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The asymmetric single-orbital Anderson model is studied by the rapidly convergent perturbation 
method of Yosida and Yamada. Low-temperature specific heat, resistivity, thermoelectric power, 
and renormalized position of the virtual bound state are evaluated to the second order in Coulomb 
correlation for arbitrary asymmetry. The effect of asymmetry on the properties of the model is 
discussed. It is found that the correlation effects are most pronounced in the case of electron-hole 
symmetry and are strongly reduced with the increase of asymmetry. 

Das asymmetrische Ein-Orbital-Andersonmodell wird mittels der schnell konvergierenden S t b  
rungsmethode von Yosida und Yamada untersucht. Spezifische Wkme bei tiefen Temperaturen, 
Widerstand, Thermospannung und renormierte Lage der virtuellen gebundenen Zustiinde werden 
bis zur zweiten Ordnung der Coulomb-Korrelation fiir beliebige Symmetrie berechnet. Der EinfluB 
von Asymmetrie auf die Modelleigenschaften wird diskutiert. Es wird gefunden, daB die Korrela- 
tionseffekte im Falle von Elektron-Loch-Symmetrie am ausgepragtesten sind und mit wachsender 
Asymmetrie stark reduziert werden. 

1. Introduction 

I n  a previous paper [l] (hereafter cited as I) we studied the low-temperature beha- 
viour of the asymmetric single-orbital Anderson model [2] by the rapidly convergent 
perturbation method of Yosida and Yamada [3 to 51, extended to  the case without 
electron-hole symmetry. We calculated analytically the second-order (in u = U / n A )  
d-electron self-energy for low temperatures, low energies, and small deviations from the 
symmetric case (k,T/A, w / A ,  and E,/A Q l), which enabled us to evaluate the change 
in the density of states, specific heat, and transport coefficients due to the intraionic 
Coulomb correlation and get some insight into the effect of asymmetry on the proper- 
ties of the model. However, all analytical results were limited to the region of small 
asymmetry ( E d / A  < 1) and could thus be applied only to dilute alloys with nearly half- 
filled virtual bound state, such as AIMn. Moreover, the self-energy calculated up to 
( E , / A ) 2  for small Ed/d created the wrong impression that the correlation and asym- 
metry combine to diminish the radius of convergence of the perturbation expansion. 
On the other hand, it is to be expected from the form of the perturbation expansion 
that its coefficients for large asymmetry die out the more rapidly as functions of Ed/A 
the higher their order. 

In  order to understand how the asymmetry affects the properties of the model, one 
has to know the behaviour of the above-mentioned physical quantities for arbitrary 
asymmetry up to the E d / d  > 1 limit. This paper deals, therefore, with the second- 
order theory of the single-orbital Anderson model for arbitrary asymmetry. We cal- 

l )  P.O.B. 304, 41001 Zagreb, Yugoslavia. 
2, Part I see phys. stat. sol. (b) 99, 251 (1980). 
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culate the same physical quantities as in I ,  but without the restriction to E J A  < 1.  
We find that the effects of the Coulomb correlation are most pronounced in the case of 
electron-hole symmetry and are strongly reduced with the increase of asymmetry. 
We also compare some of our results for T = 0 with those obtained in a different way 
by Yamada [6] for the special case of the asymmetric Anderson Hamiltonian with 
d-orbital fixed to the Fermi level. 

2. Calculations 

The quantity we calculate is the lowest-order non-vanishing contribution to the proper 
self-energy part L ' t (w)  of the exact retarded d-electron Green function 

1 
w - Ed - Re L't(w) + i [ A  - Im L',30)] ' G?(w) = 

ZF(w) is here defined as the retarded self-energy without the Hartree-Fock part 
2:. = (nd) u which is included in the Hartree-Fock parameter Ed = &d + (126) u. 
The lowest-order term of L'$(w) is the one quadratic in u = U / z A  and it has been cal- 
culated in I for low temperatures ( k , T / A  Q l) as given by the expressions (2.11) 
and (2.12) of I. Although the T = 0 part of the integral in the first term of (2.11) in 1 
cannot be calculated analytically even if expanded in powers of w/ A,  one can trans- 
form i t  in such a way as to reduce its uncalculable part to  a simple and slowly varying 
function of Ed/d which can be easily taken into account. 

The imaginary part of Z&(w) which comprises only the contributions from the last 
two terms of (2.11) in I can be written in compact form as 

for low temperatures and low energies up to  the (w/A)3 and (w /A)  (k ,T /A)2  terms. The 
real part of the self-energy can not be written so neatly. We find 

R Re&)(") = -Au2 

I 
{L('arc t a n s  -- 1 1 + x , ) + p a r c t a n z +  9 (1 + x 2 ) 2  4x 2 

= 

+ 2x arc tan2 (2) + 
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--d Fig. 1. The function g(z). Inset shows the quadratic 
behaviour for small z 

* 3 ( 4  = (1 + x2)2 { L ( L a r c t a n z  12x2 -- 1 + 5 2  j f - i a r c t a n x  122 - 

arc tan x - - 1 + 5x2 1 1 x  
2 (1 + 22)3 4x(1 + z2)z (T - a,'(.) = - 

The function g(x) ,  given by 

4 
75 x4 + ... 12+1)x2 1 -- 

(2.3) 

(2.4) 

is represented in Fig. 1. I n  the case of low asymmetry ( E d / d  < l), the expressions (2.2) 
and (2.3) expanded in powers of Ed/d  reduce to our earlier result for the self-energy 
given by (2.13) in I. (There is an error in the second line of (2.13) of I - it should be 
409/90 instead of 319/90.) Using Z&(o) given by (2.2) and (2.3) we can discuss the 
effects of arbitrary asymmetry on various properties of the model for not too large 
a correlation. 

3. Results and Discussions 
3.1 The asymmetry parameter 

In  our formalism the measure of the asymmetry of the model is Ed/d, Ed being the 
position and A the half-width of the virtual bound state in the Hartree-Fock approxi- 
mation. The parameter which has usually been used as a measure of the asymmetry of 
the Hamiltonian is x = -Ed/U (equal to f in the case of electron-hole symmetry), 
although one might prefer q = + - x = + Ed/U (which is zero in the symmetric 
5 .  
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Fig. 4. Ed/d as a function of q = -:- + & d / u  for various values 
of u = U/nA at  T = 0 

case). Both x or q contain only the quantities which appear in the Hamiltonian, namely 
the position of the impurity level with respect to  the Fermi level, E ~ ,  and the intraionic 
Coulomb integral U .  At arbitrary temperature the Hartree-Fock parameter Ed is the 
solution of the equation (derived in the Appendix) 

n r p = - + u I m y  Ed 

A 

where y(z) is the digamma function. At T = 0 this equation reduces to 

Ed nqu = - + u arc tan A 

For a given u, (3.1) or (3.2) gives a single-valued correspondence between q and Ed/d. 
A numerical solution of (3.2) for various values of u is given in Fig. 2. For relatively 
low asymmetry (IEd/d( < 1) (3.2) can be solved approximately with the result 

The convergence of this expansion is best for small u, but even for u > 1 it is still good 
for small enough 7. 

As can be seen from (3.1), Ed is also temperature dependent. For the fixed values 
of u and 7, (Ed/A( grows with the increase of temperature and reaches its maximum 
value lnqul in the limit T -, co, that is, 

lim Ed(T)  = qU = &d + U .  
T+oO 

IEd(m) - Ed(O)(/lEd(O)l grows with the increase of u for a given q and decreases with 
the increase of 7 for a given u. For u < 1 this ratio is always less than unity. We are 
not going to  investigate in detail the dependence of Ed on temperature since we are 
interested only in qualitative dependence of various quantities on the asymmetry and 
not in the exact values of Ed a t  given temperatures. Moreover, since we are going to  
discuss the low-temperature properties of the model for not large values of u, we will 
completely ignore the temperature correction to  Ed which is quite negligible in that 
case. Of course, if one wants to investigate the behaviour of the model for finite tem- 
peratures, one has to  solve (3.1) and find Ed( T) for given values of u and q. 
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3.2 Renormalired position of the resonant lmel - 
Xs noted in I, the quantity E d  = Ed + z2(O)l T = O  can be interpreted as the renorma- 
lized position of the virtual bound state (v.b.s.), which is related to the number of 
localized d-electrons of a given spin orientation via the Friedel sum rule (Shiba [7]). 

Using the second-order self-energy (2 .3)  we can write z d  as 

with the function 
ny4 - y(x) 

1 + x2 b ( x )  = 

given in Fig. 3 .  One can see from (3.4) and (3 .5)  that the Coulomb correlation pushes 
the renormalized position of the v.b.s. closer to the Fermi level (with respect to  the 
Hartree-Fock position). This effect reaches its maximum for the symmetric case and 
becomes strongly reduced with the increase of asymmetry. As E,/A approaches large 
values for a given u, ii?d returns to the H-F value Ed. 

For relatively low asymmetry (Ed/d 0.25) E d  is given by 111 

B d  F5: (1 + u)  ic"(u) Ed 7 

where 2: = #, + i;! = j,,,, is the charge susceptibility for the system with 
electron-hole symmetry. Since ~ ( z L )  2 0 for any value of u, the slope of E"d as a func- 
tion of Ed a t  Ed = 0 is always positive irrespective of u. The spurious critical value of u 
(see the discussion following Fig. 7 of I), a t  which the slope of 8, seems to change sign, 
and which depends on the order to which one has calculated xE(u), may thus be under- 
stood as the limit of the applicability of the expansion of i : (u) to a given finite order 
in u. 

3.3 Specific heat 

The low-temperature impurity specific heat is given by [S] 

where gtl(w) is the density of states (per spin) for the localized electrons and 7 is the 
enhancement factor given by (3 .4)  of I. Thus we have 

c -  2nk,  1 (T), 
- -2- 1 + (Bd/d)2 

and noticing that Ed is fixed by the Friedel sum rule (as is E d  in the H-F approxima- 
tion), we can see that the low-temperature specific heat is enhanced by 7 over the H-F 
value due to the intraorbital Coulomb correlation. 

The enhancement factor j j  is given by 

7 = 1 f a, 6) u2 + ... (3.7) 
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Fig. 3. The functions b(s) = u,,(s)/z and al(z) 

X- 

with 

represented in Fig. 3. Here we find again that the asymmetry works against the intra- 
ionic Coulomb correlation, this time reducing the enhancement of the low-temperature 
specific heat. As with Zd, this reduction of the correlation effects is even in Ed, i.e. it is 
the same for the resonant levels spaced equally above and below the Fermi level. 

There is an exact relation 

r = it; (3.8) 

(3.9) 

which holds between j7 and the contribution to  the static impurity susceptibility 

Xtt = + ( S P d 2  @do) i r t  
which originates from the correlation between electrons with parallel spin. This rela- 
tion was first proved by Yamada [4] for the symmetric case and later by Yoshimori 
[8] for the general case. I n  order to check the consistency of our second-order results, 
we calculate Xtt given by [4] 

(3.10) 
for the asymmetric case. The first two diagrams in (3.10) represent the zeroth- and 
second-order RPA contribution and the last two give the lowest-order correction due 
to Coulomb correlation. Evaluating these diagrams we find 

(3.11) 



Perturbation Expansion for the Asymmetric Anderson Hamiltonian (11) 71 

where y ( 2 )  is given by the expression (3.7) and i o ( 0 )  = 7tAeFF(0) = [l + (Ed/A)2]-1.  
Expanding &(o) in (3.9) up to u2 and comparing the resulting expression with (3.11) 
we find jP) = as expected. Tt 

3.2 Transport coefficients 

The transport coefficients for dilute alloys are evaluated from the Boltzmann equation 
and are thus determined by the transport integrals [9] 

(3.12) 

- W  

where vy and ec(0) are the conduction electron velocity and density of states (per spin) 
a t  the Fermi level, f is the Fermi-Dirac distribution function, and Z ( E )  is the energy- 
and temperature-dependent transport relaxation time. We neglect here the contribu- 
tions due to the energy dependence of the density of states and velocity of the con- 
duction electrons, since they are small compared to the contribution arising from the 
energy dependence of z(E) .  (In (3.12) we have also assumed a spherically-symmetric 
Fermi surface and cubic lattice of the host.) I n  the multiple scattering approximation 
we can write for t(&) 

1 I _ -  -2c Im tkE(&) , 
+) - 

where tkk(&) is the diagonal element of the scattering matrix for the single impurity, 

and c = flimp/N is the impurity concentration. Using (3.2) of I and d = 7t I YkdI' @,(o) 
we have 

tkk' = v k d  Gt(m) v d k '  7 

(3.13) 

One obtains therewith the contribution of impurities to the resistivity 
R( T )  = (e2Ko)-I (3.14) 

and the diffusion part of the thermoelectric power (TEP) 

1 Kl 
lei TKO' 

Sd(T) = - __- (3.15) 

For low temperatures (k,T < A )  we apply the Sommerfeld expansion to  K, to 
obtain the lowest-order temperature corrections to R(T) and Sd(T).  Thus we find 

(3.16) 

where R, = 3clze2 &O) vg is the resistivity in the unitarity limit (maximum possible 
scattering, reached for h?d = T = 0 )  and 

(3.17) 

Here RY and -I;' denote the real and the imaginary part of A[a2Z~(w)/i3wz],,T=o 
and (A/3) ( ~ k , T / 4 ) ~  R T  is the Ta  part of Re ZZ(0). The enhancement factor x cal- 
culated with ,Z$)(o) given by (2.2) and (2.3) is regresented in Fig. 4 as a function 
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+ I  1 Fig.4. The enhancement factor x of the low- 
temperature resistivity,' plotted as it function of 
E d A  for various values of u 

of E,/A for various values of u. One can see that the enhancement is strongest in the 
symmetric case and drops down quickly with the increase of asymmetry, reaching 
its H-F value XHF = 1 for Edld 2 1. 

I n  the symmetric case the ratio )&$, given by 

1; -= [ ( - l + 2 -  
Y Xeven 

starts with 1 for u = 0 and increases rapidly up to i s f o r  u 2 1 [4]. Thus in the s-d 
limit one finds the low-temperature resistivity scaled by the same parameter den = 
= A/? as  the T-linear term of the specific heat or TEP (see below). Although we are 
unable to reach the s-d limit with our second-order results for the asymmetric case, we 
observe for u 1 qualitatively the same behaviour of F / y  as that given by the above 
expression for Ed = 0, that is, f& as a function of u for any given Ed begins to  
flatten out as u increases, signalling the onset of the universal behaviour. We also 
notice that the s-d limit is the more quickly approached, the lower the asymmetry is. 

For the diffusion part of TEP the Sommerfeld expansion of the transport integrals 
in (3.15) gives 

As we have noted earlier [lo], the effects of the Coulomb correlation on the T-linear 
term of 8, can be simply understood as the separate renormalization of the position 
of the resonant level (Ed --r ,@d) and its width ( A  -+ A/?).  Since is fixed by the 
charge neutrality condition in the same way as Ed in the H-F approximation, the 
T-linear term of 8, is enhanced over the H-F value by 7 just like the T-linear term 
of the specific heat. The coefficient 9 in the cubic term cannot be given such a simple 
interpretation as i t  contains many terms of the self-energy, originating from the first-, 
second-, and third-order derivative of the relaxation time. However, the ratio i q / y  
shows qualitatively the same behaviour as @?, indicating that in the limit of large u 
the T3-term of S,(T) is scaled by the same d,ff as its T-linear term. 

The cubic term which has the opposite sign from the linear term leads to the 
attenuation of the low-temperature TEP and the appearance of a maximum of ISd( T)I 
at some temperature T,. I n  the temperature range where Sd(T) can be fairly ap- 
proximated by (3.18), (kBT/A & 0.5) the temperature T, is given by 

3 -- 

(3.19) 
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I 
Fig. 5 .  The position of maximum of the thermoelectric power, 
determined from the cubic approximation, plotted as a func- 
tion of EdlA for various values of u 

0 05 10 15 20 
Ed10 - 

I n  Fig. 5 we give T, plotted as a function of E,/A for various values of u, calculated 
from (3.19) with the second-order expressions for P,, 7, and 47. Although the numerical 
values of T, should not be taken too seriously due to the second-order approximation, 
especially for u & 0.5, the qualitative behaviour of T, is in agreement with that of 
the previously studied quantities. T, decreases with the increasing u, while the asym- 
metry reduces the effect of Coulomb correlation. 

35 Comparison with Yamada's results at T = 0 

In  a recent paper Yamada [6] has presented a perturbation calculation for the asym- 
metric Anderson Hamiltonian with d-orbital fixed to the Fermi level (cd = 0 or 
r j  = in our notation) and a t  T = 0. Although i t  is an expansion with respect to  
small u in this particular case of relatively high asymmetry, i t  can generally be viewed 
as an expansion in powers of both u and 7, whose convergence depends on both of 
these parameters. One can do this calculation along the same lines as in [6] for arbi- 
trary asymmetry and obtain expressions which reduce to those of Yamada for the 
special value r j  = f .  Thus, for instance, for Ed (equal to Z(0) in Yamada's notation) 
one obtains [ll] 

- 

- (nrj21)~ (f u + ...) + ...} . (3.20) 

For 77 = f this expansion reduces to Yamada's relation (18) of [6]. 
We have shown in I that Ifd is given by 

for small E,/d. Expanding B(u) in powers of u we find 

(3.21) 

(3.22) 

where the &term has been obtained from (2.3) and (2.4). I n  order to compare our 
expression (3.21) with (3.20) we insert the expression (3.3) for E,/A into (3.21) to 
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obtain 

(3.23) 

Inserting b(u) given by (3.22) and i t (u)  given in [6] into (3.23) and expanding the 
denominators in (3.23) for u < 1, we obtain an expression for Zd/A which agrees 
with (3.20) (and Yamada’s equation (18) for 7 = f )  up to u5, while the comparison 
of u6 terms yields 

A=---= 13n2 563 0.5323 
6 27 

Thus our result for jd and consequently for .Zp(O) = gd - Ed agrees with the result 
obtained in a different way by Yamada up to  the fifth order in u (and not up to the 
third order in u, as we have erroneously concluded in I, due to the incorrect expression 
(3.22) of I for Ed in the case q = f). 

I n  the same way we can compare our second-order result for 7 with Yamada’s 
expression (26) of [6]. Using 7 for the symmetric case [a], 

= 1 + 3 - - u2 + 0 . 0 5 5 3 ~ ~  + ... , ( 3 
as well as our second-order result (3.7) expanded in powers of E,/A, we write 7 in 
the form 

i.=.?.-[(7--T)u2+ 25 3 9  Bu3+ ...](a) 2 +... 

Inserting here the expression (3.3) for Ed/A,  we obtain the agreement with Yamada’s 
(26) of [6] up to the fourth order in u. Moreover, comparing the u5-terms we find 

172 B == 2n2 - - = 0.6281. 
9 

We must notice, however, that while Yamada’s expansion [6] is the one with respect 
to  asymmetry and thus breaks downfor largeq, our expansion is the one with respect to  
deviations from the H-F solution and is thus expected to retain or rather improve 
its convergence for large asymmetry. 

3.6 Conclusion 

Various properties which we have calculated here using the second-order perturbation 
theory for the asymmetric Anderson Hamikonian with arbitrary asymmetry give 
a rather consistent picture of an isolated impurity embedded in the sea of conduction 
electrons. We can conclude that the effects of the intraionic Coulomb correlation 
reach their maximum in the case of electron-hole symmetry and become less impor- 
tant with growing asymmetry. This reduction of the correlation effects is even in 
E J d ,  i.e. the almost filled virtual bound state behaves in the same way as the almost 
empty one. 
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Appendix 
The number of localized electrons of a given spin direction in the H-F approximation 
is given by 

m m 

-m --oo 

(A.1) 
where f ( x )  = (eZ + 1)-l and ,8 = l /k ,T.  One can write f (z )  in terms of the digamma 
functions as 

and since the first (second) digamma function is analytic in lower (upper) complex 
half-plane, one can transform the real-axis integral in (A.l )  to  a contour integral in 
the complex plane, closing the contour with arcs of infinite radii in the lower (upper) 
half-plane. The theorem of residues then yields 

1 1  
2 n  (%do) =- - - Imy  (A.2) 

Combining (AS) with the relation 

Eao = Ed f (%a, - 0 )  u 
one can obtain the self-consistency equations either for ( n d t )  and ( n d i )  or E d 7  and Edl.  
Choosing the latter we obtain 

where q = + + E ~ I U  and u = U/ail .  For our perturbation expansion we take the 
“non-magnetic” solution Ed, = Edl = Ed of (A.3), which exists a t  all temperatures 
and for arbitrary values of u and q, in contrast with the “magnetic” solutions Ed? + 
=+ Ed,, which exist only for u > uc(q,  T). (The critical u is an artifact of the Hartree- 
Fock theory, and it increases with both the asymmetry and temperature, which thus 
diminish the region of existence of the “magnetic” solutions.) 
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