metal and the resistivity tends to a finite value as 7'—0.
Ordinary transport theory is applicable as long as the mean free path L is
large compared with the electron wavelength A. If the Fermi energy for
low temperatures lies in the shaded region, the material is a semiconductor
orinsulator. Conductivity is then possible by two processes :

() Excitation into the unshaded region; the process by which a current
is carried is then the same as in a crystalline semiconductor.

(b) Hopping from one localized state to another. This always involves
an activation energy, because each localized state has its own quantized
energy value. It may also involve tunnelling. One expects smaller
activation energies than for process (¢). Thus process (b), which is entirely
analogous to impurity-band conduction by hopping (§7.10), should be
predominant at low temperatures. Moreover, for reasons to be given in
§ 4.3, the activation energy should drop with decreasing 7'.

One important consequence of this model has been emphasized parti-
cularly by Gubanov (1963); it predicts that amorphous semiconductors
should be less sensitive to doping than crystalline ones. Donor impurities
for instance must be present in sufficient concentration to shift the Fermi
level appreciably, if they are to affect the ‘intrinsic’ conductivity, i.e. the
number of electrons excited into the non-localized part of the energy
spectrum. Of course, if they increase the number of available localized
states near the Fermi energy, they may greatly increase the hopping
probability (cf. §6.4).

4.2. Weak Scattering

Ziman (1961) was the first to point out that the conductivity of most
metals can be accounted for by the assumption that the scattering of an
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electron wave by each atom is small, and that it can therefore be calculated
from the atomic pseudopotential by using the Born approximation for the
scattering and the experimentally determined pair distribution functions
for the relative positions of the atoms. The case of total disorder will be
discussed first. Here the conductivity should be given by :

o=Nelrfm, . . . . . . . . . . . . (20
where

]./T=N£’UJ‘”I(0) (1 —cos 6) 27 sin 0 d4.
0

N, is the number of scattering centres per unit volume, N the number of
electrons and (for a metal) v the velocity of an electron at the Fermi
surface. This formula has been used for many years to calculate the resis-
tivity of dilute alloys, I(6) being then the scattering due to the difference
between the solute and solvent atoms (Nordheim 1931, Mott and Jones
1936, p. 286). It has been used by Mott and Twose (1961) and others
(cf. §7.8) to calculate the resistivity of a heavily doped semiconductor
due to the randomly distributed impurity centres.

For a liquid, however, the atoms are not randomly distributed, and
one must introduce the pair distribution function. This was first done
by Bhatia and Krishnan (1948) and the development of the idea and its
comparison with experiment are due to Ziman. The idea is the following.

Taking any one atom, let P(R)d*R be the probability that another atom
is present at distance B. The intensity scattered by two atoms at distance
R from each other is:

I(0) |1 +expfi(k—Kk . R)}[.

Averaging over all R, we obtain the scattered intensity I(8)a(q), where

a{q)= f |L+exp[i(q, RIRP(dR . . . . (21)
0
and
g=|k—k'|=2ksin 6.
An angular integration gives:
singR
gR

a{g)=1+ %Tf {P(R)—1} 47 R2dR.
a(g) is just the quantity determined experimentally from the scattering
of X-rays or neutrons by the liquid. It is known experimentally, and most
attempts to calculate o use experimental values; Asheroft and Lekner
(1966) have used theoretical values deduced from the Percus—Yevick
theory of liquids.

The conductivity is then given by (20) with

1/7@:1/L=NifI(0)(1—cose)a(q)2wsin0d0. L. (22)
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Ziman and his collaborators then determine I(f) from the calculated
pseudopotential v(r) of the ion in the liquid, or from an estimate of phase
shifts or in some other way. If one uses the Born approximation, then

Q 2
10)=| sorto)|

where
v(q):Q—lfv(r)exp[?}(qr)]d?’x, e e e (28

where the integration is over a cell of volume €.

It can easily be verified that Edwards’ quantity I' (§3.2) is equal to
hjr of Ziman’s theory.

The developments which have followed from Ziman’s theory are as
follows.

() Attempts to calculate the absolute values of the resistivity. Here
results are very sensitive to the position of the zero in v(g)—i.e. the angle at
which the scattering vanishes; absolute values are therefore perhaps of
little significance. Asheroft and Lekner (1966) give a table showing the
very large variations in the calculated values that result from the choice
among current calculated values of #(gq). They use experimental and
theoretical values of a(g) (Percus and Yevick 1958).

(b) Treatment of the temperature-dependence of the resistivity. The
successful treatment of this is perhaps one of the greatest successes of the
theory, particularly as it explains the difference between monovalent
and divalent metals (Bradley et al. 1962). Figure 8, taken from this paper,
shows a typical X-ray scattering function at two different temperatures,
with 2kp shown for metals of different valency. The plot is against ¢
(i.e. 4wsin$0/)). For small ¢, a(¢) will increase with temperature and
indeed for very low ¢ it depends only on macroscopic fluctuations of density
and is given by the Ornstein—Zernike formula :

alq)= kT [xQ, (29

where « is the bulk modulus and Q the atomic volume. At constant
volume one expects v(q) to be independent of temperature and so in general
we expect (dp/dT'), to be positive for monovalent metals and negative for
divalent. For the experimental observations, see for instance Cusack
(1963), Ziman (1967).

(¢) Liquid alloys have been discussed by Faber and Ziman (1965). Here,
if there are two components 1 and 2, one has two scattering pseudo-
potentials v, and v, and three different correlation functions ay,, a,, and a,,.
Faber and Ziman’s analysis is based on the assumption that all three
coefficients ,, are identical. The most interesting result is the difference
in the behaviour of monovalent and polyvalent metals; for the former a(q)
cuts down the scattering below that for a random distribution; then, as
for crystals, the resistivity shows a striking maximum for somewhere near
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Typical x-ray distribution function a(K) for a liquid at two temperatures, wit
2%y for n electrons per atom shown (Bradley et al.).
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equal concentrations of the two constituents. For divalent and polyvalent
metals, for which a(q) is of order unity for values of ¢ giving significant
scattering, the resistivity appears much more nearly additive.

Only recently have attempts been made to obtain the quantities u,;, t,,
ayyseparately. ThusSteeb and Entress (1966) deduce from x-ray measure-
ments that in Mg—-Sn each Mg atom tends to be surrcunded by Sn and vice
versa, while Enderby et al. (1966) have compared x-ray and neutron
diffraction patterns in CuSn. If a,, is not equal to a,, (as for instance for
liquid NaCl), we should write instead of a(q){v(q)}? for a binary alloy :

Caltyy |01 P40y lgs | Vs [+ 2(010) R agy [0y05 . . . . (25)
For simplicity let us take ¢, =cy, =1, a,; =0,,=0 and write:

V=040, v,=v-37;
wefind :
a|v|?+a,62 Coe e (26)

In liquid compound semiconductors we should expect each atom to be
surrounded mainly by atoms of the opposite kind. Thus a,, will have a
peak at g~7r~t, where r is the interatomic distance. TFor liquid semi-
conductors and intermetallic compounds § must be fairly large to produce a
band gap in thesolid ; so the term @, §2should have a very large effect on the
resistivity,and should be responsible for a dip in the density of states. Since
the peak in @, widens rapidly with temperature, we expect a positive value
of do/dT even if states are not localized.

(d) It is clear that on the nearly free-electron model the Hall constant
should have the free electron value. Some discrepancies are discussed in
§4.5.

For semiconductors, or electrons injected into an amorphous conduction
band (e.g. liquid argon), formulae (22) and (23) reduce to that given by the
familiar treatment with a deformation potential. We are only interested
in small changes of ¢, so that a(q) = 47/« Q and v(q) = »(0). Thus:

VL=(kT[x){2mo(0)/B22. . . . . . . (27)
We see that this reduces to the deformation band treatment as follows.
A fluctuation of density Ap/p will produce a change in the energy of the
bottom of the conduction band »(0) equal to v(0)Ap/p. The scattering

cross section by such a fluctuation if the fluctuation extends over a radius r,
is:

2m Ap 2
{ﬁ 1)(0)—P—7'03} . e e e (28)
The energy of such a fluctuation is:
sk (Bplp)2rd ~ kT, . . . L L L L (29)

so substituting for Ap we obtain for the scattering cross section :
(kT |y {2mv(0)/A2)2 73,
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and since there are 1/ry®> centres per unit volume, formula (27) for 1/L
follows for all values of r,.

It is interesting in this connection to see that our formula kL ~ 1 for the
appearance of localized states is valid. The condition that a localized
state will occur is:

(2m[B2)(Aplp)v(0) 21/ . . . . . . (30)

Thus at any temperature the larger fluctuations form localized states,
which give the tail of the conduction band. When the wavelength A of
the electron is comparable with the value of » given by (30), we expect
localized states to occur. It is very easily verified using (29) that (30)
leads to A~ L, if L is given by (27).

4.3. Conductivity by Hopping

In the evaluation of the conductivity due to hopping there are two
separate problems to consider.

(@) The evaluation of the probability per unit time that the electron
jumps from one localized state to another. This we shall write:

vp(R)exp{— (AW +4W )T} . . . . . (31)

Here » is a phonon frequency; p(R) is a tunnel factor which must be
introduced if the distance R between the states is large. If ¢ falls off as
exp (—vyr), p(R)=exp(—2yR). Forimpurity levels having & mean energy
W below a conduction band, y=+/2mW)/i. W is the difference in
energy of the two levelsand ¥, is the energy of polarization round alocalized

state of order:
271 1
Wp:;-“_(_—_>, L (39

where r, is the radius of the state and «, «, the dielectric constants.

(b) Recognizing that p(R) and AW will both vary greatly from one jump
to another, one has to average over all possible jumps to obtain the a.c. or
d.c. conductivity. Results of such averaging show:

(i} That the a.c. conductivity is higher than the d.c. and increases with
frequency (cf. papers by Pollak quoted in §7.10).

(i1) The activation energy for conduction drops with decreasing tem-
perature, since at low temperatures only hops with small AW can occur,
even though R may be large and p(R) small.

All the calculations on disordered structures known to the author have
been for the case of impurity-band conduction; these are reviewed in
§7.10.

More attention in the literature has been given to the theory of the hopping
motion of polarons, to which the phenomenon described here is closely
allied. Moreover, as we have stated, the lattice round an electron in a
localized state will be strongly polarized in ionic crystals, and distorted
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to some extent for non-polar crystals. Reviews of polaron theory have
been given by Frohlich (1954, 1963); a useful summary of the present
position can be found in an article by Jortner et al. (1965). A very brief

account is given here.
of 1 1 m
a=e — — — —
Ky K 2wh®

A coupling constant
is introduced ; here m is the effective mass in the undisturbed lattice and
w the frequency of optical phonons. If « is less than about 10, the motion
of the ions can adjust itself to the motion of the electrons, and the sole effect
is somewhat to increase the effective mass (mge/m ~1+a/6 if a<l)
(Frohlich 1963, Brown 1963, Langreth and Kadanoff 1964, Mahan 1966) ;
values of o less than unity are estimated for PbS, GaAs and values of about 5
for the alkali halides.

If «>10, on the other hand, theory predicts what is known as the
‘small polaron’, an electron being effectively trapped by the potential
well produced by the surrounding polarized medium, as envisaged by
Landau (1933 ; see also Mott and Gurney 1940, p. 87). At low tempera-
tures it moves without thermal activation, though with very high effective
mass. As the temperature increases, the effective mass increases and the
mean free path decreases. At a temperature of the order 4@, . the mean
free path becomes of the order of the interatomic distance, and for higher
temperatures than this the motion is properly described as thermally
activated hopping (Holstein 1959), the mobility being of the form :

= (vea®/ET) exp (— AE[ET), e o (33)

where A is about half the trapping energy W,. On each hop phonons are
emitted and absorbed. This factor } occurs in any fransfer from one
polarized state to another, for instance in the Fe3t—TFe?+ transfer in
aqueous solutions. For a theoretical treatment see Mott and Watts-
Tobin (1961). We may mention that trapping by distortion of the lattice
is also possible in non-polar semiconductors; calculations for this case
have been made by Glarum (1963, see also Toyozawa 1963) for narrow band
organic semiconductors, and he finds a formula of type (33) where again
AE is half the energy necessary for trappingt. Also in liquids trapping
is possible, either by the same mechanism or by cavity formation or both
(see §7.3).

+In a contribution to the theory of organic semiconductors, Friedman
(1964) points out that, though the band width W may be less than k7', the
‘ polaron ’ trapping energy is less still and the mobility is not of small polaron
type, behaving as 7" with 3<n<1. Implicitly by writing (A/7)< W as the
condition for a band formulation, Friedman uses our formula kL= 1 for
localized states not to be formed. With this condition Friedman finds that for
narrow bands

#2201 (W/kT) em?/v sec.

Lower values than this must mean hopping.
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There has recently been some uncertainty as to which observed forms
of conduction are due to polaron hopping, particularly in the case of NiO
doped with small quantities of lithium. Until recently it was believed
that this was due to hopping by a small polaron but recent experiments by
Springthorpe et al. (1965), and Austin ef al. (1967) and Bosman and
Crevecoeur (1966) suggest that this is not so; the evidence is based on the
thermoelectric power and is reviewed below. On the other hand, Snowden
and Saltsburg (1965) have given evidence that positive holes bound to Lit+
ions in NiO do form polarons and move round the ion by hopping (see also
Appel 1966).

Perhaps one of the clearest examples of a hopping process of polaron
type in a non-polar erystal is the recent work of Spear and his colleagues
on the mobility of electrons and holes in orthorhombic sulphur produced by
electron bombardment of the surface (Adams ef ¢l. 1964, Adams and Spear
1964, Gibbons and Spear 1966). Holes have a high mobility of the normal
type. Electrons on the other hand have a low mobility

6x 10~2cem?seciv! at 21°C

with an activation energy of 0-167ev. The consistency of the results
indicated a hopping polaron motion, the polaron energy being estimated
from current theories as 0-48ev. Spear estimates an overlap integral
between sulphur rings of ca. 0-05 ev, so the coupling constant « must be large
(> 15).

4.4. Thermoelectric Power

The following are useful formulae for the interpretation of the thermo-
electric power. For semiconductors in which a non-degenerate, gas of”
carriers are in a single band with density of state proportional to 1£E, one-s
can write (Jonker and Houten 1961):

aw=(kle){In(Ny/n)+r+2}. . . . . . . (38)

Here Ny = (2mmkT [h?)3? and » is the number of carriers per unit volume.
The constant » depends on the mechanism of scattering and should be zero
if the scattering is by acoustic phonons. If the # carriers are excited from
N levels at an energy E below the band,

n?=NNyexp (—E/kT),
and the dominant temperature-dependent term in o is (kfe)(E/2kT), so the
thermoelectric power plotted against 1/7' should give, approximately, a
straightline.
Heikes and Ure (1961) have considered a simple case of localized electrons,

in which there are IV sites, all with the same energy, and N, are occupied ;
localization is due to small polaron formation. The thermopower is thent :

a=(k/e) [In{c(l—¢c)}+const.]. . . . . . (39)

1 Howard and Lidiard (1957 a, b) discuss the similar problem of ionic
conduction.
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The constant depends on the mechanism of hopping and has not been
evaluated. It will be seen that the logarithm can have positive or negative
values, but e is always the (negative) charge on the electron. The formula
is applied to glasses containing transition metal ionsin § 7.11.

If electrons are excited into a narrow band in which small polarons are
formed, then (38) is valid if for Ny we write the number of sites; for the
hopping mechanism, however, we do not know r.

As far as we know, hopping between levels of differing energy, as in
impurity-band conduction, has not been treated. However, here one has
a distribution of energy levels and at low temperatures a Fermi limiting
energy F and the formula used for metals should be valid, namelj-:

2 1.2

uo TR [SInoll) L (40)
3 e o0  Jy_m,

o will be of the form oy(E)exp [ — W(E)/kT] and both terms should vary

strongly with B ; thus we expect a constant term and a term linear in 7.

4.5. Hall Coefficients

For a crystalline metal the Hall coefficient E should have the free-

electron value
E=1/Nec

for any form of Fermi surface which does not give open orbits. For
liquid metals the Hall coefficients are much closer to the free-electron
values than for the solids (see reviews by Cusack 1963, Busch and Tiéche
1963 and Ziman 1967). Figure 9 shows some measured values due to
Greenfield (1964) ; they are plotted against L/A, to show that discrepancies
are more likely to occur for metals with short mean free path.

Fig. 9
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Measured values R of the Hall coefficient as a function of L/A, as a fraction of
the value R, calculated on the free-electron model.

Of course if LA is not large it is impossible to define a Fermi surface
with any precision; the free-electron values of R for metals for which
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L/x> 1 are often quoted as evidence that the Fermi surface is spherical.
If L is large compared with any distance within which local order
exists, any form of Fermi surface other than spherical seems difficult to
envisage.

The only treatment of the Hall effect known to the author in which the
Hall constant, for non-hopping, is calculated for L ~A is that of Banyai
and Aldea (1966), who start from Kubo’s formulation (cf. the next section).
They conclude that for a spherical Fermi surface B will depend on the
departure of the density of states from the free-electron value. Taking a
form of n(E) appropriate to an impurity band, they conclude that R may
even change sign if n(#) decreases with £. If these results are correct,
there should be little difficultyin accounting for the observed deviation from
the free-electron formula. Wegivein § 6.7, in our discussion of tellurium,
empirical evidence that the Hall coefficient ean depend on the density of
states.

For hopping conduction there have been extensive theoretical caleula-
tions mainly for hopping by the small polaron (Friedman and Holstein
1963, Firsov 1964, Schakenberg 1965) and also for localized states in
impurity-band conduction (Holstein 1961). This work all shows that a
quite large Hall effect is to be expected and that it will be very difficult to
calculate its magnitude. The argument in its simplest terms is the
following. Suppose we have n carriers per unit volume; then at any one
time the magnetic field can only affect those that are in the process of
hopping, and thus a fraction exp(—AE/kT). These too will only be
affected by the magnetic field if they have a choice of sites into which to hop
with just the right energy ; this will be determined by another exponential
factor exp(— W/kT). They thus argue that the Hall coefficient will be of
order:

1/R=mnecexp{(W — AE)/kT}, N 38

where n is the density of current carriers. They also state that AE and
W are of the same order and that W may be less than AE, so that R can
be greater than 1/nec. This formula does not take account of the tunnel
factor p(R). The two sites into which the electron must jump must have
nearly the same value of p and the chance that this is so will certainly be of
order p(R). But the Hall voltage will be determined by the easiest jumps,
while the d.c. conductivity by the most difficult. So I would expect (41)
to give too large a value of 1/R, and that R should be enhanced by some
factor of the type exp (— 28R), with § <a.

The application of these ideas to localized states due to disorder
(impurity-band conduction) will be complicated by the random distribution
of hopping frequencies and the answer should depend on the period of an
a.c. field. These points have been discussed by Amitay and Pollak (1966)
who have at the same time attemypted to observe the Hall effect in doped and
compensated silicon. They observed no effect, and concluded that
Holstein’s original calculation gave results very much too large.
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On the other hand, Kyser and Thompson (1965) have observed a large
Hall effect in solutions of sodium in ammonia for concentrations where
conductivity is probably by hopping (§ 7.3), and this is perhaps one of the
few cases where a Hall constant has been measured in the hopping region.

Measurements of the Hall effect of ions in solution have been made by
Laforgue-Kantzer (1965) ; here too the theoretical position is not clear.

4.6, Intermediate Case; Strong Inieraction with Ions but States not Localized

In this section I shall discuss the case intermediate between those treated
previously ; interaction with the ions is strong, so that there can be
substantial deviations from the free-electron density of states, and the mean
free path is short, but at the Fermi energy the states are not localized.
The theory is thus applicable to liquids such as tellurium and liquid inter-
metallic compounds and also possibly to doped semiconductors under
certain conditions.

Since the mean free path is necessarily short, no precise concept of a
Fermi surface can be used since the uncertainty Ak in the wave-number & is
large. On the other hand, there will be a clearly-defined Fermi limiting
energy Fp. Under these conditions it is appropriate to calculate the
conductivity o from the Kubo-Greenwood formula (Kubo 1956, Greenwood
1958), according to which at 7=0:

2re2h3

o=
me

2 z ID'nn’ l28(EF'—En)8(EF_En')’ (4’2)
where By is the Fermi energy and
0
D, = * i d% N
= [ (43)

and the ¢, are eigensolutions of the Schrodinger equation with appropriate
boundary conditions and with energy #, for an electron in a disordered
lattice. The simplest way to prove this formula is to treat it as the limit as
w — 0 of the formula for the current produced by a light wave of frequency
w. 'This treatment is given in § 5.

We have first to ask whether, if the Fermi energy lies in the range of
localized states, the Kubo formula predicts zero conductivity at zero
temperature. Here we have to distinguish between

{@) Thed.c. conductivity.
(b) The a.c. conductivity in the limit of weak fields.

Common sense and experience with impurity-band conduction suggest
that the d.c. conductivity does tend to zero as 7—0; the Kubo formula
shows that this is so, since if 4,,, i, are localized states with energies very
near the Fermi level, it will be arare “accident’ that they are near enough in
space to overlap and thus to give a finite value of D, .. Some treatments
of the problem (e.g. Day 1966) have come to the conclusion that when one
averages the current over all configurations of the lattice, these accidents
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will occur and lead to a finite current. 'This conclusion appears to be wrong
(Halperin 1967); o{(w), the conductivity at frequency w, tends to zero
like w? as w tends to zero. This is proved in §5.

When the states are localized, then, there can only be a current at a
finite temperature due to the interaction with phonons, a process not
included in formula (42).

We turn then tothe case of non-localized states which isthe main subject
of thissection. The usual formula for the conductivity of a solid in the case
of nearly free electrons is:

o =nerm,

where 7 is the time of relaxation ; this can conveniently be expressed in the
form (Ziman 1961):
o= Se2h[1273F, S O %3]

where § i the area of the Fermi surface and L the mean free path.

We have to show that in the case of weak interaction (44) follows from
the Kubo formula. We shall also show that, if the interaction is strong
enough appreciably to modify the density of states, formula (44) becomes:

o=8e?L g?/127%F, N € 5|
where
g=nHEg)m(Er)pee -+ - + - . . . (46)

This formula does not depend on perturbation theory, and should be valid
as long as the states are not localized (Mott 1966), and as long as g <1. If
g > 1 (the tight binding case), (44) should be used.

In making this statement we must define the mean free path. Alter-
natively we can say:

(@) Ttisthe distance L in which two wave functions ,,, ,.- both behaving
like exp (tkx) at a given point, remain coherent.

(b) It is the reciprocal of the uncertainty in k& derived from Fourier
analysis of .

{(¢) Following Ziman (1966), we can envisage a complex wave number
k=ky+iy;

Lis then 1/y. Thisis correct as long as ¥ is not in the energy range where
states are localized ; if it is, there is no mean free path and y has a different
meaning.

A discussion of the mean free path is given in the next section. We turn
now to methods by which the Kubo-Greenwood formula can be shown to
give formulae (44) and (45). There are two ways available. The first, due
to Edwards, is as follows. Formula (42) may be written:

< f f 3 i (20) Vi harl) 02y () Vit (2) d3x28<E~En>8<E—EW)>,
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where the sign ( ) denotes averaging over all configurations of the atoms.
This can be rearranged to give:

J [ St V@B = B) S ) Vs B = o) o o,

the averaging now being done before integration. Thisisnow replaced by

ff< %%(%)Vngn(xz)&(ﬂ —E,) >

The interference between these two terms is treated by Edwards (1958)
for a random distribution of weak scatterers, and its neglect shown to be
justified, apart from the factor (1 —cosf). As Edwards states, the method
can be extended to any homogeneous distribution, in the case of weak
interactions. We therefore set:

QLUERATAIAC)

- sz(Rl, R,.. )T] &R, bz R, R,. )
" X (y5 Ry, Ry . JS(H — B,),

where P is the probability distribution of the atoms. If the system
is homogeneous, then for any vector a:

P(R,+a, Ry+a,...)=P(R;,R;...).
Thus if we write :

S bl SE=B,) Yy =pl3,23),

it follows that
p(B;xi+a, zat+a)=pl;x,2,) . . . (47)
and is thus of the form:
Pl 2y — 1)

If the Fourier transform of p(%, x) is p(&, k), it follows that
(X2 8(E—E,)3(E—B,)Dyyy D,y ) = (B2 /m?) f k> {p(E, k)}* &k,
sothat
o= (23/m?) f (B, )2 d%. . . . . . (48)
This formula does not depend on perturbation theory and is exact except

for the factor (1 —cos 6); it should be exact for isotropic scattering. Also
the density of states is given by :

n(E)=fp(E,lc)d3k. L (49)
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If Akfk is small we may write p(H, k)=p, in a range Ak about kg, and
o(H, k)=0 otherwise. Carrying out the integration we obtain:
o= (eh3|m?)p2S Ak (4kg2[3),

and for the density of states:

n(Hy) =poSAk.
Using our definition of g (eqn. (46)) we find :

n(Hy) = sg8[83(h¥hp/m),
so that
po=9/8m3Ak (F2kg/m).

It follows that

o=NSe g?/127°1Ak.
If as before we define the mean free path L by :

L=1]/AF,

the required formula (45) follows.

It is difficult to extend this method to the particular case of interest
here, namely that when Ak/k~1. Here we may use a method due to
Mott (1966, see also Mott and Twose 1961) in which the elements D, . are
evaluated directly. We divide the total volume Q into elements w = 13 in
each of which the wave functions i, 4, may be considered coherent.
Thus within any volume element w the wave functions , will be made up
of waves going in all directions, of the form:

= 2, Ayrexp (ikw).

The integral over the volume w of
[ o @i, P= 0133 A, ),
where K=k—k’ and

FE) = f exp(—ikn,r)a%exp (ik ) d%

=k w KL<1
=k, /K3 KL>1.
Assuming all the phases random, the integral over Q will be (Q/w)¥? times
the integral over w, so that
'ann' |2= (I/Q"-’)sz/Ke KL<1
= (w/Q)k,? KL>1.
We now have to sum over all k, £'.  We replace the sum by integrations,
both over the Fermi surface and perpendicular to it. This involves

multiplying by the factor:
(Q/87%)/(AE |dk)2.

AP, F

(50)
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The first integration over the Fermi surface gives, using (50) :

o - w |

[1Duiras=ie |

Remembering that w=L3, both terms are of order:
k 2L/,

Most of D, therefore, comes from values of k, &’ such that |k—k’|<1/L.
The second integration over the Fermi surface simply introduces the
factor S. Thus:

/L 2k p
Kik + f w—sz/Ks} .

0 1)L

o= const(e/m?) Sk LQ/(E/dk)2. . . . . (51)

Rearranging and putting Q =1, formula (44) follows.

All this assumes that Lk,> 1 and that ¢ is unity. If this is not so, the
two integrations perpendicular to the Fermi surface introduce our factor
g% But of course the wave functions ¢, . are no longer plane waves.
What happens then depends on whether g is less or greater than unity.

In crystalline solids, the case g> 1 arises with a partly full s-band (for
instance) in the tight binding case. Then the integral for D,  in the
important region where |k —k’| <1/L, is simply the velocity vector:

f ¥ (0)0w)p o,

which (Mott and Jones 1936, p. 265) is proportional to the group velocity
0E|ok. Thus in this case the density of states g cancels out from the
formula {51) for the conductivity. We think the same would happen for the
disordered lattice. Ifa liquid alkali metal were expanded, one ought to use
the formula (44); L will decrease, and eventually when L ~ A bound states
may well appear and if they do the material will behave as a semiconductor.

For divalent metals, if g <1, however, the matrix elements D cannot
increase appreciably above k,. Wave-functions in the solids are of the
form (8), and it seems probable that in the liquid they are made up of
wave-functions of this kind, so at most

|D Pl 42

These arguments then suggest that, when g <1, the factor g2 does enter
into the formula for the conductivity and no compensating large increase of
D is expected.

4.7, The Mean Free Path in the Intermediate Case
In §4.6 it has been shown that the conductivity o is proportional to
e28g2 L[k, where L is the mean free path. This result is not a consequence
of perturbation theory. According however to Edwards (1962), to the
second order of perturbation theory:

L=L,lqg% I ()
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where L is calculated as in Ziman’s work (§4.3). This occurs because 1/ris
proportional to g/ ; the probability of scattering decreases if the density
of the (final) states is low ; and the analysis introduces another factor g since
L=vr and v appears as i~ dE/dk in fig. 6. The factor g thus cancels out
and to the second order of approximation (44) follows.

This cancellation is unlikely to be valid in the case of strong interaction,
and the analysis of Faber (1967) does in fact lead to a correcting term.
However, it may well be that Ziman’s formula for o gives fair answers,
even if the calculated value of L, comes out less than the interatomic
distance. The true mean free path is L /g2, and this may be considerably
greater than L, before localized states occur. This may be the origin of
the surprising agreement with experiment obtained by Wilson (1963) in his
calculation of the resistivity of solutions of metal in liquid alkali halides
under conditions when L, as calculated is much less than 1/ky, (§ 7.4).

We believe then a theory such as Ziman’s may well describe liquid
metals and semi-metals surprisingly well; as ¢ drops, L, will increase if
[2(9) |2 @(q) has a large maximum somewhat below ¢=2ky.  But probably
near the limiting wavelength (kpL ~ 1), g will be the determining factor in
the conductivity.

If localized states occur when g =} and if £L is then of order unity, the
lowest metallic conductivity possible is roughly :

2S[48a% B . v . . . . . . (53)

Since § = 4mkg? this depends only on the cube root of the number »n of
electrons per unit volume and is about 200 ohm=1em—2. If the interaction
becomes stronger—or if in discussing divalent metals the distance between
atoms becomes greater — the mechanism for conductivity will then go over
to hopping so that

o= (nve2a®kT)exp(—W/ET). . + o« o . (54)
This also depends on #~3 and, apart from the exponential factor, is of
order 1000 ohm—*cm~1. We do not therefore expect any discontinuity in
the conductivity. Moreover W will be small as long as the orbitals of the
states overlap several others; we should not expect a strong dependence of’
conductivity on temperature until something near a band gap is formed.

These predictions are examined in § 6.

4.8. Conductivity Determined by Intercrystalline Barriers

Many examples exist in the literature where the mobility of electrons
isdue to potential barriers at grain boundaries ; inann-typesemiconductor,
for instance, acceptors at the grain boundaries will produce a barrier, so that
the d.c. mobility should be governed by a term of the type exp (— H/kT),
where H is the height of the barrier. This mechanism was first suggested
by Gibson (1951) and Smith ef al. (1957, p. 146) to explain the photocon-
ductivity of lead telluride films, though later work suggests that part of the
photo-effect may not be due to this cause (Woods 1957). Mueller (1961)
however has established that the effect exists in polycrystalline n-type

F2
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germanium and has measured it in a bicrystal; here a Schottky barrier is
formed of height approximately equal to the band width. Jonker (1964)
has discussed doped barium titanate in these terms; the barriers disappear
below the ferroelectric Curie temperature (for an explanation see Heywang
1963). Grain boundary effects are known to influence the resistivity
strongly in NiO and «-Fe,0, (Bosman, private communication). According
to Stuke (1964, 1965) barriers play a role in selenium even in single
crystals, being formed along sub-grain boundaries or something similar.
Such effects may occur in amorphous materials (§ 6.3), either due to Schottky
barriers or fluctuations in density.

In such materials we expect the thermoelectric power to be determined
by the material between the barriers; a comparison of thermopower and
conductivity suggests a very low mobility. The Hall coefficient, on the
other hand, will depend on whether the barriers are thick, so that a few
electrons are excited to the top of the barrier, or thin, so that electrons
penetrate by tunnel effect. In the former case the Hall voltage should be
determined by electrons at the top of the barriers, so we should expect
large R and normal Hall mobility. In the latter case the Hall voltage is
determined by electrons in the bulk of the material, and we expect very
low Hall mobilities.

Finally we may mention the work of Weisberg (1962) and Bube and
MacDonald (1962),0n the existence in certain semiconductors of very large
scatterers, rather similar to the barriers discussed here.

§ 5. OpTicAT. PROPERTIES

In a study of electrons in liquid and amorphous materials, the main
interest in measurements of the optical properties lies in the wide applic-
ability’ of the Drude formula for liquid metals, in deviations from it
for semi-metals such as tellurium and in investigations of the tail of the
absorption band due to disorder.

We shall throughout discuss our results in terms of the quantity which
is the real part of the a.c. conductivity ; the imaginary part is linked to it by
the Kramer—Kronigrelations. The Drude formula, valid for free electrons,
is:

o(w)=Ne2r/m(w?+72). P €313

where N is the number of free electrons per unit volume and w the time of
relaxation. The quantity o(w) must necessarily satisfy the sum rule:

f " o(@)dwo=m?N[2m. . . . . . . (56)

0

The standard Kramers—Heisenberg dispersion theory gives for o(w):

2re2F2
o{w) = ”:;Zf (F(E) —F (B + heo) By B + )| D(E, )P dE, (57)
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where f is the Fermi-Dirac distribution function and

)
D(E, w)= f B @) 5 fla) B

The notation is due to Faber (1966). As Faber points out, as w —0 and
if kT < Ey, this reduces to:

(0) = (2262 [m2Q){n(H)}2 | D(Ey, 0)]2,

which is identical with the Kubo-Greenwood formula (42) for the d.c. con-
ductivity. Both these formulae should be averaged over all configurations
of the amorphous or liquid lattice.

We shall first ask what happens to o(w) when the initial and final states
are localized. Contributions to ¢(w) will only occur when, accidentally,
two states, of which the orbitals overlap, have energy differing by exactly
fiw. Of course when this occurs the absorption coefficient is infinite (if one
calculates it with neglect of line width), so on averaging over all configura-
tions one obtains a finite value of o{w). But the absorption process takes
place between very few pairs of states.

Fig. 10

)

Schematic representation of energy K as a function of a configurational
parameter p for two localized states.

At first sight it might seem that the same argument could be applied
to the d.c. conductivity, predicting a small transient current as electrons
jump between states which accidentally have the same energy and whose
orbitals overlap. But thisisnot so. Two overlapping states cannot have
the same energy. Figure 10 represents schematically the energies of two
overlapping states as a function of some parameter p representing the
positions of the atoms. The two states will combine, giving eigenvalues
of the energy as shown by the dotted lines. If both orbitals fall off as
exp (—r/a), and the orbitals are R apart, the splitting AE will be of order:

AE=E,exp(—Rla),
where ¥, is the band width,
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We can deduce the behaviour of o(w) for small w. Suppose there are n
localized states per unit volume in the range Hy. Then the absorption
for frequency w will be proportional to:

Nf exp(—2R/a) R2dR,
RD

where B, isgiven by :
hw~AL.

The result is clearly proportional to w?, so
o(w) = const. w?

for small w, if the initial and final states are localized.
Halperin (1967) has given a direct proof that «(0)=0 for the one-
dimensional case. He points out that one may write :

(n|p|n')y=(im/h){(n|o—z|n )L, —E,),
where z is any point. It follows that

ST = i rla—aylu,
where

If states are localized, (n | (x —2,)%|n ) is finite ; otherwise it tends to zero
as the volume increases. Thus if we define

FH,E+ho)y=Q> > |{nlp|n' (B —E,)S(E+ho—E,),

where (Q is the volume of the specimen, it follows that [ (F/w?) dw is finite
and thus that # vanishesat w=0. Therefore the conductivity given by the
Kubo-Greenwood formula vanishes as «w—0.

Faber (1966, 1967) has given a proof that (57) leads to the Kubo formula
to the second order of perturbation theory, and that the cancellation of the
factor g% occurs in o(w), just as it does for o(0). The deviations from the
free-electron formula observed for mercury at very low frequencies (Faber
1966) probably cannot be explained through the factor g, as was attempted
by Mott (1966). On the other hand, in the range where L ~ A, then, just
as for o(0), one would expect the factor g2 to have an effect on the
absorption coefficient. Thus we expect for o(w) to appear as in fig. 11.
The curves shown refer to the following cases.

(¢) The Drude formula.

(b) A situation with short mean free path and low n(Hy)—such as in
tellurium (§6). The curve must rise above the Drude formula because
of the sum rule (56). This may be ascribed either to values of n(¥#) greater
than the free-electron value, or to the form of the wave-functions; if
those in the initial state are mainly s-like and in the final state p-like this
will enhance the absorption.
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(¢) Shows the situation when Ejy lies in the region of localized states,
but the states lie close enough together in space for significant overlap.

(d) Shows the case of an insulator (such as fused quartz), with a real
energy gap containing a negligible number of localized states which overlap.

We have not discussed exciton formation ; if the final states are localized,
obviously the concept does not apply, though the absorption tail will be
shifted towards longer wavelengths by the Coulomb attraction between the
electron and hole.

Fig. 11

o(w)

a(w)

(c) (d)

172

o(w) as described in text: () Drude formula, weak interaction, (b) strong
interaction (e.g. liquid tellurium), (c) liquid semiconductor, with localized
states overlapping, (d) liquid insulator.

Finally it is worth mentioning that a number of examples exist in the
literature of absorption measurements in liquid or amorphous materials
where the absorption spectrum differs little from that of the crystal.
Germanium and tellurium are discussed in this connection in §6.12;
Phillipp (1966) has discussed amorphous quartz and Beaglehole (1965)
liquid xenon.

§ 6. OBSERVED BEHAVIOUR OF NON-CRYSTALLINE MATERTALS
6.1. Introduction
The available experimental evidence will be discussed under the following

headings.
In §§ 6.2, 6.3 and 6.4 we treat materials which are definitely non-metallic

in the amorphous and liquid states. Under this heading we discuss
(@) Measurements of drift mobility in which electrons are injected into a
non-crystalline insulator.
(b) The behaviour of amorphous semiconductors and insulators.
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(¢) The behaviour of liquid semiconductors and insulators. These
are in principle more complicated than amorphous materials because the
structure and hence n(#) will change with temperature. We confine our-
selves in this section to intrinsic conduction; electronic conduction due
to sodium in ammonia or excess potassium in liquid KCl is treated in § 7.

In §§ 6.5, 6.6, we treat amorphous metals and liquid metals, and in § 6.7
materials which appear to fall between the two categories.

6.2. Drift Mobilities

Experiments which establish the drift mobility directly are of particular
interest. As we have seen, the Hall mobility is difficult to interpret for
hopping and even for non-hopping motion if L is comparable with A. On
the other hand, measurements of the drift mobility may measure either

() Motion by hopping only, as in impurity conduction.

(b) Motion in a conduction band (i.e. the unshaded range of energies
in fig. 7), limited by trapping in localized states.

(¢) Mobility in a conduction band when trapping is negligible. Various
examples will be described below.

Argon. Schnyders et al. (1965) have measured mobilities x of injected
electrons in liquid argon. Oxygen forms effective traps and if enough Oy~
ions are present, it is their mobility rather than that of the electron that is
observed. An oxygen content less than 10°cm— is required in order to
observe the drift mobility of the electrons. The mobilities are then large
(ca. 400 cm?/v sec), and decrease with increasing temperature. Thereis thus
no sign of trapping. If we use our criterion that localized states appear in
the tail of a conduction band when L ~ A, this is not surprising. The mean
free path is ca. 10-¢ at 100°K, so if we set (in centimetres) :

L=10-5(T/100)-32, A=3x 10~ (T/100)12,

we see that the two are comparable at 30°k, below the temperature of liquid
argon. Schnyders et al. found a rough agreement between their results and
the mean free path calculated as in § 4.2, and Cohen and Lekner (1967) and
Lekner (1967) have examined the problem in detail, solving Boltzmann’s
equation for hot electrons and determining the scattering by argon atoms
including the long-range polarization potential.

Recently Miller and Spear (1967) have measured drift mobilities of
electrons in solid argon and find values close to those for the liquid; holes
are not mobile.

Selenium. Spear (1957, 1960) has made measurements of transit
times for electrons and holes in amorphous selenium. He finds that the
mobility is controlled by traps, which for electrons are 0-25ev below the
conduction band and for holes 0-14ev. For the holes the trapping acceptor
states are present at a concentration of about 102°cm—3 and are present in
both the amorphous and the crystalline material ; they must therefore be
due to polaron formation rather than to disorder.
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Chalcogenide glasses. Hirsch (1966) has produced electrons by bom-
bardment in these materials and finds very low drift mobilities of the
order 3x 107 for electrons 3x 10~° for holes. Hirsch considers that
immediately after illumination the current is carried by electrons, which
however are soon captured by deep traps, so that after a longer time the
current is carried by a larger concentration of less mobile holes; these
eventually recombine with the trapped electrons. He estimates that these
deep traps are present in a concentration of 1 per 104 (10 molecules/em?).

6.3. Amorphous Semiconductors ; Tellurium, Germaniwm and Selentum

There has recently been a considerable amount of work on the properties
of evaporated films of these materials, notably by Grigorovici in Bucharest,
Stuke in Karlsruhe and Tauc in Prague. Amorphous films of these
materials retain the coordination number of the crystalline state (Richter
and Breitling 1958); amorphous germanium does not show the high
coordination number and metallic conductivity of the liquid. All these
materials are much worse conductors in the amorphous than in the
crystalline state; it was to explain this fact that Banyai (1964) introduced
the concept of localized states, though we suggest in this paragraph that
there are difficulties in the way of this explanation and that another may be
preferable.

Fig. 12

Activation energy of acceptors

p.c. Selenium

Activation energy for extrinsic conduction in crystalline Se-Te (Stuke).

We contrast first selenium and tellurium, normally p-type conductors.
The abnormal properties of selenium have been known for many decades, in
particular the dependence of resistivity on the electric field strength.
According to Stuke (1964, 1965) this is due to the presence of surfaces in the
crystal containing donors which set up Schottky barriers whose height is
sensitive to the field (cf. §4.8); their number and height is increased
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by cold work. No such effect has been observed in tellurium but if the
barriers exist they must be much lower, as the energy gap is 1-85 ev or alittle
bigger for Se and only 0-32 ev for Te (Stuke 1967). For extrinsic conduc-
tivity the activation energy for tellurium is extremely small and is about
10-1ev for selenium; fig. 12 shows the activation energies for extrinsic
conduction for a series of Se-Te alloys. The dependence of the conduc-
tivity on direction is also greater for selenium than for tellurium, o /o, being
3:3 and 1-9 respectively; Stuke and Weiser (1966) have used the Franz—
Keldysh effect to show that for selenium the effective mass is 6:5 times
larger perpendicular to the axis than parallel to it.

Fig. 13
I ! I T i | 1 T | [
2
10 0-8f~ I
2

; I

1 am. Te |
06 | —

072 |

[

|

107 04 4 .
© : hex. Te IT”

1079 5 ex. Te |
o2 -

|

o078 |

0 |

(o \ l

|
1012 -02h i | LA
2 00 150 200 250 300

103/ 7 (°k™) Temperature (°K)

Conductivity o (ohm=? cm~") and thermopower o (microvolt/degree) of amor-
phous tellurium as a function of 7. For the thermopower the tempera-
ture is plotted logarithmically (Keller and. Stuke). Curves 1-3 are for
different rates of evaporation, 4 and 5 for doping with Sbh.

Turning now to the amorphous films of tellurium investigated by Keller
and Stuke (1965), by Stuke (1967), and by Stuke and Cauer (unpublished),
fig. 13 shows the conductivity as a function of temperature. It will be
noted that the conductivity of the amorphous material is several orders of
magnitude lower than for the crystalline, and that it apparently consists of
an ‘intrinsic’ and ‘extrinsic’ part. The curves 1-5 refer to different
doping orrates of evaporation. Stuke (1967) hasalso found that amorphous
tellurium can be ‘doped’ by antimony, and the number of carriers (holes)
thereby introduced is the same as in hexagonal tellurium ; this is shown in
fig. 14, in which the conductivity is plotted against concentration of anti-
mony for the crystalline and amorphous materials, and it will be seen that

O polyeryst/ Tamorp TEINAINS constant.
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Tt follows from this result that any localized states introduced into the
energy gap (as in fig. 7) by the disordering must have very low concentra-
tion {(ca. 10~3 per atom); unlike the glasses discussed by Gubanov (see
below), these materials do respond to low concentrations of doping, and at
100°g the number of ‘ free’ carriers is equal to the concentration of antimony.
But the values of the conductivity show that the carriers in the amorphous
phase have a temperature-activated mobility which is much smaller than
for the crystal.

Fig, 14
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Conductivity (ohm—! em~1) against concentration for tellurium doped with
antimony at 100°k (Stuke and Weiser). (@) polyerystalline, (b) amorphous,
(¢) ratio.

The results on the thermopower « shown in fig. 13 show that at low
temperatures
a= —(kfe) $In T + const., B (51
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both for amorphous and polycrystalline tellurium ; doping with antimony
only changes the constant. Since (cf. § 4.4) the factor §isa consequence of a
parabolic band form, it seems that the density of states near the bottom
of the valence band is not appreciably altered by the amorphous structure.
This seems to us hardly compatible with localization, unless the radius of
the localized orbital is very large, in which case one would hardly expect
an appreciable activation energy.

Fig. 15
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An alternative hypothesis for the low mobility is that Schottky barriers
due to surfaces with a high density of donors exist in these amorphous
materials, of the kind which Stuke (1964, 1965) has shown to exist in
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crystalline selenium and which are familiar in polycrystalline materials
(§4.8). A much higher barrier is possible in amorphous than in crystalline
tellurium, because the energy gap is much wider in the former (see below).
Alternatively, barriers may be due to changes in the density.

We now discuss the magnitude of the extra activation energy for the
mobility in the amorphous state—without resolving the question of its
cause. For tellurium the activation energy for the intrinsic range is
E.=0-87ev, contrasted with 0-32ev in the crystalline state. Stuke
however has found an increase in kv for the optical absorption edge by
0-4 ev, which he ascribes to a widening of the band gap due to the increase
in the distance between the chains in the amorphous state; the energy
gap in tellurium is known to decrease under pressure (Blum and Deaton
1965). If then the intrinsic part of the curve is due to the excitation of
holes from the conduction band to the non-localized part of the valence
band—or above the Schottky barriersif they provide the correct explanation
—then the width of the former or the height of the latter is 0-15ev.

Fig. 16
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Amorphous selenium can be obtained by supercooling as well as by
evaporation and—unlike tellurium—the chains persist in the liquid phase.
Figure 15 shows results of Spear (1960) and of Hartke (1962) and unpub-
lished work of Gobrecht ef al. on the drift mobility of electrons and holes in
the amorphous material, suggesting that there may be continuity between
the amorphous and liquid states, and showing a strong temperature
dependence as for tellurium.
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The results of Grigorovici ef al. (1964) on the conductivityt and thermo-
power of amorphous germanium films are shown in fig. 16; the general
behaviour of the conductivity of evaporated films is similar to that for
tellurium, but Tauc ef al. (1966) find no change in the absorption edge on
going to the amorphous state, so the marked increase of the band gap
observed for tellurium does not occur. One would expect amorphous
germanium to contain a high concentration of broken bonds and that this
would produce a broad band of acceptors (compare Heine 1966), which are
probably the main source of mobile holes in the extrinsicrange. However,
the change of sign of the thermopower at low temperatures, not found in
tellurium, introduces an interesting point. In tellurium we have supposed
that current is carried by a non-degenerate gas of holes and that a formula

(§4.4)
aS=(kfe)In (N,/n)+const. . . . . . . (59)

can be used, where ¢ is the positive charge of the hole, whether motion is by
hopping or not. The form of N, proportional to 72, depends on the
existence of a parabolic band form. For these germanium films, on the
other hand, the concentration of acceptors is about 10'® cm=3 (see below)
and this should be ample to allow hopping from one to another or in the
crystalline phase for the formation of a degenerate gas. If the donors
form a separate band or peak in the density of states curve, as in fig. 17,
and if there is some compensation so that the Fermi energy lies as shown,
then a change of sign of « is to be expected, whether the states are localized
ornot, and whether the gas is degenerate ornot. 'We think that this change
of sign shows simply that conduction is within an impurity band in which
n(F) increases with £ at the Fermi level, but does not say anything about
the mechanism of conduction.

Fig. 17

n(E)

/

E

Suggested density of states for amorphous germanium.

Tauc et al. (1966) have investigated the optical constants of amorphous
germanium films of thickness between 400 and 4000A. In the range of
characteristic absorption (0-8ev to 10ev) the fine structure of the optical

+ Subrmann et al. (1963) show that the effect of an ultra high vacuum has
little effect on the conductivity.
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constants is smeared out. Tauc ef al. deduce that there is little change in
the band form but the k-selection rule breaks down due to the disorder. Of
particular interest, however, is the infra-red absorption in the range 0-1 to
0-4ev. Thisisshowninfig. 18 for the amorphousand annealed (crystalline)
states. In the crystalline state this fine structure is due to k-conserving
transitions of electrons from the lower branch of the valence band to the
two upper branches. We must deduce that in the amorphous material
the states near the top of the valence band are made up of Bloch functions
with a rather small spread of energy.

Fig. 18
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Infra-red absorption of amorphous and annealed (crystalline) germanium films
(Tauc ef al.).

This apparent retention in the amorphous state of a k-vector sufficiently
well-defined to keep the three branches of the valence band seems hardly
comparable with the existence of states so localized as to give hopping
with a reasonable activation energy. It is possible that in germanium
also the states are not localized or only very weakly so, and the explanation
of the low conductivity of the amorphous material is Schottky barriers.
Just how they are formed is not clear. In crystalline germanium barriers
at grain boundaries are formed only in n-type material (for references see
Heine 1966).

Stuke (private communication) has suggested that particularly in
tellurium barriers may be due to fluctuations in density; there may for
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instance be regions in which all bonds are saturated, separated by boundaries
where this is not so, so that near these boundaries the density is low.
For most semiconductors (but not for germanium) the forbidden band
widens when the density decreases, so one would expect barriers to be set
up both for movement of holes and of electrons (Schottky barriers would
affect majority carriers only). If, as one would expect, the barriers were
higher in the conduction than in the valence band, this would account for
the predominantly p-like conduction in the intrinsic range. The mobilities
for amorphous selenium (fig. 15) confirm this. At low temperatures
tunnelling through the barriers may be important.

6.4. Chalcogenide Glasses

The electrical properties of these materials have been studied in detail,
particularly by the Leningrad school. Kolomiets (1964) has reviewed this
work in English, and a more recent collection of reprints (Myuller 1966)
has been translated. Experimental work from the Bell Laboratories
(Pearson et al.), and unpublished work from the University of Sheffield
(Owen) and from the C.E.G.B. Laboratories (Edmond 1966) are referred
to in this section.

The Leningrad school emphasizes:

(@) The glassy materials usually have conductivities many orders of
magnitude smaller than the crystals (cf. for instance, fig. 11 on p. 716 of
Kolomiets’ review).

(b) They appear to show a single activation energy F for conduction,
lying in the range 1-2ev, suggesting intrinsic conductivity rather than
hopping or a transition from intrinsic to extrinsic. Edmond (1966)
remarks that in As,Se, the strong absorption at 1-92 ev fits fairly well with
the observed conductivity of the form ¢y exp (— E/kT) with E~1-1ev if
this is intrinsic, but is difficult to reconcile with a hopping mechanism.

(¢) In general impurities have much less effect on the conductivity
than in the crystalline state, though Owen (private communication) finds
that the effect of silver is large, as is also that of copper according to Danilov
and Myuller (1962 ; see Doinikov and Borisova on p. 59 of Myuller 1965).
These authors find that 19 at. %, of copper reduces the activation energy of
conduction in As,Se; from 183 to 0:-87ev. They have investigated the
effect of from 5 to 10 at. %, of Be, Mg, Ca, Zn and other metals in As,Se;,
finding a change in o at 20°c by less than 10. Owen finds that the large
effect of silver is not shown for a.c. at comparatively low frequencies, as
shown in fig. 19.

As regards the frequency effect, glasses of composition As,Se; ,Te, are
known to conduct better as z increases, and Edmond remarks that the
frequency effect diminishes as the conductivity increases.

The Leningrad school has suggested that the localized state model
described in §4.1 may explain the lack of extrinsic conduction due to
impurities (Gubanov 1963). If there is a pseudo-gap (fig. 7) 1-2ev wide
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but with a few localized states within the gap, some occupied and some
empty, then the addition of impurities which can contribute electrons will
have no effect but to shift the Fermi level slightly. If the localized states
are too far apart to allow hopping, so that conduction is intrinsic, they will
have little effect on the conductivity. But it is difficult to explain the
small effect of large amounts of most impurities in this way. We think that
in glasses the impurities which produce little effect on o must use all their
valence electrons in bonds with surrounding atoms or ions, modifying the
local coordination number to make this possible; they would not then act
as donors or acceptors.

Fig. 19
_6 r
_7 L
100ke/s
.8 - B
— 10kels
£ —
S5 BC.
£
ey
5-
>
=
5
32
o
C
Q
(&)
s
0 05 w6 1S 20

Atorn °f Silver,

Conductivity of glassy As,S,; as a function of Ag concentration (Owen ef al.).

The enhanced resistancein the amorphous stateis perhaps due to the same
reasons as in amorphous tellurium, namely expansion of the lattice with
consequent increase in the energy gap, and barriers at regions of abnormally
low density. The barriers give a qualitative explanation of the facts
recorded in fig. 19, namely the very low frequency at which the rise in
conductivity begins. Presumably copper and silver act by removing the
barriers through some unknown mechanism. All these materials show
p-type thermoelectric power, suggesting that the barriers are higher in the
conduction than in the valence band. However, Pearson (1964) considers
that the negative Hall coefficient may be due to the presence of regions
that have crystallized and therefore have high conductivity. We feel that
too little is known about the nature of the barriers (if they exist) for further
speculation about the Hall constant to be profitable at this stage.

A.P. G
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6.5. Amorphous Melals

Metastable alloy films of a number of binary alloy systems can be
prepared by the simultaneous vapour deposition of two components onto
a cold substrate (Mader ef ol. 1963, Mader 1965) ; the condition for this to be
possible is in general a difference in the atomic radii in excess 0f 10%,. The
films are stable up to about 0-3 7, where 7' is the melting temperature.
The results are of interest because they show that the alloy films at low
temperatures have resistivities close to those of the liquid, no rise in p is
observed and so experimental evidence is available that the states at the
Fermi surface are mot localized. Figure 20 shows some results for
Cu+50%Ag. An interpretation of dp/d7' in terms of the effect of phonons
on a(q) has not yet been attempted.

Fig. 20
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Resistivity of amorphous films of Cu+509%, Ag evaporated at 80°k as a function
of temperature showing reversible and irreversible behaviour due to
annealing (Mader).

Similar results have been obtained by Buckel and Hilsch (1954), Buckel
(1954) and Barth (1955) on evaporated bismuth films which according to
their results and those of Richter and Steeb (1959) are amorphous. The
resistivity is close to that of the liquid, as is the Hall coefficient. Amorphous
bismuth and its alloys show superconductivity (for references to recent
work see Shier and Ginsberg 1966). The papers quoted above describe
results also for tin and other metals.

Duwez et al. (1965) have obtained an amorphous phase of palladium-—
silicon alloys with 15-23at. 9%, Si by rapid cooling from the melt; the
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resistivity has been measured down to 2°k and shows little change between
this temperature and 400°K.

6.6. Normal Liquid Metals

By ‘normal’ I mean a liguid metal in which the mean free path L is
long compared with the interatomic distance. For such metals, as
explained in §4.2, Ziman’s theory of nearly free electrons should be valid.
There have been other reviews of the properties of such metals (Cusack
1963, Ziman 1967) and this article will only touch on them briefly.

Table 2 (partly from Cusack 1963) gives the values of the mean free paths
deduced from the observed resistivity at the melting point and the free-
electron formula (§4.4). It will be seen that in many metals L is quite large,
but in some it is small enough to make deviations from the free-electron
theory plausible.

Table 2

Li Na Cu Zn Hg Ga
n 1 1 1 2 2 3
L 45 157 34 13 7 17

Ge Sn Pb Sb Bi Te
m 4 4 4 5 5 6
L 11 10 6 4 4 0-9

InSb GaSh CdSb PbTe HgTe

7 4 4 4 5 4
L 8 7 3 0-5 0-3

Mean. free path I in dngstroms for some metallic liguids from the observed
conductivity and formula (45). » is the number of electrons per atom.

There is a large body of work in which the absolute value of the resistivity
or thermoelectric power is measured for a metal or alloy and compared
with values caleulated from estimated pseudopotentials v(g), such as those
of Animalu and Heine (1965). References will be found in the papers by
Ashcroft and Lekner (1966), already quoted, Animalu (1967), Harrison
(1965), Ziman (1967) Halder et al. (1966), and Greenfield (1966). Itis not
our aim in this article to discuss the methods of estimating the Fourier
transform of the pseudopotential; we remark only that the zero ¢, in the
pseudopotential (fig. 33)isof decisiveimportancein determining the absolute
value of p, particularly for the divalent metals. For mercury different
models give a variation of p,;, calculated from theoretical values of v(¢) at
present available by more than 2.

G2
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For divalent metals in particular, and intermetallic compounds, etc.,
for which the resistivity comes from the peak in a(g), we can see how strongly
p depends on ¢, by representing the peak by a(q) =4 exp{—(q—q,)*/o%} and
evaluating the integral:

f ) (9 —qo)? exp{(g—q1)*/c®} dg ,

which should give a fair measure of the resistivity if 2k, lies to the right of
the peak. The integral is proportional to:

0+ 20 (91— o)

so the resistivity is doubled if g, is shifted from the peak (¢4=¢,) by o/+/2.
The sensitivity of the resistivity of mercury to alloying may well be due to
shifts in ¢, (cf. §6.8).

6.7. Liquid Semiconductors, Semi-metals and Intermetallic Compounds

We discuss in this section materials which are semiconductors or semi-
metals in the crystalline state and which show low conductivity (below
1000 ohm~—'em—1) and for which do/dT is normally positive. This does
not include silicon, germanium and the 3-5 compounds because they are
normal metals in the liquid state.

Ttis characteristic of liquids, of course, that a(g) will change with tempera-
ture, so the interpretation of electrical properties may be more complicated
than for amorphous films or glasses. A positive value of (do/dT')y does not
necessarily mean hopping or semiconductor behaviour; an early success of
Ziman’s work (§ 4) was to explain these positive values of do/dT for divalent
metals in terms of the temperature variation of a(g). Butb conversely
we can predict that if o lies below the critical value o, discussed in §4.6,
conductivity should be by hopping and do/dT" should always be positive.
Our ignorance of the value of g, for which localized states occur, makes
it impossible to estimate ¢ accurately; if =3}, a figure in the range 200
1000 ochm~* cm—! may be taken. Table 3, kindly compiled for this article by
Dr. Allgaiert shows some typical materials in this class for which o and do/dT'
have been measured. The table does not show any materials for which
o lies below 1000 ohm~1 em~! as having negative values of do/dT', except
possibly FeS, for which in the experiments of Argyriades e al. (see p. 101)
there seemed some doubt as to whether the composition changed with 7.

Some of these materials will now be discussed in greater detail. The
Hall coefficient and conductivity of liquid tellurium are shown in fig. 21 as
measured by Tiéche and Zareba (1963). The conductivity lies near the
borderline ; the Hall coefficient is two or three times larger than one would
expect with six free electrons. X-ray evidence from Buschert ef al. (1955)
shows that for liquid selenium the radial distribution shows a peak at
2.9 & corresponding to a bond length of 2-86 & in the solid ; these authors
deduce that the chains dissociate as the temperature is raised. Since

+See also Mott and Allgaier (1967).
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tellurium has very low conductivity in the liquid state, the band gap
characteristic of the solid must persist and n(Hg) must be zero or very low.
For tellurium with broken chains we should expect a strong minimum in

n(E) at By, the factor g (=n(Hy)[n(Ey)g,) rising with T
Fig. 21
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The Hall mobility is also shown (Tiéche and Zareba).
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Optical absorption o(w) for liquid tellurium (Hodgson). & is the wave-number
in em~!; the dotted curves are explained in Hodgson’s paper.
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Table 3. Properties of liquid semiconductors and semi-metals at or near
the melting point: o is the conductivity in (ohm-cm—?)

Downloaded by [University of Sydney] at 19:23 23 October 2012

Material o da/dT Ref.
Ge 28000 - 14
InSb 17000 — 14
GaSb 16000 - 14
AlSb 12000 - 14
T1,Sh 11900 - 19
T1,Bi, 7200 - 19
CoTe, 6000 — 17
Ni,S, 5200 - 8
NiS 5100 - 10

5000 11
Cdsb {5200 + {18

4200 Jetal

ZnSb {5200 oS
Co,S, 4100 - 8
Bi,S, 3400 - 10
. 2800 11

BigTe, {3400 + {17}
(1800 11
Sb,Te, 2000 + 3
1350()} 15
1800 6
Te {2000 + {12
NiTe, 1400 - 17
SnTe 1400 + 9
PbTe 1100 + 17
Bi,Se, 900 + 17
GaTe 700 + 5
HgTe 630 + 17
FeTe, 400 + 17
PbSe 400 + 17
FeS 400 + 1

TiTe 330 + 7,19
200 17
Cu,Te { 500 + { 9
Cu,Se 200 + 17
Ag,S 200 + 8
FeO 180 + 4
Ag,Te 150 + 9
Tl,Te 70 + 7
Cu,S 50 + 8
TeySe, 40 + 6
CdTe 40 + 13
ZnTe 40 + 14
HgSe 25 + 17
T1,Se, 1-6 + 19
T1Se 11 + 19
TIS 10— + 19
TLS, 6-5x 102 + 19
T1,S 10-3 + 17
Bi,0, 5x10- + 17
Se 10-8 + 2, 16
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Tiéche and Zareba discuss their measurements of the Hall coefficient
in terms of ‘ partial ionization ’ of the chains. We arenot clear that thisisa
meaningful concept for a degenerate electron gas. Perhaps the measure-
ments should be interpreted empirically as showing that, for short mean free
path, a low density of states at the Fermi energy may give large Hall
coefficient.

Tigure 22 shows measurements of the optical absorption of liquid
tellurium due to Hodgson (1963). These may be interpreted as giving
experimental evidence for a low density of states at the Fermi energy
(compare §5 and fig. 11).

We turn now to compounds. Among materials comparable with liquid
tellurium in their properties, Enderby and Walsh (1966) have measured
conductivities and Hall constants of CdSb, ZnSb, Bi,Te;, Sb,Te;; for
these the conductivity is that of a poor metal and rises slightly with
temperature (probably due to the disappearance of a minimum in n(#));
the results are shown in fig. 23. The Hall constants, though not corres-
ponding to the number of electrons in outer shells, are of metallic order of
magnitude. They also show more variation with temperature. No
theoretical interpretation has been offered, though here again we see that,
if L ~ ), substantial deviations for the free electron value can occur.

Among liquids with conductivities about ten times smaller, Cutler and
Mallon (1962, 1965, 1966) have measured the properties of liquid solutions

References to Table 3 (references not given here when they appear in the list of
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of thallium with tellurium. Results are shown in fig. 24, suggesting that
conductivities of these compounds are very much on the borderline between
the metallic and non-metallic behaviour. Enderby and Walsh (loc. ¢it.)
have measured the Hall constant of stoichiometric liquid T1,Te and found
that it is negative and less by a factor 10 than for the more metallic com-
pounds and increases with temperature. Thelow values of o and high Hall
coefficient suggest that there must be a deep minimum in #{&) with localized
states at the stoichiometric Fermi energy. This will be due to the term
@45(g) introduced in §§3.2, 4.6, and as explained there will certainly get
weaker as the temperature is raised.

Fig. 23
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Figure 25 shows the temperature-dependence of the resistivity. The
rise in p at low 7T for a composition far from the stoichiometric has not been
explained.

Tellurium-rich compounds are p-like in spite of having more electrons.
This suggests that the valence bands are formed by the tellurium atoms, the
thallium atoms not contributing states toit. Dr. Allgaier has informed the
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Fig. 24
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author that Bi-Te behaves in the opposite way, with a minimum at BiyTe,
and excess Te giving n-type behaviour.

Intermetallic compounds show rather similar behaviour. The following
table due to Toffe and Regel (1960) shows some crystalline materials for
which there is an energy gap (AE):

Cs,Sb Mg,Sb, ZnSb  CdSb  Mg,Si Mg,Ge Mg,Sn
AE(ev) 10 07 0-4 052 077 074 0-36

Mg,Pb has been investigated by Busch and Moldovanova (1962) and—if
carefully pumped from gases—shows semiconducting properties with
AE=0-1ev.

Fig. 26
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Intheliquidstate fig. 26 showstheresults of Ilschnerand Wagner (1958) on
Mg-Bi. Asimilar maximum in the resistance of gold—tin alloys, which have
been investigated by Roll and Uhl (1959) and Leach (private communica-
tion) (fig. 27). The change in the sign of dp/d1" near the maximum will be
observed. We have no explanation to offer of the position of the minimum.

Dancy (1965) has found similar results for molten CuTe, AgTe and SnTe.
The conductivity, of order 1000 ohm—! cm—, has a minimum at or near the
composition Cu,Te, Ag,Te and the thermopower changes sign near the
same composition. Wesuggest that theseresults may be due to a minimum
in the density of states rather than to localized states, which are improbable
for so high a conductivity (cf. §6.5). Somewhat similar results for Cu—S,
etc., have been obtained by Dancy and Derge (1963), though here the
conductivities are lower.
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Fig. 27
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Busch and Giintherodt (1966) have measured conductivities and Hall
coefficients R for liquid Ag—In alloys. A minimum in o occurs at 359, In,
the Hall coefficient at this composition corresponding to two electrons per
atom. dg/dT is positive.

6.8. Mercury

The behaviour of mercury differs in certain respects from that of other
liquid metals and in particular from zinc and cadmium. The abnormal
behaviour can be summarized as follows.

(¢} The melting point (234°K) is very low compared with that of zine
(692°k) and cadmium (593 °K).

(b) The addition of about 30at. %, of most other metals reduces the
resistivity by about 2 (Cusack ¢t al. 1964). Some unpublished results by
Leach are reproduced by Mott (1966).

(¢) The thermopower is abnormally high; again on alloying after an
initial rise the thermopower drops to normal values (Cusack et al. 1964).

(d) There is a rapid drop of p under pressure. Bradley (1966) has shown
that this abnormality disappears on alloying with indium.

The low melting point and cohesive energy have been thought for a
long time to be due to the slightly greater s—p separation in the atom
(Wigner and Seitz 1955). This is reflected in the slightly more negative
pseudopotential than for zinc and cadmium, as shown in fig. 28.  Although
the difference is slight, it can probably account for the difference in the
melting points, in the following way. Details will be published elsewhere,
but an outline of the argument is as follows. Heine and Weaire (1966) have
given an account of the rhombohedral structure of mercury, based on the
curves of fig. 28. They represent the energy of the crystal by :

U=U,~S{@)F@). . - - . . . (60)

Here U is the electrostatic Ewald— Fuohs term of an array of point charges
against a background of ‘jellium’. )is > 1/(&,, ,— E;) summed over
occupied states and ¢,, are reciprocal Iat’mce points. For cubic mercury the
zero g, of v(¢) would lie very near ¢,;,; the band gap there would be small
and cubic mercury would have an exceptionally spherical Fermi surface.
The rhombohedral structure increases U, and, since [(g) |* will increase on
the former 111 faces, the second term in (60) is lowered. The changein U
is ca. 0-1 ev, and because ¢, lies near 2k, where F'(q) is infinite, the rate of
change of the second term is exceptionally large. It just wins over U,
giving a total drop in the energy of 0-01 ev (Wealire, private communication).

Turning now to the melting point, it should of course be possible in
principle to calculate the energies of solid and liquid by formulae of type (60)
and thus deduce the melting energy and temperature. But, as Harrison
(1966) has pointed out, this would need an extremely accurate knowledge
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of a(q). One can however make an estimate by using the empirical
Lindemann melting point formula :

M2 =const. Ty[r?,

where r is the interatomic distance and © a characteristic temperature.
The formula means that 7'y is determined by the same stiffness factor as
short-wave phonons. If one takes ® as an Einstein frequency, one can
estimate M(kO/h)*=p, where pz is the restoring force when an atom is
displaced a distance x. The Ewald term is:

kQJh = (4¢*| Ma>)'2, 4ma®/3 =atomic volume.

Putting in numbers, for cadmium one obtaing ©=210°k against 172°k
observed. It looks as if the second term which should lower ® is com-
paratively small, but must be much larger for mercury.

Fig. 28
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This term (Ap) is easy to calculate. One finds:

Ap=SF(,) 0@ .2~ © f Plg)|olq)[? g* dg/87*.
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The first term should be small for cubic mercury since v(qy;;) ~0. The
second negative term is very sensitive to the value of g,. In fact, if we put
v(q)=A(q—q,) and F(q)=1, the integral could be approximated by :

42 f dolq — q0)? ¢* dg = A%q,7[100. N (2}

Thus the 109, difference in g, between Cd and Hg could double the value
of this term, and numerical evaluation shows that the difference in the
melting points of these two metals is easily explained thereby.

We turn now to the abnormal electrical properties of mercury. The
present author (1966) has attempted to explain them using the following
hypotheses.

(1) The density of states of crystalline mercury is abnormally low
(g ~0-7) as it is in beryllium, but unlike beryllium v(q) is negative at the
zone edges and |v | increases with specific volume. The Knight shift (§ 3)
suggests no change on melting.

(2) The cancellation theorem that g does not affect the conductivity
breaks down for deviations from unity as large as this.

Since the author’s paper, however, the experimental measurements of
the de Haas—van Alphen effect (Brandt and Rayne 1966) and the calcu-
lations of Keeton and Loucks (1966), using the OPW method, have deter-
mined the Fermi surface mercury and shown that the band gaps of Animalu
and Heine are approximately correct. Thus v(g,;,) is small and crystalline
cubic mercury ought therefore to have g very close to unity. Some
drop at present uncalculated is to be expected for the rhombohedral
structure, and this suggests that the abnormal electrical properties of
liquid mercury ought to be due to some distortion of the liquid structure
analogous to that for the crystal.

Rivlin et al. (1966) have measured a(g) for liquid mercury and have shown
that, by comparison with some other metals, the peak in a(g) is displaced
slightly to the right and a shoulder appears on the left (fig. 29). According
to Heine and Weaire this is due to the same cause as the rhombohedral
structure ; it lowers the second term in the expression (13) for the energy so
as to distort the structure in such a way that a(q) issmall near the zero of v(q).

It is therefore tempting to ascribe the abnormal properties of mercury
to this abnormal structure, because one would expect that the admixture
of any other metal with smaller ¢, would rapidly cause the Ewald term to
become greater than the term from {v(¢)}?, so that the abnormality would
disappear. Admittedly no such effect is found in the work of Halder ef al.
(1966) who have measured a(g) for IIg—In; but they do not observe the
shoulder at all.

The abnormal properties of mercury, then, may be due to an abnormal
shift of the peak in a(g) to the left. This would, according to the analysis
already given:

(¢) Increase the resistivity as calculated by Ziman'’s theory.
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(b) Decrease the density of states at K. It may be, however, that ()
is sufficient to account for the observed effects without the effect of a large
abnormality in the density of states; certainly the recent careful observa-
tions of o(w) by Faber and his colleagues (Smith 1966) do not suggest any
effect such as that observed for tellurium (fig. 23).

Fig. 29
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This explanation is compatible with the large increase in ¢ with pressure ;
if the lattice is expanded, 2k moves towards g, and the tendency of mercury
(either crystal or liquid) to deviate from the close-packed structure will be
enhanced (because F'(2ky) is infinite). We do not however see how to
explain the thermopower unless g, varies rather rapidly with energy.

6.9. Liquid Metals at High Temperatures and Pressures
Early work on the conductivity of mercury at high temperatures is
reviewed by Mott (1966). Recent measurements are by Kikoin ef al.
(1965), Franck and Hensel (1966), Hensel and Franck (1966) and Posthill et
al. (1967). These results, when resistivity is plotted against volume, are of
particular interest as showing what happens when a disordered lattice is
expanded.
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The first thing to remark is that for mercury dInp/dIn T is positive and
of order 0-2; this is interpreted by Bradley et al. (1962) as being due to the
widening of the first peak of a(¢) and as being normal for divalent metals.
Figure 30 shows (d1np/d7T)y from the results of Posthill ef al. for varying
volume; it will be seen that over this range at any rate this quantity is not
large. It seems therefore reasonable to plot p against V and suppose that
the large changes observed are due to the change in volume, rather than the
large changein 7. Figure 31 shows the results of Hensel and Franck (1966)
plotted in this way.

Fig. 30
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Variation of p with 7' at constant volume for mercury at high temperatures
(Posthill ez al. 1966). (a) is (dp/dT)/p, (b) is (dp/dT")/py. The units are
degrees—* x 10%.

In seeking to interpret these results we must first recognize that as the
lattice expands the zero ¢, will move further to the right of the maximum of
a(g), so the resistivity as given by Ziman’s theory will increase, and the
density of states at the Fermi surface will drop. If we areright in thinking
that localized states will appear when g ~ 1 and the mean free path is about
the interatomic distance (3 &), the resistivity can drop by a factor about
1020 before localized states appear. We see that this occurs for a 129
linear expansion. According to our estimates, conductivities between
10% and 102 ohm~em~! should be due to the presence of localized states.

The behaviour round the critical point, where at constant volume the
resistivity appears to increase with temperature, is surprising. We
suppose that, according to the calculations of the last section, the restoring
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force when an atom is displaced from a position midway between its
neighbours is negative. If so, the liquid may tend to take up a chain
structure, which would be broken up as the temperature is raised. This
chain structure could perhaps greatly enhance the conductivity.

Fig. 31
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The smallest conductivity measured, 2 x 10~20hm~'em™, if compared
with a formula of type:

(ve2/akT) exp (— AW/ET),
the constant factor being of order 1000 ohm~'em™, would imply
exp (—AW/kT)=2x 1073,

AP, H
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s0 a change in 7' by 100° should only give a change of p by 2-3. No change
isinfact observed. AW shouldbeabout 1-1ev. Theinteratomic distance
is 509, greater than at room temperature. Animalu and Heine’s »(g)
predicts a band gap on the (111) face of ca. 5 ev for cubic mercury expanded
to this extent, so it is not surprising if in the liquid there is a real energy gap
here of order 2 ev, as this value of AW would imply.

§ 7. HeaviLy DoPED SEMICONDUCTORS
7.1. Introduction
Under this heading we include :

(a) Impurity-band conduction (sometimes called impurity conduction);
by this we mean the movement of electrons directly from one impurity
centre to another which can only take place if the material is * compensated’
—i.e. contains both n and p-type centres. This kind of conduction always
involves thermal activation and is usually but not necessarily a hopping
process. It has been referred to already in § 3 and we discuss it in detail in
§7.10.

(6) The behaviour of the degenerate electron gas which forms when there
is considerable overlap between the centres.

Since in the absence of compensation at any rate the disappearance of
conductivity at 7'=0 as the concentration decreases is an example of the
metal-insulator transition discussed by the author in a number of papers, we
shall discuss this first. Few transitions between a metallic and non-
metallic state have been observed as the volume of a crystalline solid is
changed under pressure. Nearly all the experimental evidence that such a
transition exists is obtained from disordered systems, such as doped semi-
conductors, solutions of metals in ammonia, etc. Observations of transi-
tions under pressure are limited to materials which conduct in d-bands such
as V,0; (Austin 1962). This is one reason why a review of this subject is
included in this article ; the aim is to see what complications are introduced
by the non-crystalline structure.

Even in the crystalline state the nature of the transition is not yet
entirely clear. We summarize the position as follows:

Verwey and de Boer (1936) and de Boer and Verwey (1937) were the
first to emphasize that the band theory of crystalline solids could not be
applicable to crystalline materials like NiO, in which the d band is not full
but which is nevertheless non-metallic. Mott (1949) discussed the problem
further and considered the electrical properties of an array of one-electron
atoms; he gavereasons for believing that, as the atomic volume changes at
zero temperature, there should be a sharp change of character from a non-
metallic phase with no free carriers to a metallic phase with a large density
of carriers. These ideas were developed in a number of papers (Mott 1949,
1956, 1961, see also Anderson 1963).

Earlier Wigner (1938) had proposed a similar ‘ crystallization’ of a gas
of free electrons with a background of uniform positive charge. Kohn
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(1964) has given a formal proof that for sufficiently low densities the crystal-
line array cannot carry a current. Hubbard (1963, 1964 a, b) in a series of
papers on correlation in narrow bands has considered the nature of the
transition, describing it as a splitting of the d band due to correlation; he
does not find a discontinuity in the number x of carriers, but this is probably
due to his neglect of Coulomb interaction between electrons in neighbouring
atoms. What he dues find, which goes beyond the author’s original
formulation, is that the density of states at the Fermi level goes continuously
to zero as the transition point is approached (fig. 32).

Fig. 32
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Density of states in the neighbourhood of the metal-non-metal transition
function of a parameter defining band width divided by interaction
(Hubbard. 1964).

As regards the Wigner crystallization, the nearest approximation to a
uniform positive background would be a doped and compensated semi-
conductor in which N, the concentration of acceptors, was nearly as great
as the concentration of donors N, and in which both arelarge. One ought
in principle to be able to observe the Wigner crystallization of the N,~N
electrons in the conduction band as this quantity is varied. Perhaps the
phenomenon nearest to Wigner crystallization that has been observed is the
jump in the conductivity of Fe;O, (magnetic) observed by Verwey and
Haayman (1941); for a recent review of this substance see Callen (1966).
Iron atoms are on equivalent sites such that at low temperatures half are
Fe?+ and half Fe3t, and the material is an intrinsic semiconductor. At
90°K there is a jump in o by ca. 100 to values of order 100 ohm— cm~1.

The most direct evidence for the metal-insulator transition comes from
the study of the concentration at which metallic conductivity oceurs in

H2
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doped germanium and silicon (Mott 1961, Mott and Twose 1961). This is
found to occur for concentrations » such that

nBgr~0-2, e (82)

where ¢ is the hydrogenic radius given by :
Oy =H2 k[m €2 e (83)

If the energy is not an isotropic function of «, this formula needs modifica-
tions in ways that have not been investigated.

In disordered materials, on the metallic side we have to ask what the
effect of the drop in the density of states shown in fig. 32 will be. The
present author (1966) has made the suggestion that for disordered mono-
valent metals one must use formula (45) for the conductivity, with ¢
dropping with increasing volume as illustrated. This may happen in
caesium vapour and other examples are mentioned in this section.

On the insulating side of the transition the effect of disorder is not likely
to be great unless an electron is removed from one of the centres (e.g. by
compensation). If this is done the states of the hole may be localized and
impurity-band conduction by hopping takes place.

In this section we shall first discuss the transition in a crystalline d band,
V,0,, for which formulae (62), (63) are clearly not valid. We then discuss
metal-ammonia solutions and certain other examples of electrons in polar
liquids, and then the transition in d bands of doped semiconductors. In
much of this work we deal with materials in which there are two dielectric
constants kand «,. Under these conditions the value of « that one ought to
use in formula (63) is not clear. Various authors (Simpson 1949, 1967,
Pekar and Deigen 1948) have calculated the effective radius of an electron
trapped by a positive charge; it should according to Simpson be given by

(63) with « g given by :
1 1 5 /1 1
—=—+—<——->. N (D))
K off K Ky K
The factor 5/16 comes from the assumption of hydrogen-like wave-functions
and the use of a variation principle. The only instance known to the
author of the use of this equation to describe a metal-non-metal transition
is by Sienko (1963) for sodium in ammonia (cf. §7.8). Cases will be cited
below when it is certainly not valid.
Finally in this section we discuss mobility in a degenerate gas and the
conductivity by impurity-band hopping.

7.2. The Metal-Non-metal Transition in d Bands of Stoichiometric Oxides

An oxide showing d-band conduction on which much work has been done
is V,0,; this oxide, in common with VO, shows a jump in the conductivity
of order 10° at a temperature near 200°k. A review has been given by

T A number of papers estimate the appropriate radius for monovalent atoms,
e.g. for the liguid-vapour transition (Meyer et al. 1965, Meyer and Young 1965).
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Morin (1958, see also Hannay’s Semiconductors, 1959); the transition
temperature drops with pressure and the transition has been observed
under pressure (Austin 1962). The theory of the transition has been
discussed by Adler and Feinleib (1964), Feinleib and Paul (1965) and by
Adler and Brooks (1965), and, as they observe, given a d band in which
metallic conduction is possible, a transition to an insulating state can
occur due to three separate causes:

(1) A splitting of the band due to anti-ferromagnetic ordering, as
first proposed by Slater (1951) in general and for this material by Morin
(1959).

(2) Correlation, as in Mott’s and Hubbard’s description of the metal to
insulator transition.

(3) A deformation of the lattice.

These authors consider that for V,0; a distortion of the lattice is the
most likely hypothesis. They criticize Morin’s (1959) hypothesis of
antiferromagnetic ordering on the grounds that the existence of magnetic
ordering is in doubt, and that even if it occurs, the associated latent heat
seems to be much less than observed. To explain the transition they assume
that electrons are excited across the gap and that, if electrons are excited,
the gap decreases. A temperature 7} at which the gap disappears will then
exist. But such a theory, they find, can only explain a change at the
transition point of about 10 in the number of carriers. The authors there-
fore believe that below the transition point small polarons are formed and
conduction is by hoppingt. Polaron formation is inhibited in the metal
because of increased screening by the free electrons.

In this theory the energy gap is 5-8 times k7), so the band gap is
ca. 1/10ev. The effective mass m,q in the metallic phase is about 50m and
the mean free path 24.

The small band gap and narrow d band now seem the natural—and indeed
the only unforced—explanation of the temperature-dependent transition
observed here ; the explanation given in Mott (1961) makes a temperature-
induced transition a rare accident. But the surprising fact is that metallic
conductivity exists at all for solargeavalueof m,. Thescreening distance
with m,/m=~ 50 will be very small and the inter-ionic distance should be
nowhere near the theoretical transition point (62). We believe the
explanation may be as follows. 1n V,0; there aretwo electrons per vanadium
atom. Ifthere is metallic conductivity, one has to show that correlation is
small enough to allow V3+ and V* to be formed as well as V2. The
problem is familiar in the theory of ferromagnetism of the transition metals.
(Calculations show (Kanamori 1963, Hubbard 1964 a, b) that the electro-
static energy required to change the number of carriers on one d shell is
very large (ca. 10ev). Various authors have suggested that this energy is
greatly reduced by screening by the s-electrons; the evidence has been

+ One would not expect this at low enough temperatures according to current
polaron theory (§ 4.3).



Downloaded by [University of Sydney] at 19:23 23 October 2012

116 N. F. Mott on

reviewed by the present author (1964, 1965) and by Herring (1966). These
arguments emphasize that in the atomic state, for instance for nickel, the
states 3d34s2, 3d%s and 3d'° have nearly the same energy. The suggestion
that we make here, that the 2p band in oxides can do the same thing, is
new ; but it seems to be necessary to explain metallic conductivity in V,0,
and in similar materials.

7.3. Solutions of Metals in Ammonia

There is a very large literature on this subject extending back to the last
century. Recent reviews are that by Das (1962), the report of the
‘Colloque Weyl’ held at Lille in 1963 (Lepoutre and Sienko 1964), and
articles by Thompson (1965) and Jortner and Rice (1965). A brief discussion
is given here both because metal-ammonia solutions provide one of the best
known examples of the metal-non-metal transition and because for dilute
solutions the apparent formation of a cavity round a solvated (or rather
ammoniated) electron is in marked contrast to the behaviour of electrons
in most liquid semiconductors or metals.

For dilute solutions of (say) sodium in ammonia, dissociation is nearly
complete. The solvated electron gives an absorption spectrum with a
peakin theneighbourhood of 0-8 ev (at — 70°c) but with along tail extending
into the visible, which accounts for the blue colour by transmitted light.
If the electron is thought to be in a cavity, a radius of 3 & would account for
the volume expansion observed. The absorption band is thought to be an
s—p transition for the electrons in one of these centres and the electron spin
resonance can be interpreted in these terms (Catterall and Symons 1964).

Theoretical discussions of electrons in cavities have been given by
several authors (Jortner ef al. 1964, O’Reilly 1964). Itis not emphasized in
all these papers that a cavity can only form if the energy of an electron in
the ‘ conduction band ’ of ammonia, with random orientation of the dipoles,
is positive, taking the energy of an electron at rest in free space as zero ; the
energy of an electron is then lowered by expansion of the liquid. Jortner
et al. (1965) recognize this in their work on ‘ bubbles’ formed by electrons in
liquid helium, expressing it in terms of the ‘scattering length’ I for the
interaction of an electron with the helium atom ; the energy of an electron in
the conduction band is then n = 27%2/mQ, where Q is the atomic volume.
The authors give evidence to suggest that 7 is positive for helium and neon,
but negative for argon, which agrees with direct calculations of the band
structure by Matthiess (1964); bubbles are not formed by electrons in
argon (§6.2), and the Ramsauer effect is not observed in helium or neon.
In helium I or II interesting effects due to zero-point motion and super-
fluidity occur, which will not be discussed here (Kuper 1961, Clark 1965,
Jortner et al., loc. cit.).

Returning to the cavity in liquid ammonia, a potential well as illustrated
in fig. 33 would seem appropriate ; outside the cavity of radius a, supposed
to contain the electron, the ammonia will be polarized; the field will be
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e?/kr? and the potential of the electron there is —e*(1/xky—1/x)/r. The
energy of the system is made up of:

(1) potential energy of electron — (g +e2/uym),
(2) polarization energy of ammonia 4e?/kya,

(8) kinetic energy of electron 72/2ma?,

(4) surface energy of hole dmya?,

where y is the surface energy. The radius ¢ will be determined by mini-
mizing the sum of these, though a correction to the assumption of a dielectric
constant independent of field will be necessary (compare O’Reilly 1964). It
will be noted that the magnitude of n does not affect the size of the cavity ;
but the cavity will only be stable compared with a polaron type of trapping
without cavity formation if % >4wya? Taking the observed value of
y(32erg/cm?), and a radius of 44, this would be satisfied if n>0-3ev
{Jortner, loc. cit., p. 236).

Fig. 33

r

Potential energy of an electron in a cavity in ammonia or water.

Blandamer ef al. (1964) point out that the absorption spectra of iodine
ions in NH,; has a maximum at hAv=4-0ev; the difference 4-:0-0-8ev
corresponds closely to the electron affinity of iodine, as we should expect,
assuming that the position of the 2p level is determined by the Coulomb
part of the field. In water both maxima are shifted by 0-8ev to higher
frequencies; we surmise
=0-8.

Nwater — Tammonia

The conduction band of water must thus have positive energy of at least
1-1ev.

Turning now to mobilities, at low concentrations the electron doubtless
moves like a heavy ion, carrying its polarized cloud withit. It hashowever
been known for some time that the mobility of a solvated electron is higher
than would be given by Stokes’ law for the polarized molecules round a
cavity of the assumed size (for references see Berns 1965). Probably
individual ammonia molecules rotate and move across the cavity (Evers
and Longo 1966), but a quantitative description has not been given.
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At higher concentrations there is strong evidence that diamagnetic
entities are formed; the most direct is that the number of free spins
determined by e.s.u. or from the observed paramagnetism drops (Catterall
and Symons 1964). Arnold and Patterson (1964b) discuss the various
entities that may form, in particular pairs of electrons trapped in a cavity,
like an F’ centre in NaCl. It has been known since the early work of
Kraus that the conductivity per dissolved atom drops in this region (by a
factor of order 3), so that neutral entities (Na, Na,) must also be formed.
Orgell et al. (1964) record a drop in the increase of volume per dissolved
atom.

At higher concentrations still there is a rapid increase in conductivity
with concentration, which is shown in fig. 34. Arnold and Patterson
(1964 a, c) have suggested that this may be a hopping process; if so it
should be possible to describe it by a formula of the type :

o= (ve?| RET) exp (—2R/a) exp (— AW/ET).

This is what Arnold and Patterson do, finding good agreement with experi-
ment if @ is 2-54 &, v is an electron rather than a phonon frequency and AW
neglected. We believe there must be an activation energy for a hopping
process in a polar solvent. Actually Kraus’s values of do/d7 which they
quote show a sharp maximum for these concentrations; but the corres-
ponding activation energy is only about 0-15ev. This must correspond to
the extra polarization round a doubly charged centre which has to be
destroyed before the electron can jump; it is rather surprising that it is as
small as this.

We believe that these observations probably should be described with a
phonon frequency for v, and with a Boltzmann factor ; this means that, to
obtain agreement with experiment, ¢ must be larger than 2-54 4. The
observations could then be explained by an increase in ¢ with concentration
¢, as ¢ tends towards the value at which the metal-non-metal transition
ocours.

The Hall coefficient in this region has been measured by Kyser and
Thompson (1965) and rises very rapidly with decreasing concentration.
Since the very marked dependence of conductivity on concentration
points strongly to some kind of hopping, this is evidence that large
Hall coefficients, do occur in this caset.

At higher concentrations a transition to the metallic state occurs; this
has been discussed in terms of the author’s theory (Mott 1961, Kyser and
Thompson, loc. ¢it., Thompson 1965). But in view of the uncertainty about
the model on the non-metallic side of the transition and also the large static
dielectric constant, this seems a particularly difficult case about which to
make quantitative predictions. However Sienko (1963), in a review of
the solubility gap between the metallic and non-metallic phases, comes to
the conclusion that formulae (62), (63) describe the transition point well if

+Dr. Thompson has informed me (March 1967) that there is some doubt
about these observations.
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formula (64) is used for the dielectric constant. Thompson (private
communication) however has found recently that increased temperature
lowers the concentration at which the transition occurs, though it lowers
« and thus the radius given by (64). The present author supposes that this
is because on the insulating side the centres are negatively charged and the
polarization energy islowered by largex. At low temperatures the solvated
electron becomes more stable.

Fig. 34
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Of particular interest is the observation (Kyser and Thompson, loc. cit.)
that in the metallic region near the transition point the Hall mobility is
explicable only in terms of a mean free path less than the molecular size.
This is discussed in terms of Hubbard’s model (§7.1) by Mott (1966). If
the conductivity is given by formula (45), and if a small value of g arises
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through the approach to the transition, then apparent values of L less
than the electron wavelength are acceptable.

McDonald and Thompson (1966) have measured the conductivity of
the (crystalline) compound Li(NH,),, which is metallic, having p ~ 0-3 12 cm
at helium temperature.

7.4. Metals in Molten Alkali Halides

This is another system in which the concentration of electrons can be
varied. Their properties have been investigated particularly by Bronstein
and Bredig (1958, 1961) and Bronstein ef al. (1962). At the metal-rich
end the resistivity increases linearly and rapidly with concentration of
halogen; a theory of the scattering based on Ziman’s theory has been
given by Wilson (1963) and extended by Shimoji and Ichikawa (1966)
which successfully accounts for the results, though Wilson’s extrapolation
to low concentrations of metal with calculated mean free path of order
much less than the wavelength can hardly be correct?. The conductivity
drops to ca. 103 ohm/cm, with mean free path of order ¢, at roughly equal
concentration of salt and metal. Weshould expect localized states to occur
for lower concentrations of metal ; but of course if they do we should expect
some kind of polaron formation, which may be more important in deter-
mining the activation energy for hopping than the difference in energy of the
states due to disorder.

For low concentrations of metal, in the case for instance of KF at 900°c,
the specific conductivity rises rapidly from the value for ionic conduction
(4 ohm~ em—1) as the concentrationrises above 2or 3mol. %,. Atheoretical
calculation of the conductivity in this region has been given by Rice (1961).
Rice treats the electron as localized on any one of the sodium ions and as
hopping onto a neighbouring ion. He is able to estimate mobilities of
order 0-1 cm?/vsec in agreement with experiment.

7.5. Tungsten Bronzes

We turn now to the discussion of the movement of electrons in the d band
of a crystalline semiconductor, when the electrons are provided by donors
in random positions (in contrast to the case of §7.2). An example is
provided by tungsten bronzes. These materials are non-stoichiometric
compounds of the form M, WO,, where M is usually an alkali metal and «
can range from zero to near unity. Single erystals can be prepared large
enough for electrical measurements. They are of interest because a
metal-non-metal transition occurs for x~0-1, though whether this is a
transition of the usual type has been questioned as we shall see.

Crowder and Sienko (1963) have reviewed the properties of WO,;
for the dielectric constants x,=6-25, «=1000. For the binding energy of
an electron in a donor these authors take I,,=m, get/2k% > with « g given

+ The considerations of this article suggesﬁi that we have a hopping process ;
the agreement with the calculated values must be fortuitous.
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by the formula (64). They state that experiments on lightly-doped WO,
show that Iy is 0-04ev, and deduce m.g/m=1-2. Although conduction is
in a d band, the effective mass does not seem to be large.

A review of the electrical properties of the bronzes has been given by
Shanks ef al. (1963). The conductivity of a series is shown in fig. 35; we
see that the conductivity is high, in the metallic range, for x> 0-24, and
that it depends little on the crystal structure of the bronze or on the
particular alkali metal chosen. Figure 36, also from Shanks ef al., shows
the resistivity of a bronze with small #; the behaviour is that of a normal
semiconductor with cocexp (—AE[kT) and AE=1/30ev. This agrees
with the results of Crowder and Sienko (1963) already mentioned.

Fig. 35
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Electrical conductivity at 300°k versus « of metallic tungsten bronzes M, WO,
where M is an alkali metal (Shanks et al.).

Both the analysis of the scattering, the high conductivity and measure-
ment of the density of states to be mentioned below suggest that the
conductivity is not in a narrow band and m, g is about 1-5m; the value of
Ko is about 6-2 (Sawada and Danielson 1959) so that hydrogen radius may be
between 2-3 &, and the screening radius similar.

The Hall coefficient has been measured by Ellerbeck et al. (1961) for
concentrations x> 0-5; they deduce that one electron per sodium atom
contributes to the Hall constant.

Two theories have been proposed to account for the transition in the
tungsten bronzes. Mackintosh (1963) suggests that this is a straight-
forward metal-non-metal transition; the normal criterion (63) would give
x=0-1 for the transition, not too far from 0-25 observed. Fuchs (1965),
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on the other hand, proposes a different theory. The alkali atoms are on
definite sites and the atomic radius is small; he proposes:

(@) That any cluster in which all sites are occupied is a metal.

(b) Any unoccupied site acts like a macroscopic hole, and the effects of
boundaries are negligible.

(¢) No current can pass unless clusters are in contact.

Fig. 36
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Condition (c) leads to the disappearance of electrical conductivity when
x <02 according to calculations of de Gennes et al. (1959, see also Domb and
Sykes 1961). If this is a true criterion, it is perhaps surprising that
electrons cannot ‘ tunnel * between one cluster and another. This may be
because each cluster is electrically neutral and it will thus involve an electro-
static activation energy due to image forces when two charged clusters are
formed of order (e2/x,r,), where r, is the size of the cluster. A similar model
has been used in accounting for the activation energy observed in electrical
conduction between metallic microparticles deposited on a non-conducting
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substrate} (Corter 1951, Neugebauer and Webb 1962, Neugebauer 1964,
Herman and Rhodin 1966).

The evidence that Fuchs puts forward in support of his model is the
following :

(1) Theelectronicspecific heat (Vest et al. 1958) and Pauli paramagnetism
(Greiner et al. 1962) have both been measured as a function of z for z > 0-5.
The results show a linear rise with «.

(2) The spin-lattice relaxation time 7', of the 2Na nucleus has been
measured by Fromhold and Narath (1964); the relaxation time is found
to be independent of z, suggesting that the local density of states is not
changing with x.

The Fuchs model is obviously acceptable (if at all) only when the atomic
radius o is comparable with the interatomic distance. It should be
particularly appropriate in narrow band materials.

Finally we record that Bierstedt ef al. (1966) have recorded super-
conductivity in certain tungsten bronzes.

7.6. Titanates and Tantalates

These materials differ from the tungsten bronzes in that a condensed
electron gas can be obtained at low temperature with a small number of
donors. The reduced oxide SrTiO; has been investigated by Frederikse
et al. (1964). Here in the stoichiometric oxide the titanium ion has lost
allits four outer electrons. A degenerate gas with conductivity tending to a
finite value at low temperatures forms on reduction if the concentration
of electrons is greater than about 3 x 1018 cm—3. On the other hand, the
effective mass deduced from the conductivity, Hall coefficient and Seebeck
coefficient is about 10m, so in contradistinction to the tungsten bronzes
conduction is in a fairly narrow band. The high frequency dielectric
constant cannot be high, as the crystal is transparent with forbidden energy
gap 3:15ev (Gandy 1959). On the other hand, the static dielectric constant
is very high, 220 at room temperature (Megaw 1957, p. 91, see also Barker
1966, who has measured the temperature and frequency dependence).
The low temperature mobility of the heavily-doped specimens is high
(~1000 cm?/v sec) suggesting mean free paths of the order 500 & and thus
a good deal greater than the distance between centres.

In this paper and that by Wemple (1965) unpublished results by Kahn,
Frederikse and Becher are quoted in which band calculations have been
made and a narrow conduction band based on Ti 8d orbitals found. These
are reported briefly at the Paris semiconductor conference (Kahn and
Leyendecker 1964).

1 The point made by the earlier of these authors, that current can only flow
in an island film if charged islands are formed, and that this requires an
activation energy, is questioned by Herman and Rhodin. The present author
considers it to be correct; there should be some critical inter-particle distance at
which the film ceases to behave as a continuous metallic film, and becomes a
sort of semiconductor.
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Wembple (1965) and Wemple ¢t al. (1966) have measured the behaviour of
reduced KTaQ, to see if the substitution of Ta for Ti changes the situations
The concentration of carriers lay in the range 3 x 1017 em—3-10*° cm—3 and a
degenerate electron gas existed over the whole range. The electronic
refractive index is 2-3; the static dielectric constant is very high, 4500 at
zero and ¢irca 200 at room temperature. The mobilities y are higher than
for titanates, as the following table shows:

Nem—3  p(em?/vsec) scattering cross
at 4°K section x 1016 cm?
3-5 x 1017 23000 850
2-4 x 1018 11000 136
1-3 x 104° 3400 47

The higher mobilities are thought to be consistent with a bigger overlap
between the orbitals of the Ta ions.

The existence of degenerate behaviour in these lightly-doped narrow-
band semiconductors shows that the high sfatic dielectric constant can
play an essentialrole ; thefield of the charged ions is effectively neutralised.
We find this puzzling. If the electron moves slowly enough to polarize the
medium round it, i.e. to form a small polaron—the attraction between the
ion and the electron will admittedly be small (¢2/«r?). But at the same time
the effective mass will be large. So the condition for the formation of a
metallic phase will not be present. The problem needs further investiga-
tion. Dr. M. L. Cohen has suggested to the author that the interaction
between electrons due to coupling with the phonons may be sufficient to
lower the free energy of the metallic state below that of the state in which
electrons are trappedf.

The reduced oxide SrTiO, shows superconductivity (Schooley et al.
1964, Schooley et al. 1965) over the whole range 10'8-10%! carriers/cm?®
with transition temperatures in the range 0-1°k to 0-5°k. Theoretical
discussions are given by Cohen (1964).

7.7. d-band Conduction in Ferromagnetic Semiconductors

Heikes and Chen (1964) have investigated the low temperature conduc-
tivity of La doped EuS; each La atom contributes one electron, and their
investigations range from 1-109, La. Their results are shown in fig. 37.
They conclude that at low temperatures they are measuring impurity-band
conduction, due to compensation from some unknown cause. The same
will be true at high temperatures above the Curie point. The large increase
in p obtained on going through the Curie point they ascribe to a marked

+ It is interesting that quite high concentrations of Li (20 atomic per cent,
in NiO apparently do not give metallic conduction (Ksendzov el al. 1963)
Kiode 1965, Austin et al. (1967). The activation energy drops from circa 1-8 ev
to about 0-2 ev and flattens off as the concentration increases.
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narrowing of the band, with consequent shrinking of the radius of the
orbitals of traps, as the magnetization decreases. Such a phenomenon has
been predicted by Wolfram and Callaway (1962) who treat the interaction
with magnons as narrowing the band, in the same way that interaction
with phonons does in polaron theory, but a theory applicable to tempera.-
tures above the Curie temperature does not seem to exist.

Fig. 37
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Similar phenomena have been observed by Methfessel (1965) in a series
of crystals of composition Eu,_,Gd,Se. Both Eu and Gd have similar 4f
shells but Eu has two other electrons (5d+ 6s) while Gd contains five.
The conductivity is thus due to z electrons per selenium atom in a 5d band.
He reports that recent work by S. von Molnar shows that below the Curie
temperature metallic behaviour persists down to x=0-01, and at x=0-05
Hall measurements show 5 x 10 carriers/cm3. Recent unpublished
measurements by J. D. Axe give =952 and x,=4-87. With these
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comparatively small values we have here also metallic behaviour at a
surprisingly low concentration, as in the materials considered in the last
section.

The review by Jonker and van Houten (1961) gives many examples of the
similar effects of Curie or Néel points on the resistivity of transition metal
oxides; see Austin ef al. (1967).

7.8. Mobility of Electrons in a Semiconductor where the Electron Gas
18 Degenerate

There is a large literature on this subject. To relate it to the theory of
resistivity of metals it is necessary to emphasize that it could be treated by
Ziman’s (1961) theory if one assumes:

(@) That the energies at the extremities of the conduction or valence
band are of the form K = #%2k?/2m z—which is normally not true.

(b) That the scattering can be given by the Born approximation. Since
the distribution of centres will be almost random, one should take a(g)=1
in Ziman’s formulae. This is the case for which Edwards (1958) has shown
that the Kubo—Greenwood formula leads exactly to the Ziman formulation
to the second order in | V 2.

The problem is of course related to that of scattering by ionized impurities
in a non-degenerate semiconductor, of which the first theory was that of
Conwell and Weisskopf (1950), Rutherford scattering with a cut-off at
small angles, and the alternative Brooks—Herring treatment (Brooks 1951 ;
see Debye and Conwell 1954) in which the field due to the ions is analysed
into its Fourier components. In the degenerate semiconductor the field
of the randomly-distributed ions is screened, and in the Born approxima-
tion at any rate a Ziman or Edwards treatment of scattering by individual
centres randomly distributed and a Brooks-Herring treatment must be
equivalent.

As regards formulae for the scattering by a screened potential in a
degenerate gas, that given by Mott (1936) has been extended by Dingle
(1955) and Mansfield (1956) and applied by them to degenerate semi-
conductors. Mansfield finds for the mobility :

= 3eh3/16m2e2m? f(x),

where
f@)=In (1 +2)— /(1 +2)

and

x = (h2ic[m %) (3n/8m)13,
The substance is only metallic if x > 4, so

f@)~Inz+0(x~2),

and we expect u to vary with » as 1/lnz. A slow drop in the mobility is
therefore to be expected with increasing n, as:

pocl/In (dxfz ).
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Mansfield plots observed mobility for InSb against concentration;
the drop is faster than that calculated. Mott and Twose (1961) took an
unscreened Coulomb field extending up to half the inter-centre distance and
compared their calculated mobilities with the data of Fritzsche for n-type
germanium. Though they find in agreement with experiment that the
mean free path is of order of the inter-centre distance (so that there is no
question of weak scattering here), the mobility drops faster than predicted
by theory. They suggest that the core of the centre may play an important
role. Ifthe scattering cross section is independent of concentration n, one
would expect

pw=er/m=elL|mv,

which is proportional to n—%3.

Culyaev (1959) and Csavinszky (1962, 1963, 1964) are the only treatments
known to the author which go beyond the Born approximation; these
authors calculate the s-wave phase shift.

Katz (1965) has given a recent discussion of the subject combined with
experimental observations. This work includes investigations of stressed
material ; the stress separates the three degenerate bands, so that the
resistivity due to electrons in a single band can be investigated. For InSb
Katz concludes (in agreement with Mansfield, Mott and Twose, ¢f al.) that
the resistivity of the unstressed material is very considerably (up to 10)
above that predicted by any theory, though the discrepancy becomes quite
small (cc. 2) for the higher concentrations, and is much less marked for the
stressed specimens. A very tentative explanation is that the proximity
to the concentration at which an insulator transition occurs leads to a
lowering of N(Ey) as predicted by Hubbard (1964a, cf. fig. 32), and
therefore that a factor g2 must be introduced into the conductivity
formula.

Katz et al. (1965) report a T2 term in the electrical resistance of n-type
degenerate germanium which they ascribe to electron-electron scattering
type (Baber 1937; for a review see Mott 1964). This depends on the
many-valley nature of the conduction band, and disappears when the
valleys are separated by stress (Katz 1965).

For compound semiconductors the static polarization of the lattice
(shift of the ions) must be taken into account, using for instance the self-
consistent quasi-static (Born-Oppenheimer) method of Simpson (1949)
(formula 64). For this case we do not know of quantitative calculations,
but for large « we would expect strong screening by polarization. This
effect is shown in the observations of Allgaier and Scanlon (1958) and
Allgaier and Houston (1962) on mobilities in PbS, PbSe and PbTe. These
compounds have very large values of x. The impurity scattering is very
small and the mobilities may be as high as 800000 cm?/v sec. Also
the mobility drops roughly as n3, suggesting that the electrostatic field
of the centres is negligible and it is only the core that matters. The high
mobilities observed by Wemple (1965) in KTaO; (cf. §7.6), another

AP, 1
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substance of very high static dielectric constant, have already been
mentioned and should have the same explanation.

7.9. Magnetoresistance in Degenerate Bands

Many semiconductors in which the electron gas is degenerate show a
decrease in the resistance in a weak magnetic field. The effect was first
observed by Fritzsche and Lark-Horovitz (1955) and has been investigated
by Sasaki (1965) and Sasaki ef al. (1961). A theoretical explanation was
first proposed by Toyozawa (1962 a, b, ¢) who starts from the argument of
Yosida (1957) that localized moments will lead to a negative resistance.
If localized moments exist in the gas, the argument is elementary; the
scattering cross section by a magnetic impurity will depend on whether it
and the conduction electron have parallel or anti-parallel spins. Since the
current carried by conduction electrons with the two spin directions are in
parallel, the resistivity when the magnetization is M will be of the form :

" 1 1 -1
p=const., <l+ocM + l—ocM>

=const. (1—2a2M2..).
It is then argued that in a random distribution of centres there will be
certain regions where a localized moment of one or more Bohr magnetons
will occur, just as localized moments can ocour in d shells of Mn in Cu. To
this he ascribes the effect. The normal positive magnetoresistance may
take over at strong fields.

The moments are thought to exist at regions of low concentration, just as
in Anderson’s (1961) theory of localized moments on manganese atoms in
copper for example. If so one would expect the effect to disappear at
high concentration, and this is found to be the case in heavily doped n-type
silicon (Balkanski and Geismar 1966), but not according to Sasaki and
de Bruyn Ouboter (1961) in germanium.

At the lowest temperatures these authors have observed anomalies in
the resistivity-temperature curve which Sasaki (1965) attributes to the
Kondo effect caused by these moments.

7.10. Impurity-band Conduction

This term is used in a number of senses. Here we shall use it to mean the
motion of an electron from one impurity centre to another, under conditions
in which the overlap between the orbitals of neighbouring centres is great
enough to allow tunnelling but not great enough for a transition to the
metallic state to have occurred. The process can only oceur if compensa-
tion is present. It is usually but not always a hopping process, but always
involves an activation energy; we shall develop this theme in this section.

The phenomenon later identified as impurity-band conduction was
first observed by Hung (1950) and by Hung and Gleissman (1950, 1954).
That this process could only occur when compensation was present was
first emphasized by Conwell (1956) and by Mott (1956). The work of
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Fritzsche (1958, 1959, 1960) demonstrated experimentally the role of
compensation. Mott (1956) was the first to emphasize that the process
involved an activationenergy. Thismay occurin various ways, which have
been analysed by a number of authors (Kasuya 1958, Kasuya and Koide
1958, Miller and Abrahams 1960, 1961, Mott and Twose 1961, Myecielski
1962a, b).

At low concentrations, the states will certainly be localized and motion
will be by hopping. We may then consider two cases.

(@) Very small compensation. Then we have a few vacancies in n-type
centres (or electrons in p-type centres) which are bound to the nearest
charged minority carrier. The binding energy will be AE =e¢?/xcR, where B
is the distance between the two centres so that R*~1/N_ .. The number
of free carriers will be proportional to exp(—3AE/kT). The mobility,
being due to a hopping process, will also oontam an activation energy.
This is the case considered by Mott (1956).

(b) Moderate compensation. This is the case considered by Miller
and Abrahams and probably covers most of the experimental material. All
centres must now be treated on the same basis, and the energy difference
AE between neighbouring centres will depend on the random electric
fields due to charged centres of both types. If K is the degree of compen-
sation, then for small K they find AE= (e R)(1—1-35K'3), where
R=(4nN,,/3) 2. For larger values of K, AK drops to a flat minimum
(0- 285 e®/k R) when K ~1.

Miller and Abrahams find for the jump frequency between two states
with energy difference A (cf. Pollak and Geballe 1961, p. 1751).

1/7=2x 1022 (R/a)*2 exp (— 2R/a) tanh (AE/[ET)

where o is the hydrogenic radius of each state. Tt is clear that, both
through the exponential factors in the tanh and through the tunnelling
factor exp (—2R/e), the jump frequency differs greatly from one pair to
another. In calculating the d.c. conductivity it is essential to take the
casiest path for each carrier, and the d.c. conductivity will be determined
essentially by the most difficult step. The d.c. conductivity is the result
of an averaging process. Two points of particular interest emerge from
the averaging of Miller and Abrahams:

(&) the logarithm of the resistivity is proportional not to R but to E%2.

(b) the drop in the apparent activation energy AE with 7', which should
occur in a random hopping process, does not appear in their approximation.

The Hall coefficient of impurity conduction in silicon and germanium
has been investigated in the hopping region by Amitay and Pollak (1966).
No Hall voltage was observed, and this has made necessary some revision
of the averaging procedures of Holstein’s (1961) theory.

A further consequence of averaging procedures is that the a.c.
conductivity should be greater than the d.c. conductivity and increase

AP, S
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with frequency. This phenomenon has been investigated in detail both
experimentally and theoretically by Pollak and other authors (Pollak and
Geballe 1961, Sewell 1963, Pollak 1964, 1965).

We turn now to the so-called ‘intermediate region’, that between the
metallic and the region described above. Pollak (1962) has pointed out
that observations of D’Altroy and Fan (1956) on germanium at 4-2°x
show a conductivity that drops with frequency in the microwave region.
This suggests that the state of affairs described under (@) above can exist
without the states in the impurity band becoming localized due to disorder.
In other words electrons or holes in the impurity band can in this case move
by a non-hopping process, with a mean free path of normal type; the
observed activation energy for motion is then the energy required to
separate the carrier (hole in n-type conductors) from the nearest negatively
charged acceptor.

We note that this phenomenon is likely to occur for small compensations
and for concentrations of impurity just on the insulator side of the transition.

Infra-red measurements have given interesting evidence for the existence
of these occupied and unoccupied localized states. Blinowski and
Mycielski (1964, 1965) and Blinowski (1966) have given a detailed
theoretical discussion of optical absorption by transitions between one
localized state and another, when the orbitals overlap, and the phenomenon
has been observed by Milward and Neuringer (1965).

7.11. Qlasses and Melts Containing Transition Metal Lons

Electronic conductivity in these materials is a process very similar to
impurity band conduction. It is of course necessary that ions in two
states of ionization should be present, for instance V4 and V3+, or Fe?+ and
Fedt. In contrast to Fe;O,, in glasses the ions may be far enough apart
for tunnelling greatly to reduce the conductivity, and in contrast to
impurity-band conduction, the activation energy for hopping is likely
to be mainly that for polaron formation; the term proportional to ¢%/« R
will be small because of the comparatively high static dielectric constant «.
We thus expect the conductivity to be of the form:

o=v6(1—¢) (e} RET) exp ( — 20R) exp (— W/kT),

where v is a phonon frequency, R is the mean distance between the ions,
¢, {1—c¢) are the concentrations of the two valencies, «a =+/(2mH)/k, and
H is the energy required to eject a d electron into the valence band. The
activation energy W will be made up to two terms; the polarization energy
which is half the polaron energy, namely

le2/ 1 1 65
ar—o K—O ’; . 3 » v - - > - ( )

and a term of the order 2/« which will drop to a minimum when ¢=1.
7, is here the radius of a somewhat arbitrary sphere containing the ion.
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As regards the thermoelectric power, the analysis of Heikes and Ure
(1961) gives:
(cf. § 4.4) oa=(kle) [AS/k—In{c(1—¢c)}]; . . . (66)

AS is the change of configurational entropy when a site is occupied by
an electron, and has not been estimated numerically. If AS is neglected,
the sign will be that of an n-type conductor if ¢ (the concentration of the
ion with the mobile electron, e.g. Fe?t)islessthan 4. This analysis neglects
any spread of energy levels due to the random term ¢?/«R. This as we have
seen in §4.4 might lead to a larger constant term and an additional term
proportional to 7.

The numerical value of the quantity H can be roughly estimated from the
position of the ‘transfer’ absorption band of transition metal ions in
glasses (Bates 1962), and is of the order 3—4ev. This would mean that
the factor 2« is 18 x 103ecm~*; so, if a pair of ions is say 10~ cm apart,
exp (— 2ak)is about 103,

Turning now to experiment, vanadate glasses have been investigated by a
number of authors (Denton ef al. 1954, Baynton ef el. 1956, 1957, Munakata
1960, Nester and Klingery 1963, Roe 1965. The paper by Nester and
Klingery deals with glasses of nominal composition from 50 to 909, of V,0y,,
the other constituents being BaO and P,O;. The thermopower was found
to fit formula (66) very well at room temperature, though there was some
falling off at low temperatures. Activation energies W in ¢ for various
samples were as in the table, which shows also the high frequency dielectric
constant («;):

Wi(ev) 0295 033 0:392  0-418  0-443
Ko 4-05 372 3-35 3-22 315

The correlation between W and «, and the order of magnitude strongly
suggest polaron formation according to formula (65). The static dielectric
constant was very temperature-dependent and in the range 15 to 50.

There was however some dropping off in the activation energy at high
temperatures, suggesting that the activation energy might vary from pair
to pair. In glasses the positions of the ions will not of course be random.
As regards the tunnel factor, Dr. P. B. Banks (private communication)
has plotted log,, p against the cube root of the ratio of oxygen to vanadium
and obtained as expected a fairly straight line; it is hoped to publish these
results in a subsequent paper.

Hansen (1965) has made measurements on iron phosphate glasses with
controlled values of ¢ (ratio of Fe?*/Fe) from 0-12t00-85. Thethermopower
is independent of 7' in the range 150 to 350°c, and satisfies (66) roughly,
changing sign as ¢ is increased; but AS is not zero. The resistivity at
200°c¢ rises by six orders of magnitude as the concentration of FeO is
decreased from 559%, to 5%,, doubtless due to the tunnel factor, but it is
curious that for the 559, composition the author finds agreement with
formula (65) without introducing a tunnel factor. A plot of resistivity

K2
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against composition shows a broad minimum round ¢~0-5. At 200°c the
minimum is at least ten times deeper than the formula {¢(1 —¢)}* predicts.
If this is due to random fields, as in impurity conduction, a short calculation
using the formulae of Miller and Abrahams (1960) gives e?/x R~ 0-2ev,
which seems reasonable given static dielectric constants of from 10-20.
Thus a significant part, say 209, of the activation energy for hopping may
be due to this cause.
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