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50 I~. F. Mort o n  

§ i. INTRODUCTION 

THE purpose of this article is to review recent experimental and theoretical 
work on the behaviour of electrons in disordered lattices. The experi- 
mental work falls into three main groups, as follows : 

(a) The electrical and optical behaviour of liquid and amorphous (or 
glassy) semiconductors. Under this heading we include measurements 
of the mobility of carriers injected into insulating materials (e.g. liquid 
argon). 

(b) The electrical and optical properties of liquid metals. On this, much 
theoretical work has been done recently, following Ziman's (1961) paper, 
assuming a s m a l l  amplitude for the electron wave scattered by each atom. 
Most of this work is based on the ' one-electron model '  of non-interacting 
electrons, although as we shall suggest correlation (electron-electron 
interaction) may be important particularly at densities near that  at which a 
transition to the non-conducting state may be expected. 

(c) Electrical and optical properties of heavily-dopedsemiconductors, the 
impurity centres being sufficiently close together to interact. We include 
under this heading concentrated solutions of alkali metals in ammonia. 
These phenomena will be discussed under two headings : 

(i) The behaviour of weakly-interacting centres, in materials in which 
there is some compensation (i.e. some p-type centres in an n-type 
conductor). Here the conductivity is usually treated as temperature- 
activated hopping from centre to centre (Miller and Abrahams 1960, Mott 
and Twose 1961), and tends to zero with temperature. 

(ii) Conduction in materials so heavily doped that  the electrons in the 
centres behave like a degenerate electron gas (i.e. a metal), with a value of the 
conductivity tending to a finite value at the absolute zero of temperature. 

The main purpose of the article is to examine how the behaviour of 
non-crystalline materials changes as the interaction of the electrons 
with the ions becomes stronger, or in  other words as we go from the ' nearly 
free electron' to the ' t ight  binding' case. At one extreme we have 
materials with a long mean free path like liquid sodium, at the other materials 
which do not conduct at all, like fuzed quartz. Of particular interest are 
materials which are intermediate, such as liquid tellurium, some of the 
intermetallic compounds and mercury at high temperatures. Most of this 
is discussed in terms of the model of non-interacting electrons ; the article 
includes however a brief review of our present knowledge about the transi- 
tion between the metallic and the insulating state, because nearly all the 
evidence tha t  this transition occurs is obtained from disordered systems. 

Many of the arguments of this paper depend on the existence of solutions 
of the Schr6dinger equation for an electron in an aperiodic lattice which are 
' localized '. Such solutions are eigenfunctions and have quantized energy 
values and the wave function decays exponentially with distance from a 
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Electrons in Disordered Structures 51 

po in t  in space which is character is t ic  of  the par t icular  solution. In  one 
dimension all solutions are known to be of  this t ype  ; in three  dimensions 
the  problem has p roved  intractable ,  bu t  i t  seems probable  t h a t  the  posit ion 
is as follows : 

(a) I n  disordered structures,  if  there  are no large or ex tended  densi ty  
f luctuations,  there  may be no localized states  ; all bounded  solutions of the  
t ime- independen t  S chr0dinger eqn. (10) will ex tend  th roughou t  the  lattice. 

(b) In  general,  however,  the  lowest allowed states  will be localized;  
there  will be a critical energy E c above which t h e y  are not.  In  this  case, an 
e lect ron init ially in a localized s ta te  can move  b y  the rmal ly -ac t iva ted  
hopping to ano ther  localized state,  if the  wave functions of  the two states 
over lap  enough to allow tunnel l ing between them ; a t  each hop energy  is 
given up or received th rough  in terac t ion  wi th  phonons.  An electron can 
also move  by  the  same process as in crystall ine semiconductors ,  namely  by  
the rma l  exci ta t ion to energies above Eo. 

(c) Localized states  m a y  exist  also in ranges of  energy where the dens i ty  of 
s ta tes  is low, which can replace the  regions of forb idden energy which 
exis t  for the electrons in a non-metal l ic  crystall ine solid. Such states  are 
im po r t an t  for the  unders tanding  of l iquid insulators and semiconductors .  

W hen  an electron is moving with energy  above Ee, it will have  a mean  
free pa th  just  as it  would in a crystall ine semiconductor  or metal .  I f  
the  mean  free pa th  is long compared  wi th  the wavelength,  we can calculate 
it  as is done by  Ziman (1961) or Edwards  (1962). I f  not ,  the  t heo ry  of  mot ion  
in an imperfect  la t t ice has no t  ye t  advanced  enough to  enable calculat ions 
to  be made.  We shall give some reasons, however,  for believing t h a t  a t  the 
critical energy E c the  mean  free pa th  L is of the  order  of the  electron wave-  
length  (calculated as for free electrons) and t h a t  values of  L less t h a n  this 
are no t  possible. Mobilities less t han  eL/m~ff v, i.e. eL/hk, where kL ~ 1, are 
due to  hopping ; k is here the  wave number .  

Th roughou t  this repor t  the  emphasis  will be on materials  where the  
conduc t iv i ty  is on the  borderl ine between the two processes. 

Since localized states are so impor t a n t  for the considerat ions of this 
review, and since they  are most  complete ly  unders tood  in the  one- 
dimensional  case, I shall s ta r t  with a discussion of this problem. 

§ 2. ELECTRONS IN A DISORDERED ONE-DIMENSIOI~AL LATTICE 

2.1. Introduction 

As far as I know, the  suggestion t ha t  for an electron in a disordered one- 
dimensional  lat t ice all character is t ic  solutions of  the Schrodinger  equa t ion  
are localized was first made  by  Mot t  and Twose ( 1961) ; these au thors  gave a 
p roof  for a par t icu lar  model  (a disordered K r o n i g - P e n n e y  lattice).  This 
was ex tended  by  Bor land  (1961, 1963) and  Bor land and  Bird  (1964) to the 
case of a r andom dis t r ibut ion of del ta  functions.  We th ink  i t  wor th  
while to set out  the  Mot t -Twose  a rgument  in some detail. 
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52 N . F .  Mort  on 

W h a t  do we mean  by  the  s t a t emen t  t h a t  s tates  are localized ? We m e a n  
tha t ,  i f  the  Schr(sdinger equa t ion  for an  electron in the  field of a disordered 
potent ia l  V is : 

d2¢ 2m E V ) ¢ = 0 ,  (1) 
Txx~ + - ~  ( - . . . . . .  

t hen  all bounded  solutions in the range - oo < x < oe have  a m a x i m u m  value  
for some value x n and decay  exponent ia l ly  to zero as 

e x p { - 7  I x - x s  ]} 

as ] x~ - x ] tends to  infinity. Each  solution ¢~ has a character is t ic  energy  
value E~. Fo r  aninf in i te la t t ice  the  energies E~wil l form a cont inuousrange  ; 
for  a chain of  length I t h e y  will be spaced at  intervals  propor t ional  to  1/l. 

I t  m a y  of course happen  tha t  a localized s ta te  has two (or more) peaks  of 
comparable  height  at  a distance, say, X from each other.  I f  so, we should 
expec t  two states, in one of  which ¢ would have  the same sign in bo th  peaks,  
in the other  opposite  signs ; the energy separat ion between them would be of 
order  E e x p ( - T X  ). As X increases, the  propor t ion  of  configurations in 
which this happens  will decrease exponential ly .  

2.2. Strong Scatterers; the Model of Mott and Twose 

The r andom K r o n i g - P e n n e y  potent ia l  V(x) is shown in fig. 1 (e). F i r s t  
consider an electron incident  on a single potent ia l  step as in fig. 1 (a). I t  is 
well known t h a t  the  bounded  solution, shown by  the full line in the upper  
diagram, is of  the form sin (/cx + 7) for x < 0, and t h a t  7 is de te rmined  b y  the 
condit ion t h a t  ¢ should decay exponent ia l ly  for x > 0, which gives: 

/c cot 7 = - Y, 7 = V{ 2m (H - E)}llP/h. 

Fo r  all o ther  values of 7 the solution increases exponent ia l ly  for x > 0 as 
shown by  the  do t t ed  line. Consider nex t  a single K r o n i g - P e n n e y  step 
(fig. I b), and a wave funct ion wi th  the  form sin (lcx + 7) for x < 0. Then,  
except  for a small range of  7, ¢ will increase on going th rough  the step. 
Thus  for a r andom a r ray  of  steps (fig. 1 e), and s tar t ing to  the  left  again wi th  
a solution ¢ = sin (lcx + 7), we see t ha t  a t  most  steps an exponent ia l  increase 
is expected,  and t h a t  the ampl i tude  of the  solution will increase indefinitely 
as x increases. 

At  first sight this conclusion does no t  make  sense ; we could s ta r t  on the  
r ight  and by  the  same a rgument  produce  a solution which increases 
exponent ia l ly  as x decreases. The clue to the appa ren t  cont rad ic t ion  
lies in considering the  phases. I t  will be obvious fi'om fig. 1 (b) t ha t  af ter  
passing th rough  a large step in which ¢ increases, the  phase 7' of  the wave  
depends ra the r  l i t t le on 7- The  behaviour  of 7' as a funct ion of  7 is 
i l lustrated in fig. 2. The range A B  of  7 is the  range for which ¢ decreases 
as x increases th rough  the  barrier.  
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Electrons in Disordered Structures 53 

Consider now a large number  of steps, and let  70 be the phase in a given 
in te rva l  be tween steps, and % the  phase in ano ther  interval  some w a y  to the  
r ight .  Then  if n is large, there  will be a range A B  of 70 for which ~h 
decreases, and A B  tends  to zero wi th  n ; moreover ,  if  7o does not  lie in the  
in terva l  AB, the  phase % has a value  app rox ima te ly  independent  of 70. 

Fig. 1 

IV(x) r 

(a) 

t H 
~, x 

V(x) 

X 
I 

I 

i (b) 

v(x) 

V1 J l 
(c) 

Potentials and wave-functions ~b: (a) a single step, 
(~) a disordered Kronig-Penney lattice. 

Fig. 2 

r/l 

"rf 

(b) a single barrier, 

Phase V' at end of chain, a function of phase V at beginning. 
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54 N . F .  Mort on 

We see therefore tha t  there is one value o f% and one only for which, i f  we 
integrate (1) from left to right, ¢ will decrease. For  all other values it 
will eventual ly  increase. 

I t  follows t h a t  if  we take  a solution sin (/cx + %) in a given interval  between 
steps, we can choose % so as to make ¢ decrease for increasing x, or to 
decrease for increasing x, bu t  not  both. Bu t  if we vary/c (i.e. the energy E), 
we can find solutions for a l imited number  of quantized values of E which 
decrease in both  directions. This can best be seen by taking,  as in fig. 3, 
solutions decreasing from left to r ight  and from right  to left and  asking if 
t hey  fit in the interval  A B .  The ampli tudes are at  our disposal so t h e y  
will fit if the  phases are the same. Bu t  for given energy the phases are 
fixed at  A and  B ,  so t ha t  (for big steps) it is obvious t ha t  as we change the 
energy we pass through a number  of values for which the two do fit, wi th  
0, 1, 2 . . .  zeros of ¢ in A B .  These are the characteristic solutions of  (1) 
]ocalized round A B .  

Fig. 3 

V(x) I A B 
I 
i 

Fitting the two halves of a localized wave-function ¢; 
V(x) is the potential energy. 

2.3. Weals Scat terers  

The argument  of  the preceding paragraph applies only to very s trong 
scatterers. The first proof  t ha t  all states in any  one-dimensional lat t ice are 
localized was given by Borland (1963) and Borland and  Bird (1964), who 
t rea ted  a r andom chain of delta functions. Before considering this 
work, we give a more general a rgument  which in § 3 we shall ex tend  to 
three dimensions. 

We shall first show t h a t  a wave impinging from outside on a r andom 
array  of scatterers is to ta l ly  reflected. Le t  the chain be as i l lustrated in 
fig. 4, the scatterers P1, P2 . . . .  being (say) delta functions. In  the interval  
A B  outside the chain take  a solution of the Schr0dinger equat ion which has 
the  form : 

~h = exp (i/cx - ioJt) . . . . . . . . .  (2) 

This represents particles going from left to right. Then, if  L is the mean  
free pa th  calculated by normal procedures, i t  follows tha t  at  distances a few 
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Electrons in Disordered Structures 55 

mult iples  of  L to the  r ight  o f P  1 the  par t ic le  is near ly  as likely to be moving 
to the  left  as to  the r ight  ; scat ter ing will have  made  it  forget  its original 
direct ion of  motion.  Thus the  solution there  mus t  be of the form : 

[ A e x p ( i l c x ) + B e x p ( - i k x ) ] e x p ( - i c o t )  . . . . .  (3) 

where  A and B are s lowly-varying funct ions of  x and (IA 13- I B 13)/]A 13 is 
small compared  with uni ty .  Bu t  the cur rent  is conserved;  so for  all x :  

IAP-IBp= . 
Thus  I A 13 mus t  increase exponent ia l ly  wi th  x as some mult iple  o f e x p  (x/L). 

I f  the sign of/c in (3) is reversed,  the  solution represents  a wave incident  a t  
P~, near ly  to ta l ly  reflected and  with a small ampl i tude  t ransmi t ted .  

Fig. 4 

h S P1 P2 P3 P. 
• t a : = = 

Points on a random lattice. 

The  solution (2) in the  range A B  has a real  and  imaginary  par t ,  sin kx and 
cos kx. We have  shown tha t  one must  increase, not  necessarily both.  In  
fact  one can always choose one solution s i n ( k x + v )  t h a t  will decrease. 
The demons t ra t ion  t h a t  the only eigenstates for an infinite la t t ice  are 
localized ones follows as in the model of  Mort  and Twose. 

Bor land 's  work  considers in detail  the  behaviour  of ¢ a t  each delta 
funct ion.  The potent ia l  of a del ta  funct ion at  x = 0 is defined b y  : 

V(x) =o x=O, 

f V(x) =Voc. dx 

The bounda ry  conditions satisfied by  ¢ at  x = 0 are tha t  ¢ is cont inuous  and 
d In ~h/dx changes by  2m Voc/h 3. Thus if we have  a solution sin (/cx + 7) to 
the left  of x = 0, to  the  r ight  ~ = A sin (kx + 7'), where 

s i n ~ = A s i n v ' ,  c o s ~ ] - A  c o s ~ ' = 0 ,  

where 0 = 2m Voe/hlc. 
Hence  

A s = 1 + 20 cos V + 03 . . . . . . .  (4) 
and 

t a n , / =  sinv/(cos V -  0) . . . . . . . .  (5) 

We can obta in  the  amoun t  of  scat ter ing b y  each del ta  funct ion by  set t ing : 

¢ = exp (ikx) + A exp ( - ikx) (x < O) 

= B exp (ilcx) (x > O) 

and applying the  above b o u n d a r y  conditions. We find easily : 

A = - i0/(2 + iO). 

Thus the sca t te red  in tens i ty  is 0 3, to the first order  in 0. 
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56 N . F .  Mott on 

I f  the delta functions are distributed at random at a mean distance a from 
each other, the normal Boltzmann approach to a calculation of the mean 
free path L would give : 

L = a l O  ~ . . . . . . . . . .  (6) 
If, on the other hand, the distance between delta functions is distributed 
about the distance a with a mean square deviation Aa(Aa~a),  then we 
expect : 

L=a/(kAa)~O 2, . . . . . . . .  (7) 

provided tha t  ka does not lie near the values n~ for which Bragg reflection 
takes place. 

We now look again at  formulae (4), (5). We see that  the value of A 2 
averaged over all T is 1 + 02. Thus, if the scattering centres are distributed 
at random, we expect (for small 0) that  [ ¢ [ will increase on the average by 
the factor 1 + ½09' on passing each scatterer. Thus, the envelope of I¢ ]2 will 
increase as exp (x/L), where L is defined by (6). 

A similar proof can be given for the case (7). Thus the quanti ty tha t  
one would normally calculate as the mean free path appears as the length 
determining the rate at which ¢ falls off or increases. 

Turning now to the phase given by (5), it is obvious that  after passing 
many steps the phase T,~ behaves as illustrated in fig. 2. For any value 
of 70 Borland shows tha t  the successive application of this formula leads 
ultimately to a value ~ which is independent of T0, unless one chooses the 
unique initial value ~e of To for which ¢ decreases. Localized states are set 
up by the same argument as before. 

Borland's analysis has been discussed in detail in a review article by 
Halperin (1966) and also by Hori (1967). 

In this section we have considered the bounded eigensolutions in an 
infinite chain. We can of course impose the cyclic boundary condition 
for a chain of length I tha t  ¢(x+/ )=¢(x)  and ¢ ' (x+/)=¢ ' (x) .  For a long 
chain the effect on the form and energy of the eigenfunctions will be 
extremely small. Intuitively this must be so because very small changes in 
the energy and in the phase of ¢ in the interval A B  of fig. 3 will produce 
very large changes in these quantities at distant points where the boundary 
conditions must be applied. 

Finally we emphasize that  conductivity in a one-dimensional chain can 
only occur by hopping. I f  an electron is to jump from one state to another 
for which the orbitals overlap, energy must be exchanged with some heat 
source such as phonons. I f  kL is large the energy will be small, but still 
finite. This point is discussed further for the three-dimensional lattice 
in §4. 

2.4. Density of States 

This is one of the earliest problems in this field to have been treated 
theoretically; it is particularly suitable for machine calculations (James 
and Ginzbarg 1953, Landauer and Helland 1954, Lax and Phillips 1958). 
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Electrons in  Disordered Structures 57 

An analyt ical  t r e a t m e n t  is given by  Frisch and  Lloyd  (1960). These 
papers  use the following fact.  Fo r  any  real solution of the  Schr6dinger  
eqn.  (1) defined in the  range 0 < x < l  wi th  cyclic b o u n d a ry  conditions,  
we denote  by  , the  number  of zeros in the range l and by  ~h for the  
corresponding wave  funct ion.  I f  we wri te  : 

K = 2~,/I ,  

t h e n  the densi ty  of  s tates  n(E)  is given b y  : 

n(E)  = 1/2~r(dE/dK) 

and  the  in tegra ted  densi ty  : 

f N ( E )  = n (E)  d E  = lK/2~r = v. 

This conclusion is val id whether  the  solut ion is localized or not,  and  some 
of the  calculations quoted  were made  before the  localized na tu re  of the  
wave funct ions  was realized. 

Fig. 5 

N(E) 

(a) E 

N(E) J 

/ 
(b )  g 

n(E) 

( e l  E 

n(E) 

/ L /  
(d )  E 

Integrated density of states N(E) (a) and (b) and differential density n(E) = N' (E)  
(c) and (d) as calculated for one dimension by Frisch and Lloyd. (a) and 
(c) are for a high density of weak scatterers, (b) and (c) for a low density 
of strong scatterers (tight binding case). 

B o t h  Lax and Phillips and  Frisch and  L l o y d  make  calculations for a 
random dis t r ibut ion of  a t t rac t ive  del ta  functions.  At  least one bound  
s ta te  will always exist  in the  field of an isolated del ta  funct ion,  of  which 
these authors  define the s t rength  by  the binding energy of  the  lowest  state,  
which they  write - J~SKo2/2m. The energy of an electron is t hen  deno ted  
by  : 

h2#~/2m, -- ha ~:2/2m, 
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58 N . F .  Mort  on 

for positive or negat ive  values. The densi ty  of states thus  depends on the  
dimensionless pa rame te r  nKo, where n is the  number  of  del ta  funct ions  
per  uni t  length. Figures  5 (a) and  5 (b) show the  plot  of  the  in tegra ted  
densi ty  N against  /c, ~ (and thus  ~ /E  or ~ / ( - E ) )  for n K o =  l,  nKo=O.1 .  
Figures  5 (c) and 5 (d) show the differential densi ty  n(E).  The occurrence 
of  a peak  in the  dens i ty  of  states when the  a toms (delta functions)  are well 
separa ted  is marked.  This corresponds to the  t ight  binding case for 
periodic lattices. Landaue r  and Hel land  (1954) and Mackinson and  Rober t s  
(1962) were the  first to discuss whe ther  forbidden energy gaps persist  in a 
disordered one-dimensional  lattice. F o r  a r a n d o m dis t r ibut ion of centres 
t hey  will not  ; the  min imum of fig. 5 (d) will no t  drop to zero. Bu t  i f  the  
devia t ion f rom per iodici ty  is small and limited, a gap m a y  occur. In  order  
to  unders tand  this, we examine the  form of the  solutions of  the Schr~Sdinger 
equa t ion  for values of  E within the  gap for a periodic s t ruc ture  with a toms  
dis tant  a apar t .  These are of  the  form : 

¢ = sin (koX + ~7) exp ( +_ ~x) . . . . . . .  (8) 

where/c o = ~r/ct, ~1 varies by  1~ within  the  gap and ~ varies f rom zero a t  the  
extremit ies  to a m a x i m u m  value in the middle. The q u a n t i t y  y can easily 
be calculated to the  first order in the  pseudopotent ia l  (Sommerfeld and 
Be the  1933, p. 491, eqn. (29.18)). The  result  is: 

h ~ ~,~/2m = { V 2 - (E - Eo)~i/{2(E + Eo) ). 

Here  E o is the  energy of the  middle of the gap and 2 V is the width  of  the  
gap. Thus approx ima te ly  : 

= ½~co { V2  - ( E  - Eo )2 } l l~ /Eo  
and 

~'m~x ~ ½]% V/Eo. 

We see tha t  y is of  the  first order in V, no t  the second order  as is 1/L, where  
L is the  mean  free path .  The quan t i t y  ? has recent ly  been discussed in 
some detail  in connect ion with the  theory  of  surface states (Heine 1965) 
and  for insulators can be measured  exper imenta l ly  by  tunnel l ing (Lewicki 
and  Mead 1966). 

Suppose now t h a t  we have a disordered lat t ice in which the  me a n  
distance between the  a toms is a and  the width  of  the  n th  in terval  is a + Aa~ ; 

we denote  by  Aa the root  mean  square value of  Aa. Mackinson and Rober t s  
(1962) po in ted  out  tha t ,  if  large values of a are allowed, then  even if  Aa 
is small the energy gap will disappear.  States  in the gap for which ¢ falls 
off rapidly  as exp ( ± Vx) (rather  t han  slowly as exp ( +_ x/L))  will be located 
in regions where large values of Aa occur. I f  however  there  is a l imit to  the  
values t ha t  Aa m a y  have,  the gap m a y  persistS. Schematic  E ,  K curves 

t Hiroike (1965) concludes that gaps can exist for a Gaussian liquid if aa  is 
small enough. I do not think that  this is correct and the conclusion depends 
on the method of averaging. 
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Electrons in Disordered Structures 59 

for these two cases are shown in fig. 6 (a) and 6(b). Curves of this 
type were first computed by Landauer and Helland (1954). Taylor (1966) 
has given conditions for the persistance of the energy gap in three 
dimensions. 

We may contrast the curves of the type shown in fig. 6 (c), which are 
published in Edwards' paper on one-dimensional lattices (Edwards 1961) ; 

here E is plotted against the expectation value of k, given say by V/~-~where 

the ( )  denoting averaging over all configurations of the lattice. The 
reason for the behaviour shown is that  in the region of the energy gap 

/c2 ~ K02 + 72 ; 

since Y increases and then decreases as the energy increases, and K o is 
unchanged, k ~ varies in the way illustrated. 

Fig. 6 E / y 

(a)  K ( b )  K E y 
j ~  

Curves plotting E against K (density of zeros in wave-function) (a)when the 
energy gap remains, (b) when it disappears. (e) shows the behaviour of E 
plotted against the expectation value of the momentum. 

§ 3. DENSITY OF STATES IN TItREE DIMENSIONS 

3.1. Introduction 

The purpose of this section is to discuss the nature of the solutions of the 
three-dimensional Schr6dinger equation: 

2~n 
V2¢÷ -~F ( E -  V)¢=0  . . . . . . .  (10) 
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60 •. F. !V[ott on 

and obta in  the  corresponding densi ty  of  states. No complete  solut ion of 
this problem has been obta ined  and quan t i t a t ive  work is l imited to  the  
use of pe r tu rba t ion  methods  (§ 3.2), discussion of the low energy tail  and  
Anderson's  (1958) t ight  binding model  which will be discussed in this 
section. We therefore  p u t  forward  a n u mb e r  of conjectures in suppor t  of 
which arguments  will be given. These are : 

(a) Wi th in  a given range of energies s tates  are ei ther  localized or n o n -  
localized. This is a qualitative difference ; if s tates are localized an electron 
placed in a given region will no t  diffuse away;  the K u b o - G r e e n w o o d  
formula  for the  conduc t iv i ty  (§ 4.6) vanishes. 

(b) There  will thus  exist  critical energies Eo dividing ranges in which 
states are localized from those which are no t  (cf. fig. 7). 

(c) For  localized states  ¢ falls off as sin kr exp ( - 7r) and 7 tends  to  zero 

as E-~ Eo. 
(d) For  non-local ized states, the  mean  free p a t h  L tends  roughly  to  the 

electron wavelength  A as E-+Eo. Values of L smaller t h a n  A (or 2/2~) 
cannot  occurS. 

The only quan t i t a t ive  work on the condit ion for localized states is t h a t  of 
Anderson (1958). Anderson considers essentially the t ight  binding model,  
in which a single band  of energy levels is formed from s-like a tomic orbitals  
with bandwid th  2JZ, where Z is the  coordinat ion number  and J an over lap 
energy integral .  In s t ead  of considering a r andom var ia t ion  of J due to  an 
amorphous  s t ructure ,  Anderson imposes on each site a potent ia l  energy  V, 
V having a random spread of values ( V ). He finds that if ( V }/J is large 
enough, all eigenstates are localized ; for smaller values some are not. His 
results are expressed in terms of the connectivity of the lattice, but it 
appears that states become localized when (V) is greater than about six 
times the band width. With this model there is no boundary Ec between 
localized and non-local ized states. 

The calculation can be applied to i mp u r i t y -b a n d  conduct ion,  of which a 
review is given in § 7.10 and for which the  assumption of localized states  and 
conduct ion by  hopping has been made  for a decade at  least. Consider for 
instance n - t ype  germanium,  wi th  a concent ra t ion  of donors sufficient for 
appreciable overlap between their  orbitals. I f  there  are no acceptors  
present ,  one ei ther  has metallic conduction,  or a t  lower concentrat ions,  due 
to the Coulomb repulsion e2/r12, a non-conduct ing  s ta te ;  electrons can 
move  only b y  exci ta t ion  into the conduct ion band.  B u t  if some acceptors  
are present ,  some of the  donors are unoccupied and e2/rl~ will no longer 
p reven t  electrons moving direct ly  f rom one centre to  another .  A t  the 
same time, the  charged aeceptors produce  a r andom field and thus  a 

t Ioffe and ]~egel (1960) class the mobilities of semiconductors into those for 
which ~ > 1 0 0 c m ~ v - l s e c - i ;  for :these L is greater than the wavelength 
h/~/(2mkT/3); those for which ~< 5 cm ~ v -i  sec -1 for which the mobility can 
only be explained if L <  a, which they consider impossible; and intermediate 
values. 
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Electrons in Disordered Structures 61 

r a n d o m  potent ia l  of order  e2/s:R at  the donors ; R is the distance between 
them.  Whe the r  the states are localized, or whether  a band  exists with a 
finite mean  free path ,  will depend on Anderson 's  criterion. In  the  usual 
case, t r ea t ed  by  Miller and  Abrahams  (1960), the  states are localized 
(of. § 7.10). 

We tu rn  now to the  conduct ion band  of a l iquid meta l  or insulator.  
There  is ample evidence t h a t  a t  the  Fe rmi  surface of l iquid metals  or 
disordered alloys the  states are not localized; the conduct ivi t ies  of dis- 
ordered  alloys or amorphous  meta l  films do not  t end  to  zero with the  
t em pe ra tu r e  (§ 6.5). Moreover  electrons exci ted into the conduct ion  band  
of  l iquid argon have quite long mean  free pa ths  and the mobi l i ty  is not  
t r ap- l imi ted  (§ 6.2). On the  other  hand,  various authors  have  suggested 
t h a t  localized states  m a y  exist  in a ' t a i l '  below the ' conduct ion b a n d '  in 
amorphous  materials  (Fr6htich 1947, Gubanov  1963, Banya i  1964). We 
th ink  t ha t  this is so, though  in mater ials  like liquid argon where the  tail is 
due  to  densi ty  f luctuat ions it  m a y  be of  li t t le importance,  while in glasses 
and  amorphous  polar  mater ials  it  m a y  be more marked~. 

Fig. 7 

(a) (b) 
~n(E) L~ 

E 1/ 
(c) (d) 

Suggested density of states for a three-dimer~sional lattice, with increasingly 
strong interaction with the lattice. The arrow shows the divalent Fermi 
energy. (a) is for nearly free electrons, showing a low energy tail, 
(b) is for weak interaction, (c) is for strong interaction, as for liquid 
tellurium, (d) is for a liquid semiconductor. The regions in which states 
may be localized are shown shaded. 

Tails to the N(E) curve have  recent ly  been considered by  Lifshitz 
(1964), Boneh-Bruev ich  (1964) and Halper in  and La x  (1966). W h a t  is 
m ean t  is shown in fig. 7 (a). The  tail  in these t r ea tmen t s  is due to  densi ty  

t In polar materials polarization round the trap will always increase the 
depth of a localized state (el. § 4.3). 
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62 N . F .  Mort  on 

fluctuations,  and it is assumed t h a t  compression lowers the  b o t t o m  of  
the  conduct ion band.  In  a l iquid (or for t h a t  m a t t e r  a solid) volumes  
in which the  substance is compressed will contain potent ia l  wells. Wi t h  
a Bo l t zmann  dis t r ibut ion of energies of such volume f luctuat ions there  
will be no limit to  the dep th  of these wells. The  energies of  an e lect ron 
in them will thus  form a tail  to  the N(E) curve of infinite ex ten t ,  as in 
fig. 7 (a). Moreover,  Anderson 's  (1958) theorem is applicable to  these 
states ; for the lower ones the spread of  depths  ( V )  will be large compared  
with the overlap integral  J and therefore  the  states are localized. There  
will therefore  be a bounda ry  E o as shown in fig. 7 (a) be tween energies where  
the states are and are no t  localized. 

In  § 4 we shall show tha t  near  this b o u n d a ry  the mean  free pa th  L and  
electron wavelength  are comparable.  This becomes plausible if, as in 
§ 2.3 for the  case of  one dimension, we relate  the  existence or otherwise of  
localized states to  the behaviour  of a beam of  electrons impinging on  the  
crystal  f rom outside. In  the region of  non-localized states, we should t r ea t  
the passage th rough  the  crystal  by  a diffusion equat ion.  I f  a b e a m of  
particles (N per un i t  volume, veloci ty  v) falls on a slab of disordered mate r ia l  
of thickness X, t hen  one can achieve a s teady  s ta te  wi th  a concent ra t ion  
N(1 -px) at  a distance x from the  surface. The ra te  of flow is DNp, where  
D is the diffusion coefficient, and the  number  emerging is v N ( 1 - p X ) .  
Equa t ing  these we determine  p and  find for the n u mb e r  coming out  
v_N/(1 + X/L), where we have wr i t t en  D = vL, L being the  mean  free pa th .  
In tu i t ive ly  we should expect  this t r e a t m e n t  to break  down if L - -  2. Also 
we should expec t  an exponent ia l  decay  to  occur below the conduct ion  
band  in the  tail o f  fig. 7 (a). We postula te  t h a t  our  energy Eo, separat ing 
localized from non-localized states,  is also the  energy where an exponent ia l  
drop in the  dens i ty  of part icles replaces a linear drop. A more  deta i led 
t r e a tm en t  of  these  considerat ions is given b y  )/[ott and Allgaier (1967). 

Final ly  we have  to ask in wha t  way  the  densi ty  of s tates  deviates  f rom 
the  free electron form on account  of the  non-periodic  field apar t  f rom the 
' tail  '. F i rs t  we mus t  emphasize tha t ,  unlike the crystall ine case, the  same 
field is responsible for deviat ions and  for the mean  free path.  Large  
deviat ions will always be associated wi th  short  mean  free path.  

We expect  increasing in terac t ion  wi th  the ions to produce  n(E) curves as 
in figs. 7 (b), 7 (c) and  7 (d). T h e y  are similar to  wha t  happens  in the crysta l  
with increasingly s trong interact ion,  or in o ther  words as the distance 
between the  a toms increases. Curves like fig. 7 (b) can be ob ta ined  b y  
pe r tu rba t ion  theo ry  as in the nex t  section. The t rans i t ion to  the  t igh t  
binding case has no t  ye t  been worked  out  for mixed s and p bands,  which is 
what  is required here. Never theless  the  general behaviour  is l ikely to  be as 

i l lustrated. 
The  interest ing problem then  arises as to under  wha t  condit ions the  

s tates  in the  min imum will be localized. Na tura l ly  the  s i tuat ion m a y  be 
different for l iquid divalent  metals,  ionic crystals and so on. B u t  in 
general, as we shall see, a pe r tu rba t ion  strong enough to lower N(E) b y  
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Electrons in Disordered Structures 63 

50% will produce  a mean  free pa th  of the  order  of  the in tera tomie  dis tance.  
We do not  believe t ha t  mean  free pa ths  shor ter  t h a n  this can occur. Thus  
it  seems ve ry  l ikely t ha t  localized states  occur when the  factor  g, defined b y  
g=N(E)/N(E)fr~+, falls below about 0.5. We shall see in § 6.7 t h a t  this 
conjecture  describes well the behaviour  of  liquid semiconductors.  

3.2. Calculations of the Density of States using Perturbation Theory 

I n  this section we review the  methods  t h a t  have  been used to de te rmine  
the  dens i ty  of s tates  by  t rea t ing  the non-periodic  potent ia l  energy V as a 
small per turba t ion .  

I n  the crystall ine solid, second-order  pe r tu rba t ion  theo ry  gives for the  
energy of a s ta te  with wave funct ion of the  type  exp (ikr) u(r) : 

h ~  I (k ' l  V I k ) l  ~ 
E =  2-~  +(klVIk)+ ~ , (11) 

., Ek - E k, 

where the  summat ion  is over  all points  in lc space for which the ma t r ix  
e lement  does no t  vanish. Since V is periodic with the period of the lat t ice,  
the vectors  k' are of the type  : 

k ' = k + n ,  

where n are the points  of the reciprocal latt ice.  I t  should be no ted  t h a t  
this formula  is not a good approx imat ion  for points  such t h a t  I k ! _ ] k~'[ 
- - i .e .  near  energy gaps. 

For  the tiquid or amorphous  mater ia l  (11) m a y  be replaced by  : 

f I(k' I v I k)l~a(I k -  k'l) d~k' (12) E =  h2k2/2m + (k  Iv lk)+  ~ E k -  E1~" , 

where (k '  I v ] k )  is now the  ma t r ix  e lement :  

g2 -1 f v(r) exp {i(k - k')r} dax 

of the  scat ter ing potent ia l  v(r) of a single atom,  the  integral  being over  the  
a tomic  po lyhedron  of  vo lume ~,  and  a(q) is the  Four ier  t rans form of  the 
pair  dis t r ibut ion function.  

I fv( r )  is a simple funct ion of  r, (k '  I v ] k ) is a funct ion ofq only  and m a y  be 
wr i t ten  v(q), where q= I k - k ' [ .  Animalu  and Heine (1965) and other  
au thors  make  use of  a ' non- loca l ized '  pseudopotent ia l ,  t h a t  is one t h a t  
operates  differently on the  s and  p components  of  the wave- func t ion  ; v(q) 
will t hen  be a funct ion of  E.  In  ei ther  case we m a y  wri te  (12) in the  form : 

E =  2---m +v(O)-]- ~ ~ Ek_E~+ q (13) 

The dens i ty  of s tates  for a l iquid or amorphous  mater ia l  can t h e n  be 
eva lua ted  from (13) using the formula  (cf. Fabe r  1967) : 

n(E) = 4~rk~/87r a (dE/dk) . . . . . . . .  (14) 

We no te  t h a t  corrections to  the  free-electron value  arising from v(0) will 
be the  same in the  liquid as in the  solid (at cons tant  volume) ; Animalu  and 

A.P. E 
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64 N . F .  Mort on 

Heine give a table of calculated values of v(0) ; for mercury for example the 
effective mass comes out to 0.69. 

Most authors (e.g. Edwards 1962) consider only the second-order term 
and calculations of its magnitude have been made with various potentials 
by Watabe and Tanaka (1964), Lackmann-Cyrot (1964) and Schneider 
and Stoll (1967). Similar calculations for disordered alloys have been 
made by Jones (1966). We note tha t  in the crystal, although v(q) at 
reciprocal lattice points is seldom much greater than 1.Sev (i.e. a band 
gap of 3 ev), it can produce rather large changes of n(E) near the divalent 
Fermi surface ; forinstaneeinberylliumn(E)/n(E)f~eisO'45 (for references 
to experimental and theoretical work see Mott 1966). I t  is not clear that  
this is true for the liquid, at any rate to the second order of approximation. 
The third term in (13), on integration over all directions of q, becomes : 

m~ 2k + q 
A E -  4-~2k f Iv(q)12a(q)ln[ ~ qdq. 

To obtain an estimate of its magnitude, we write Iv(q)[2a(q)=F(q) and 
assume it to be a sharply peaked function of the form A exp { - (~/- ql)~/(~2}. 
Then we find: 

d(AE) 2m~ ( F(q)qdq 

and dividing by h~k/m to find the correction to the free-electron form, 
supposing ql is quite near 2kF, we find approximately : 

wheret 

1 ~ exp ( - t~)dt  =exp (_x2) 
f(x) = _® t - x  o exp (t2) dt. 

The form of n(E) with this correction is illustrated in fig. 7 (b) ; since ql 
lies below the divalent Fermi surface, n(E) should be less than the free- 
electron value for a divalent metal. As regards the magnitude of the 
deviation, A will be equal to ]v(q~)12a(q~), or about 2.5 Iv(ql)12; f has a 
maximum value of about 0-5 when (2k-  ql)/~ ~ 0.8, so a deviation of 50 % 
(as for crystalline beryllium) would imply that  [ v(ql)/EF [3 ~ O. 15. 

Within second-order perturbation theory this procedure is not exact 
because--as already emphasized--one cannot treat the effect of v(q) on the 
band form separately from the effect of v on the mean free path. Edwards 
(1958, 1961, 1962) was the first to treat  the two together in a satisfactory 
way. Edwards derived the density of states n(E), averaged over all 
configurations of the liquid, from the formula : 

n(E) = f, p(E, k) d3k (15) 

See W. B. Thompson, An Introduction to Plasma Physics, p. 184. 
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Electrons in Disordered Structures 65 

where p(/c, E) is t he '  mean square '  probability of an electron having energy 
E and momentum/c (Edwards 1961). Using a Green's function technique, 
factorizing the many particle correlation functions into products of pair 
correlation functions and neglecting odd terms in the expansion, Edwards 
(1962) sums the perturbation expansion and obtains: 

p(E, l~) = P~ [{E - h~lc2/2m + A (E, /c)} ~ + F2]. (16) 

Here (Edwards 1962, p. 53) the quanti ty A is given by : 

A(E,/c)= 1 - ~ . f  Iv(J)[2a(j)daJ . . . .  (17) 
8~a~ _ E - (h2/2m)(/c _ j )2 '  

and (Edwards 1962, p. 522) 

f I v(j)p a(j) S{E - (h"/2m)(lc _j)2} dSj. (18) F(E, k) 

The term F will be discussed further in the chapter on the conductivi ty;  
it is a measure of the scattering by the centres in the Born approximation, 
and is just the expression used by Ziman (cf. § 4.2) in his theory of liquid 
metals. 

I f  F is reasonably small, the contribution to (16) is large near the zero of 
the term in { }, and the main contribution to (16) comes from here. Since A 
is itself small, we may put  E = h2]c2/2m in the denominator of (16), so that  p 
may be written : 

p(E, k) = F/[{E - El(k)} ~ + r ~] . . . . . .  (19) 

where El(It ) is just  the quanti ty  (13). I t  is thus easily seen that  (15) gives 
formula (14) for the density of states. 

Calculation of the density of states using these formula, without the 
assumption that  P is small, have recently been made for certain metals 
by Ballentine (1966). 

3.3. Does the Density of States Change on Melting ? 

There is some evidence that  for a number of metals the change in n(E) 
at the Fermi surface is small on melting; this comes from the constancy 
of the Knight shift on melting of a number of metals shown in table 1 
(Knight et al. 1959). The Knight shift should depend on the product of 
n(EF) and the penetration factor ~ ; the latter is unlikely to change much ; 
for the alkalis calculations by Lackmann-Cyrot (1964) confirm this. 
Ziman (1967) has suggested that  this is because N(EI~, ) is very near to the 
free-electron value for both solid and liquid, but  we doubt if this can be the 
complete explanation. As we have shown in the last section, the use of  
perturbation theory does not suggest that  there should be no change. 

For one metal, aluminium, for which the band structure as shown by  
the L m x-ray emission differs considerably from the free-electron form, 
there is little change in the emission spectrum on melting (Catterall and 
Trotter 1963). We may add that  any large change in the density of states 
would be difficult to reconcile with the small latent heats of fusion. 

E 2  
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66 N . F .  Mort on 

Another piece of evidence for a small change is the work of Enderby et al. 
(1964) on the E.S.I~. spin susceptibility of lithium, a metal for which there 
is thought to be a considerable deviation from the free-electron value of 
n(Er, ). These authors find that  the change on melting is 1.04 + 0.05. 

Table 1. Change of Knight  shift AH/H on melting (Knight et al. 1959' 

Solid 
Liquid 

VLi 

0.0261 
0.0261 

i 8Vgb 2aNa 133Cs 

0.116 1.46 
0.114 0.654 1.49 

199Hg 

2.45 
2.45 

27A1 

1.69 
1.64 

119Sn 

0.73 
0.75 

§ 4. CONDUCTIVITY; Tf-IEOtCY 

4.1. Metals, Semiconductors and Insulators 

The model illustrated in fig. 7 extends to non-periodic structures the 
explanation in terms of non-interacting electrons of the difference between 
insulators, semiconductors and metals first given for crystalline structures 
by Wilson (1931). I f  the Fermi energy lies in the non-shaded region the 
material is a metal and the resistivity tends to a finite value as T-> 0. 
Ordinary transport theory is applicable as long as the mean free path L is 
large compared with the electron wavelength A. I f  the Fermi energy for 
low temperatures lies in the shaded region, the material is a semiconductor 
or insulator. Conductivity is then possible by two processes : 

(a) Excitation into the unshaded region ; the process by which a current 
is carried is then the same as in a crystalline semiconductor. 

(b) Hopping from one localized state to another. This always involves 
an activation energy, because each localized state has its own quantized 
energy value. I t  may also involve tunnelling. One expects smaller 
activation energies than for process (a). Thus process (b), which is entirely 
analogous to impurity-band conduction by hopping (§7.10), should be 
predominant at low temperatures. Moreover, for reasons to be given in 
§ 4.3~ the activation energy should drop with decreasing T. 

One important consequence of this model has been emphasized parti- 
cularly by Gubanov (1963); it predicts that  amorphous semiconductors 
should be less sensitive to doping than crystalline ones. Donor impurities 
for instance must be present in sufficient concentration to shift the Fermi 
level appreciably, if they are to affect the ' intrinsic' conductivity, i.e. the 
number of electrons excited into the non-localized part of the energy 
spectrum. Of course, if they increase the number of available localized 
states near the Fermi energy, they may greatly increase the hopping 
probability (cf. § 6.4). 

4.2. Weak Scattering 

Ziman (1961) was the first to point out tha t  the conductivity of most 
metals can be accounted for by the assumption tha t  the scattering of an 
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Electrons in Disordered Structures 67 

electron wave by  each atom is small, and that  it can therefore be calculated 
from the atomic pseudopotential by using the Born approximation for the 
scattering and the experimentally determined pair distribution functions 
for the relative positions of the atoms. The case of total disorder will be 
discussed first. Here the conductivity should be given by : 

where 
~=Ne2T/m . . . . . . . . . . . . .  (20) 

1/-r=N~v I(O)(1-cosO)2~rsinOdO. 
0 

N l is the number of scattering centres per unit volume, N the number of  
electrons and (for a metal) v the velocity of an electron at the Fermi 
surface. This formula has been used for many years to calculate the resis- 
t ivi ty  of dilute alloys, I(0) being then the scattering due to the difference 
between the solute and solvent atoms (Nordheim 1931, Mort and Jones 
1936, p. 286). I t  has been used by Mort and Twose (1961) and others 
(cf. § 7.8) to calculate the resistivity of a heavily doped semiconductor 
due to the randomly distributed impurity centres. 

For a liquid, however, the atoms are not randomly distributed, and 
one must introduce the pair distribution function. This was first done 
by Bhatia and Krishnan (1948) and the development of the idea and its 
comparison with experiment are due to Ziman. The idea is the following. 

Taking any one atom, let P(R)daR be the probability that  another atom 
is present at distance R. The intensity scattered by two atoms at distance 
R from each other is: 

I(0) ] 1 + e x p { i ( k - k ' .  a)}] 2. 

Averaging over all R, we obtain the scattered intensity I(O)a(q), where 

O9 

a(q)= [l+exp[i(q,R)]12p(r)daR . . . .  (21) 
0 

and 
q = ] k - k' 1 = 2k sin ½0. 

An angular integration gives : 

N ~ sin qR 
a(q) = 1 + p ~ {P(R) - 1} - - ~  47rR 2 dR. 

a(q) is just the quanti ty  determined experimentally from the scattering 
of x-rays or neutrons by  the liquid. I t  is known experimentally, and most 
at tempts  to calculate a use experimental values; Ashcroft and Lekner 
(1966) have used theoretical values deduced from the Pe rcus -¥ev ick  
theory of liquids. 

The conductivity is then given by  (20) with 

ll-~v =IlL = Nt f I(O) (1 - cos 0) a(q) 27r sin 0 dO. (22) 
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68 On Electrons in Disordered Structures 

Ziman and his collaborators then determine I(0) from the calculated 
pseudopotential v(r) of the ion in the liquid, or from an estimate of phase 
shifts or in some other way. I f  one uses the Born approximation, then 

= v ( q  , 

where 

v(q) = ~-1 j v(r) exp [i(qr)] dax . . . . . .  (23) 

where the integration is over a cell of volume £/. 
I t  can easity be verified that  Edwards' quanti ty F (§ 3.2) is equal to 

h/-r of Ziman's theory. 
The developments which have followed from Ziman's theory are as 

follows. 

(a) Attempts to calculate the absolute values of the resistivity. Here 
results are very sensitive to theposit ion of the zero in v(q)--i.e, the angle at 
which the scattering vanishes; absolute values are therefore perhaps of 
little significance. Asheroft and Lekner (1966) give a table showing the 
very large variations in the calculated values that  result from the choice 
among current calculated values of v(q). They use experimental and 
theoretical values of ¢(q) (Pereus and Yeviek 1958). 

(b) Treatment of the temperature-dependence of the resistivity. The 
successful t reatment  of this is perhaps one of the greatest successes of the 
theory, particularly as it explains the difference between monovalent 
and divalent metals (Bradley et al. 1962). Figure 8, taken from this paper, 
shows a typical x-ray scattering function at two different temperatures, 
with 2kr, shown for metals of different valency. The plot is against q 
(i.e. 47rsin½0/)~). For small q, a(q) will increase with temperature and 
indeed for very low q it depends only on macroscopic fluctuations of density 
and is given by the Ornstein-Zernike formula : 

a ( q )  = ~ m / ~ ,  . . . . . . .  (24) 

where K is the bulk modulus and ~ the atomic volume. At constant 
volume one expects v(q) to be independent of temperature and so in general 
we expect (dpldT)v to be positive for monovalent metals and negative for 
divalent. For the experimental observations, see for instance Cusack 
(1963), Ziman (1967). 

(c) Liquid alloys have been discussed by Faber and Ziman (1965). Here, 
if there are two components 1 and 2, one has two scattering pseudo- 
potentials v~ and v 2 and three different correlation functions a11, a~2 and a22. 
Faber and Ziman's analysis is based on the assumption tha t  all three 
coefficients ars are identical. The most interesting result is the difference 
in the behaviour of monovalent and polyvalent metals ; for the former a(q) 
cuts down the scattering below that  for a random distribution; then, as 
for crystals, the resistivity shows a striking maximum for somewhere near 
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70 N . F .  Motton 

equal concentrations of the two constituents. For divalent and polyvalent 
metals, for which a(q) is of order unity for values of q giving significant 
scattering, the resistivity appears much more nearly additive. 

Only recently have attempts been made to obtain the quantities all, a~2, 
a12 separately. Thus Steeb and Entress (1966) deduce from x-ray measure- 
ments that  in Mg-Sn each Mg atom tends to be surrounded by Sn and vice 
versa, while Enderby et al. (1966) have compared x-ray and neutron 
diffraction patterns in CaSh. I f  a12 is not equal to all (as for instance for 
liquid NaC1), we should write instead ofa(q){v(q)} ~ for a binary alloy : 

(31a l l  Iv1 ! s + % I I + 2(G1(32) 1/2 a12 I VlV2 [" (25) 

F o r  simplicity l e t  u s  t a k e  (31 = c 2 = 1% a l  1 = a 2  2 = a a n d  w r i t e  : 

vl-=v+3, v 2 - - v - ~  ; 
we find : 

alv12+a12,  2 . . . . . . . .  (26) 

In liquid compound semiconductors we should expect each atom to be 
surrounded mainly by atoms of the opposite kind. Thus a12 will have a 
peak at  q,,,r -1, where r is the interatomic distance. For liquid semi- 
conductors and intermetMlic compounds ~ must be fairly large to produce a 
band gap in the solid ; so the term a12 ~ should have a very large effect on the 
resistivity, and should be responsible for a dip in the density of states. Since 
the peak in a12 widens rapidly with temperature, we expect a positive value 
of da/dT even if states are not loeMized. 

(d) I t  is clear tha t  on the nearly free-electron model the Hall constant 
should have the free electron value. Some discrepancies are discussed in 
§4.5.  

For semiconductors, or electrons injected into an amorphous conduction 
band (e.g. liquid argon), formulae (22) and (23) reduce to tha t  given by the 
familiar t reatment with a deformation potential. We are only interested 
in small changes of q, so tha t  a(q) = kT/~¢~ and v(q) = v(O). Thus : 

1/L = (lcT/•) {2mv(O)/h2} 2 . . . . . . .  (27) 

We see that  this reduces to the deformation band treatment as follows. 
A fluctuation of density Ap/p will produce a change in the energy of the 
bottom of the conduction band v(0) equal to v(O)Ap/p. The scattering 
cross section by such a fluctuation if the fluctuation extends over a radius r 0 
is : 

{ 2my(0) APr08}~ . . . . . . .  (28) 

The energy of such a fluctuation is : 

½K(AP/p)2ro3~lcT . . . . . . . .  (29) 

so substituting for Ap we obtain for the scattering cross section : 

(IcT/~¢) {2mv(O)/hu} ~ ro a, 
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Electrons in Disordered Structures 71 

and  since there  are 1~to a centres per  uni t  volume,  formula  (27) for 1/L 
follows for all values of  %. 

I t  is interest ing in this connect ion to see t h a t  our formula  kL ~ 1 for the  
appearance  of localized states  is valid. The condit ion t h a t  a localized 
s ta te  will occur is : 

(2m/h2)(Ap/p) v(O) >l/r  2 . . . . . . .  (30) 

Thus  at  any  t empera tu re  the  larger f luctuat ions form localized states, 
which give the  tail  of  the conduct ion band.  When  the wavelength  h of 
the  electron is comparable  wi th  the  value  of r given by (30), we expec t  
localized states to occur. I t  is ve ry  easily verified using (29) t h a t  (30) 
leads to A ~ L, i f L  is given by  (27). 

4.3. Conductivity by Hopping 

I n  the evaluat ion of  the  conduc t iv i ty  due to hopping there  are two 
separa te  problems to consider. 

(a) The evaluat ion  of  the  probabi l i ty  per uni t  t ime t h a t  the electron 
jumps  from one localized s ta te  to another .  This we shall write : 

v p ( R ) e x p { - ( A W + ½ W , ) / k T }  . . . . . .  (31) 

Here  v is a phonon  f requency;  p(R) is a tunnel  factor  which mus t  be 
in t roduced  if the  distance R between the  s tates  is large. I f  ¢ falls off as 
exp ( - yr), p(R) = exp ( - 2vR ). For  impur i ty  levels having a me a n  energy 
W below a conduct ion band,  y = ~ ( 2 m W ) / h .  W is the  difference in 
energy of  the two levels and W, is the energy of  polar izat ion round  a localized 
s ta te  of order  : 

) . . . . .  

2 ro 

where r 0 is the radius of  the s ta te  and K, K 0 the dielectric constants.  

(b) Recognizing t ha t  p(R) and A W will bo th  v a ry  grea t ly  from one jump 
to another ,  one has to  average over  all possible jumps to obta in  the  a.c. or 
d.c. conduct iv i ty .  Results  of  such averaging show: 

(i) Tha t  the a.e. conduct iv i ty  is higher  t h a n  the d.c. and increases with 
f requency  (el. papers  by  Pol lak quoted  in § 7.10). 

(ii) The  ac t iva t ion  energy for conduct ion drops wi th  decreasing t em-  
pera ture ,  since at  low tempera tu res  only  hops with small AW can occur, 
even though  R m a y  be large and p(R) smM1. 

All the calculations on disordered s t ruc tures  known to the au tho r  have 
been for the  case of  impur i t y -band  conduc t ion ;  these are reviewed in 
§ 7.10. 

More a t t en t ion  in the l i tera ture  has been given to  the t heo ry  of  the hopping 
mot ion  of  polarons,  to which the  phe n o me n o n  described here  is closely 
allied. Moreover,  as we have  stated,  the  lat t ice round  an electron in a 
localized s ta te  will be s t rongly polarized in ionic crystals, and dis tor ted  
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72 N . F .  Mor t  on 

to  some ex ten t  for non-polar  crystals.  Reviews of polaron theory  have  
been given by  Fr~)hlich (1954, 1963) ; a useful summary  of the  present  
posit ion can be found  in an article by  Jo r t n e r  et al. (1965). A very  br ie f  
account  is given here. 

A coupling constant  

K 0 K 2oJh ~ 

is in t roduced  ; here  m is the effective mass in the undis tu rbed  lat t ice and 
~o the f requency  of  optical  phonons. I f  ~ is less than  abou t  10, the  mot ion  
of the ions can adjus t  i tself to the mot ion  of the electrons, and the sole effect 
is somewhat  to increase the effective mass ( m ~ / m ~ _ l + c ¢ / 6  i f  ~ 1 )  
(Fr0hlich 1963, Brown 1963, Langre th  and Kadanof f  1964, Mahan 1966) ; 
values of ~ less t han  un i ty  are es t imated  for PbS,  GaAs and values of abou t  5 
for the alkali halides. 

I f  z > 10, on the  other  hand,  theory  predicts  what  is known as the  
' smal l  po laron ' ,  an  electron being effectively t r apped  by  the  potent ia l  
well produced by  the surrounding polarized medium, as envisaged by  
Lan dau  (1933 ; see also Mott  and Gurney  1940, p. 87). At  low t empera -  
tures it  moves wi thou t  thermal  act ivat ion,  though  with ve ry  high effective 
mass. As the t empera tu re  increases, the effective mass increases and  the 

1 mean  free pa th  decreases. At  a t empera tu re  of  the order  ~OD~by ~ the me a n  
free pa th  becomes of  the order of  the in tera tomic  distance, and for higher  
t empera tures  t h a n  this the mot ion  is proper ly  described as the rmal ly  
ac t iva ted  hopping (Holstein 1959), the  mobil i ty  being of  the form : 

l~ = (vea2/lcT) exp ( - AE/[cT),  . . . . .  (33) 

where AE is about  half  the  t rapping energy Wp. On each hop phonons  are 
emi t ted  and absorbed.  This f~ctor ½ occurs in any  t ransfer  f rom one 
polarized s ta te  to  another ,  for instance in the Fea+->Fe  ~+ t ransfer  in 
aqueous solutions. Fo r  a theoret ical  t r e a t m e n t  see Mot t  and W a t t s -  
Tobin  (1961). We m a y  ment ion  t ha t  t rapping  b y  dis tor t ion of the la t t ice  
is also possible in non-polar  semiconductors ;  calculations for this case 
have been made  b y  Glarum (1963, see also Toyozawa  1963) for nar row band  
organic semiconductors ,  and he finds a formula of t ype  (33) where again 
AE is half  the energy necessary for trappingS. Also in liquids t rapping  
is possible, ei ther by  the  same mechanism or by  cavi ty  format ion  or bo th  
(see § 7.3). 

In a contribution to the theory of organic semiconductors, Friedman 
(1964) points out that,  though the band width W may be less than /~T, the 
' polaron ' trapping energy is less still and the mobility is not of small polaron 
type, behaving as T -n with 3 < n < 1. Implicitly by writing (h/T)< W as the 
condition for a band formulation, Friedman uses our formula /eL> 1 for 
localized states not to be ~formed. With this condition Friedman finds that  for 
narrow bands 

/~ >~ 0.1 (W/kT) em2/v sec. 
Lower values than this must mean hopping. 
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Electrons in  Disordered Structures 73 

There  has recent ly  been some unce r t a in ty  as to which observed forms 
of  conduct ion are due to polaron hopping,  par t icular ly  in the case of NiO 
doped  with small quant i t ies  of l i thium. Unti l  recent ly  it  was believed 
t h a t  this was due to hopping by  a small polaron bu t  recent  exper iments  by  
Spr ingthorpe  et al. (1965), and Aust in  et al. (1967) and  Bosman and 
Crevecoeur (1966) suggest t ha t  this is no t  so ; the  evidence is based on the  
thermoelec t r ic  power and is reviewed below. On the  other  hand,  Snowden 
and  Sattsburg (1965) have  given evidence t h a t  positive holes bound  to Li + 
ions in NiO do form polarons and move  round  the ion by  hopping (see also 
Appel  1966). 

Perhaps  one of the  dea re s t  examples  of a hopping process of  polaron 
t y p e  in a non-polar  crystal  is the  recent  work of Spear and  his colleagues 
on  the  mobi l i ty  of  electrons and holes in or thorhombie  sulphur  p roduced  by  
e lect ron b o m b a r d m e n t  of the  surface (Adams et al. 1964, Adams and  Spear 
1964, Gibbons and  Spear 1966). Holes have  a high mobi l i ty  of the  normal  
type .  Electrons  on the o ther  hand  have  a low mobil i ty 

6 x 10 -4cm~sec - lv  -1 at  21°c 

wi th  an ac t iva t ion  energy of  6.167 ev. The consistency of the  results 
indicated  a hopping polaron motion,  the  polaron energy being es t imated  
f rom current  theories as 0.48ev. Spear  est imates  an over lap integral  
be tween sulphur  rings of  ca. 0.05 ev, so the  coupling constant  e mus t  be large 
(> 15). 

4.4. Thermoelectric _Power 

The  following are useful formulae for the in te rpre ta t ion  of the  the rmo-  
electric power. Fo r  semiconductors  in which a non-degenerate ,  gas of" 
carriers are in a single band  with dens i ty  of s ta te  propor t ional  to  ~/E,  or~e,: 
can write (Jonker  and H o u t e n  1961) : 

~ = ( l c / e ) { l n ( N v / n ) + r + 2 }  . . . . . . .  (38) 

Here  Nv = (2~rmlcT/hZ) a/2 and  n is the  n u mb e r  of carriers per uni t  volume.  
The  constant  r depends on the  mechanism of  scat ter ing and should be zero 
if the  scat ter ing is by  acoustic phonons.  I f  the  n carriers are exci ted from 
N levels at  an energy E below the  band,  

n 2 = N N v  exp ( - E/]cT), 

and  the dominant  t empe ra tu r e -dependen t  t e rm in ~ is (]c/e)(E/2kT), so the  
thermoelec t r ic  power p lo t ted  against  1 /T  should give, approx imate ly ,  a 
s t ra ight  line. 

Heikes and Ure  (1961) have  considered a simple ease of localized electrons,  
in which there  are N sites, all wi th  the  same energy, and N c are occupied ; 
localization is due to small polaron formation.  The the rmopower  is then  t : 

~ = (/c/e) [ln{e(1 - c)} + const.] . . . . . .  (39) 

Howard and Lidiard (1957 a, b) discuss the similar problem of ionic 
conduction. 
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74 ~N. F. Mort  on 

The cons tan t  depends on the mechanism of  hopping and has not  been 
evaluated.  I t  will be seen tha t  the  logar i thm can have  posi t ive or negat ive  
values, bu t  e is always the  (negative) charge on the electron. The formula  
is applied to glasses containing t rans i t ion meta l  ions in § 7.11. 

I f  electrons are exci ted into a nar row band  in which small polarons are 
formed,  t hen  (38) is val id if for Nv we write the number  of sites ; for  the  
hopping mechanism,  however,  we do no t  know r. 

As far  as we know, hopping between levels of  differing energy, as in 
impur i t y -band  conduct ion,  has not  been t rea ted .  However ,  here one has 
a dis t r ibut ion of energy levels and  at  low tempera tu res  a Fermi  l imit ing 
energy E F and  the  formula  used for metals  should be valid, namel~:  

~r2 k2T { a ln  s(E) } (40) 

3 e 0E E=EF' " . . . .  

S will be of  the  form %(E) exp [ -  W(E)/kT] and bo th  te rms should v a r y  
s t rongly wi th  E ; thus  we expect  a cons tant  t e rm and a t e rm linear in T. 

4.5. Hall Co@icients 

For  a crystall ine meta l  the Hall  coefficient R should have  the free- 
electron value  

R = 1/Nec 

for any  form of Fermi  surface which does not  give open orbits. Fo r  
liquid metals  the  Hall  coefficients are much  closer to the f lee-e lec t ron 
values t han  for the  solids (see reviews by  Cusack 1963, Busch and Ti~che 
1963 and Ziman 1967). Figure  9 shows some measured  values due  to 
Greenfield (1964) ; t hey  are p lo t ted  against  L/2, to show t h a t  discrepancies 
are more likely to  occur for metals  wi th  short  mean  free path.  

1"2 I 
1.1 

1.0 =o 

0.9 

0"8 

0"? 

Fig. 9 

I ' I t 

• Hg ~n eZn Cd g • 
eGa 

°in 

Q 
Bi 

i 

eT[ 
opb 

I I I i I 
2.0 4"0 6"0 8"0 

L I k  

Measured values R of the Hall coefficient as a function of L/A, as a fraction of 
the value R 0 calculated on the free-electron model. 

Of course if L/A is no t  large it  is impossible to define a Fermi  surface  
with any precision;  the  free-electron values of R for metals  for which  
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Electrons in Disordered Structures 75 

L/A>• 1 are often quoted as evidence tha t  the Fermi surface is spherical. 
I f  L is large compared with any distance within which local order 
exists, any form of Fermi surface other than spherical seems difficult to 
envisage. 

The only treatment of the Hall effect known to the author in which the 
Hall constant, for non-hopping, is calculated for L ~ ~ is tha t  of Banyai 
and Aldea (1966), who start from Kubo's formulation (el. the next section). 
They conclude that  for a spherical Fermi surface R will depend on the 
departure of the density of states from the free-electron value. Taking a 
form of n(E) appropriate to an impurity band, they conclude tha t  R may 
even change sign if n(E) decreases with E. I f  these results are correct, 
there should be little difficultyin accounting for the observed deviation from 
the free-electron formula. We give in § 6.7, in our discussion of tellurium, 
empirical evidence tha t  the Hall coefficient can depend on the density of 
states. 

For hopping conduction there have been extensive theoretical calcula- 
tions mainly for hopping by the small polaron (Friedman and Holstein 
1963, Firsov 1964, Schakenberg 1965) and also for localized states in 
impurity-band conduction (Holstein 1961). This work all shows that  a 
quite large Hall effect is to be expected and that  it will be very difficult to 
calculate its magnitude. The argument in its simplest terms is the 
following. Suppose we have n carriers per unit volume ; then at  any one 
time the magnetic field can only affect those that  are in the process of 
hopping, and thus a fraction e x p ( - A E / k T ) .  These too will only be 
affected by the magnetic field if they have a choice of sites into which to hop 
with just the right energy ; this will be determined by another exponential 
factor exp ( -  W/kT). They thus argue that  the Hall coefficient will be of 
order : 

1/R=necexp{(W- AE)/IcT}, . . . . .  (41) 

where n is the density of current carriers. They also state that  AE and 
W are of the same order and that  W may be less than AE, so tha t  R can 
be greater than 1/nee. This formula does not take account of the tunnel 
factor p(R). The two sites into which the electron must jump must have 
nearly the same value ofp  and the chance that  this is so will certainly be of 
order p(R). But  the Hall voltage will be determined by the easiest jumps~ 
while the d.c. conductivity by the most difficult. So I would expect (41) 
to give too large a value Of 1/R, and tha t  R should be enhanced by some 
factor of the type exp ( - 2fiR), with fi < 6. 

The application of these ideas to localized states due to disorder 
(impurity-band conduction) will be complicated by the random distribution 
of hopping frequencies and the answer should depend on the period of an 
a.c. field. These points have been discussed by Amitay and Pollak (1966) 
who have at the same time at tempted to observe the Hall effect in doped and 
compensated silicon. They observed no effect, and concluded that  
Holstein's original calculation gave results very much too large. 
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76 N . F .  1V[ott on 

On the other hand, Kyser and Thompson (1965) have observed a large 
Hall effect in solutions of sodium in ammonia for concentrations where 
conductivity is probably by hopping (§ 7.3), and this is perhaps one of the 
few cases where a Hall constant has been measured in the hopping region. 

Measurements of the Hall effect of ions in solution have been made by 
Laforgue-Kantzer (1965) ; here too the theoretical position is not clear. 

4.6. Intermediate Case ; Strong Interaction with Ions but States not Localized 

In this section I shall discuss the case intermediate between those treated 
previously; interaction with the ions is strong, so tha t  there can be 
substantial deviations from the free-electron density of states, and the mean 
free path is short, but at the Fermi energy the states are not localized. 
The theory is thus applicable to liquids such as tellurium and liquid inter- 
metallic compounds and also possibly to doped semiconductors under 
certain conditions. 

Since the mean free path is necessarily short, no precise concept of a 
Fermi surface can be used since the uncertainty Ak in the wave-number/~ is 
large. On the other hand, there will be a clearly-defined Fermi limiting 
energy E F. Under these conditions it is appropriate to calculate the 
conductivity ~ from the Kubo-Greenwood formula (Kubo 1956, Greenwood 
1958), according to which at T = 0 : 

2~e~h 3 
,~= m--- ~ ~, ~.. [D~ ,  12a(EF--E~)a(EF--En,), (42) 

~t ~t 

where E F is the Fermi energy and 

n ~ ,  = f ¢~* ~---ax ~ "  dax . . . . . .  (43) 

and the ¢~ are eigensolutions of the Schrsdinger equation with appropriate 
boundary conditions and with energy E~ for an electron in a disordered 
lattice. The simplest way to prove this formula is to treat  it as the limit as 
w -+ 0 of the formula for the current produced by a light wave of frequency 
(~. This t reatment  is given in § 5. 

We have first to ask whether, if the Fermi energy lies in the range of 
localized states, the Kubo formula predicts zero conductivity at zero 
temperature. Here we have to distinguish between 

(a) Thed.c. conductivity. 

(b) The a.c. conductivity in the limit of weak fields. 

Common sense and experience with impurity-band conduction suggest 
that  the d.c. conductivity does tend to zero as T-+0;  the Kubo formula 
shows that  this is so, since if ¢~, ~b~, are localized states with energies very 
near the Fermi level, it will be a rare '  accident '  that  they are near enough in 
space to overlap and thus to give a finite value of D~+~,. Some treatments 
of the problem (e.g. Day 1966) have come to the conclusion tha t  when one 
averages the current over all configurations of the lattice, these accidents 
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E l e c t r o n s  i n  D i s o r d e r e d  S t r u c t u r e s  77 

will occur  and  lead to a finite current .  This  conclusion appears  to be  wrong 
(Halper in  1967); ~(~), the  conduc t iv i ty  a t  f requency  ~o, tends  to zero 
l ike ~o 2 as o) t ends  to  zero. This  is p roved  in § 5. 

W h e n  the  s ta tes  are localized, then,  there  can only be  a cmTent  a t  a 
finite t e m p e r a t u r e  due to  the  in te rac t ion  with  phonons,  a process no t  
included in fo rmula  (42). 

W e  tu rn  t hen  to the  case of  non-lo calized s ta tes  which is the  ma in  subject  
of  this  section. The usual  fo rmula  for the  conduc t iv i ty  of a solid in the  case 
of  near ly  free electrons is: 

where  T is the  t ime  of re laxa t ion  ; this  can convenient ly  be expressed  in the  
fo rm (Ziman 1961): 

(~= Se2h /12~3h ,  . . . . . .  (44) 

where  S is the  area  of  the  Fe rmi  surface and  L the  m e a n  free pa th .  
We  have  to show t h a t  in the  case of  weak  in terac t ion  (44) follows f rom 

the  K u b o  formula .  We shall also show tha t ,  if  the  in terac t ion  is s t rong 
enough apprec iab ly  to mod i fy  the  dens i ty  of  s tates ,  fo rmula  (44) becomes  : 

(7= Se~Lg2/127r~h,  . . . . . . .  (45) 
where  

g = n ( E F ) / n ( E F ) f r , e .  . . . . . . .  (46) 

This  fo rmula  does not  depend  on p e r t u r b a t i o n  theory ,  and  should be valid 
as long as the  s ta tes  are not  localized (Mort 1966), and  as long as g < 1. I f  
g > 1 (the t igh t  b inding case), (44) should be used. 

I n  mak ing  this  s t a t e m e n t  we m u s t  define the  m e a n  free pa th .  Alter-  
n a t i v e l y  we can say : 

(a) I t  is the  dis tance L in which two wave  funct ions ¢,~, ¢~, bo th  behav ing  
like exp  ( i kx )  a t  a given point ,  r emain  coherent .  

(b) I t  is the  reciprocal  of  the  u n c e r t a i n t y  in k der ived f rom Four ier  
analysis  of  ¢. 

(c) Following Z iman  (]966), we can envisage a complex wave  n u m b e r  

I t = l e o + i T ;  

L is then  1/9,. This is correct  as long as E is not  in the  energy  range  where 
s ta tes  are localized ; i f  i t  is, there  is no m e a n  free p a t h  and  y has a different 
meaning.  

A discussion of the  mean  free p a t h  is g iven in the  nex t  section. We  tu rn  
now to  m e t hods  b y  which the  K u b o - G r e c n w o o d  formula  can be shown to 
give formulae  (44) and  (45). There  are two ways  available.  The  first, due 
to  Edwards ,  is as follows. F o r m u l a  (42) m a y  be wr i t t en :  

( f f +.(xl> Vl ¢n.(xl) d3xi Cn,(x2) V2 / n(x2) dax23(E- , 
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78 N . F .  Mort on 

where the  sign < > denotes averaging over all configm'ations of the atoms.  
This can be rearranged to give : 

f f < ~n ¢~(Xl)V2¢n{x2)~(Z-- zn) ~ Cn'(x2)VlCn'(xI)~(E- En') > d3xl d3x2' 

the averaging now being done before integration.  This is now replaced by  

ff<?C, (Xl)V2CAx,)a(E-E, )> 

The interference between these two terms is t rea ted by Edwards  (1958) 
for a random distr ibution of weak scatterers, and its neglect shown to be 
justified, apar t  from the factor (1 - cos 0). As Edwards  states, the  me thod  
can be extended to any  homogeneous distribution, in the case of weak  
interactions. We therefore set: 

< ~ ~(E-E~)¢~(xl)¢n(x2) > 

× ¢*@2;  R1, R e "  ")8(E-  En), 

where P is the probabil i ty  distr ibution of the atoms. I f  the system 
is homogeneous, then  for any  vector a : 

P ( a l + a ,  a 2 + a , . . . ) = P ( R 1 ,  Re.. . ) .  
Thus if we write : 

< ~ ¢~(xl) ¢~(x2)~(E-En) > =P(E ;x:,,x2), 

it  follows tha t  
p(E; Xl+a, x2+a  ) = p ( E ;  xl, x2) (47) 

and  is thus  of the form : 
p(E ; x 1- x~,). 

I f  the Fourier  t ransform of p(E, x) is p(E, k), it follows tha t  

8 (E - E~)8 (E - E,~,)D,~,~, D,~,,~ } = (h2/m ~) _I ke {p(E' k)} 2 d3k, < 5, 
so t ha t  

= (e2h~/~n ~) f {p(E, k)}~k~ ~ d~k . . . . . .  (48) (Y 

This formula does no t  depend on per turba t ion  theory  and  is exact  except  
for the factor (1 - cos 0) ; it  should be exact  for isotropic scattering. Also 
the  density of states is given by : 

n(E) = I- p(E, Ic) d3k . . . . . . .  (49) 
J 
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Electrons in Disordered Structures 79 

I f  Ak/k  is small we m a y  wri te  p(E, k)=Po in a range Ak about  kF, and 
p(E, k) = 0 otherwise. Carrying out  the  integrat ion we obta in  : 

(r = (e2h3/m2)po~SAk (4kF2/3), 

and for the  densi ty  of states : 

n(EF) =poSAk. 

Using our definit ion of g (eqn. (46)) we f ind:  

n ( E F )  = s g S / s ~ 3 ( h 2 l c F / m ) ,  

so t h a t  
po = gl s~±b, ( h 2 k F l m )  • 

I t  follows t ha t  
a = Se 2 g2/121rZhAk. 

I f  as before we define the mean  free pa th  L by  : 

L = 1 / A k ,  

the  required  formula  (45) follows. 
I t  is difficult to  ex tend  this me thod  to  the par t icu lar  case of  in teres t  

here, namely  t h a t  when Alc/Ic ~ 1. Here  we m a y  use a m e t h o d  due to 
Mort  (1966, see also Mot t  and  Twose 1961) in which the  elements D ~ ,  are 
eva lua ted  directly.  We divide the to ta l  vo lume £2 into elements w = L ~ in 
each of which the  wave funct ions ¢~, ¢~, m a y  be considered coherent .  
Thus  within any  volume element  oJ the  wave funct ions ¢~ will be made  up 
of  waves going in all directions, of the form : 

¢~ = ~ A~k exp (ilcx). 

The  integral  over  the volume ~o of  

f ¢~,* (~/ax)¢~ dax = £2 -x Z Z A~kA~'k'f (K), 

where K = k -  k' and 

f ( K ) =  f e x p ( - i k ~ , r ) ~ x e X p ( i k ~ r ) d 3 x  

= k~o K L  < 1 

= k:dK a K L  > I. 

Assuming all the  phases random,  the  integral  over  £2 will be (£2/oJ)1/~ t imes 
the integral  over  ~o, so t h a t  

~ D ~  ~ 2 ~ ~ l / ~ ~ ~x2/K6 K L < I  

t . . . .  (50) = (o)/f2)lcx2 K L  > 1. 

We now have to  sum over  all k, k'. We replace the  sum b y  integrat ions,  
bo th  over  the  Fermi  surface and  perpendicular  to it. This involves 
mul t ip ly ing by  the  factor  : 

( ~/87r3) / (dE /dk ) ~. 

A.P.  F 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



80 N . F .  Mort on 

The first integrat ion over the Fermi  surface gives, using (50) : 

K d K  + . o~ d K / K  6 . 
~. d O  d l / L  

Remember ing t h a t  ~ = L a, both  terms are of order:  

~x~L/~.  

Most of D, therefore, comes from values of k, k' such t h a t  [ k -  k' [ < I /L .  
The second integrat ion over the Fermi surface simply introduces the 

factor S. Thus : 

= const(e2ha/m2)Sk ~ L ~ / ( d E / d k )  ~ . . . . .  (51) 

Rearranging and put t ing  ~ = 1, formula (44) follows. 
All this assumes tha t  L k  F >> 1 and tha t  g is uni ty .  I f  this is not  so, the 

two integrations perpendicular to the Fermi  surface introduce our factor  
g2. Bu t  of course the wave functions Cn, ¢~' are no longer plane waves. 
W h a t  happens then  depends on whether  g is less or greater t han  uni ty .  

In  crystalline solids, the case g > 1 arises wi th  a par t ly  full s -band (for 
instance) in the t ight  binding case. Then the integral for D ~ ,  in the 
impor tan t  region where I k - k' ] < l /L ,  is s imply the velocity vector : 

f ¢*:(OlOz)¢ d3z, 
which (Mort and Jones 1936, p. 265) is proport ional  to the group velocity 
OE/alc. Thus in this case the densi ty  of states g cancels out  from the 
formula (51) for the conductivity.  We th ink the same would happen for the 
disordered lattice. I f  a liquid alkali meta l  were expanded, one ought  to  use 
the formula (44) ; L will decrease, and eventual ly  when L ~ • bound states 
may well appear and  if t hey  do the  material  will behave as a semiconductor.  

For  divalent  metals,  if  g < 1, however, the  matr ix  elements D cannot  
increase appreciably above k x. Wave-funct ions  in the solids are o f  the 
form (8), and it seems probable t h a t  in the liquid t hey  are made up of 
wave-functions of this kind, so at  most  

I D [~ ~/oF ~ + y~. 

These arguments  then  suggest tha t ,  when g < 1, the factor  g2 does enter  
into the  formula for the conduct iv i ty  and  no compensating large increase of 
D is expected. 

4.7. The  M e a n  Free  P a t h  in  the In termedia te  Case 

In  § 4.6 it  has been shown t h a t  the  conduct ivi ty  a is proportionM to 
e~Sg~L/h, where L is the mean  free path.  This result is no t  a consequence 
of  per turbat ion theory.  According however to Edwards  (1962), to  the 
second order of per turbat ion theory :  

L = L z / g  ~, . . . . . . . .  (52) 
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Electrons in Disordered Structures 81 

where L z is calculated as in Ziman's work (§ 4.3). This occurs because 1/T is 
proportional to g/Tz ; the probability of scattering decreases if the density 
of the (final) states is low ; and the analysis introduces another factor g since 
L = vT and v appears as h -1 dE/dk  in fig. 6. The factor g thus cancels out 
and to the second order of approximation (44) follows. 

This cancellation is unlikely to be valid in the case of strong interaction, 
and the analysis of Faber (1967) does in fact lead to a correcting term. 
However, it may well be tha t  Ziman's formula for a gives fair answers, 
even if the calculated value of L z comes out less than the interatomic 
distance. The true mean free path is L z / g  ~, and this may be considerably 
greater than L z before localized states occur. This may be the origin of 
the surprising agreement with experiment obtained by Wilson (1963) in his 
calculation of the resistivity of solutions of metal in liquid alkali halides 
under conditions when Lz  as calculated is much less than 1/k F (§ 7.4). 

We believe then a theory such as Ziman's may well describe liquid 
metals and semi-metals surprisingly well; as g drops, L z will increase if  
[v(q) ]~ a(q) has a large maximum somewhat below q = 2k F. But  probably 
near the limiting wavelength (krJ5 ~ 1), f '  will be the determining factor in 
the conductivity. 

I f  localized states occur when g = ½ and if kL  is then of order unity,  the 
lowest metallic conductivity possible is roughly : 

e2S/487rak~ h . . . . . . . . .  (53) 

Since S = 47rkF ~, this depends only on the cube root of the number n of 
electrons per unit volume and is about 200 ohm -1 cm -~. I f  the interaction 
becomes stronger--or if in discussing divalent metals the distance between 
atoms becomes g rea te r - -  the mechanism for conductivity will then go over 
to hopping so that  

(~=(nve~a2/kT)exp( - W/kT)  . . . . . .  (54) 

This also depends on n -l/a and, apart from the exponential factor, is of  
order 1000 ohm -~ cm -1. We do not therefore expect any discontinuity in 
the conductivity. Moreover W will be small as long as the orbitals of the 
states overlap several others ; we should not expect a strong dependence of  
conductivity on temperature until something near a band gap is formed. 

These predictions are examined in § 6. 

4.8. Conductivity Determined by Intercrystalline Barriers 

Many examples exist in the literature where the mobility of electrons 
is due to potential barriers at grain boundaries ; inann-typesemiconductor ,  
for instance, acceptors at  the grain boundaries will produce a barrier, so tha t  
the d.c. mobility should be governed by a term of the type e x p ( - H / k T ) ,  
where H is the height of the barrier. This mechanism was first suggested 
by Gibson (1951) and Smith et al. (1957, p. 146) to explain the photocon- 
duetivity of lead telluride films, though later work suggests tha t  part  of the 
photo-effect may not be due to this cause (Woods 1957). !VIueller (1961) 
however has established tha t  the effect exists in polycrystalline n- type 

F 2  
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82 N . F .  Mort on 

germanium and has measured it in a bicrystal ; here a Schottky barrier is 
formed of height approximately equal to the band width. Jonker (1964) 
has discussed doped barium titanate in these terms ; the barriers disappear 
below the ferroelectric Curie temperature (for an explanation see Heywang 
1963). Grain boundary effects are known to influence the resistivity 
strongly in NiO and g-F%O 3 (Bosman, private communication). According 
to Stuke (1964, 1965) barriers play a role in selenium even in single 
crystals, being formed along sub-grain boundaries or something similar. 
Such effects may occur in amorphous materials (§ 6.3), either due to Schottky 
barriers or fluctuations in density. 

In such materials we expect the thermoelectric power to be determined 
by the material between the barriers ; a comparison of thermopower and 
conductivity suggests a very low mobility. The Hall coefficient, on the 
other hand, will depend on whether the barriers are thick, so that a few 
electrons are excited to the top of the barrier, or thin, so that electrons 
penetrate by  tunnel effect. In the former case the Hall voltage should be 
determined by electrons at the top of the barriers, so we should expect 
large R and normal Hall mobility. In the latter case the Hall voltage is 
determined by  electrons in the bulk of the material, and we expect very 
low Hall mobilities. 

Finally we may mention the work of Weisberg (1962) and Bube and 
MacDonald (1962)~on~the existence in certain semiconductors of very large 
scatterers, rather similar to the barriers discussed here. 

§ 5. OPTICAL I~I~OI)EI~TIES 

In a study of electrons in liquid and amorphous materials, the main 
interest in measurements of the optical properties lies in the wide applic- 
ability' of the I)rude formula for liquid metals, in deviations from it 
for semi-metals such as tellurium and in investigations of the tail of the 
absorption band due to disorder. 

We shall throughout discuss our results in terms of the quanti ty which 
is the real part  of the a.c. conductivity ; the imaginary part  is linked to it by  
the Kramer-Kronig  relations. The Drude formula, valid for free electrons, 
is : 

~(~) = Ne2~/m(~ + ~ ~ ) . . . . . . .  (55) 

where N is the number of free electrons per unit volume and w the time of 
relaxation. The quanti ty a(~o) must necessarily satisfy the sum rule : 

f ~ a(w) d~o = ~e~.N/2m (56) 
0 

The standard Kramers-Heisenberg dispersion theory gives for a(~o) : 

2~e~h2 ( 
a(oJ) = ~ J0  {f(E) - . f  (E + hw)}n(E)n(E + h~o)l D(E,  co)I S dE, (57) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 83 

where f is the F e r m i - D i r a c  dis t r ibut ion funct ion and 

j D(E, w) = ¢*E+no,(x) ~ CE(x) d3x. 

The  no ta t ion  is due to  Fabe r  (1966). As F a b e r  points  out,  as ~o-~0 and  
if k T 4 E  F, this reduces to :  

,~(o) = ( 2~r2e~ha/m2~){n(EF)}2 l D(E~, 0)[2, 

which is identical  with the  K u b o - G r e e n w o o d  formula  (42) for  the d.c. con- 
duc t iv i ty .  B o t h  these formulae should be averaged over  all configurations 
of  the  amorphous  or liquid latt ice.  

W e  shall first ask wha t  happens  to  a(co) when the initial and  final s tates  
are localized. Contr ibut ions  to a(~) will only occur when, accidental ly,  
two states, of which the orbitals  overlap,  have  energy differing b y  exac t ly  
hco. Of course when this occurs the  absorpt ion  coefficient is infinite (if one 
calculates it  wi th  neglect  of  line width),  so on averaging over  all configura- 
t ions one obtains a finite value of a(oJ). Bu t  the  absorpt ion  process takes 
place between ve ry  few pairs of states. 

Fig. 10 

P 

Schematic representation of energy E as a function of a configurational 
parameter p for two localized states. 

At  first sight i t  might  seem t h a t  the  same a rgument  could be applied 
to the  d.c. conduct iv i ty ,  predict ing a small t rans ien t  current  as electrons 
j um p  between states  which accidental ly  have the  same energy and  whose 
orbi tals  overlap. Bu t  this is not  so. Two over lapping states cannot  have 
the  same energy. Figure  10 represents  schematical ly the energies of two 
over lapping states  as a funct ion of  some pa rame te r  p represent ing the  
positions of the  atoms.  The two states  will combine, giving eigenvalues 
of the  energy as shown by  the  do t t ed  lines. I f  bo th  orbitals fall off as 
exp ( - r/a), and the  orbitals are R apar t ,  the  spli t t ing AE will be of  order  : 

AE = E 0 exp ( - R/a), 

where E 0 is the band  width.  
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84 N . F .  Mort  on 

We can deduce the behaviour  of a(co) for small w. 
localized states per  un i t  volume in the range E 0. 
for f requency  co will be propor t ional  to  : 

iV exp ( - 2R/a) R 2 dR, 
R. 

where R 0 is given by  : 
hco ~ AE. 

The result  is clearly propor t ional  to  cos, so 

a(co) = const, cos 

for small co, if the  initial and final s tates  are localized. 
I-Ialperin (1967) has given a direct  p roof  t h a t  ~ (0 )=0  

dimensional  case. He  points out  t ha t  one m a y  write : 

(n IP In') = (iml~,)(n Ix-z I n')(E~- E~,), 

where z is any  point .  I t  follows t h a t  

- as 

where 

Suppose there  are n 
Then  the  absorpt ion  

for the  one- 

I f  s tates are localized, (n  ] (x - x~) 2] n ) is finite ; otherwise it  tends  to  zero 
as the  volume increases. Thus  if  we define 

F ( E , E  + )~CO) = ~2~ ~, I(n IP I n')I~a(E-E~)~(E+hco-E~,), 
where f~ is the  vo lume of  the specimen, it follows t h a t  ~ (F/co 2) dco is finite 
and thus  t h a t  F vanishes  at  co = 0. Therefore  the conduc t iv i ty  given b y  the  
K u b o - G r e e n w o o d  formula  vanishes as co-~ 0. 

Fabe r  (1966, 1967) has given a p roof  t h a t  (57) leads to the  K u b o  formula  
to the  second order  of  pe r tu rba t ion  theory ,  and t h a t  the  cancellat ion of  the  
fac tor  g2 occurs in a(w), just  as it  does for a(0). The deviat ions f rom the  
free-electron formula  observed for mercury  at  ve ry  low frequencies (Faber  
1966) p robab ly  cannot  be explained th rough  the  factor  g, as was a t t e m p t e d  
by  Mot t  (1966). On the  other  hand,  in the range where L ~ A ,  then ,  just  
as for ~(0), one would expect  the  factor  g~ to  have  an effect on the 
absorpt ion  coefficient. Thus we expect  for a(co) to appear  as in fig. 11. 
The curves shown refer to  the following cases. 

(a) The Drude  formula.  

(b) A s i tuat ion with short  mean  free p a t h  and low n (EF) - - such  as in 
te l lur ium (§ 6). The curve mus t  rise above the  Drude  formula  because 
of  the  sum rule (56). This  m a y  be ascribed ei ther  to values o fn (E )  grea ter  
t han  the free-electron value, or to the form of  the wave- func t ions ;  if  
those in the  initial s ta te  are main ly  s-like and in the  final s ta te  p-l ike this 
will enhance the absorption.  
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Electrons in Disordered Structures 85 

(c) Shows the situation when E F lies in the region of localized states, 
bu t  the states lie close enough together in space for significant overlap. 

(d) Shows the case of an insulator (such as fused quartz), with a real 
energy gap containing a negligible number of localized states which overlap. 

We have not discussed exciton formation; if the final states are localized, 
obviously the concept does not apply, though the absorption tail will be 
shifted towards longer wavelengths by  the Coulomb attraction between the 
electron and hole. 

Fig. 11 

a(ta),, 

~(~) 

l.d 

a(oJ) as described in text: (a) Drude formula, weak interaction, (b) strong 
intcractiort (e.g. liquid tellurium), (c) liquid semiconductor, with localized 
states overlapping, (d) liquid insulator. 

Finally it is worth mentioning that  a number of examples exist in the 
literature of absorption measurements in liquid or amorphous materials 
where the absorption spectrum differs little from that of the crystal. 
Germanium and tellurium are discussed in this connection in §6.12; 
Phillipp (1966) has discussed amorphous quartz and Beaglehole (1965) 
liquid xenon. 

§ 6. OBSERVED BEHAVIOUR OF ~NToN-GX~YSTALLINE M_&T:EI~IALS 

6.1. Introduction 

The available experimental evidence will be discussed under the following 
headings. 

In  § § 6.2, 6.3 and 6.4 we treat  materials which are definitely non-metallic 
in the amorphous and liquid states. Under this heading we discuss 

(a) Measurements of drift mobility in which electrons are injected into a 
non-crystalline insulator. 

(b) The behaviour of amorphous semiconductors and insulators. 
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86 N . F .  Mort on 

(c) The behaviour of liquid semiconductors and insulators. These 
are in principle more complicated than amorphous materials because the 
structure and hence n(E) will change with temperature. We confine our- 
selves in this section to intrinsic conduction; electronic conduction due 
to sodium in ammonia or excess potassium in liquid KC1 is treated in § 7. 

In §§ 6.5, 6.6, we treat amorphous metals and liquid metals, and in § 6.7 
materials which appear to fall between the two categories. 

6.2. Drift Mobilities 

Experiments which establish the drift mobility directly are of particular 
interest. As we have seen, the Hall mobility is difficult to interpret for 
hopping and even for non-hopping motion if L is comparable with )t. On 
the other hand, measurements of the drift mobility may measure either 

(a) Motion by hopping only, as in impurity conduction. 
(b) Motion in a conduction band (i.e. the unshaded range of energies 

in fig. 7), limited by trapping in localized states. 

(v) Mobility in a conduction band when trapping is negligible. Various 
examples will be described below. 

Argon. Schnyders et al. (1965) have measured mobilities/z of injected 
electrons in liquid argon. Oxygen forms effective traps and if enough 03 - 
ions are present, it is their mobility rather than that  of the electron tha t  is 
observed. An oxygen content less than 109 cm -8 is required in order to 
observe the drift mobility of the electrons. The mobilities are then large 
(ca. 400 cm2/v see), and decrease with increasing temperature. There is thus 
no sign of trapping. I f  we use our criterion that  localized states appear in 
the tail of a conduction band when L ~ t, this is not surprising. The mean 
free path is ca. 10 -6 at 100°K, so if we set (in centimetres) : 

L = 10 -6 (T/100) -312, A = 3 x 10 -7 (T/100) 11~, 

we see that  the two are comparable at 30 °K, below the temperature of liquid 
argon. Schnyders et al. found a rough agreement between their results and 
the mean free path calculated as in § 4.2, and Cohen and Lekner (1967) and 
Lekner (1967) have examined the problem in detail, solving Boltzmann's 
equation for hot electrons and determining the scattering by argon atoms 
including the long-range polarization potential. 

Recently Miller and Spear (1967) have measured drift mobilities of 
electrons in solid argon and find values close to those for the liquid ; holes 
are not mobile. 

Selenium. Spear (1957, 1960) has made measurements of transit  
times for electrons and holes in amorphous selenium. He finds tha t  the 
mobility is controlled by traps, which for electrons are 0.25 ev below the 
conduction band and for holes 0.14 ev. For the holes the trapping acceptor 
states arc present at a concentration of about 1030 cm -s and are present in 
both the amorphous and the crystalline material ; they must therefore be 
due to polaron formation rather than to disorder. 
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Electrons in Disordered Structures 87 

Chalcoge~ide glasses. Hirsch (1966) has produced electrons by  bom- 
bardment  in these materials and finds very low drift mobilities of the 
order 3 × 10 -7 for electrons 3 × 10 9 for holes. Hirsch considers that  
immediately after illumination the current is carried by electrons, which 
however are soon captured by deep traps, so that  after a longer time the 
current is carried by a larger concentration of less mobile holes; these 
eventually recombine with the trapped electrons. He estimates tha t  these 
deep traps are present in a concentration of 1 per l04 (10 is molecules/cm2). 

6.3. Amorphous Semiconductors; Tellurium, Germanium and Selenium 
There has recently been a considerable amount of work on the properties 

of evaporated films of these materials, notably by  Grigorovici in Bucharest, 
Stuke in Karlsruhe and Tauc in Prague. Amorphous films of these 
materials retain the coordination number of the crystalline state (l~ichter 
and Breitling 1958); amorphous germanium does not show the high 
coordination number and metallic conductivity of the liquid. All these 
materials are much worse conductors in the amorphous than in the 
crystalline state ; it was to explain this fact that  Banyai (1964) introduced 
the concept of localized states, though we suggest in this paragraph that  
there are difficulties in the way of this explanation and that another may be 
preferable. 

Fig. 12 

_ 1 I l t i l 1 i - [ 

o 
,~ 0 eV o 10 

"5 

! 

0 l0 20 30 40 50 60 70 80 90 
p.c. Selenium 

Activation energy for extrinsic conduction in crystalline Sc-Te (Stuke). 

We contrast first selenium and tellurium, normally p- type conductors. 
The abnormal properties of selenium have been known for many decades, in 
particular the dependence of resistivity on the electric field strength. 
According to Stuke (1964, ]965) this is due to the presence of surfaces in the 
crystal containing donors which set up Schottky barriers whose height is 
sensitive to the field (cf. § 4.8); their number and height is increased 
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88 N . F .  3$ott on 

by cold work. No such effect has been observed in tellurium but if the 
barriers exist they must be much lower, as the energy gap is 1.85 ev or a little 
bigger for Se and only 0.32 ev for Te (Stuke 1967). For extrinsic conduc- 
t ivi ty the activation energy for tellurium is extremely small and is about 
10-1ev for selenium; fig. 12 shows the activation energies for extrinsic 
conduction for a series of Se-Te alloys. The dependence of the conduc- 
t ivity on direction is also greater for selenium than  for tellurium, ~ tl/a± being 
3.3 and 1.9 respectively; Stuke and Weiser (1966) have used the F ranz -  
Keldysh effect to show tha t  for selenium the effective mass is 6.5 times 
larger perpendicular to the axis than parallel to it. 

102 

i0-2 

10-4 

10-6 

iO-e - 

I 0 - I °  - -  

i 0 - i 2  
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I I I 

-- 0":52 eV 

hex. Te 

\N N ~ 2  
0 87 eV\X,~ 

, , - , - , , ! , ,  , 

Fig. 13 

ii I t I ~ i  L °sl-- 2 ~ . . . . . ~ 1  

O . 6 ~ m .  Te 

, 
0 4  I 

ol \ 

- 0 2 ~  J _ _ _ _ l  l I 
4 6 8 I0 100 [50 200 250 500 

103/T (°K -~) Tempera lure (°K} 

Conductivity ~ (ohm -1 cm -1) and thermopower ~ (mierovolt/degree) of amor- 
phous tellurium as a function of T. For the thermopower the tempera- 
ture is plotted logarithmically (Keller and Stuke). Curves 1-3 are for 
different rates of evaporation, 4 and 5 for doping with Sb. 

Turning now to the amorphous films of tellurium investigated by Keller 
and Stuke (1965), by Stuke (1967), and by Stuke and Cauer (unpublished), 
fig. 13 shows the conductivity as a function of temperature. I t  will be 
noted that  the conductivity of the amorphous material is several orders of 
magnitude lower than for the crystalline, and tha t  it apparently consists of 
an ' intrinsic '  and 'extr insic '  part. The curves 1-5 refer to different 
doping or rates of evaporation. Stuke (1967) has also found that  amorphous 
tellurium can be ' doped'  by antimony, and the number of carriers (holes) 
thereby introduced is the same as in hexagonal tellurium ; this is shown in 
fig. 14, in which the conductivity is plotted against concentration of anti- 
mony for the crystalline and amorphous materials, and it will be seen tha t  
(rpo]ycryst/(Yamor p remains constant. 
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Electrons in Disordered Structures 89 

It  follows from this result that any localized states introduced into the 
energy gap (as in fig. 7) by the disordering must have very low concentra- 
tion (ca. 10 -5 per atom); unlike the glasses discussed by Gubanov (see 
below), these materials do respond to low concentrations of  doping, and at 
100 °K the number of'  free' carriers is equal to the concentration of antimony. 
But  the values of  the conductivity show that the carriers in the amorphous 
phase have a temperature-activated mobility which is much smaller than 
for the crystal. 

Fig. 14 

o 
._o 

cl  

IO z 

1 0 - 2  

1 0 - 4  

I I I 

@ 

(c) 
x 

l 0  Io 

G 
cJ 

fx 
l 0  o 

l 0  6 

10  - 6  ~ ~ . ~ , ~ A  

(b) j ~ ~  
/ 

A /  
tO -s ~ I I I 

tO -z tO -~ I I0 
Alornic per cent Sb 

Conductivity (ohm -1 cm -1) against concentration for tellurium doped with 
antimony at 100°K (Stuke and Weiser). (a) polyerystalline, (b) amorphous, 
(c) ratio. 

The results on the thermopower ~ shown in fig. 13 show that at low 
temperatures 

~ = - ( k / e ) ~ l n T + c o n s t  . . . . . . .  (58) 
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90 N . F .  Mort o n  

both for amorphous and polycrystalline tellurium ; doping with antimony 
only changes the constant. Since (el. § 4.4) the factor ~ is a consequence of a 
parabolic band form, it seems that  the density of states near the bot tom 
of the valence band is not appreciably altered by  the amorphous structure. 
This seems to us hardly compatible with localization, unless the radius of 
the localized orbital is very large, in which ease one would hardly expect 
an appreciable activation energy. 

Drift 

Fig. 15 
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mobility (em2/v see) of electroas and holes in liquid and amorphous 
selenium ; activation energies are marked. 

An alternative hypothesis for the low mobility is that Sehottky barriers 
due to surfaces with a high density of donors exist in these amorphous 
materials, of the kind which Stuke (1964, 1965) has shown to exist in 
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Electrons in Disordered Structures 91 

crystalline selenium and which arc familiar in polycrystalline materials 
(§ 4.8). A much higher barrier is possible in amorphous than in crystalline 
tellurium, because the energy gap is much wider in the former (see below). 
Alternatively, barriers may be due to changes in the density. 

We now discuss the magnitude of the extra activation energy for the 
mobility in the amorphous s ta te--wi thout  resolving the question of its 
cause. For tellurium the activation energy for the intrinsic range is 
E~=0 .87ev ,  contrasted with 0.32ev in the crystalline state. Stuke 
however has found an increase in hv for the optical absorption edge by 
0.4 ev, which he ascribes to a widening of the band gap due to the increase 
in the distance between the chains in the amorphous state;  the energy 
gap in tellurium is known to decrease under pressure (Blum and Deaton 
1965). I f  then the intrinsic part  of the curve is due to the excitation of 
holes from the conduction band to the non-localized part of the valence 
band- -o r  above the Sehottky barriers if they provide the correct explanation 
- - t hen  the width of the former or the height of the latter is 0.15 ev. 

IO 4 

I0 2 

i 0 - ~  

i0- '~ 

iO-C 

I % 

 ,,o.72 
I I I I 

e V  

\ \ \ ~  Crysf. Ge Hoev  
! I I I I 1 2 3 4 5 6 

103/T (°K -1) 

Fig. 16 

0"6~ I I I I I 

o.21-- I . . . . . . .  \ t ? 
0 2 1 l  I I I I I 200 300 400 500 600 700 

Temperature (°K) 

Conductivity a (ohm -1 om -1) and thermopower a (microvolt/degree) of amor- 
phous and crystalline germanium. Activation energies are marked 
(Grigorovici et al. ). 

Amorphous selenium can be obtained by  supercooling as well as by  
evaporation and--unlike tel lurium--the chains persist in the liquid phase. 
Figure 15 shows results of Spear (1960) and of Hartke (1962) and unpub- 
lishcd work of Gobrecht et al. on the drift mobility of electrons and holes in 
the amorphous material, suggesting that  there may be continuity between 
the amorphous and liquid states, and showing a strong temperature 
dependence as for tellurium. 
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92 N .F. Mort on 

The results of Grigorovici et al. (1964) on the conductivity t and thermo- 
power of amorphous germanium films are shown in fig. 16; the general 
behaviour of the conductivity of evaporated films is similar to that  for 
tellurium, but Tauc et al. (1966) find no change in the absorption edge on 
going to the amorphous state, so the marked increase of the band gap 
observed for tellurium does not occur. One would expect amorphous 
germanium to contain a high concentration of broken bonds and that  this 
would produce a broad band of acceptors (compare Heine 1966), which are 
probably the main source of mobile holes in the extrinsic range. However, 
the change of sign of the thermopower at  low temperatures, not found in 
tellurium, introduces an interesting point. In tellurium we have supposed 
tha t  current is carried by a non-degenerate gas of holes and tha t  a formula 
(§ 4.4) 

o~S = (k/e) In (Ni, /n) + const . . . . . . .  (59) 

can be used, where e is the posit ive charge of the hole, whether motion is by  
hopping or not. The form of Np, proportional to T ~/2, depends on the 
existence of a parabolic band form. For these germanium films, on the 
other hand, the concentration of acceptors is about 1019 cm -3 (see below) 
and this should be ample to allow hopping from one to another or in the 
crystalline phase for the formation of a degenerate gas. I f  the donors 
form a separate band or peak in the density of states curve, as in fig. 17, 
and if there is some compensation so tha t  the Fermi energy lies as shown, 
then a change of sign of~ is to be expected, whether the states are localized 
or not, and whether the gas is degenerate or not. We think tha t  this change 
of sign shows simply tha t  conduction is within an impurity band in which 
n(E)  increases with E at the Fermi level, but does not say anything about 
the mechanism of conduction. 

Fig. 17 

a(E) 

/ 
Suggested density of states for amorphous germanium. 

Taue et al. (1966) have investigated the optical constants of amorphous 
germanium films of thickness between 400 and 4000 X. In the range of 
characteristic absorption (0.8 ev to 10 ev) the fine structure of the optical 

t Suhrman~ et al. (1963) show that the effect of an ultra high vacuum has 
little effect on the conductivity. 
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Electrons in Disordered Structures 93 

constants is smeared out. Tauc et al. deduce tha t  there is little change in 
the band form but  the k-selection rule breaks down due to the disorder. Of 
particular interest, however, is the infra-red absorption in the range 0.1 to 
0.4 ev. This is shown in fig. 18 for the amorphous and annealed (crystalline) 
states. In the crystalline state this fine structure is due to k-conserving 
transitions of electrons from the lower branch of the valence band to the 
two upper branches. We must deduce that  in the amorphous material 
the states near the top of the valence band are made up of Bloch functions 
with a rather small spread of energy. 

Fig. 18 
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Infra-red absorption of amorphous and annealed (crystalline) germanium films 
(Taut et al.). 

This apparent retention in the amorphous state of a k-vector sufficiently 
well-defined to keep the three branches of the valence band seems hardly 
comparable with the existence of states so localized as to give hopping 
with a reasonable activation energy. I t  is possible that  in germanium 
also the states are not localized or only very weakly so, and the explanation 
of the low conductivity of the amorphous material is Schottky barriers. 
Jus t  how they are formed is not clear. In  crystalline germanium barriers 
at  grain boundaries are formed only in n-type material (for references see 
Heine 1966). 

Stuke (private communication) has suggested that  particularly in 
tellurium barriers may be due to fluctuations in density; there may for 
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94 N . F .  Mort on 

instance be regions in which all bonds are saturated, separated by boundaries 
where this is not so, so that  near these boundaries the density is low. 
For most semiconductors (but not for germanium) the forbidden band 
widens when the density decreases, so one would expect barriers to be set 
up both for movement of holes and of electrons (Schottky barriers would 
affect majority carriers only). If, as one would expect, the barriers were 
higher in the conduction than in the valence band, this would account for 
the predominantly p-like conduction in the intrinsic range. The mobilities 
for amorphous selenium (fig. 15) confirm this. At low temperatures 
tunnelling through the barriers may be important. 

6.4. Chalcogenide Glasses 

The electrical properties of these materials have been studied in detail, 
particularly by the Leningrad school. Kolomiets (1964) has reviewed this 
work in English, and a more recent collection of reprints (Myuller 1966) 
has been translated. Experimental work from the Bell Laboratories 
(Pearson et al.), and unpublished work from the University of Sheffield 
(Owen) and from the C.E.G.B. Laboratories (Edmond 1966) are referred 
to in this section. 

The Leningrad school emphasizes: 

(a) The glassy materials usually have conductivities many orders of 
magnitude smaller than the crystals (cf. for instance, fig. 11 on p. 716 of 
Kolomiets' review). 

(b) They appear to show a single activation energy E for conduction, 
lying in the range 1-2 ev, suggesting intrinsic conductivity rather than  
hopping or a transition from intrinsic to extrinsic. Edmond (1966) 
remarks tha t  in As2S % the strong absorption at 1-92 ev fits fairly well with 
the observed conductivity of the form a o exp(-E/ lcT)  with E-~ 1.1 ev if 
this is intrinsic, but is difficult to reconcile with a hopping mechanism. 

(e) In general impurities have much less effect on the conductivity 
than in the crystalline state, though Owen (private communication) finds 
that  the effect of silver is large, as is also that  of copper according to Danilov 
and Myuller (1962 ; see Doinikov and Borisova on p. 59 of Myuller 1965). 
These authors find that  19 at. °/o of copper reduces the activation energy of 
conduction in A%S% from 1.83 to 0.87ev. They have investigated the 
effect of from 5 to 10 at. °/o of Be, Mg, Ca, Zn and other metals in As2S%, 
finding a change in a at 20°c by less than 10. Owen finds tha t  the large 
effect of silver is not shown for a.c. at comparatively low frequencies, as 
shown in fig. 19. 

As regards the frequency effect, glasses of composition A%S%_xTe x are 
known to conduct better as x increases, and Edmond remarks tha t  the 
frequency effect diminishes as the conductivity increases. 

The Leningrad school has suggested tha t  the localized state model 
described in § 4.1 may exptain the lack of extrinsic conduction due to 
impurities (Gubanov 1963). I f  there is a pseudo-gap (fig. 7) 1-2 ev wide 
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Electrons in Disordered Structures 95 

but with a few localized states within the gap, some occupied and some 
empty, then the addition of impurities which can contribute electrons will 
have no effect but to shift the Fermi level slightly. I f  the localized states 
are too far apart to allow hopping, so tha t  conduction is intrinsic, they  will 
have little effect on the conductivity. But  it is difficult to explain the 
small effect of large amounts of most impurities in this way. We think tha t  
in glasses the impurities which produce little effect on ~ must use all their 
valence electrons in bonds with surrounding atoms or ions, modifying the 
local coordination number to make this possible ; they would not then act 
as donors or acceptors. 

Fig. 19 
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Conductivity of glassy As2S a as a fuuction of Ag concentration (OwerL et al.). 

The enhanced resistance in the amorphous state is perhaps due to the same 
reasons as in amorphous tellurium, namely expansion of the lattice with 
consequent increase in the energy gap, and barriers at regions of abnormally 
low density. The barriers give a qualitative explanation of the facts 
recorded in fig. 19, namely the very low frequency at which the rise in 
conductivity begins. Presumably copper and silver act by removing the 
barriers through some unknown mechanism. All these materials show 
p-type thermoelectric powers suggesting tha t  the barriers are higher in the 
conduction than in the valence band. However, Pearson (1964) considers 
tha t  the negative Hall coefficient may be due to the presence of regions 
that  have erystMlized and therefore have high conductivity. We feel that  
too little is known about the nature of the barriers (if they exist) for further 
speculation about the Hall constant to be profitable at this stage. 

A . P .  G 
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96 N . F .  Mort on 

6.5. Amorphous Metals 

Metastable alloy films of a number of binary alloy systems can be 
prepared by the simultaneous vapour deposition of two components onto 
a cold substrate (Mader et al. 1963, Mader 1965) ; the condition for this to be 
possible is in general a difference in the atomic radii in excess of 10%. The 
films are stable up to about 0.3 TM, where T~ is the melting temperature. 
The results are of interest because they show that  the alloy films at  low 
temperatures have resistivities close to those of the liquid, no rise in p is 
observed and so experimental evidence is available that  the states at  the 
Fermi surface are not localized. Figure 20 shows some results for 
Cu + 50 °/o Ag. An interpretation of dp/dT in terms of the effect of phonons 
on a(q) has not yet  been attempted. 

Fig. 20 

i 

2 0  , . 

Single 1150% Ag 
phase 

crystalline I 

E 15 Amorphous film Two phase I 
"~ film film i 

:~.~ ~ . ~  I 

~, IC  
r Y  

Butk solid Co / 

I 

0 200 4 0 0  600 800 I000 1200 
Temperature °K 

Resistivity of amorphous films of Cu + 50% t g  evaporated at 80°]~ as ~ function 
of temperature showing reversible and irreversible behaviour due to 
annealing (Mader). 

Similar results have been obtained by Buckel and Hilsch (1954), Buekel 
(1954) and Barth (1955) on evaporated bismuth films which according to 
their results and those of t~ichter and Steeb (1959) are amorphous. The 
resistivity is close to that  of the liquid, as is the Hall coefficient. Amorphous 
bismuth and its alloys show superconductivity (for references to recent 
work see Shier and Ginsberg 1966). The papers quoted above describe 
results also for tin and other metals. 

])uwez et al. (1965) have obtained an amorphous phase of palladium- 
silicon alloys with 15-23 at. % Si by rapid cooling from the melt;  the 
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Electrons in Disordered Structures 97 

resistivity has been measured down to 2°K and shows little change between 
this temperature and 400°~. 

6.6. Normal Liquid Metals 
By 'normal '  I mean a liquid metal in which the mean free path  L is 

long compared with the interatomic distance. For such metals, as 
explained in § 4.2, Ziman's theory of nearly free electrons should be valid. 
There have been other reviews of the properties of such metals (Cusack 
1963, Ziman 1967) and this article will only touch on them briefly. 

Table 2 (partly from Cusack 1963) gives the values of the mean free paths 
deduced from the observed resistivity at  the melting point and the free- 
electron formula (§ 4.4). I t  will be seen tha t  in many metals L is quite large, 
but in some it is small enough to make deviations from the free-electron 
theory plausible. 

Table 2 

7b 
L 

Li 

1 
45 

~ a  

1 
157 

Cu 

1 
34 

Z n  

2 
13 

Itg Ga 

3 
17 

Ge Sn Pb Sb Bi To 

n 4 4 4 5 5 6 
L 11 10 6 4 4 0-9 

InSb GaSb CdSb PbTe HgTe 

n 4 4 4 5 4 
L 8 7 3 0.5 0.3 

Mean free path L in/~ngstroms for some metallic liquids from the observed 
conductivity and formula (45). n is the number of electrons per atom. 

There is a large body of work in which the absolute value of the resistivity 
or thermoelectric power is measured for a metal or alloy and compared 
with values calculated from estimated pseudopotentials v(q), such as those 
of Animalu and Heine (1965). l~eferences will be found in the papers by 
Asheroft and Lekner (1966), already quoted, Animalu (1967), Harrison 
(1965), Ziman (1967) Halder et al. (1966), and Greenfield (1966). I t  is not 
our aim in this article to discuss the methods of estimating the Fourier 
transform of the pseudopotential ; we remark only tha t  the zero q0 in the 
pseudopotential (fig. 33) is of decisive importance in determining the absolute 
value of p, particularly for the divalent metals. For mercury different 
models give a variation ofpc~ 0 calculated from theoretical values of v(q) at 
present available by more than 2. 

G2 
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98 ~=. F. 1Y[ott on 

For divalent metals in particular, and intermetallic compounds, etc., 
for which the resistivity comes from the peak in a(q), we can see how strongly 
p depends on q0 by representing the peak by a(q) = A exp { - (q - ql)2/¢ 2} and 
evaluating the integral: 

_ + -  

which should give a fair measure of the resistivity if 2kp lies to the right of 
the peak. The integral is proportional to:  

~3 + 2~  (ql - q0) 2, 

so the resistivity is doubled if qo is shifted from the peak (q = ql) by a/~/2. 
The sensitivity of the resistivity of mercury to alloying may well be due to 
shifts in ql (cf. § 6.8). 

6.7. Liquid Semiconductors, Semi-metals and Intermetallic Compounds 
We discuss in this section materials which are semiconductors or semi- 

metals in the crystalline state and which show low conductivity (below 
1000 ohm -1 cm -1) and for which dcr/dT is normally positive. This does 
not include silicon, germanium and the 3-5 compounds because they  are 
normal metals in the liquid state. 

I t  is characteristic of liquids, of course, that  a(q) will change with tempera- 
ture, so the interpretation of electrical properties may be more complicated 
than for amorphous films or glasses. A positive value of (da/dT)v does not 
necessarily mean hopping or semiconductor behaviour ; an early success of 
Ziman's work (§ 4) was to explain these positive values of d~/dT for divalent 
metals in terms of the temperature variation of a(q). But conversely 
we can predict tha t  if a lies below the critical value % discussed in § 4.6, 
conductivity should be by hopping and dcr/dT should always be positive. 
Our ignorance of the value of g, for which localized states occur, makes 
it impossible to estimate g accurately ; if g = ½, a figure in the range 200- 
1000 ohm -~ cm -~ may be taken. Table 3, kindly compiled for this article by 
Dr. Allgaier~ shows some typical materials in this class for which cr and dG/dT 
have been measured. The table does not show any materials :for which 

lies below 1000 ohm -1 cm -* as having negative values of ds/dT, except 
possibly FeS, for which in the experiments of Argyriades et al. (see p. 101) 
there seemed some doubt as to whether the composition changed with T. 

Some of these materials will now be discussed in greater detail. The 
Hall coefficient and conductivity of liquid tellurium are shown in fig. 21 as 
measured by Tigehe and Zareba (1963). The conductivity lies near the 
borderline ; the Hall coefficient is two or three times larger than one would 
expect with six free electrons. X-ray evidence from Busehert et al. (1955) 
Shows that  for liquid selenium the radial distribution shows a peak at 
2.9 ~: corresponding to a bond length of 2.86 ~: in the solid; these authors 
deduce tha t  the chains dissociate as the temperature is raised. Since 

;f See also Mort aud Allgaier (1967). 
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Electrons in Disordered Structures 99 

tellurium has very low conductivity in the liquid state, the band gap 
characteristic of the solid must persist and n(EF) must be zero or very low. 
For tellurium with broken chains we should expect a strong minimum in 
n(E) at EF, the factor g ( = n(EF)/n(EF)fre~ ) rising with T. 

Fig. 21 

log ¢r log R 

(a:,~'l 

5,4 

5,~ 

5,2 

RH QII 

O,9 I,O I,I 

• V.s 

. ~ J O ' 4  

2":-  0,3 
• • i 

\% 
\ 

o I0,1 
1~2 1,3 K" 

I 0 0 0  
T 

Conductivity a and Hall coefficient RI~ of liquid tellurium as a function of T. 
The Hall mobility is also shown (Ti~che and Zareba). 

Fig. 22 

I O -  
xlO 4 

z 

/ 

~J 

/ 
e 

0 ," ! I 
o i o k 104 

Optical absorption ~(~o) for l iquid tellurium (Hodgson). /c is the wave-number 
in cm-1; the dott~ed curves are explained in Itodgson's paper. 
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100 N . F .  M o r t  o n  

T a b l e  3. P r o p e r t i e s  o f  l i q u i d  s e m i c o n d u c t o r s  a n d  s e m i - m e t a l s  a t  o r  n e a r  
t h e  m e l t i n g  p o i n t :  ~ is t h e  c o n d u c t i v i t y  in  ( o h m - e m  -1) 

Ma te r i a l  

Ge 
InSb  
GaSb 
A1Sb 
TlaSb 
TlaBi~ 
CoTe s 
NiaS2 
NiS 

CdSb 

ZnSb 

C%Sa 
Bi~Sa 

Bi2Te a 

Sb2T% 

Te 

NiT% 
SnTe 
PbTe  
Bi2Sea 
GaTe 
t t g T e  
F e T %  
PbSe  
FeS  
T1Te 

CuuTe 

CurSe 
Ages  
FeO 
AgaTe 
T12Te 
C%S 
TesS% 
CdTe 
ZnTe 
t t gSe  
TluS% 
T1Se 
T1S 
TlaSa 
Tl~S 
Bi~Oa 
Se 

a d ~ / d T  ~ef .  

28000 -- 14 
17000 -- 14 
16000 -- 14 
12000 -- 14 
11900 -- 19 

7200 - 19 
6000 -- 17 
5200 -- 8 
5100 -- 10 ( ooo  
52oo3 + 18 
4200\ f 1 7 \  
5200_f + \ 1 1  f 
4100 - 8 
3400 -- 10 

f2800 \  f u \  
\3400f  + \ 17f 
['1800"] f 1 1 ~  

2000 ~ + 
L350oj L15j 
f 18oo\ 

1400 -- 17 
1400 + 9 
1100 + 17 

900 + 17 
700 + 5 
630 + 17 
400 + 17 
400 + 17 
400 + 1 
330 + 7, 19 
2 0 0 \  f 1 7 \  
5ooj + \ 9 j  
200 + 17 
200 + 8 
180 + 4 
150 + 9 

70 + 7 
50 + 8 
40 + 6 
40 + 13 
40 + 14 
25 + 17 

1.6 + 19 
1.1 + 19 

10 -1 + 19 
6"5 x I0 -a + 19 

10 -a + 17 
5 × 10 -5 + 17 

10 -s  + 2, 16 
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Electrons in Disordered Structures 101 

Ti6che and Zareba discuss their measurements of the Hall coefficient 
in terms of '  partial ionization' of the chains. We are not dear  that  this is a 
meaningful concept for a degenerate electron gas. Perhaps the measure- 
ments should be interpreted empirically as showing that,  for short mean free 
path, a low density of states at the Fermi energy may give large Hall 
coefficient. 

Figure 22 shows measurements of the optical absorption of liquid 
tellurium due to Hodgson (1963). These may be interpreted as giving 
experimental evidence for a low density of states at  the Fermi energy 
(compare § 5 and fig. 11). 

We turn now to compounds. Among materials comparable with liquid 
tellurium in their properties, Enderby and Walsh (1966) have measured 
conductivities and Hall constants of CdSb, ZnSb, Bi~Te a, Sb~Tea; for 
these the conductivity is tha t  of a poor metal and rises slightly with 
temperature (probably due to the disappearance of a minimum in n(E)) ; 
the results are shown in fig. 23. The Hall constants, though not corres- 
ponding to the number of electrons in outer shells, are of metallic order of 
magnitude. They also show more variation with temperature. No 
theoretical interpretation has been offered, though here again we see that,  
if L ,o ~, substantial deviations for the free electron value can occur. 

Among liquids with conductivities about ten times smaller, Cutler and 
Mallon (1962, 1965, 1966) have measured the properties of liquid solutions 

References to Table 3 (references not given here when they appear in the list o~ 
references at end) 

1. ~lgGYIClADES, D., DEI~E, G., and POUND, G. 1V[., 1959, Trans. metall. Soc., 
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2. BORELIUS, G., and GULLBEtgG, K., 1944, Ark. Mat. Astr. Fys. A, 31, No. 17. 
3. Busch, G., and TIECHE, Y., 1963. 
4. CI~IPM~_~r, J., INOUYE, I-I., and TOlVILINSON, J. W., 1953, Trans. Faraday 

Soc., 49, 796. 
5. CmZHEVSKAYA, S. N., and GLXZOG, V. IV[., 1962, Zh. neorg. Khim., 7, 1933. 
6. CUTLER, M., and MALLOW, C. E., 1962. 
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107, 412. 
13. GLXZOV, V. M., and CmZKEVSK~Y~, S. N., 1964, Dolcl. Alcad. Naulc, SSSR, 
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16. I-IE~KnLS, H. W., and M~CZUK, J., 1953, J. appl. Phys., 24, 1056. 
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18. MILLE~, [E., PACES, J., and KoH~EI(, K. L., 1964, Trans. metall. Soc., 

A.I.M.E., 230, 1557. 
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102 N.F. Mort on 

of thallium with tellurium. Results are shown in fig. 24, suggesting that  
conductivities of these compounds are very much on the borderline between 
the metallic and non-metallic behaviour. Enderby and Walsh (loc. cit.) 
have measured the Hall constant of stoichiometric liquid Tl~Te and found 
tha t  it is negative and less by a factor 10 than for the more metallic com- 
pounds and increases with temperature. The low values of a and high Hall 
coefficient suggest that  there must be a deep minimum in n(E) with localized 
states at the stoichiometric Fermi energy. This will be due to the term 
an(q) introduced in §§ 3.2, 4.6, and as explained there will certainly get 
weaker as the temperature is raised. 

Fig. 23 

640C 

5600 

4800 

6400 

5600 

7 
E 4 8 0 0  

b 4000 

5200 

2400 

1600 

8OO 

45O 

o x fQ) 

J 

(c) 

(d) 

' 5 ; 0  ' 5 ; 0  ' 6 6 0  ' 6~0  
T(°C) ), 

Electrical coaductivity a of some liquid semiconductors (Enderby and Walsh), 
(a) CdSb, (b) ZnSb, (c) Bi2Tea, (d) Sb2Tea. 

Figure 25 shows the temperature-dependence of the resistivity. The 
rise in p at low T for a composition far from the stoichiometric has not been 
explained. 

Tellurium-rich compounds are p-like in spite of having more electrons. 
This suggests that  the valence bands are formed by the tellurium atoms, the 
thallium atoms not contributing states to it. Dr. Allgaier has informed the 
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Electrons in Disordered Structures 

Fig. 24 
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Fig. 25 
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Resistivity-temperature curves for molten T1Te (Cutler and Mallon). 
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author that  Bi-Te behaves in the opposite way, with a minimum at Bi~T% 
and excess Te giving n-type behaviour. 

Intermetallie compounds show rather similar behaviour. The following 
table due to Ioffe and l~egel (1960) shows some crystalline materials for 
which there is an energy gap (AE) : 

CssSb MgsSb 2 ZnSb CdSb Mg~Si MgsGe Mg~Sn 

AE (ev) 1.0 0.7 0.4 0.52 0.77 0.74 0.36 

carefully pumped from 
AE = 0.1 ev. 

2500 

1V[g2Pb has been investigated by Busch and ~oldovanova  (1962) and- - i f  
gases--shows semieonducting properties with 

Fig. 26 
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Specific conduetivigy of liquid Mg-Bi at 900% (Ilsehner aud Wagner). 

In the liquid state fig. 2 6 shows the results of Ilsehner and Wagner ( 19 5 8 ) on 
Mg-Bi. A similar maximum in the resistance ofgold-t in alloys, which have 
been investigated b y  t~oll and Uhl (1959) and Leach (private communica- 
tion) (fig. 27). The change in the sign ofdp/dT near the maximum will be 
observed. We have no explanation to offer of the position of the minimum. 

Daney (1965) has found similar results for molten CuTe, AgTe and SnTe. 
The conductivity, of order 1000 ohm -1 cm -1, has a minimum at or near the 
composition Cu2Te, AgaTe and the thermopower changes sign near the 
same composition. We suggest that  these results may be due to a minimum 
in the density of states rather than to localized states, which are improbable 
for so high a conductivity (cf. § 6.5). Somewhat similar results for Cu-S, 
etc., have been obtained by  Dancy and Derge (1963), though here the 
eonductivities are lower. 
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Electrons in Disordered Structures 

Fig. 27 
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l{esistivity and dp/dT for liquid Sn-Au (Leach unpublished). 
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106 N . F .  Mort on 

Busch and Giintherodt (1966) have measured conduetivities and Hall 
coefficients _8 for liquid Ag- In  alloys. A minimum in a occurs at 35~o In, 
the Hall coefficient at  this composition corresponding to two electrons per 
atom. da/dT is positive. 

6.8..Mercury 

The behaviour of mercury differs in certain respects from that  of other 
liquid metals and in particular from zinc and cadmium. The abnormal 
behaviour can be summarized as follows. 

(a) The melting point (234°K) is very low compared with that  of zinc 
(692°x) and cadmium (593°K). 

(b) The addition of about  30 at. % of most other metals reduces the 
resistivity by about 2 (Cusack et al. 1964). Some unpublished results by  
Leach are reproduced by Mott  (1966). 

(c) The thermopower is abnormally high; again on alloying after an 
initial rise the thermopowcr drops to normal values (Cusack et al. 1964). 

(d) There is a rapid drop ofp under pressure. Bradley (1966) has shown 
that  this abnormality disappears on alloying with indium. 

The low melting point and cohesive energy have been thought for a 
long time to be due to the slightly greater s -p  separation in the atom 
(Wigner and Seitz 1955). This is reflected in the slightly more negative 
pseudopotential than for zinc and cadmium, as shown in fig. 28. Although 
the difference is slight, it can probably account for the difference in the 
melting points, in the following way. Details will be published elsewhere, 
bu t  an outline of the argument is as follows. Heine and Weaire (1966) have 
given an account of the rhombohedral structure of mercury, based on the 
curves of fig. 28. They represent the energy of the crystal by  : 

u =  . . . . . . .  ( 6 0 )  

Here U E is the electrostatic Ewald-Fuehs  term of an array of point charges 
against a background of ' jell ium'.  F(q) is ~ 1/(Ek+ q -  Ek) summed over 
occupied states and q~ are reciprocal lattice points. For cubic mercury the 
zero q0 of v(q) would lie very near qm ; the band gap there would be small 
and cubic mercury would have an exceptionally spherical Fermi surface. 
The rhombohedral structure increases U E and, since I v(q) 12 will increase on 
the former 111 faces, the second term in (60) is lowered. The change in U~ 
is ca. 0.1 ev, and because % lies near 2k~., where F'(q) is infinite, the rate of 
change of the second term is exceptionally large. I t  just wins over UE, 
giving a total drop in the energy of 0.01 ev (Weaire, private communication). 

Turning now to the melting point, it should of course be possible in 
principle to calculate the energies of solid and liquid by  formulae of type (60) 
and thus deduce the melting energy and temperature. But,  as Harrison 
(1966) has pointed out, this would need an extremely accurate knowledge 
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Electrons in Disordered Structures 107 

of  a(q). One can however  m a k e  an es t ima te  b y  using the empir ica l  
L i n d e m a n n  mel t ing  po in t  f o rm u l a :  

M O  2 = const.  TM/# , 

where  r is the  in te ra tomic  dis tance and  0 a character is t ic  t empe ra tu r e .  
The  formula  means  t h a t  T M is de t e rmined  b y  the  same stiffness f ac to r  as 
s h o r t - w a v e  phonons .  I f  one takes  0 as an Eins te in  f requency,  one can 
e s t ima te  M(kO/h)2=p, where px is the  res tor ing force when  an  a t o m  is 
displaced a d is tance  x. The  Ewa ld  t e r m  is : 

kO/h = (4e2/Ma3) 1/2, 4~aa/3 = a tomic  volume.  

P u t t i n g  in numbers ,  for c a d m i u m  one obta ins  0 =210°K agains t  172°K 
observed.  I t  looks as if  the  second t e r m  which should lower 0 is com- 
p a r a t i v e l y  small,  b u t  m u s t  be  m u c h  larger  for mercury .  

Fig. 28 

V(c 

O '  

0 

-0I 

-0"2 
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Be 0705 i! Mg - 0.350 
Zn - 0.422 

Hg - 0'347///i//H 

Mg ~/jI~ g 

Hg 

% / 2k~ 

Pseudopotentials V(q) in Rydbergs of certaia metals (Animalu and Heine). 

This  t e r m  (Ap) is easy  to calculate.  One finds : 

I~ q J  - ~ ( ~ ( ~ )  I ~(q)I ~ q~ d~/s~.  @ 
d 
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108 N . F .  Mort on 

The first term should be small for cubic mercury since v(qm)~ 0. The 
second negative term is very sensitive to the value ofqo. In fact, if we pu t  
v(q) = A ( q -  %) and F(q)= 1, the integral could be approximated by :  

AS f qo(q - %)2 q4 dq = A2qoT/lO0 . . . . .  (61) 

Thus the 10% difference in q0 between Cd and Hg could double the value 
of this term, and numerical evaluation shows that  the difference in the 
melting points of these two metals is easily explained thereby. 

We turn now to the abnormal electrical properties of mercury. The 
present author (1966) has a t tempted to explain them using the following 
hypotheses. 

(1) The density of states of crystalline mercury is abnormally low 
(g ~ 0.7) as it is in beryllium, but  unlike beryllium v(q) is negative at the 
zone edges and I v ] increases with specific volume. The Knight shift (§ 3) 
suggests no change on melting. 

(2) The cancellation theorem that  g does not affect the conductivity 
breaks down for deviations from unity as large as this. 

Since the author's paper, however, the experimental measurements of 
the de Haas -van  Alphen effect (Brandt and Rayne 1966) and the calcu- 
lations of Keeton and Loucks (1966), using the OPW method, have deter- 
mined the Fermi surface mercury and shown that  the band gaps of Animalu 
and Heine are approximately correct. Thus v(qnl ) is small and crystalline 
cubic mercury ought therefore to have g very close to unity. Some 
drop at present uncalculated is to be expected for the rhombohedral 
structure, and this suggests that  the abnormal electrical properties of 
liquid mercury ought to be due to some distortion of the liquid structure 
analogous to that  for the crystal. 

Rivlin et al. (1966) have measured ~(q) for liquid mercury and have shown 
that,  by  comparison with some other metals, the peak in a(q) is displaced 
slightly to the right and a shoulder appears on the left (fig. 29). According 
to Heine and Weaire this is due to the same cause as the rhombohedral 
structure ; it lowers the second term in the expression (13) for the energy so 
as to distort the structure in such a way that  a(q) is small near the zero ofv(q). 

I t  is therefore tempting to ascribe the abnormal properties of mercury 
to this abnormal structure, because one would expect that  the admixture 
of any other metal with smaller q0 would rapidly cause the Ewald term to 
become greater than the term from (v(q)) 2, so that  the abnormality would 
disappear. Admittedly no such effect is found in the work of Halder et al. 
(1966) who have measured a(q) for H g - I n ;  but  they do not observe the 
shoulder at all. 

The abnormal properties of mercury, then, may be due to an abnormal 
shift of the peak in a(q) to the left. This would, according to the analysis 
already given : 

(a) Increase the resistivity as calculated by  Ziman's theory. 
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Electrons in Disordered Structures 109 

(b) Decrease the density of states at EF. I t  may be, however, that  (a) 
is sufficient to account for the observed effects without the effect of  a large 
abnormality in the density of states ; certainly the recent careful observa- 
tions of a(~o) by  Faber and his colleagues (Smith 1966) do not suggest any 
effect such as that  observed for tellurium (fig. 23). 

Fig. 29 

15,00C 

io,ooc 

5,ooc 

[b) ¢ 

(o) 0 ---------T, ~ , , , f 
o o. I  oa  o,3 o ,4  o.5 o -6  

Observed values of scattering function for liquid mercury (t~ivlin et al.), 
(a) -36%, (b) -10°e, (e) 27°c. qo lies at 0.2 and 2/oF at 0.22 i .  

This explanation is compatible with the large increase in a with pressure ; 
if the lattice is expanded, 2/c F moves towards qo and the tendency of mercury 
(either crystal or liquid) to deviate from the close-packed structure will be 
enhanced (because F'(2kF) is infinite). We do not however see how to 
explain the thermopower unless q0 varies rather rapidly with energy. 

6.9. Liquid Metals at High Temperatures and Pressures 

Early work on the conductivity of mercury at high temperatures is 
reviewed by  !V[ott (1966). l%ecent measurements are by  Kikoin et al. 
(1965), Franck and Hensel (1966), Hensel and Franck (1966) and Posthill et 
al. (1967). These results, when resistivity is plotted against volume, are of 
particular interest as showing what happens when a disordered lattice is 
expanded. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



110 N . F .  !V[ott on 

The first thing to  r emark  is t h a t  for mercury  d In p/d In T is posi t ive and  
of  order  0.2 ; this is in te rpre ted  by  Brad ley  et al. (1962) as being due to  the  
widening of  the  first peak  of  a(q) and as being normal  for d ivalent  metals .  
Figure  30 shows (dlnp/dT)v f rom the results of  Posthi l l  et al. for va ry ing  
vo lume ; it will be seen t h a t  over  this range a t  any  ra te  this quan t i t y  is not  
large. I t  seems therefore  reasonable to  plot  p against V and suppose t h a t  
the  large changes observed  are due to the  change in volume,  r a the r  t h a n  the  
large change in T. F igure  31 shows the  results of Hensel  and F ra n c k  (1966) 
p lo t ted  in this way.  

Fig. 30 

- 5  
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- i o  i 

-15 

- 2 0  

I I I [ I 

i 

- 2 5  z 
H.o ,I'.5 ,~.o ~.5 ,3.o 13.5 

Density (gm cm -3) 

Variation of p with T at eonstarlt volume for mercury at high temperatures 
(Posthill et al. 1966). (a) is (do/dT)/p, (b) is (dp/dT)/po. The units are 
degrees -1 x 10 ~. 

In  seeking to in te rpre t  these results we mus t  first recognize t h a t  as the  
lat t ice expands  the zero qo will move  fur ther  to  the  r ight  of  the  m a x i m u m  of  
a(q), so the resis t ivi ty  as given by  Ziman's  t heo ry  will increase, and  the  
densi ty  of states a t  the  Fe rmi  surface will drop. I f  we are r ight  in th inking 
t ha t  localized states will appear  when g ~ ½ and the mean  free pa th  is abou t  
the  in tera tomic  distance (3 3.), the  resis t ivi ty  can drop b y  a f ac to r  abou t  
10-20 before localized states appear.  We see t h a t  this occurs for a 12% 
linear expansion. According to our estimates,  eonduetivi t ies  be tween  
10 ~ and 102 ohm -1 em -1 should be due to  the presence of localized states.  

The behaviour  round  the  critical point ,  where at  constant  vo lume the  
resis t ivi ty appears  to increase with tempera ture ,  is surprising. We 
suppose tha t ,  according to the calculations of the last  section, the  restoring 
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Electrons in Disordered Structures 111 

force when an  a t o m  is displaced f rom a posi t ion m i d w a y  be tween  its 
ne ighbours  is negat ive .  I f  so, the  l iquid m a y  t end  to t a k e  up  a chain 
s t ruc ture ,  which would be b roken  up  as the  t e m p e r a t u r e  is raised. This  
chain  s t ruc tu re  could pe rhaps  grea t ly  enhance  the  conduct iv i ty .  

Fig. 31 
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1 
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/ / / - - £ - - - l s s 0 ' c  
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~ /  L1700"C 
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I i J I I 
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o'c, 
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, 0--22c m_"r~- 3,5 N 1 

Specific conductivity ~ for mercury as a function of the density (Franck and 
ttensel). 

The  smallest  conduc t iv i ty  measured ,  
wi th  a fo rmula  of  t y p e  : 

(ve2/akT) exp ( - A W/kT), 

the  cons tan t  fac tor  being of  order  1000 ohm -1 cm -1, would imp ly  

exp  ( - AW/kT) = 2 x 10 -~, 

2 × 10 .2 ohm -1 cm -i ,  if  c o m p a r e d  

A.P. H 
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112 l~. F. Mort on 

so a change in T by 100 ° st~ould only give a change ofp by 2-3. No change 
is in fact observed. A W should be about 1.1 ev. The interatomic distance 
is 50% greater than  at room temperature.  Animalu and Heine's v(q) 
predicts a band gap on the (111) face of ca. 5 ev for cubic mercury expanded 
to this extent,  so it is not surprising if in the liquid there is a real energy gap 
here of order 2 ev, as this value of A W would imply. 

§ 7. HE2~VILY DOPED SEMICONDUCTO]~S 

7.1. Introduction 

Under this heading we include : 

(a) Impur i ty-band  conduction (sometimes called impuri ty conduction) ; 
by this we mean the movement of electrons directly from one impuri ty  
centre to another which can only take place if the material is '  compensated '  
--i .e.  contains both n and p- type centres. This kind of conduction always 
involves thermal activation and is usually but  not necessarily a hopping 
process. I t  has been referred to already in § 3 and we discuss it in detail in 
§7.10. 

(b) The bchaviour of the degenerate electron gas which forms when there 
is considerable overlap between the centres. 

Since in the absence of compensation at any rate the disappearance of 
conductivity at T = 0 as the concentration decreases is an example of the 
metal-insulator transition discussed by the author in a number of papers, we 
shall discuss this ih'st. Few transitions between a metallic and non- 
metallic state have been observed as the volume of a crystalline solid is 
changed under pressure. Nearly all the experimental evidence that  such a 
transition exists is obtained from disordered systems, such as doped semi- 
conductors, solutions of metals in ammonia, etc. Observations of transi- 
tions under pressure are limited to materials which conduct in d-bands such 
as V203 (Austin 1962). This is one reason why a review of this subject is 
included in this article ; the aim is to see what complications are introduced 
by the non-crystalline structure. 

Even in the crystalline state the nature of the transition is not ye t  
entirely clear. We summarize the position as follows : 

Verwey and de Boer (1936) and de Boer and Verwey (1937) were the 
first to emphasize tha t  the band theory of crystalline solids could not be 
applicable to crystalline materials like NiO, in which the d band is not full 
but  which is nevertheless non-metallic. Mort (1949) discussed the problem 
further and considered the electrical properties of an array of one-electron 
atoms ; he gave reasons for believing that ,  as the atomic volume changes at 
zero temperature,  there should be a sharp change of character from a non- 
metallic phase with no free carriers to a metallic phase with a large density 
of carriers. These ideas were developed in a number of papers (Mort 1949, 
1956, 1961, see also Anderson 1963). 

Earlier Wigner (1938) had proposed a similar 'crystal l izat ion '  of a gas 
of free electrons with a background of uniform positive charge. Kohn 
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Electrons in Disordered Structures 113 

(1964) has given a formal proof that  for sufficiently low densities the crystal- 
line array cannot carry a current. Hubbard (1963, 1964 a, b) in a series of 
papers on correlation in narrow bands has considered the nature of the 
transition, describing it as a splitting of the d band due to correlation ; he 
does not iind a discontinuity in the number n of carriers, but this is probably 
due to his neglect of Coulomb interaction between electrons in neighbouring 
atoms. What  he does find, which goes beyond the author's original 
formulation, is tha t  the density of states at the Fermi level goes continuously 
to zero as the transition point is approached (fig. 32). 

:Fig. 32 
- 3 0  - 

• 2 5  - 

n(E)  . 2 0 "  

• 15 - 

. 1 0 -  

. 0 5  - 

1 . 0  1.25 I,SO 1.75 210 
A / ' r  

Density of states in the neighbourhood of the metal-noa-metM transition 
function of a parameter defining band width divided by iuteraetioa 
(Hubbard 196t). 

As regards the Wigner crystallization, the nearest approximation to a 
uniform positive background would be a doped and compensated semi- 
conductor in which NA, the concentration of accepters, was nearly as great 
as the concentration of donors ND, and in which both are large. One ought  
in principle to be able to observe the Wigner crystallization of the N D - N  A 
electrons in the conduction band as this quanti ty is varied. Perhaps the  
phenomenon nearest to Wigner crystallization tha t  has been observed is the  
jump in the conductivity of Fe304 (magnetic) observed by Verwey and 
Haayman (1941) ; for a recent review of this substance see Callen (1966). 
Iron atoms are on equivalent sites such tha t  at low temperatures half are 
Fe ~+ and half Fea+, and the material is an intrinsic semiconductor. A~ 
90°]{ there is a jump in a by ca. 100 to values of order 100 ohm -1 om -1. 

The most direct evidence for the metal-insulator transition comes from 
the study of the concentration at which metallic conductivity occurs in 

I - I 2  
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114 N . F .  Mott on 

doped germanium and silicon (Mott 1961, Mott and Twose 1961). This is 
found to occur for concentrations n such that  

n l / 3 a ~ 0 . 2 ,  . . . . . . .  (62) 

where a i is the hydrogenic radius given by : 
c~ H = h 2 K/n~e~-e ~ . . . . . . . .  (63) 

I f  the energy is not an isotropic function of K, this formula needs modifica- 
tions in ways that  have not  been investigated~'. 

In disordered materials, on the metallic side we have to ask what the 
effect of the drop in the density of states shown in fig. 32 will be. The 
present author (1966) has made the suggestion that  for disordered mono-  
valent metals one must use formula (45) for the conductivity, with g 
dropping with increasing volume as illustrated. This may happen in 
caesium vapour and other examples are mentioned in this section. 

On the insulating side of the transition the effect of disorder is not likely 
to  be great unless an electron is removed from one of the centres (e.g. by 
compensation). I f  this is done the states of the hole may be localized and 
impuri ty-band conduction by hopping takes place. 

In  this section we shall first discuss the transition in a crystalline d band, 
V~03, for which formulae (62), (63) are clearly not valid. We then discuss 
meta l -ammonia  solutions and certain other examples of electrons in polar 
liquids, and then the transition in d bands of doped semiconductors. In  
much of this work we deal with materials in which there are two dielectric 
constants K and K 0. Under these conditions the value of K tha t  one ought to 
use in formula (63) is not  clear. Various authors (Simpson 1949, 1967, 
Pekar  and Deigen 1948) have calculated the effective radius of an electron 
t rapped by a positive charge ; it should according to Simpson be given by 
(63) with %~given by  : 

- -  + - -  ( 6 4 )  

/¢eff K ~ . . . . . .  

The factor 5/16 comes from the assumption of hydrogen-like wave-functions 
and the use of a variat ion principle. The only instance known to the 
author of the use of this equation to describe a metal-non-metal  transition 
is by Sienko (1963) for sodium in ammonia (cf. § 7.3). Cases will be cited 
below when it is certainly not valid. 

~inally in this section we discuss mobility in a degenerate gas and the 
conductivity by impuri ty-band hopping. 

7.2. The Me ta l -Non-me ta l  Transi t ion in d Bands  of  Stoichiometric Oxides 

An oxide showing d-band conduction on which much work has been done 
is V203 ; this oxide, in common with VO, shows a jump in the conductivity 
of order 105 at a temperature  near 200°K. A review has been given by 

A number of papers estimate the appropriate radius for monovalent atoms, 
e.g. for the liquid-vapour transition (Meyer et al. 1965, Meyer and Young 1965). 
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Electrons in Disordered Structures 115 

Morin (1958, see also Hannay 's  Semiconductors, 1959); the transition 
temperature drops with pressure and the transition has been observed 
under pressure (Austin 1962). The theory of the transition has been 
discussed by Adler and Feinleib (1964), Feinleib and Paul (1965) and by 
Adler and Brooks (1965), and, as they observe, given a d band in which 
metallic conduction is possible, a transition to an insulating state can 
occur due to three separate causes : 

(1) A splitting of the band due to anti-ferromagnetic ordering, as 
first proposed by Slater (1951) in general and for this material by Morin 
(1959). 

(2) Correlation, as in Mott 's and Hubbard's  description of the metal to 
insulator transition. 

(3) A deformation of the lattice. 
These authors consider tha t  for V~O a a distortion of the lattice is the 

most likely hypothesis. They criticize Morin's (1959) hypothesis of 
antiferromagnetic ordering on the grounds that  the existence of magnetic 
ordering is in doubt, and tha t  even if it occurs, the associated latent heat  
seems to be much less than observed. To explain the transition they assume 
tha t  electrons are excited across the gap and that,  if electrons are excited, 
the gap decreases. A temperature T i at  which the gap disappears will then 
exist. But such a theory, they find, can only explain a change at the 
transition point of about 10 in the number of carriers. The authors there- 
fore believe tha t  below the transition point small polarons are formed and 
conduction is by hopping~. Polaron formation is inhibited in the metal 
because of increased screening by the free electrons. 

In this theory the energy gap is 5-8 times kT  i, so the band gap is 
ca. 1/10 ev. The effective mass meg in the metallic phase is about 50m and 
the mean free path 2 £. 

The small band gap and narrow d band now seem the na tura l - -and indeed 
the only unforced--explanation of the temperature-dependent transition 
observed here ; the explanation given in Mott (1961) makes a temperature- 
induced transition a rare accident. But  the surprising fact is tha t  metallic 
conductivity exists at all for so large a valile of m, , .  The screening distance 
with mo~/m ~- 50 will be very small and the inter-ionic distance should be 
nowhere near the theoretical transition point (62). We believe the 
explanation may be as follows. InV203therearetwoelectronspervanadium 
atom. I f  there is metallic conductivity, one has to show tha t  correlation is 
small enough to allow V 3+ and V + to be formed as well as V ~+. The 
problem is familiar in the theory of ferromagnetism of the transition metals. 
Calculations show (Kanamori 1963, Hubbard 1964a, b) tha t  the electro- 
static energy required to change the number of carriers on one d shell is 
very large (ca. 10 ev). Various authors have suggested tha t  this energy is 
greatly reduced by screening by the s-electrons; the evidence has been 

One would not expect this at low enough temperatures according to current 
polaron theory (§ 4.3). 
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116 N . F .  Mort on 

reviewed by the present author (1964, 1965) and by Herring (1966). These 
arguments emphasize tha t  in the atomic state, for instance for nickel, the 
states 3dS4s 2, 3d94s and 3d TM have nearly the same energy. The suggestion 
tha t  we make here, that  the 2p band in oxides can do the same thing, is 
new ; but it seems to be necessary to explain metallic conductivity in V203 
and in similar materials. 

7.3. Solutions of Metals in Ammonia 

There is a very large literature on this subject extending back to the last 
century. Recent reviews are tha t  by Das (1962), the report of the 
' Colloque Weyl '  held at Lille in 1963 (Lepoutre and Sienko 1964), and 
articles by Thompson (1965) and Jortner and I~iee ( 1965). A brief discussion 
is given here both because metal-ammonia solutions provide one of the best 
known examples of the metal-non-metal  transition and because for dilute 
solutions the apparent formation of a cavity round a solvated (or rather 
ammoniated) electron is in marked contrast to the behaviour of electrons 
in most liquid semiconductors or metals. 

For dilute solutions of (say) sodium in ammonia, dissociation is nearly 
complete. The solvated electron gives an absorption spectrum with a 
peak in the neighbourhood of 0.8 ev (at - 70 °c) but with a long tail extending 
into the visible, which accounts for the blue colour by transmitted light. 
I f  the electron is thought to be in a cavity, a radius of 3 3~ would account for 
the volume expansion observed. The absorption band is thought to be an 
s-p  transition for the electrons in one of these centres and the electron spin 
resonance can be interpreted in these terms (Catterall and Symons 1964). 

Theoretical discussions of electrons in cavities have been given by 
several authors (Jortner et al. 1964, O'l~eilly 1964). I t  is not emphasized in 
all these papers that  a cavity can only form if the energy of an electron in 
t h e '  conduction band '  of ammonia, with random orientation of the dipoles, 
is positive, taking the energy of an electron at rest in free space as zero ; the 
energy of an electron is then lowered by expansion of the liquid. Jortner 
et al. (1965) recognize this in their work on '  bubbles' formed by electrons in 
liquid helium, expressing it in terms of the ' scattering length'  l for the 
in teraet ionofaneleet ronwiththehel ium atom ; the energy ofan electron in 
the conduction band is then V = 2~rh2l/m~, where f2 is the atomic volume. 
The authors give evidence to suggest that  V is positive for helium and neon, 
but  negative for argon, which agrees with direct calculations of the band 
structure by Matthiess (1964); bubbles are not formed by electrons in 
argon (§ 6.2), and the Ramsauer effect is not observed in helium or neon. 
In  helium I or I I  interesting effects due to zero-point motion and super- 
fluidity occur, which will not be discussed here (Kuper ]961, Clark 1965, 
Jor tner  et al., loe. cir.). 

]~eturning to the cavity in liquid ammonia, a potential well as illustrated 
in fig. 33 would seem appropriate ; outside the cavity of radius a, supposed 
~o contain the electron, the ammonia will be polarized ; the field will be 
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Electrons in Disordered Structures 117 

e2/K@ and the potential of the electron there is -@(1/K 0 -  1/K)/r. The 
energy of the system is made up of: 

(1) potential energy of electron - (~1 + e2/%a), 

(2) polarization energy of ammonia ½@/%a, 

(3) kinetic energy of electron )~2/2ma2, 

(4) surface energy of hole 4rrya 2, 

where y is the surface energy. The radius a will be determined by mini- 
mizing the sum of these, though a correction to the assumption era dielectric 
constant independent of field will be necessary (compare O'geilly 1964). I t  
will be noted tha t  the magnitude of V does not affect the size of the cavity ; 
but the cavity will only be stable compared with a polaron type of trapping 
without cavity formation if ~] > 47rya 2. Taking the observed value of 
y(32erg/em2), and a radius of 4£, this would be satisfied if ~ >0.3ev 
(Jortner, lee. cir., p. 236). 

V(r) 

Fig. 33 

r 

S I 
Poteutial energy of au electron in a cavity ia ammonia or water. 

Blandamer et al. (1964) point out tha t  the absorption spectra of iodine 
ions in NH a has a maximum at hv=4 .0ev ;  the difference 4.0-0.8ev 
corresponds closely to the electron affinity of iodine, as we should expect, 
assuming that  the position of the 2p level is determined by the Coulomb 
part of the field. In water both maxima are shifted by 0.8 ev to higher 
frequencies ; we surmise 

T] w~ter - -  ~ a m m o n i a  = 0"  8 .  

The conduction band of water must thus have positive energy of at least 
1.1 ev. 

Turning now to mobilities, at low concentrations the electron doubtless 
moves like a heavy ion, carrying its polarized cloud with it. I t  has however 
been known for some time tha t  the mobility of a solvated electron is higher 
than would be given by Stokes' law for the polarized molecules round a 
cavity of the assumed size (for references see Berns 1965). Probably 
individual ammonia molecules rotate and move across the cavity (Evers 
and Longo 1966), but a quantitative description has not been given. 
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118 N . F .  Mort on 

At higher concentrations there is strong evidence tha t  diamagnetic 
entities are formed; the most direct is tha t  the number of free spins 
determined by e.s.u, or from the observed paramagnetism drops (Catterall 
and Symons ]964). Arnold and Patterson (1964b) discuss the various 
entities that  may form, in particular pairs of electrons trapped in a cavity, 
like an F'  centre in 1NaC1. I t  has been known since the early work of 
Kraus that  the conductivity per dissolved atom drops in this region (by a 
factor of order 3), so that  neutral entities (Na, Na2) must also be formed. 
Orgell et al. (1964) record a drop in the increase of volume per dissolved 
atom. 

At higher concentrations still there is a rapid increase in conductivity 
with concentration, which is shown in fig. 34. Arnold and Patterson 
(1964a, c) have suggested that  this may be a hopping process; if so it 
should be possible to describe it by a formula of the type : 

(~= ( ,e2/RkT) exp  ( -2R/a )  exp ( -  A W/IcT). 

This is what Arnold and Patterson do, finding good agreement with experi- 
ment i fa  is 2.54A, r is an electron rather than a phonon frequency and AW 
neglected. We believe there must be an activation energy for a hopping 
process in a polar solvent. Actually Kraus's values of da/dT which they 
quote show a sharp maximum for these concentrations; but the corres- 
ponding activation energy is only about 0.15 ev. This must correspond to 
the extra polarization round a doubly charged centre which has to be 
destroyed before the electron can jump ; it is rather surprising that  it is as 
small as this. 

We believe that  these observations probably should be described with a 
phonon frequency for v, and with a Boltzmann factor ; this means that ,  to 
obtain agreement with experiment, a must be larger than 2.54£. The 
observations could then be explained by an increase in ~ with concentration 
c, as c tends towards the value at  which the metal-non-metal  transition 
O c c u r s ,  

The Hall coefficient in this region has been measured by Kyser and 
Thompson (1965) and rises very rapidly with decreasing concentration. 
Since the very marked dependence of conductivity on concentration 
points strongly to some kind of hopping, this is evidence that  large 
Hall coefficients, do occur in this case~. 

At higher concent.rations a transition to the metallic state occurs ; this 
has been discussed iD terms of the author's theory (Mott 1961, Kyser and 
Thompson, loc. cir., Thnmpson 1965). But in view of the uncertainty about 
the model on the non-metallic side of the transition and also the large static 
dielectric constant, this seems a particularly difficult case about which to 
make quantitative predictions. However Sienko (1963), in a review of 
the solubility gap between the metallic and non-metallic phases, comes to 
the conclusion that  formulae (62), (63) describe the transition point well if 

~Dr. Thompson has informed me (March 1967) that there is some doubt 
about these observations. 
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Electrons in Disordered Structures 119 

formula (64) is used for the dielectric constant. Thompson (private 
communication) however has found recently that  increased temperature 
lowers the concentration at which the transition occurs, though it lowers 
K and thus the radius given by (64). The present author supposes tha t  this 
is because on the insulating side the centres are negatively charged and the 
polarization energy is lowered by large K. At low temperatures the solvated 
electron becomes more stable. 

10 4 
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Fig. 34 
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Electrical conductivity of concentrated sodium liquid ammonia solutions 
(Arnold and Patterson). The dots are experimental points, the full lines 
calculated in ways described in the authors' paper. 

Of particular interest is the observation (Kyser and Thompson, loc. cir.) 
tha t  in the metallic region near the transition point the Hall mobility is 
explicable only in terms of a mean free path less than the molecular size. 
This is discussed in terms of Hubbard's model (§ 7.1) by Mort (1966). I f  
the conductivity is given by formula (45), and if a small vMue of g arises 
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120 N . F .  Mort on 

through the approach to the transition, then apparent values of L less 
than the electron wavelength are acceptable. 

McDonMd and Thompson (1966) have measured the conductivity of 
the (crystalline) compound Li (NHs)a, which is metallic, having p N 0.3 t ~  cm 
at helium temperature.  

7.4. Metals in Molten Alkali  Halides 

This is another system in which the concentration of electrons can be 
varied. Their properties have been investigated particularly by Bronstein 
and Bredig (1958, 1961) and Bronstein et al. (1962). At the metM-rich 
end the resistivity increases linearly and rapidly with concentration of 
halogen; a theory of the scattering based on Ziman's theory has been 
given by Wilson (1963) and extended by Shimoji and Ichikawa (1966) 
which successfully accounts for the results, though Wilson's extrapolation 
to low concentrations of metal with calculated mean free path of order 
much less than the wavelength can hardly be correctS. The conductivity 
drops to ca. 10 a ohm/cm, with mean free path of order a, at roughly equal 
concentration of salt and metal. We should expect localized states to occur 
for lower concentrations of metal ; but  of course if they do we should expect 
some kind of polaron formation, which may be more important  in deter- 
mining the activation energy for hopping than the difference in energy of the 
states due to disorder. 

For low concentrations of metal, in the case for instance of KF  at 900 °c, 
the specific conductivity rises rapidly from the value for ionic conduction 
(4 ohm -1 cm -1) as the concentration rises above 2 or 3 tool. %. A theoretical  
calculation of the conductivity in this region has been given by l~ice (1961). 
I~ice treats the electron as localized on any one of the sodium ions and as 
hopping onto a neighbouring ion. He is able to estimate mobilities of 
order 0.1 cm2/v sec in agreement with experiment. 

7.5. Tungsten Bronzes 

We turn now to the discussion of the movement of electrons in the d band 
of a crystalline semiconductor, when the electrons are provided by donors 
in random positions (in contrast to the case of § 7.2). An example is 
provided by tungsten bronzes. These materials are non-stoichiometric 
compounds of the form MxW Q,  where M is usually an alkali metal and x 
can range from zero to near unity. Single crystals can be prepared large 
enough for electrical measurements. They are of interest because a 
metal -non-metal  transition occurs for x_~0.1, though whether this is a 
transition of the usual type has been questioned as we shall see. 

Crowder and Sienko (1963) have reviewed the properties of WO3; 
for the dielectric constants K 0 = 6.25, K = 1000. For the binding energy of 
an electron in a donor these authors take [D= meffe~/2h2K~fr 2 with Kc~ given 

t The considerations of this article suggest' that we have a hopping process ; 
the agreement with the calculated values must be fortuitous. 
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Electrons in Disordered Structures 121 

by  the  formula (64). They  s ta te  t h a t  exper iments  on l ight ly-doped WOa 
show t h a t  I D is 0.04 ev, and deduce moff/m = 1.2. Al though conduct ion is 
in a d band,  the effective mass does no t  seem to be large. 

A review of the  electrical propert ies  of  the  bronzes has been given b y  
Shanks et al. (1963). The conduc t iv i ty  of  a series is shown in fig. 35 ; we 
see t h a t  the conduc t iv i ty  is high, in the metallic range, for x >  0.24, and  
t ha t  it  depends lit t le on the  crystal  s t ruc ture  of  the  bronze or on the  
par t icu lar  alkali meta l  chosen. Figure 36, also from Shanks et al., shows 
the res is t iv i ty  of  a bronze wi th  small z ; the  behaviour  is t h a t  of a normal  
semiconductor  with ~ocexp ( - A E / k T )  and  A E = l / 3 0 e v .  This agrees 
wi th  the  results of  Crowder and  Sienko (1963) a l ready mentioned.  
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Electrical conductivity at 300°K versus x of metallic tungsten bronzes M:cW03 
where M is an alkali metM (Shanks et al.). 

B o t h  the analysis of the scattering, the high conduct iv i ty  and measure-  
men t  of the  densi ty  of  states to be ment ioned  below suggest  t h a t  the 
eondue t iv i ty  is not  in a nar row band and mo~ is about  1.5m ; the value  of 
K 0 is about  6.2 (Sawada and Danielson 1959) so t h a t  hydrogen radius m a y  be 
between 2-3  X, and  the screening radius similar. 

The  Hall  coefficient has been measured  b y  El lerbeck et ai. (1961) for 
concentra t ions  z > 0.5; t hey  deduce t h a t  one electron per sodium a tom 
contr ibutes  to the  Hal l  constant .  

Two theories have  been proposed to account  for the  t ransi t ion in the 
tungs ten  bronzes. Mackintosh (1963) suggests t ha t  this is a s t ra ight-  
forward  me tM-non-me tM transi t ion ; the normal  criterion (63) would give 
x = 0 . 1  for the transi t ion,  not  too far f rom 0-25 observed. Fuehs  (1965), 
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122 N . F .  Mort  on 

on the other  hand,  proposes a different theory.  The alkali a toms are on 
definite sites and the  a tomic radius is small ; he proposes : 

(a) Tha t  any  cluster in which all sites are occupied is a metal .  

(b) Any  unoccupied site acts like a macroscopic hole, and  the  effects of 
boundaries  are negligible. 

(c) No current  can pass unless clusters are in contact .  

Fig. 36 
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Resistivity of tetragonal Li0.097WO 3 ~s a function of T (Shanks et al.). 

Condition (c) leads to the  disappearance of  electrical conduct iv i ty  when  
x < 0.2 according to  calculations of  de Gennes et al. (1959, see also Domb and  
Sykes 1961). I f  this  is a t rue  criterion, it  is perhaps  surprising t h a t  
electrons cannot  ' t u n n e l '  be tween one cluster and another .  This m a y  be 
because each cluster is electrically neut ra l  and it will thus involve an electro-  
s tat ic  ac t iva t ion  energy due to image forces when two charged clusters are 
formed of order  (e2/~Coro), where r 0 is the size of the cluster. A similar model  
has been used in account ing for the  ac t iva t ion  energy observed in electrical 
conduct ion be tween metallic mieropart icles deposi ted on a non-conduc t ing  
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Electrons in Disordered Structures 123 

substrate" t- (Gorter 1951, Neugebauer and Webb 1962, Neugebauer 1964, 
Herman and Rhodin 1966). 

The evidence that  Fuchs puts forward in support of his model is the 
following : 

(1) The electronic specific heat (Vest st al. 1958) and Pauli paramagnetism 
(Greiner et al. 1962) have both been measured as a function o fx  for x > 0.5. 
The results show a linear rise with x. 

(2) The spin-latt ice relaxation time T 1 of the 23Na nucleus has been 
measured by Fromhold and Narath (1964) ; the relaxation time is found 
to be independent of x, suggesting that  the local density of states is not 
changing with x. 

The Fuchs model is obviously acceptable (if at all) only when the atomic 
radius a H is comparable with the interatomie distance. I t  should be 
particularly appropriate in narrow band materials. 

Finally we record that  Bierstedt et al. (1966) have recorded super- 
conductivity in certain tungsten bronzes. 

7.6. Titanates and Tantalates 

These materials differ from the tungsten bronzes in tha t  a condensed 
electron gas can be obtained at low temperature with a small number of 
donors. The reduced oxide Sr TiO 3 has been investigated by Frederikse 
et al. (1964). Here in the stoiehiometric oxide the t i tanium ion has lost 
all its four outer electrons. A degenerate gas with conductivity tending to a 
finite value at low temperatures forms on reduction if the concentration 
of electrons is greater than about 3 × 10 is cm -3. On the other hand, the 
effective mass deduced from the conductivity, Hall coefficient and Seebeck 
coefficient is about 10m, so in contradistinction to the tungsten bronzes 
conduction is in a fairly narrow band. The high frequency dielectric 
constant cannot be high, as the crystal is t ransparent  with forbidden energy 
gap 3.15 ev (Gandy 1959). On the other hand, the static dielectric constant 
is very high, 220 at room temperature  ()/[egaw 1957, p. 91, see also Barker 
1966, who has measured the temperature and frequency dependence). 
The low temperature mobility of the heavily-doped specimens is high 
( ~ 1000 cm~/v see) suggesting mean free paths of the order 500 £ and thus 
a good deal greater than the distance between centres. 

In  this paper and tha t  by Wemple (1965) unpublished results by Kahn, 
Frederikse and Becher are quoted in which band calculations have been 
made and a narrow conduction band based on Ti 3d orbitals found. These 
are reported briefly at the Paris semiconductor conference (Kahn and 
Leyendecker 1964). 

t The point made by the earlier of these authors, that current can only flow 
in an island film if charged islands are formed, and that this requires an 
activation energy, is questioned by Herman and Rhodin. The present author 
considers it to be correct; there should be some critical inter-particle distance at 
which the film ceases to behave as a continuous metallic film, and becomes a 
sort of semiconductor. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



124 N . F .  Mort  on 

Wemple  (1965) and  Wemple  et al. (1966) have  measured  the  behaviour  of  
reduced  KTaO 3 to see if the  subs t i tu t ion  of Ta  for Ti changes the s i tuat ions 
The  concentra t ion of  carriers lay in the range 3 × 1017 era-3-1019 em -3 and  a 
degenerate  electron gas existed over  the  whole range. The electronic 
ref ract ive  index is 2.3 ; the  stat ic dielectric cons tant  is v e ry  high, 4500 a t  
zero and circa 200 a t  room tempera ture .  The mobili t ies/z are higher t h a n  
for t i tanates ,  as the  following table  shows : 

N cm -a /~ (cm2/v sec) scat ter ing cross 
at  4°K section × 10 -16 cm 2 

3.5 × 10 t7 23 000 850 
2.4 × l0  ts 11 000 136 
1.3 × 1019 3 400 47 

The  higher mobilities are though t  to be consistent with a bigger over lap 
between the orbitMs of the Ta  ions. 

The existence of  degenerate  behaviour  in these l ight ly-doped narrow- 
ban d  semiconductors  shows t ha t  the high static dielectric constant  can 
p lay  an essential role ; the  field of the  charged ions is effectively neutral ised.  
We find this puzzling. I f  the  electron moves  slowly enough to polarize the  
medium round  it, i.e. to form a small p o l a r o n - - t h e  a t t rac t ion  between the  
ion and the electron will admi t t ed ly  be small (e2/s:r2). B u t  at  the  same t ime  
the  effective mass will be large. So the  condit ion for the  format ion  of  a 
metall ic phase will no t  be present.  The  problem needs fur ther  invest iga-  
t ion. Dr. M. L. Cohen has suggested to the au thor  t h a t  the  in te rac t ion  
between electrons due to coupling with the phonons  m a y  be sufficient to  
lower the  free energy of the  metallic s ta te  below t h a t  of the  s ta te  in which 
electrons are trapped1". 

The reduced oxide SrTiO 3 shows superconduct iv i ty  (Schooley et al. 
1964, Schooley et al. 1965) over  the  whole range 1018-10~tcarriers/cm a 
with t ransi t ion t empera tu res  in the  range 0.1 °K to 0"5°K. Theoret ica l  
discussions are given by  Cohen (1964). 

7.7. d-band Conduct ion in  Ferromagnet ic  Semiconductors  

Heikes and Chen (1964) have invest igated the  low t empera tu re  conduc-  
t iv i ty  of La  doped EuS ; each La  a tom contr ibutes  one electron, and the i r  
invest igat ions range f rom 1-10~o La. Their  results are shown in fig. 37. 
T h e y  conclude t ha t  a t  low t empera tu res  t h e y  are measuring i mp u r i t y -b a n d  
conduction,  due to compensat ion  f rom some unknown cause. The same 
will be t rue  at  high t empera tu res  above the  Curie point.  The  large increase 
in p obta ined  on going th rough  the  Curie point  t h e y  ascribe to  a m a r k e d  

t I t  is interesting that quite high concentrations of Li (20 atomic per cent, 
in NiO apparently do not give metallic conduction (Ksendzov et al. 1963) 
Kiode 1965, Austin et al. (1967). The activation euergy drops from circa 1.8 ev 
to about 0.2 ev and flattens off as the concentration increases. 
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Fig. 37 

narrowing of the band, with consequent shrinking of the radius of the 
orbitals of traps, as the magnetization decreases. Such a phenomenon has 
been predicted by Wolfram and Callaway (1962) who treat the interaction 
with magnons as narrowing the band, in the same way tha t  interaction 
with phonons does in polaron theory, but a theory applicable to tempera- 
tures above the Curie temperature does not seem to exist. 

E 
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Electrons in Disordered Structures 
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0 60 120 180 24.0 
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Observed values of p/T versus 1/T for the two La-doped EuS compounds 
(Heikes and Chert). (A) La0.osEu0+6S at 26.3°c, (B) La0.1Eu0.gS at 22.5%. 

Similar phenomena have been observed by Methfessel (1965) in a series 
of crystals of composition Eul_ x GdxSe. Both Eu and Gd have similar 4f 
shells but Eu has two other electrons (5d+6s) while Gd contains five. 
The conductivity is thus due to x electrons per selenium atom in a 5d band. 
He reports tha t  recent work by S. yon Molnar shows tha t  below the Curie 
temperature metallic behaviour persists down to x = 0.01, and at x = 0.05 
Hall measurements show 5x1019carriers/em 3. Recent unpublished 
measurements by J. D. Axe give K=9.52 and Ko=4.87. With these 
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126 I~. F. Mort on 

comparatively small values we have here also metallic behaviour at  a 
surprisingly low concentration, as in the materials considered in the last 
section. 

The review by Jonker and van Houten (1961) gives many examples of the 
similar effects of Curie or N6el points on the resistivity of transition metal 
oxides ; see Austin et al. (1967). 

7.8. Mobi l i t y  o f  Electrons in  a Semiconductor  where the Electron Gas 
is Degenerate 

There is a large literature on this subject. To relate it to the theory of 
resistivity of metals it is necessary to emphasize tha t  it could be treated by 
Ziman's (1961) theory if one assumes : 

(a) That the energies at the extremities of the conduction or valence 
band are of the form E = h~lc2/2me~--which is normally not true. 

(b) That the scattering can be given by the Born approximation. Since 
the distribution of centres will be almost random, one should take a(q) = 1 
in Ziman's formulae. This is the case for which Edwards (1958) has shown 
tha t  the Kubo-Greenwood formula leads exactly to the Ziman formulation 
to the second order in I V ] 2. 

The problem is of course related to tha t  of scattering by ionized impurities 
in a non-degenerate semiconductor, of which the first theory was tha t  of 
Conwell and Weisskopf (1950), Rutherford scattering with a cut-off at 
small angles, and the alternative Brooks-Herring treatment (Brooks 1951 ; 
see Debye and Conwell 1954) in which the field due to the ions is analysed 
into its Fourier components. In  the degenerate semiconductor the field 
of the randomly-distributed ions is screened, and in the Born approxima- 
tion at any rate a Ziman or Edwards treatment of scattering by individual 
centres randomly distributed and a Brooks-Herring t reatment  must be 
equivalent. 

As regards formulae for the scattering by a screened potential in a 
degenerate gas, tha t  given by Mort (1936) has been extended by Dingle 
(1955) and Mansfield (1956) and applied by them to degenerate semi- 
conductors. Mansfield finds for the mobility : 

where 

and 

t~ = 3eha/16~2e2me f (x ) ,  

f ( x )  =ln  (1 +x) - x / ( 1  + x) 

x = (h2K/melye2)(3n/87r) 1/~. 

The substance is only metallic if x > 4, so 

f ( x )  ,-, In x + 0 (x-2), 

and we expect t~ to vary with n as l / lnx.  A slow drop in the mobility is 
therefore to be expected with increasing n, as : 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in  Disordered Structures  127 

Mansfield plots observed mobility for InSb against concentration; 
the drop is faster than that  calculated. Mort and Twose (1961) took an 
unscreened Coulomb field extending up to half the inter-centre distance and 
compared their calculated mobilities with the data of Fritzsche for n- type 
germanium. Though they find in agreement with experiment tha t  the 
mean free path is of order of the inter-centre distance (so that  there is no 
question of weak scattering here), the mobility drops faster than predicted 
by theory. They suggest that  the core of the centre may play an important 
role. I f  the scattering cross section is independent of concentration n, one 
would expect 

t~ = e r / m  = e L / m v ,  

which is proportional to n 4/3. 
Gulyaev (1959) and Csavinszky (1962, 1963, 1964) are the only treatments 

known to the author which go beyond the Born approximation; these 
authors calculate the s-wave phase shift. 

Katz (1965) has given a recent discussion of the subject combined with 
experimental observations. This work includes investigations of stressed 
material;  the stress separates the three degenerate bands, so that  the 
resistivity due to electrons in a single band can be investigated. For  InSb 
Katz  concludes (in agreement with Mansfield, Mort and Twose, et cal.) that  
the resistivity of the unstressed material is very considerably (up to 10) 
above that  predicted by any theory, though the discrepancy becomes quite 
small (cos. 2) for the higher concentrations, and is much less marked for the 
stressed specimens. A very tentative explanation is that the proximity 
to the concentration at which an insulator transition occurs leads to a 
lowering of N ( E F )  as predicted by Hubbard  (1964a, ef. fig. 32), and 
therefore that  a factor g~ must be introduced into the conductivity 
formula. 

Katz et al. (1965) report a T 2 term in the electrical resistance of n-type 
degenerate germanium which they ascribe to electron-electron scattering 
type (Baber 1937; for a review see Mort 1964). This depends on the 
many-valley nature of the conduction band, and disappears when the 
valleys are separated by stress (Katz 1965). 

For compound semiconductors the static polarization of the lattice 
(shift of the ions) must be taken into account, using for instance the self- 
consistent quasi-static (Born-Oppenheimer) method of Simpson (1949) 
(formula 64). For this case we do not know of quantitative calculations, 
but  for large K we would expect strong screening by polarization. This 
effect is shown in the observations of Allgaier and Scanlon (1958) and 
Allgaier and Houston (1962) on mobilities in PbS, PbSe and PbTe. These 
compounds have very large values of K. The impurity scattering is very 
small and the mobilities may be as high as 800 000 em~/v sec. Also 
the mobility drops roughly as n 4/~, suggesting that  the electrostatic field 
of the eentres is negligible and it is only the core that  matters. The high 
mobilities observed by Wemple (1965) in KTaO.~ (ef. §7.6), another 

A.P.  ] 
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128 ST. F. Mott on 

substance of very high static dielectric constant, have already been 
mentioned and should have the same explanation. 

7.9. ~Magnetoresistance in Degenerate Bands 

Many semiconductors in which the electron gas is degenerate show a 
decrease in the resistance in a weak magnetic field. The effect was first 
observed by Fritzsche and Lark-Horovitz  (1955) and has been investigated 
by Sasaki (1965) and Sasaki et al. (1961). A theoretical explanation was 
first proposed by Toyozawa (1962 a, b, c) who starts from the argument of 
¥osida (1957) tha t  localized moments will lead to a negative resistance. 
I f  localized moments exist in the gas, the argmnent is elementary;  the 
scattering cross section by a magnetic impuri ty will depend on whether it 
and the conduction electron have parallel or anti-parallel spins. Since the 
current carried by conduction electrons with the two spin directions are in 
parallel, the resistivity when the magnetization is M will be of the form : 

p = eonst. 1 + eM + 1 - ~ 
/ 

=eonst.  (1-2c~ 2M e .. .).  

I t  is then argued tha t  in a random distribution of centres there will be 
certain regions where a localized moment of one or more Bohr magnetons 
will occur, just as localized moments can occur in d shells of Mn in Cu. To 
this he ascribes the effect. The normal positive magnetoresistance may 
take over at strong fields. 

The moments are thought  to exist at regions of low concentration, just as 
in Anderson's (1961) theory of localized moments on manganese atoms in 
copper for example. I f  so one would expect the effect to disappear at 
high concentration, and this is found to be the ease in heavily doped n- type 
silicon (Balkanski and Geismar 1966), but not according to Sasaki and 
de Bruyn Ouboter (1961) in germanium. 

At the lowest temperatures these authors have observed anomalies in 
the resistivity-temperature curve which Sasaki (1965) attributes to the 
Kondo effect caused by these moments. 

7.10. Impurity-band Conduction 

This term is used in a number of senses. Here we shall use it to mean the 
motion of an electron from one impurity centre to another, under conditions 
in which the overlap between the orbitals of neighbouring centres is great 
enough to allow tunnelling but not great enough for a transition to the 
metallic state to have occurred. The process can only occur if compensa- 
tion is present. I t  is usually but  not always a hopping process, but  always 
involves an activation energy ; we shall develop this theme in this section. 

The phenomenon later identified as impuri ty-band conduction was 
first observed by Hung (I950) and by Hung and Gleissman (1950, 1954). 
That  this process could only occur when compensation was present was 
first emphasized by Conwell (1956) and by Mort (1956). The work of 
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Electrons in Disordered Structures 129 

Fritzsche (1958, 1959, 1960) demonstrated experimentally the role of 
compensation. Mort (1956) was the first to emphasize tha t  the process 
involved an activation energy. This may occur in various ways, which have 
been analysed by a number of authors (Kasuya 1958, Kasuya and Koide 
1958, Miller and Abrahams 1960, 1961, Mort and Twose 1961, Mycielski 
1962 a, b). 

At low concentrations, the states will certainly be localized and motion 
will be by hopping. We may then consider two cases. 

(a) Very small compensation. Then we have a few vacancies in n-type 
centres (or electrons in p-type centres) which are bound to the nearest 
charged minority carrier. The binding energy will be AE = e2/r<R, where R 
is the distance between the two centres so that  R s ~ l /Nn~.  The number 
of free carriers will be proportional to exp(-½AE/lcT). The mobility, 
being due to a hopping process, will also contain an activation energy. 
This is the case considered by Mort (1956). 

(b) Moderate compensation. This is the case considered by Miller 
and Abrahams and probably covers most of the experimental material. All 
centres must now be treated on the same basis, and the energy difference 
AE between neighbouring centres will depend on the random electric 
fields due to charged centres of both types. I f  K is the degree of compen- 
sation, then for small K they find AE=(eSKoR)(1-l'35K1/a), where 
R = (4sAr,n~J3)-l/a. For larger values of K, AE drops to a fiat minimum 
(0.285 e2/Ko R) when K ~ ½. 

Miller and Abrahams find for the jump frequency between two states 
with energy difference AE (cf. Pollak and Geballe 1961, p. 1751). 

1/~ = 2 x 1012 (R/a) a/2 exp ( - 2R/a) tanh (AE/kT) 

where a is the hydrogenic radius of each state. I t  is clear that,  both 
through the exponential factors in the tanh and through the tunnelling 
factor exp ( -2R/a ) ,  the jump frequency differs greatly from one pair to 
another. In calculating the d.c. conductivity it is essential to take the 
easiest path for each carrier, and the d.c. conductivity will be determined 
essentially by the most difficult step. The d.c. conductivity is the result 
of an averaging process. Two points of particular interest emerge from 
the averaging of Miller and Abrahams : 

(a) the logarithm of the resistivity is proportional not to B bu~ to R 312. 

(b) the drop in the apparent activation energy AE with T, which should 
occur in a random hopping process, does not appear in their approximation. 

The iKall coefficient of impurity conduction in silicon and germanium 
has been investigated in the hopping region by Amitay and Pollak (1966). 
No Hall voltage was observed, and this has made necessary some revision 
of the averaging procedures of Holstein's (1961) theory. 

A further consequence of averaging procedures is that  the a.c. 
conductivity should be greater than the d.c. conductivity and increase 

A . P .  I'~ 
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130 N . F .  Mort on 

with frequency. This phehomenon has been investigated in detail both 
experimentally and theoretically by  Pollak and other authors (Pollak and 
Geballe 1961, Sewell 1963, Pollak 1964, 1965). 

We turn now to the so-called ' intermediate region' ,  tha t  between the 
metallic and the region described above. Pollak (1962) has pointed out 
tha t  observations of D'Altroy and Fan  (1956) on germanium at 4"2°K 
show a conductivity tha t  drops with frequency in the microwave region. 
This suggests tha t  the state of affairs described under (a) above can exist 
without the states in the impuri ty band becoming localized due to disorder. 
In  other words electrons or holes in the impuri ty band can in this case move 
by a non-hopping process, with a mean free path of normal type ; the 
observed activation energy for motion is then the energy required to 
separate the carrier (hole in n- type conductors) from the nearest negatively 
charged acceptor. 

We note tha t  this phenomenon is likely to occur for small compensations 
and for concentrations of impuri ty just on the insulator side of the transition. 

Infra-red measurements have given interesting evidence for the existence 
of these occupied and unoccupied localized states. Blinowski and 
Mycielski (1964, 1965) and Blinowski (1966) have given a detailed 
theoretical discussion of optical absorption by transitions between one 
localized state and another, when the orbitals overlap, and the phenomenon 
has been observed by Milward and Neuringer (1965). 

7.11. Glasses and Melts Containing Transition Metal Ions 

Electronic conductivity in these materials is a process very similar to 
impuri ty band conduction. I t  is of course necessary tha t  ions in two 
states of ionization should be present, for instance V 4+ and V 5+, or Fe ~+ and 
Fe a+. In  contrast to F%Oa, in glasses the ions may be far enough apart  
for tunnelling greatly to reduce the conductivity, and in contrast to 
impuri ty-band conduction, the activation energy for hopping is likely 
to be mainly that  for polaron formation; the term proportional to e2/KR 
will be small because of the comparatively high static dielectric constant K. 
We thus expect the conductivity to be of the form : 

= vG(1 - e) (e~/R leT) exp ( - 2~R) exp ( - W//cT), 

where v is a phonon frequency, R is the mean distance between the ions, 
c, ( 1 - c )  are the concentrations of the two valencies, ~ = ~/(2mH)/h, and 
H is the energy required to eject a d electron into the vaiencc band. The 
activation energy W will be made up to two terms ; the polarization energy 
which is half the polaron energy, namely 

l e a (  1 _ 1 
(65) ;/ . . . . . . . .  

and a term of the order e~/KR which will drop to a minimum when e = ½. 
r 0 is here the radius of a somewhat arbitrary sphere containing the ion. 
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Electrons in Disordered Structures 131 

As regards the thermoelectric power, the analysis of Heikes and Ure 
(1961) gives : 

(cf. § 4.4.) (h/e) (66) 

AS is the change of configurational entropy when a site is occupied by 
an electron, and has not been estimated numerically. I f  AS is neglected, 
the sign will be that  of an n-type conductor if c (the concentration of the 
ion with the mobile electron, e.g. Fe 2+) is less than 1. This analysis neglects 
any spread of energy levels due to the random term e2/~R. This as we have 
seen in § 4.4 might lead to a larger constant term and an additional term 
proportional to T. 

The numerical value of the quanti ty H can be roughly estimated from the 
position of the ' t ransfer '  absorption band of transition metal ions in 
glasses (Bates 1962), and is of the order 3-4ev. This would mean tha t  
the factor 2~ is 18 x l0 s cm -1 ; so, if a pair of ions is say 10 -7 em apart, 
exp ( - 2~R) is about 10 -s. 

Turning now to experiment, vanadate glasses have been investigated by a 
number of authors (Denton et al. 1954, Baynton et al. 1956, 1957, Munakata 
1960, Nester and Klingery 1963, l~oe 1965. The paper by Nester and 
Klingery deals with glasses of nominal composition from 50 to 90 °/o of V~05, 
the other constituents being BaO and P~O 5. The thermopower was found 
to fit formula (66) very well at room temperature, though there was some 
falling off at low temperatures. Activation energies W in a for various 
samples were as in the table, which shows also the high frequency dielectric 
constant (K0): 

W (ev) 0.295 0.33 0.392 0.418 0.443 
K o 4.05 3.72 3-35 3.22 3-15 

The correlation between W and K o and the order of magnitude strongly 
suggest polaron formation according to formula (65). The static dielectric 
constant was very temperature-dependent and in the range 15 to 50. 

There was however some dropping off in the activation energy at high 
temperatures, suggesting tha t  the activation energy might vary from pair 
to pair. In glasses the positions of the ions will not of course be random. 
As regards the tunnel factor, Dr. P. B. Banks (private communication) 
has plotted logic p against the cube root of the ratio of oxygen to vanadium 
and obtained as expected a fairly straight line ; it is hoped to publish these 
results in a subsequent paper. 

Hansen (1965) has made measurements on iron phosphate glasses with 
controlled values ofc (ratio of Fe~+/Fe) from 0.12 to 0.85. The thermopower 
is independent of T in the range 150 to 350°o, and satisfies (66) roughly, 
changing sign as c is increased; but AS is not zero. The resistivity at 
200°c rises by six orders of magnitude as the concentration of FeO is 
decreased from 55% to 5%, doubtless due to the tunnel factor, but it is 
curious that  for the 55% composition the author finds agreement with 
formula (65) without introducing a tunnel factor. A plot of resistivity 

K 2  
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132 N . F .  Mott on 

against composition shows a broad minimum round c -  ~ 0.5. At 200°c the 
minimum is at least ten times deeper than the formula {c(1 - c)} -1 predicts. 
If~his is due to random fields, as in impurity conduction, a short calculation 
using the formulae of Miller and Abrahams (1960) gives e2/KR~O.2ev, 
which seems reasonable given static dielectric constants of from 10-20. 
Thus a significant part, say 20% of the activation energy for hopping may  
be due to this cause. 

ACKNOWLEnGMEIVTS 

The author would like to acknowledge the help received from many 
colleagues with whom he has discussed ~he subject matter  of this paper, 
particularly 1~. S. Allgaier, P. B. Banks, G. Busch, M. L. Cohen, N. Cusack, 
S. F. Edwards, T. E. Faber, B. I. Halperin, V. Heine, A. E. Owen, A. B. 
Pippard, M. Pollak, J. Stake, J. Tauc, J. C. Thompson, J. M. Ziman. 

I~EFERENCES 
ADAMS, A. R., GIBBO~S, D. J., and SPEAa, W. E., 1964, Solid St. Commun., 2, 

387, Electron hopping transport in orthorhombic S crystals. 
AD~s, A. i~., and S~EAR, W. E., 1964, J. Phys. Chem. Solids, 25, 1113, The 

charge transport in orthorhombic sulphur crystals. 
ADLEY¢, D., and ]~B, OOKS, H., 1965, Physics of Solids at High Pressures, edited 

by C. T. Tomizuka and R. M. Emriek (New York: Academic Press), 
p. 567, Theory of semiconductor to metal transition. 

ADLER, D., and FEI~mmB, J., 1964, Phys. Rev. Lett., 12, 700, Semi-conductor- 
to-metal transition in V~O a. 

ALLC~tlER, R. S., and I-IousTox, B. B., 1962, Int. Conf. Phys. Semicond. (Exeter 
1962) (Institute of Physics and The Physical Society), p. 172, Mobility 
studies in semiconductors with very high carrier densities. 

ALLGAIEa, R. S., and S o , L o s ,  W. W., 1958, Phys. Rev., I l l ,  I029, Mobility of 
electrons and holes in PbS, PbSe and PbTe between room temperature 
and 4.2°K. 

Ar~IT~_Y, 3/[., and POLLaK, 3/[., 1966, Int. Conf. Phys. Semicond. (Kyoto 1966), 
J. Phys. Soc. Japan, Supplement 21, 549, An experimental investigation 
of the Hall effect in the hopping region. 

ASVDE~SON, P. W., 1958, Phys. Rev., 109, I492, Absence of diffusion in certain 
random lattices; 196I, Ibid., 124, 41, Localized magnetic states in 
metals; 1963, Solid St. Phys., 14, 99, Theory of magnetic exchange 
interactions : Exchange in insulators and semiconductors. 

Asri~tLV, A. O. E., 1967, Adv. Plays., 16, The pressure dependence of the 
electrical resistivity, thermopower and phonon dispersion in liquid 
mercury (in the press). 

AlVlMALV, A. O. E., and 1-InnVE, V., 1965, Phil. Mat., 12, 1249, The screened 
model potential for 25 elements. 

AernL, J., 1966, Phys. Rev., 1ell, 506, Remark on the hopping transition 
probability of polaron holes in NiO. 

ARNOLD, E., and PATTEI~SON. A., 1964 a, Solutions Mdtal-Ammoniac Propridtds 
Physicochimiques (Colloque Weyl 1963), edited by G. Lepoutrc and M. J. 
Sienko (New York: W.A. Benjamin), p. 160, Calculation of conductivity 
in sodium-liquid ammonia solutions ; 1964 b, J. chem. Phys., 41, 3089, 
Electronic processes in solutions of alkali metals in liquid ammonia. 
I. A model including two diamagnetic species ; 1964 c, Ibid., 41, 3098, 
II. Electrical conductivity. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 133 

ASJ~CRO~T, N. W., and LEXNER, J., 1966, Phys. Rev., 145, 83, Structure and 
resistivity of liquid metals. 

AUSTrX, I. G., 1962, Phil. Mat., 7, 961, Effect of pressure on the metal-to- 
insulator transition in V20 a. 

AUSTIN, I. G., SPRINGTHORPE, ~k. J., SMITI-[, B. A., and TU~NE~, C. E., 1967, 
Prec. phys. See., 90, 157, Electronic transport phenomena in single 
crystal SiC and CoO. 

BABE~, W. G., 1937, Prec. R. Soc. A, 158, 383, The contribution to the electrical 
resistance of metals from collisions between electrons. 

:BALKANSKI, M., and Gms).~ta, A., 1966, Solid St. Commun., 4, 111, Transport 
properties of heavily doped n-type silicon. 

:BALLENTINE, L. ]~., 1966, Canad. J. Phys., 44, 2533, Calculation of the electronic 
structure of liquid metals. 

BASrYAI, L., 1964, Physique des Semi-conducteurs (Paris: Dunod), p. 417, On the 
theory of electric conduction in amorphous semiconductors. 

BAxYAI, L., and ALDEA, A., 1966, Phys. Rev., 143, 652, Theory of the I-Iall effect 
in disordered systems: Impurity-band conduction. 

:BARKER, A. S., 1966, Phys. Rev., 145, 391, Temperature dependence of the 
transverse and longitudinal optic mode frequencies and charges i,  
SrTiOs and BaTiO s. 

:BARTJ~, N., 1955, Z. Phys., 149,, 58, Supraleitung und elektrischer Widerstand 
aufgedampfter Wismutschichtea. 

BATES, T., 1962, Modern Aspects of the Vitreous State, Vol. 2, edited by J. D. 
Mackenzie (Butterworths), p. 195, Ligaad field theory and absorption 
spectrum of tral~sition metal ions in glasses. 

:BAYNTON, P. L., I:~AWSO~, I-[., and STAN'WOI~TIt, J. E., 1956, Nature, Lend., 178, 
910, Glasses based on the oxides of molybdenum, tungsten and uranium; 
1957, J. electroehem. See., 104, 237, Semiconducting properties of some 
vanadate glasses. 

BEAGLEtIOLE, D., 1965, Phys. Rev. Lett., 15, 551, Reflection studies of cxcitons in 
liquid and solid xenon. 

BEANS, D. S., 1965, Adv. Chem. Set., 59, 82, Electrical transport properties of 
metal-ammonia and metal-amine solutions. 

BgATI~, A. :B., and KmSJ~NAN, K. S., 1948, Prec. R. See. A, 194, 185, ' Diffuse 
scattering ' of the Fermi electrons in monovalent metals in relation to 
their electrical resistivities. 

:BIEESTEDT, P. E., :BITHER, T. A., and DARNELL, F. J., 1966, Solid St. Commun., 
4, 25, Superconductivity of some new hexagonal tungsten bronzes. 

:BLA~DAMER, M. J., CATTERALL, 1~., SHIELDS, J~., and SYMo~s, M. C. 1%., 1964, 
J. chem. Soc., 4357, Unstable intermediates. Part XXIV. Solvated 
electrons: a confined model. 

:BLIZUOWSKI, J., 1966, Phys. Rev., 147, 547, Induced dichroism in n-type Ge 
under high [111] compression at 0°K. 

:BnlXOWSKI, J., and MYClELSKI, J., 1964, Phys. Rev. A, 136, 226, Theory of 
absorption of electromagnetic radiation by hopping in n-type silicon and 
germanium; 1965, Ibid., A, i40, 1024, Theory of absorption of electro- 
magnetic radiation by hopping in n-type silicon and germanium. II. 

BLUM, F. A., and DEATON, :B. C., 1965, Phys. Rev., 137, 1410, Properties of the 
group VIB elements under pressure. II. Semiconductor-to-metal 
transition of tellurium. 

DE BOER, J. l-L, and VJ~aWEY, E. J. W., 1937, Prec. phys. See., 49, 59, 
Semiconductors with partially- and with completely-filled 3d-lattice 
bands. 

:BONCH-:BaUEVlCH, V. L., 1964, Fizika tverd. Tela, 5, 1852. Translation: 
Soviet Phys. solid St., 5, 1353, Theory of heavily doped semiconductors. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



134 1~. F.  ~ o t t  o n  

BORLAND, 1% E., 1961, Proc. phys. Soc., 78, 926, Existence of energy gaps in 
one-dimensional liquids; 1963, Proc. R. Soc. A, 274, 529, The nature of 
the electronic states in disordered one-dimensional systems. 

BORLA~D, 1%. E., and BIRD, N. F., 1964, Proc. phys. Soe., 83, 23, A calculation of 
the density of electron states and degree of localization in a one-dimen- 
sional liquid metal. 

BOSMAN, A. J., and CREVECOEUR, C., 1966, Phys. Rev., 144, 763, Mechanism of 
the electrical conduction in Li-doped NiO. 

BRADLEY, C. C., 1966, Phil. Mat., i4, 953, The effect of pressure on the resis- 
tivity and thermoelectric power of liquid mercury-indium alloys. 

BRADLEY, C. C. FABER, T. E., WILSON, E. G., and L i l l y ,  J. M., 1962, Phil. 
Mat., 7, 865, A theory of the electrical properties of liquid metals. II. 
Polyvalent metals. 

BRANI)T, G. B., and RA~E, J. A., 1966, Phys. Rev., 148, 644, de Haas-van 
Alphen effect in mercury. 

BRO~STEIN, H. R., and BREDIG, M. A., 1958, J. Am. chem. Sou., 80, 2077, The 
electrical conductivity of solutions of alkali metals in their molten 
halides; 1961, J. phys. Chem., 65, 1220, The electrical conductivity of 
solutions of metals in their molten halides. II. Sodium-sodium iodide, 
potassium-potassium iodide, and potassium-potassium fluoride. 

BRONST]~IN, H. R., Dwo~:IN, A. S., and BREDIG, M. A., 1962, J. chem. Phys., 
37, 677, Electrical conductance of solutions of salts in liquid metals. II. 
Potassium fluoride and bromide in potassium. 

BROOKS, H., 1951, Phys. Rev., 83, 879, Scattering by ionized impurities in 
semiconductors. 

BRow~, F. C., 1963, Po[arons and Exeitons, edited by C. G. Kuper and G. D. 
Whitfield (Edinburgh: Oliver & Boyd), p. 323, Experiments on the 
polaron. 

BUBE, •. H., and MACDONALD, H. E., 1962, Phys. Rev., 128, 2062, Temperature 
dependence of photo-Hall effects in high-resistivity gallium arsenide. 
I. One-carrier effects. 

BUCKEL, W., 1954, Z. Phys., 138, 136, Elektronenbeugungs-Aufnahmen yon 
diianen Metallschiehten bei tiefen Temperaturen. 

BUCKEL, W., and HILSC~, 1%., 1954, Z. Phys., 138, 109, Einfluss der Kondensa- 
tion bie tiefen Temperaturen auf den elektrischen Widerstand und die 
Supraleictung ffir verschiedene Metalle. 

BUSCH, G., and GlJlVTttERODT, H.-J., 1966, Helv. phys., Acta, 39, 198, Hall- 
koeftlzient, etektrischer Widerstand und Elektronenstruktur fltissiger 
Ag-In-Legierungen. 

Busc~, G., and MOLDOVAlVOVA, M., 1962, Helv. phys. Aeta, 35, 500, ttalbleitende 
Eigenschaften des Mg2Pb. 

BuscI~, G., and TIkCHE, ¥., ]963, Phys. Kondens. Materie, 1, 78, Resistivit6 
61ectrique et effet Hall de m6taux et semiconducteurs fondus. 

BUSCtiERT, R., GEIB, I. G., and LARK-HOROVITZ, K., 1955, Phys. Rev., 98, 
1157, Structure of liquid tellurium. 

CALLEN, E., 1966, Phys. Rev., 150, 367, Magnetic properties of magnetite. 
CATTERALL, 1%., and SYMONS, M. C. R., 1964, Solutions Mdtal-Ammoniac 

Propridtds Physieochimiques (Colloque Wyel 1963), edited by G. Lepoutre 
and M. J. Sienko (New York: W. A. Benjamin), p. 277, The effect of 
added electrolytes on the electron spin resonance absorption of solutions 
of the alkali metals in liquid ammonia. 

CATTERALL, J. A., and TROTTER, J., 1963, Phil. Mag., 8, 897, The soft x-ray L~a 
emission spectrum from liquid aluminium. 

CLARK, R. C., 1965, Physics Lett., 16, 42, Self-trapped electrons in liquid 
helium II. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 135 

CoI4~, M. L., 1964, Phys. Rev. A, 134, 511, Superconductivity in many-valley 
semiconductors and semimetals. 

CO]~EN, M. II., and L~:~ER, J., 1967, Phys. Rev., Theory of ho~ electrons 
in gases, liquids and solids (in the press). 

CO,WELL, E. M., 1956, Phys. Rev., i03, 51, Impurity band conduction in 
germanium and silicon. 

CO.WELL, E., and WEISSKOP~, V. F., 1950, Phys. Rev., 77, 388, Theory of 
impurity scattering in semiconductors. 

C~owD~, B. L., and SIE~KO, M. J., 1963, J. chem. Phys., 38, 1576, Some solid 
state studies of tungsten trioxide and their significance to tungsten 
bronze theory. 

CSAYINSZKY, P., 1962, Phys. Rev., 126, 1436, Treatment of ionized impurity 
scattering in degenerate semiconductors. Application of the variational 
technique in the partial-wave method; 1963, Ibid., 131, 2033, Treatment 
of ionized impurity scattering in degenerate semiconductors. Combina- 
tion of the variational and perturbational technique in the partial-wave 
method; 1964, Ibid., 135, AB3, Treatment of ionized impurity scattering 
in degenerate semiconductors. Combination of the variational and 
perturbational technique in the partial-wave method. Errata. 

Cus•cK, N. E., 1963, Rep, Prog, Phys., 26, 361, The electronic properties of 
liquid metals. 

CusAc~:, N., KESrmtLL, P., and FIELDE~, M., 1964, Phil. Mat., 10, 871, Electron 
transport properties in a liquid alloy. 

CUTLEa, M., and M~LLO~, C. E., 1962, J. chem. Phys., 37, 2677. Thermoelectric 
study of liquid semiconductor solutions of tellurium and selenium; 1965, 
J. appl. Phys., 36, 201, Thermoelectric properties of liquid semiconductor 
solutions of thallium and tellurium; 1966, Phys. Rev., 144, 642, Elec- 
tronic properties of liquid semiconductor solutions of thallium and 
tellurium. 

D'ALT~OY, F. A., and FAx, I-I. Y., 1956, Phys. Rev., 103, 1671, Effect of neutral 
impurity on the microwave corLductivity and dielectric constant of 
germanium at low temperatures. 

DAxcY, E. A., 1965, Trans. metall. Soc. A.I.M.E., 233, 270, Electrical conduc- 
tivity and Seebeck coefficients of molten CuTe, Ag-Teand Sn-Te systems. 

DA~rcy, E. A., and DERGE, G. J., 1963, Trans. metall. Soc. A.I.M.E., 227, 1034, 
Electrical conductivity of the molten Co-S, Ni-S, Cu-S, and Ag-S systems. 

DAxmov, A. V., and MYULLEI~, 1~. I~., 1962, Zh. prikl. Khim., 35, 2012, 
Electrical conductivity in the system AsSe~.5-Cu in the vitreous state. 
Translation J. appl. Chem. USSR. 

D~s, T. P., 1962, Adv. chem. Phys., 4, 303, Structure and properties of metal- 
ammonia solutions. 

DAy, G., 1966, Prec. phys. See., 87, 223, Estimate of the conductivity of a one- 
dimensional disordered chain. 

DEBy~, P. P., and CONW]~LL, E. M., 1954, Phys. Rev., 93, 693, Electrical proper- 
ties of n-type germanium. 

DEspot, E. P., I~Awso~, It., and ST~WOgTH, J. E., 1954, Nature, Lend., 173, 
1030, Vanadate glasses. 

DIXGL~, 1~. B., 1955, Phil. Mag., 46, 831, Scattering of electrons and holes by 
charged donors and accepters in semiconductors. 

])OINIKOV, L. I., and Boglsova, Z. U., 1966, Solid St. Chem., g. L. Myuller, 
edited by Z. U. Borisova (New York: Consultants Bureau), p. 59, 
Influence of certain impurities on the electric conductivity of arsenic 
selenides. 

DOMB, C., and SYKES, 3/[. F., 1961, Phys. Rev., 122, 77, Cluster size in random 
mixtures and percolation processes. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



136 N . F .  Mort on 

Dvwnz, P., WILLENS, R. H., and CI~:EWDSON, 1~. C., 1965, J. appl. Phys., 36, 
~2267, Amorphous phase in palladium-silicon alloys. 

EDMOND, t]-. T., 1966, Central Electricity I~eseareh Lab. (RD/L/N12/66), 
Electronic conduction in As2S%, A%S%Te and similar materials. 

EDWAt~DS, S. F., 1958, Phil. Mug., 3, 1020, A new method for the evaluation of 
electric conductivity in metals; ] 961,1bid., 6, 617, The electronic structure 
of disordered systems; 1962, Proc. R. Soc. A, 267, 518, The electronic 
structure of liquid metals. 

ELLERBECK, L. D., SI:[ANKS, ]~. R., SIDLES, P. I-I., and ])ANIELSON, G. C., 1961, 
J. chem. Phys., 35, 298, Electrical resistivity of cubic sodium tungsten 
bronze. 

ENDE~BY, J. E., NOrTh, D. M., and EG~LSTA~, P. A., 19660 Phil. Mug., 14, 961, 
The partial structure factors of liquid Cu-Sn. 

E~D~B¥, J. E., TITIAN, J. M. and WIGNXLL, G. D., 1964, Phil. Mug., 10, 633, 
The Pauli susceptibility of liquid and solid lithium. 

END~RBY, J. E., and WALSH, L., 1966, Phil. Mug., 14, 991, Electrical properties 
of some liquid semiconductors. 

ENG~LL, I-I.-J., 1966, Tech. Mitt. Krupp, 24, 1, Ziele und Wege der metallur- 
gischen Forschung. 

EY~,~s, E. C., and LoNGo, F. R., 1966, J. phys. Chem., 70, 426, The conductance 
of dilute solutions of lithium in liquid ammonia at - 71 °. 

FABle, T. E., 1966, Optical Properties and Electronic Structure of Metals and 
Alloys (Paris Conference 1965) edited by F. AbelSs (Amsterdam: North- 
Holland Publishing Company), p. 259, Optical properties of liquid 
metals; 1967, Adv. Phys., 15, 547, The theory of the electrical conductivity 
of liquid metals. 

F~B~, T. E., and ZIM~, J. M., 1965, Phil. Mug., 11, 153, A theory of the 
electrical properties of liquid metals. III. The resistivity of binary alloys. 

FEINLEIB, J., and PAUL, W., 1965, Physics of Solids at High Pressures, edited 
by C. T. Tomizuka and 1~. M. Emrick (New York: Academic Press), 
p. 571, Semiconductor to metal transition in V208. 

Fn~sov, Yu A., 1963, Fizika tverd. Tela, 5, 2149. Translation: Soviet Physics 
Solid St., 1964, 5, 1566, Theory of the Hall effect in low-mobility semi- 
conductors. 

FRANCK, E. U., and I-IENS:EL, F., 1966, Phys. Rev., 147, 109, Metallic conduc- 
tance of supercritieal mercury gas at high pressures. 

~I~EDERIKSE, H. P. R., THUI~BE~, W. 1~., and HOSL~, W. R., 1964, Phys. Rev. 
A, 134, 442, Electronic transport in strontium titanate. 

F~IEDMAN, L., 1964, Phys. Rev. A, 133, 1668, Transport properties of organic 
semiconductors. 

F~IEDMAN, L., and HOLSTEIN, T., 1963, Ann. Phys., 21, 494, Studies of polaron 
motion. Part III. The Hall mobility of the small polaron. 

Fl~iSCn, H. L., and LLOYD, S. P., 1960, Phys. Rev., 120, 1175, Electron levels 
in a one-dimensional random lattice. 

FnlTZSC~, H., 1958, J. Phys. Chem. Solids, 6, 69, Resistivity and Hall coefficient 
of antimony-doped germanium at low temperatures; 1959, Phys. Rev., 
115, 336, Piezoresistance of n-type germanium; 1960, 1bid., 119, 1899, 
Effect of shear on impurity conduction in n-type germanium. 

FRITZSCH]~, H., and L~K-HO~OVITZ, K., 1955, Phys. Rev., 99, 400, Electrical 
properties of p-type indium antimonide at low temperatures. 

F~O~LIC~, It., 1947, Proc. R. Soc. A, 188, 521, On the theory of dielectric 
breakdown in solids; 1954, Adv. Phys., 3, 325, Electrons in lattice fields; 
1963, Polarons and Excitons, edited by C. G. Kuper and G. D. Whitfield 
(Edinburgh: Oliver & Boyd), p. 1, Introduction to the theory of the 
polaron. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 137 

FI~OMI-IOLD, A. T., and NARAT~, A., 1964, Phys. Rev. A, 136, 487, Transient 
nuclear magnetic resonance study of the conduction band of metallic 
NaxWOa: 2aNn relaxation. 

FucHs, R., 1965, J. chem. Phys., 42, 3781, Electronic properties of the tungsten 
bronzes. 

GANDY, I-I. W., 1959, Phys. Rev., 113, 795, Optical transmission of heat-treated 
strontium titanate. 

DE GENNES, ~:). G., LAFORE, ~)., and MILLOT, J. P., 1959, J. phys. Chem. Solids, 
11, 105, Areas accidentels duns les solutions solides d6sordonn6es. 

GIBSON, A. F., 1951, Proc. phys. Soc. B, 64, 60, The sensitivity and response time 
of lead sulphide photoconductive cells. 

GI]~Bo~s, D. J., and S~E~, W. E., 1966, J. Phys. Chem. Solids, 27, 1917, 
Electron hopping transport and trapping phenomena in orthorhombic 
sulphur crystals. 

GLARUM, S. H., 1963, J. Phys. Chem. Solids, 24, 1577, Electron mobilitics in 
organic semiconductors. 

GORT~R, C. J., 1951, Physica, 17, 777, A possible explanation of the increase 
of the electrical resistance of thin metal films at low temperatures and 
small field strengths. 

GREnN~IELI), A. J., 1964, Phys. Rev. A, 135, ]589, Hall coefficients of liquid 
metals; 1966, Phys. Rev. Lett., 16, 6, Experimental evidence for the 
inadequacy of the basic formula for the electrical resistivity of a liquid 
metal. 

GREENWOOD, ]). A., 1958, Proc. phys. Soc., 71, 585, The Boltzmann equation 
in the theory of electrical conduction in metals. 

GREINER, J. D., SItANKS, H. ~.,  and ~VALLACE, D. C., 1962, J. chem. Phys., 36, 
772, Magnetic susceptibility of the cubic sodium tungsten bronzes. 

GRmoRoviei, P~., CnOITORU, N., D~v~NYI, A., and TELEMAN, E., 1964, Physique 
des Semi-conducteurs (Paris: Dunod), p. 423, Band structure and elec- 
trical conductivity in amorphous germanium. 

GUBANOV, A. I., 1963, Quantum Electron Theory of Amorphous Conductors 
(New York: Consultants Bureau, 1965). 

GULYAEV, YV V., 1959, Fizil~a tverd. Tela, 1, 422, Translation: Soviet Physics 
Solid St., 1959, 1, 381, The problem of the scattering of charge carriers at 
impurity centers. 

1=[ALDER, N. C., ~V[ETZGER, 1:~. J., and WAGN]~R, C. N. J., 1966, J. chem. Phys., 
45, 1259, Atomic distribution and electrical properties of liquid mercury- 
thallium alloys. 

HALP~RIN, B. I., 1967, Adv. chem. Phys., Properties of a particle in a one- 
dimensional random potential (in the press). 

HaLrm~ISr, B. I., and L~x, M., 1966, Phys. Rev., 148, 722, Impurity-band 
tails in the high-density limit. I. Minimum counting methods. 

]-I~NN~Y, N. B. (editor) 1959, Semiconductors (New York: gheinhold Publishing 
Corporation). 

ItA~s~N, K. W., 1965, J. electrochem. Soc., 112, 994, Semiconduction in iron 
phosphate glasses. 

HARRISON, W. A., ]966, Pseudopotentials in the Theory of Metals (New York: 
W. A. Benjamin). 

I-IARTKE, J. L., 1962, Phys. Rev., 125, 1177, Drift mobilities of electrons 
and holes and space-charge-limited currents in amorphous selenium 
films. 

H]~n<Es, 1%. R., and C~InN, C. W., 1964, Physics, 1, 159, Evidence for impurity 
bands in La-doped EuS. 

HEIKES, R. 1%. and URE, 1%. W., 1961, Thermoelectricity (New York: Inter- 
science), p. 81. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



138 1~. F. Mott on 

I-I~I1~, V., 1965, Phys. Rev.,-A, t38, 1689, Theory of surface states; 1966, Ibid., 
145, 593, Phase shifts and local charge neutrality in semiconductors. 

I-I~I~n, V., and WE~tlI~E, D., 1966, Phys. Rev., 152, 603, Structure of di- and 
trivalent metals. 

HE~sEI~, F., and FRANCK, [E. U., 1966, Bet. Bunsenges. Phys. Chem. 70, 1154, 
Elektrische Leitf~higkeit und Dichte yon iiberkritischem, gasf6rmigem 
Quccksilber unter hohen Drucken. 

I-I]~I~MA~, S. D., and l~aoI)I~, T. N., 1966, K. appl. Phys., 37, 1594, Electrical 
conduction between metallic microparticles. 

ItEratING, C., 1966, Magnetism, IV, edited by G. T. l~ado aud I-I. SuM (New 
York: Academic Press), Chap. IX, Exchange interactions among 
itinerant electrons. 

I-IEYWA~G, W., 1963, Z. angew. Phys., 16, l, Der Verlauf des komplexen wider- 
standes yon BaTiOa-KaltleiterI1 als Best~tigui~g des Sperrschichtmodells. 

HIt~OlI~E, K., 1965, Phys. Rev. A, 138, 422, Electron energy gaps in a otto- 
dimensional liquid. 

HIRSCI~, J., 1966, J. Phys. Chem. Solids, 27, 1385, A simple ambipo]ar model for 
the electron-bombardmeut induced conductivity in amorphous arserdc 
trisulphide. 

HODGSO~, J. N., 1963, Phil. Mug., 8, 735, The optical properties of liquid 
tellurium. 

HOLSTEIn, T., 1959, Ann. Phys., 8, 343, Studies of polaron motion. Part II. 
The ' small ' polaron; 1961, Phys. Rev., 124, 1329, Hall effect in impurity 
conduction. 

HOl~I, J., 1966, Prog. theor. Phys., Suppl. No. 36, 3, Phase theory of disordered 
systems. 

HOW~l~I), 1~. E., and LInI~RD, A. B., 1957 a, Discuss. Faraday Soe., 23, 113, 
Thermoelectric power of ionic crystals; 1957 b, Phil. Mug., 2, 1462, 
Thermoelectric power of ionic conducting crystals. 

I-IU]~B&I~D, J., 1963, Proc. R. Soc. A, 276, 238, ElectrorL corre]atioI1 ilx narrow 
energy bands; 1964 a, Ibid., 277, 237, Electron correlations in narrow 
energy bands. II. The degenerate baud case; 1964 b, Ibid., 281, 401, 
Electron correlations in narrow energy bands. III. An improved solution. 

HunG, C. S., 1950, Phys. Rev., 79, 727, Theory of resistivity and I~all effect at 
very low temperatures. 

Huge, C. S., and GLEISS~I~, J. t~., 1950, Phys. Rev., 79, 726, The resistivity 
and Hall effect of germanium at low temperatures; 1954, Ibid., 96, 1226, 
l~csistivity and Hall effect of germanium at low temperatures. 

ILSC~I~EI¢, B. l~., and WAG~EI~, C., ]958, Acta metall., 6, 712, The electrical 
conductivity of liquid magnesium-bismuth alloys. 

I~oIIYE, H., TOMLINSO2¢, J. W., and CI~IPMA~, J., 1953, Trans. Faraday Soc., 
49, 796, The electrical Collductivity of Wiistite melts. 

I o ~ ,  A. F., and I~EGEL, ~k. I:~., 1960, Prog. Semieond., 4, 237, Non-crystalline, 
amorphous and liquid electronic semiconductors. 

JA~Es, H. M., and GII~Z~G, A. S., 1953, J. phys. Chem., 57, 840, Band 
structure in disordered alloys arid impurity semiconductors. 

Joules, I-I., 1966, Proc. R. Soc. A, 294, 405, [Electrons in nearly periodic fields. 
Jo~Km% G. H., 1964, Solid St. Electron., 7, 895, Some aspects of semiconducting 

barium tita~ate. 
JOCKEY, G. /-L, and v ~  I-IO~TE~, S., 1961, Halbleiterprobleme, VI, edited by 

F. Sauter (Braunschweig: Friedrich Vieweg und Sohn), p. 118, Semi- 
conducting properties of transition metal oxides. 

J O ~ T ~ ,  J., KnSTSnR, N. 1~., R~CE, S. A., and C o ~ ,  M. I~., 1965, J. chem. 
Phys., 43, 2614, Study of the properties of an excess electron i~ liquid 
helium. I. The nature of the electron-helium interactions. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 139 

JORTNER, J., and I~ICE, S. A., 1965, Adv. Chem., 50, 7, Theoretical studies of 
solvated electrons. 

JORTNEt~, J., I~ICE, S. ~., and KESTNEt~, ~. P~., 1965, Modern Quantum Chemistry, 
Part 2 (New York: Academic Press), p. 133, Electror~s in liquids. 

JORTNER, J., RICE, S. A., and WILSON, ]~. G., 1964, Solutions Mdtal-Ammoniac 
(Colloque Weyl 1963), edited by G. Lepoutre and M. J. Sienko (New 
York: W.A. Benjamin), p. 222, Theories and models of electron binding 
in solution. 

KA~N, A. Ii., and LEYENDECKER, A. J., 1964, Physique des Semiconducteurs 
(Paris: Dunod), p. 33, Electronic energy bands in SrTi0a and related 
oxide semiconductors. 

KANAMOm, J., 1963, Prog. theor. Phys., 30, 275, Electron correlation and ferro- 
magnetism of transition metals. 

KASUYA, T., 1958, J. phys. Soc. Japan, 13, 1096, A theory of impurity conduction, 
I. 

K~_svYA, T., and KOIDE, S., i958. J. phys. Soc. Japan, 13, 1287, A theory of 
impurity conduction, II. 

KATZ, M. J., 1965, Phys. Rev. A, 140, 1323, Electrical conductivity of heavily 
doped n-type germanium; Temperature and stress dependence. 

KATZ, M. J., KOENIG, S. H., and LOrEZ, A. A., 1965, Phys. Rev. Lett., 15, 828, 
Low-temperature dependence of the electrical resistivity of degenerate 
n-type germanium. 

KEETON, S. C., and LOUCKS, T. L., 1966, Phys. Rev., 152, 548, Electronic 
structure of mercury. 

KEImEa, H., and ST~rKE, J., 1965, Phys. Stat. Sol., 8, 831, Elektrisehe und 
optische Eigensehaften yon amorphem Tellur. 

KIKOIN, I. K., SENCHENKOV, A. P., GEL'MAN, ~. V., KORSUNSKII, M. l~{., and 
NAU~ZAKOV, S. P., 1965, J. exp. theor. Phys., 49, 124. Translation: 
Soviet Physics JETP,  1966, 22, 89, Electrical conductivity and density 
of a metal (mercury) vapour. 

KNIGHT, W. D., BEICGEI~, A. G., and HEINE, V., 1959, Ann. Phys., 8, 173, 
Nuclear resonance in solid and liquid metals: A comparison of electronic 
structures. 

KOJ~N, W., 1964, Phys. Rev., 133, 171, Theory of the insulating state. 
KoI])E, S., 1965, J. phys. Sos. Japan, 20, 123, Electrical properties of LixNi(l_x)O 

single crystals. 
KOLOMIETS, B. T., 1964, Phys. Stat. Sol., 7, 359, Vitreous semiconductors (I); 

Ibid., 713, Vitreous semiconductors (II). 
KOLOMIETS, B. T., and NAZAROVA, T. F., 1960, Fizika tverd. Tela, 2, 174. 

Translation: Soviet Physics Solid St., 1960, 2, 195, The role of impurity in 
the conductivity of vitreous A%SeT%. 

KSEXDZOV, YA. M., ANSEL'M, L. N., VASlL'EVA, L. L., and LATYS~VA, V. M., 
1963, Fizika tverd. Tela, 5, 1537. Trans]ation: Soviet Physics Solid St., 
1963, 5, 1116, Investigation of the carrier mobility in NiO with Li 
impurity. 

KuBo, 1~., 1956, Can. J. Phys., 34, I274, A general expression for the conduc- 
tivity tensor. 

I~2VPE~, C. G., 1961, Phys. Rev., 122, 1007, Theory of negative lions in liquid 
helium. 

KYsE~, D. S., and T~oMPsoN, J. C., 1965, J. chem. Phys., 42, 3910, Measurement 
of the Hall effect in metal-ammonia solutions. 

LACKMANN-CYlcOT, 1~., 1964, Phys. Kondens. Materie, 3, 75, Variation du 
Knight shift ~ la fusion dans les m6taux alcalins. 

LAFO~GuE-KANTZER, D., 1965, Electroehim. Acta, 10, 585, Effet magnetoelec- 
triques des solutions d'acides mineraux. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



140 N . F .  Mott on 

LA>IDt~U, L., 1933, Phys. Z. SowjUn., 3, 664, Uber die bewegung der elektronen 
im kristallgitter. 

LA~DAVE~, 1~., and I{ELLA~VD, J. C., 1954, J. chem. Phys., 22, 1655, Eelctronic 
structure of disordered one-dimensional chains. 

LANGRETH, D. C., and KA:DA>TOFF, L. P., 1964, Phys. Rev. A, 133, 1070, Per- 
turbation theoretic calculation of polaron mobility. 

LAX~ M., and PHILLIPS, J. C., 1958, Phys. Rev., ll0, 41, One-dimensional 
impurity bands. 

LEKlVER, J., 1967, Phys. Rev., Motion of electrons in liquid argon (in the press). 
LEPOUTRE, G., and SIENKO, M. J. (editors), 1964, Solutions Mdtal-Ammoniac 

(Colloque Weyl 1963; New York: W. A. Benjamin). 
L~WICKI, G., and M~AD, C. A., 1966, Phys. Rev. Lett., 16, 939, Experimental 

determination of ;E-k relationship in electron tunneling. 
LIFStIITZ, I. M., 1964, Adv. Phys., 13, 483, The energy spectrum of disordered 

systems. 
McDo>rALD, W. J., and Ts~oMPso~, J. C., 1966, Phys. Rev., 150, 602, I~esistance 

and magnetoresistance of Li(NI-Ia) 4. 
MACKII~SO~ r, 1%. ;E. B., and I~OBElCTS, A. P., 1962, Proc. phys. Sot., 79, 222, 

Localized electron eigenstates in one-dimensional liquids. 
MACKIlVTOS~, A. 1%., 1963, J. chem. Phys., 38, 1991, Model for the electronic 

structure of metal tungster~ bronzes. 
M~D~R, S., 1965, J. Vac. Sci. Tech., 2, 35, Metastable alloy films. 
MADE~, S., WIDME~, I-I., D't~IEU~LE, F. M., and NowIcK, A. S., 1963, Appl. Phys. 

Lett., 3, 201, Metastable alloys of Cu-Co and Cu-Ag thin films deposited 
in vacuum. 

MAHdi, G. D., 1966, Phys. Rev., 142, 366, Mobility of polarons. 
MA~SI~IELD, R., 1956, Proc. phys. Soc. B, 69, 76, Impurity scattering in semi- 

conductors. 
MATTHEmS, L. F., 1964, Phys. Rev. A, 133, 1399, Energy bands for solid argon. 
MEGAW, I-I. D., 1957, Ferroelectricity in Crystals (Methuen & Co.). 
M~TH~ESS~L, S., 1965, Z. ange~v. Phys., 18, 414, Austauschwechselwirkung 

tiber die Leitungselektronen in Lanthanid-I-Ialbleitern. 
MEYER, A., NESTOr, C. W., and YounG, W. ]-I., 1965, Phys. Rev. A, 138, 1591, 

Electrical resistivity of metallic lithium vapor. 
ME¥]~n, A., and YouN¢, W. I-I., 1965, Phys. Rev. A, 139, 401, Pseudopotential 

theory of metallic lithium. 
M~Ln~, A., and ABrAHAmS, E., 1960, Phys. Rev., 120, 745, Impurity conduction 

at low concer~trations. 
M~L~E~, A., and AB~A~4~-~S, E., 1961, Int. Conf. Semicond. Phys. (Prague 1960) 

(Czechoslovak Academy of Sciences), p. 218, Impurity conduction at 
low concentrations. 

M~L~a, L. S., and SPEAR, W. E., 1967, Physics Lett., Charge transport in solid 
and liquid argon (in the press). 

M~LW~nD, 1%. C., and N~u~r~En, L. J., 1965, Phys. Rev. Lett., 15, 664, Far- 
infrared absorption in n-type silicon due to photon-induced hopping. 

Mo~r~, F. J., 1958, Bell Syst. tech. J., 37, 1047, Oxides of the 3d transition 
metals; 1959, Phys. Rev. Lett., 3, 34, Oxides which show metal-to- 
insulator transition at the N~el temperature. 

MOTT, N. F., 1936, Proc. Camb. phil. Soc., 32, 281, The electrical resistartce of 
dilute solid solutions; 1949, Proc. phys. Soc. A, 62, 416, The basis of the 
electron theory of metals with special reference to the transition metals; 
1956, Can. J. Phys., 34, 1356, On the transition to metallic conduction in 
semiconductors; 1961, Phil. Mag., 6, 287, The transition to the metallic 
state; 1964, Adv. Phys., 13, 325, Electrons in transition metals; 1965, 
Int. Conf. Magnetism (Nottingham 1964), p. 67, The theory of magnetism 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 14I 

in transition metals; 1966, Phi[. Mat., 13, 989, The electrical properties 
of liquid mercury. 

MOTT, N. F., and ALLGAI~R, 1~. S., 1967, Phys. Stat. Sol., 21, Localized states 
in disordered lattices (in the press). 

MOTT, N. F., and GuRs;EY, g.  W., 1940, Electronic Processes in Ionic Crystals 
(Oxford University Press). 

MoTT, N. F., and JONES, I-L, 1936, The Theory of the Properties of Metals and 
Alloys (Oxford University Press). 

MOT~, N. E., and TwosE, W. D., ]961, Adv. Phys., 10, 107, The theory of 
impurity conduction. 

MOTT, N. F., and WAT~'s-ToBIX, g.  J., 1961, Electrochim. Acts, 4, 79, The 
interface between a metal and an electrolyte. 

MUZZLES, R. K., 1961, J. appl. Phys., 32, 635, Current flow across grain 
boundaries in n-type germanium. I; Ibid, 32, 640, II. 

MV~A~XATA, M., 1960, Solid St. Electron., l, 159, Electrical conductivity of 
high vanadium glasses. 

M¥ClELSKI, J., 1962 a, Phys. Rev., 125, 46, Two-phonon transitions in the 
impurity conduction in semiconducbors; 1962 b, Ibid., 125, 1975, One- 
phonon transition rate in impurity conduction. 

MYSZKOWSKI, A., 1967, J. Phys. Chem. Solids, 28, 105, Two-centre electronic 
states in n-type silicon and germanium. 

MYULL~R, g.  L., 1966, Solid State Chemistry, edited by Z. U. Borisova (New 
York: Consultants Bureau) (Translation of Khimiya Tverdogo 2Fela, 
published by Leningrad University Press, 1965). 

N~STXR, I{. II., and KHxGm~Y, W. D., 1963, Intern. Conf. Glass (Brussels), p. 106, 
Electrical conduction in vanadium oxide glasses. 

NJ~UGEBAUER, C. A., 1964, Physics of Thin Films, 2, 1, edited by G. Hass and 
1~. E. Thun (New York: Academic Press), Structure disorder phenomena 
in thin metal films. 

NEUGEBAU]~, C. A., and WEBB, M. B., 1982, J. appl. Phys., 33, 74, [Electronic 
conduction mechanism in ultrathin, evaporated metal films. 

NOI~DttEI~, L., 193i, Annln. Phys., 9, 641, Electron theory of metals. 
O'REILLY, D. [E., 1964, J. chem. Phys., 41, 3736, Spin densities in alkali- 

metal-ammonia solutions. 
ORG~LL, C. W., FILBERT, A. M., and NVEgS, E. C., 1964, Solutions Mdtal- 

Ammoniac (Colloque Weyl 1963), edited by G. Lepoutre and M. J. 
Sienko (New York: W. A. Benjamin), p. 67, On the volume expansion 
accompanying the formation of dilute solutions of sodium and potassium 
in liquid ammonia at --45 ° . 

OWES, A. E., CLARE, N., and FRAXK, S., 1966, The electrical properties of some 
chalcogenide glasses, Report to Sheffield Conference on low mobility 
semi-conductors. 

P]~ARSOX, A. D., 1964, J. electrochem, Soc., 111, 753, The Hall effect-Seebeck 
effect sign anomaly in semiconducting glasses. 

PECK, W, F,, and ~)E'vVALD, J. F., 1964, J. electrochem. Soc., l l l ,  561, The Hall 
• effect in semiconducting glasses. 

P~K~R, S. I., and DEIGEN, M. F., 1948, J. exp. theor. Phys., 18, 481, Quantic 
states and optical transitions of the electron ir~ the polaron and in the 
colour centre of a crystal (in t~ussian). 

P~cus ,  J. K., and YEVICK, G. J., 1958, Phys. Rev., l l0,  1, Analysis of classical 
statistical mechanics by means of collective coordinates. 

P ~ L I ~ ,  H. 1~., ] 966, Solid St. Commun., 4, 73, Optical transitions in crystalline 
and fused quartz. 

POLL~_K, M., 1962, Int. Conf. Phys. Semieond. (Exeter 1962, Institute of Physics 
and the Physical Society), p. 86, Some aspects of non-steady-state 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



142 N . F .  Mott on 

conduction in bands and hopping processes; 1964, Phys. Rev., 133, A564, 
Approximations for the a.e. hopping conduction; 1965, Ibid., 138, 
A1822, Temperature-dependence of a.c. hopping conductivity. 

POLLAX, M., and GEBALLE, T. •., 1961, Phys. Rev., 122, 1742, Low frequency 
conductivity due to hopping process in silicon. 

POSTmLL, D. R., Ross, 1~. G., and CVSACK, N. E., 1967, Adv. Phys., 16, 
Equation of state and electrical resistivity of liquid mercury at elevated 
temperatures and pressures (in the press). 

RICE, S. A., 1961, Discuss. Faraday Sot., 32, 181, A conjecture concerning the 
electrical conductance of metal-molten salt mixtures. 

I~IC~T~, I-I., and BI%EITLING, G., 1958, Z. Nat¢rf. A, 13, 988, Struktur des 
amorphen germaniums und siliciums. 

RICHTER, I-I., and STEEB, S., 1958, Naturwissenschaften, 45, 461, Evaluation of 
electron diffraction photographs by the method of Fourier analysis. 

RIVLIN, V. G., WAGHOaNE, R. M., and WmLLXMS, G. I., 1966, Phil. Mag., 13, 
1169, The structure of liquid mercury. 

I~OE, D. W., 1965, J. electrochem. Sot., 112, 1005, New glass compositions 
possessing electronic conduetivities. 

ROLL, A., and UHL, E., 1959, Z. Metallkde, 50, 159, Der elektrischc Widerstand 
yon metallisehen Schmelzen. IV. Der elektrische Widerstand gesch- 
molzener Gold-Zinn-, Gold-Blei- und Silber-Blei-Lcgierungen. 

SASAKI, W., 1965, J. phys. Soc. Japan, 20, 825, Negative magnetoresistanee in 
the metallic impurity conduction of n-type. 

SASAItI, W., and DE BI~,UYN OUBOTER, R., 1961, Physica, 27, 877, Electrical 
properties of impurity conducting n-type germanium. 

SASAKI, W., YAMANOUCHI, C., and ItATOYAMA, G. M., 1961, Int. Conf. Semi- 
cond. Phys. (Prague 1960) (Czechoslovak Academy of Sciences), p. 159, 
Negative magnctoresistance effect in semiconductors. 

SAWADA, S., and DANIELSON, G. C., 1959, Phys. Rev., 113, 1008, Optical 
indices of refraction of WO s. 

SCHA~ESBE~G, J., 1965, Z. Phys., 185, 123, The Ha]l coefficient of the small 
polaron. 

SCHI~EIDER, T., and STOLL, E., 1967, Adv. Phys., 16, Relations between 
lattice dynamics of simple metals and liquid state properties (in the press). 

SCKNYDERS, H., RICE, S. A., and MEYEa, L., 1965, Phys. Rev. Lett., 15, 187, 
Electron mobilities in liquid argon. 

SCHOOLEY, J. F., ~[OSLEt¢, W. ]:~., AMBER, E., BECKER, J. H., COHEn, M. L., &rid 
Koo~cE, C. S., 1965, Phys. Rev. Lett., 14, 305, Dependence of the super- 
conducting transition temperature on carrier concentration. 

SCHOOLEY, J. F., HOSLEn, W. R., and COHEn, M. L., 1964, Phys. Rev. Lett., 
12, 474, Superconductivity in semiconducting SrTiO a. 

SCHULM~N, J. H.~ and COMPTON, W. D., 1963, Colour Centres in Solids (~ergamon 
Press). 

SEWELL, G. L., 1963, Phys. Rev., 129, 597, Model of thermally activated hopping 
motion ia solids. 

S~A~:s, H. R., SIDLES, P. H., and DA~IELSON, G. C., 1963, Adv. Chem. Ser., 39, 
237, Electrical properties of the tungsten bronzes. 

SKIER, J. S., and GINSBERG, D. M., 1966, Phys. Rev., 147, 384, Superconducting 
transitions and amorphous bismuth alloys. 

Sm~oJI, M., and I c ~ w A ,  K., 1966, Physics Lett. 20, 480, Electrical 
conductivity of metals dissolved in molten salts. 

SIE~KO, M. J., 1963, Solutions Mdtal-Ammoniac (Colloque Weyl 1963), edited 
by G. Lepoutre and M. J. Sienko (New York: W. A. :Benjamin), p. 23, 
On the coexistence of liquid phases in metal-ammonia systems and some 
surface tension studies on these solutions above their consolute points. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



Electrons in Disordered Structures 143 

S~vIPso~, J./~.~ 1949, Prec. R. See, 197, 269, Charge distribution and energy 
levels of trapped electrons in ionic solids; 1967, Phys. Rev., The energy 
diagram of the F-centres (in the press). 

SLAT]~R, J. C., 1951, Phys. Rev., 82, 538, Magnetic effects and the ~artrec-Foch 
equation. 

SMITH, N. V., 1966, The optical properties of liquid metals. Ph.D. Thesis, 
Cambridge. 

S~ITK, 1~. A., JONES, F. E., and C~ASM~R, 1~. P., 1957, The Detection and 
Measurement of Infra-Red Radiation (OxIbrd University Press). 

SNOWD~, D. P ,  and SALTSBURG, H., 1965, Phys. Rev. Lett., 14, 497, I-lopping 
conduction in NiO. 

SOMMER~ELD, A., and BnTI4E, ~., 1933, Handb. Phys., 24-2 ,  333, Elektron- 
eutheorie der metalle. 

SP]~AR, W. :E., 1957, Prec. phys. See. B, 70, 669, Transit time measurement of 
charge carriers in amorphous selenium films; 1960, Ibid., 76, 826, The 
hole mobility in selenium. 

SPRI~GqT[ORPE, A. J., AUSTIN, I. G., and AUSTIN, B. A., 1965, Solid St. Commun., 
3, 143, Hopping conduction in Li:cNi~_~ O crystals at low temperatures. 

STEEB, S., and ENTRESS, H., 1966, Z. Metallkde, 57, 803, Atomvertcilung sowie 
spezifischer eleketrischer Widerstand geschmolzener Magncsium-Zinn- 
Legierungen. 

STUKE, J., 1964, Phys. Stat. Sol., 6, 441, Uber den elektrischen Leitungs- 
mechanismus von hexagonalen Sclen-Einkristallen; 1965, Recent Advances 
in Selenium Physics, edited by European Selenium-Tellurium Committee 
(Pergamon Press), p. 35, The influence of plastic deformation on the 
electrical and photo-electrical properties of hexagonal selenium single 
crystals; 1967, Neue Arbeiten fiber den Leitungsmechanismus yon Selen 
(in the press). 

STUKE, J., and WEISER, G., 1966, Phys. Stat. Sol., 17, 343, Franz-Keldysh- 
Effekt an trigonalem und amorphem Selcn. 

SUttRMANN, ]~., KRUEL, M., and WEDLER, G., 1963, Z. Phys., 173, 71, Elektrischer. 
Widerstand und Elektronen-Austrittspotentiale reiner im Ultrahoch- 
vakuum aufgedampfter Germaniumfilme. 

TAut, J., Gm(~oRovlcI, R., and VANCU, A., 1966, Phys. Stat. Sol., 15, 627, 
Optical properties and electronic structure of amorphous germanium. 

TAYLOR, P. L., 1966, Prec. phys. Sou., 88, 753, Energy gaps in disordered systems. 
T~o~PsoN, J. C., 1965, Adv. Chem. Set., No. 50, Solvated Electrons, p. 96, 

Conduction processes in concentrated metal-ammonia solutions. 
TI]~CtlE, Y., and ZAREBA, A., 1963, Phys. Kondens. Materie, 1, 402, Uber die 

elektrischcn Eigcnschaften des geschmolzenen Tellurs. 
ToYozAwA, Y., 1962 a, J. phys. See. Japan, 17, 579, Localized spins and negative 

magneto-resistance in the impurity conduction at high concentrations; 
1962 b, Ibid., 17, 986, Theory of localized spins and negative magneto- 
resistance in the metallic impurity; 1962 c, Int. Conf. Phys. Semicond. 
(Exeter 1962) (The Institute of Physics a~d The Physical Society), 
p. 104, Localized spins and negative magnetoresistance in impurity 
conduction at high concentrations; 1963, Polarons andExeitons (Colloque 
Weyl 1963), edited by C. G. Kuper and G. D. Whitfie]d (Edinburgh: 
Oliver & Boyd), p. 211, Self-tapping of an electron by the acoustic 
mode of lattice vibration. 

V]~Rw~¥, E. J. W., and DE BOER, J. H., 1936, Reel. Tray. ehim. Pays-Bus. Belg., 
55, 531, Cation arrangement in a few oxides with crystal structures of 
the spine] type. 

V~Rw~Y, E. a. W,  and HAA~A~, P. W., 1941, Physica, 8, 979, Electronic 
conductivity and transition point of magnetite (' FcaO 4 '). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 



144 On Electrons in Disordered Structures 

VEST, I~. W., I~-RIFFEL, ~V[., alYd S~IT~I, J. F., 1958, J. chem. Phys., 28, 293, Heat 
capacity of sodium tungstert bronzes from 1.8 to 4"2°K. 

WATABE, M., and TAsrAI~, M., 1964, Prog. theor. Phys., 31, 525, A note on the 
electronic states in liquid metals. 

WEISBEaG, L. I~., 1962, J. appI. Phys., 33, 1817, Anomalous mobility effects in 
some semiconductors and insulators. 

WE•PLE, S. H., 1965, Phys. Rev. A, 137, 1575, Some transport properties of 
oxygen-deficient single-crystal potassium tantalate (KTaOa). 

WEXn'LE, S. I-[., J~t~CA~UAN, A., and DIDo~mvIco, M., 1966, Phys. Rev. Lett., 
17, 142, Evidence from pressure experiments for electron scattering 
by the ferroelectric lattice mode in ABO a semicortductors. 

Wm>rE~, E., 1938, Trans. Faraday Sot., 34, 678, Effects of the electron inter- 
action on the energy levels of electrons in metals. 

Wm~ER, E. P., and SErrz, F., 1955, Solid St. Phys., 1, 97, Qualitative analysis 
of the cohesion in metals. 

WILSOX, A. I~., 193I, Proe. R. Soc. A, 13], 458, Theory of electronic semi- 
conductors, Part I; Ibid., 134, 277, Part II. 

WmsoN, E. G., 1963, Phys. Rev. Lett., i0, 432, Electrical conductivity of a metal 
dissolved in a molten salt. 

WOODS, J. F., 1957, Phys. Rev., 10g, 235, Investigation of the photoconductive 
effect in lead sulfide films using Hall and resistivity measurements. 

WOL~rgAN, T., and CaLL,WaY, J., 1962, Phys. Rev., 127, 1605, [Exchange 
narrowing of d bands irL ferromagnets. 

YOSIDA, K., 1957, Phys. Rev., 107, 396, Anomalous electrical resistivity and 
magnetoresistanee due to art s-d irtteraction in Cu-Mn alloys. 

Z~aN, J. M., 1961, Phil. Mat., 6, 1013, A theory of the electrical properbies of 
liquid metals. I, The monovalent metMs; 1966, Proc. phys. Soc., 88, 
387, Wave propagation through an assembly of spheres: I ~ T h e  
Greenian method of the theory of metals; I967, Adv. Phys., 16, The 
electron transport properties of pure liquid metals (in the press). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 1
9:

23
 2

3 
O

ct
ob

er
 2

01
2 




