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The asymmetric single-orbital Anderson model is studied by the rapidly convergent perturbation
method of Yosida and Yamada. Low-temperature specific heat, resistivity, thermoelectric power,
and renormalized position of the virtual bound state are evaluated to the second order in Coulomb
correlation for arbitrary asymmetry. The effect of asymmetry on the properties of the model is
discussed. It is found that the correlation effects are most pronounced in the case of electron-hole
symmetry and are strongly reduced with the increase of asymmetry.

Das asymmetrische Ein-Orbital-Andersonmodell wird mittels der schnell konvergierenden Sto-
rungsmethode von Yosida und Yamada untersucht. Spezifische Wirme bei tiefen Temperaturen,
Widerstand, Thermospannung und renormierte Lage der virtuellen gebundenen Zustinde werden
bis zur zweiten Ordnung der Coulomb-Korrelation fiir beliebige Symmetrie berechnet. Der Einfluf
von Asymmetrie auf die Modelleigenschaften wird diskutiert. Es wird gefunden, da die Korrela-
tionseffekte im Falle von Elektron—Loch-Symmetrie am ausgeprigtesten sind und mit wachsender
Asymmetrie stark reduziert werden.

1. Introduction

In a previous paper [1] (hereafter cited as I) we studied the low-temperature beha-
viour of the asymmetric single-orbital Anderson model [2] by the rapidly convergent
perturbation method of Yosida and Yamada [3 to 5], extended to the case without
electron-hole symmetry. We calculated analytically the second-order (in u = U/ )
d-electron self-energy for low temperatures, low energies, and small deviations from the
symmetric case (kg7T[4, w/4, and B4/ 4 £ 1), which enabled us to evaluate the change
in the density of states, specific heat, and transport coefficients due to the intraionic
Coulomb correlation and get some insight into the effect of asymmetry on the proper-
ties of the model. However, all analytical results were limited to the region of small
asymmetry (/4 < 1) and could thus be applied only to dilute alloys with nearly half-
filled virtual bound state, such as AIMn. Moreover, the self-energy calculated up to
(E4/A)? for small B4/ created the wrong impression that the correlation and asym-
metry combine to diminish the radius of convergence of the perturbation expansion.
On the other hand, it is to be expected from the form of the perturbation expansion
that its coefficients for large asymmetry die out the more rapidly as functions of /4
the higher their order.

In order to understand how the asymmetry affects the properties of the model, one
has to know the behaviour of the above-mentioned physical quantities for arbitrary
asymmetry up to the E3/4 > 1 limit. This paper deals, therefore, with the second-
order theory of the single-orbital Anderson model for arbitrary asymmetry. We cal-

1) P.0.B. 304, 41001 Zagreb, Yugoslavia.
2) Part I see phys. stat. sol. (b) 99, 251 (1980).
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culate the same physical quantities as in I, but without the restriction to E,/ A4L1.
We find that the effects of the Coulomb correlation are most pronounced in the case of
electron-hole symmetry and are strongly reduced with the increase of asymmetry.
We also compare some of our results for 7' = 0 with those obtained in a different way
by Yamada [6] for the special case of the asymmetric Anderson Hamiltonian with
d-orbital fixed to the Fermi level.

2. Caleulations

The quantity we calculate is the lowest-order non-vanishing contribution to the proper
self-energy part Z¥(w) of the exact retarded d-electron Green function

1
i) =
Gile) = w — Ey — Re 2¥w) + i[4 — Im ZR¥w)]’ 1)
ZR(w) is here defined as the retarded self-energy without the Hartree-Fock part
ZHP — (ng> U which is included in the Hartree-Fock parameter By = &5 + {ng) U.
The lowest-order term of Z{w) is the one quadratic in w = U/w4 and it has been cal-
culated in I for low temperatures (kz7'/4 <€ 1) as given by the expressions (2.11)
and (2.12) of I. Although the 7' = 0 part of the integral in the first term of (2.11) in I
cannot be calculated analytically even if expanded in powers of w/4, one can trans-
form it in such a way as to reduce its uncalculable part to a simple and slowly varying
function of Ey/4 which can be easily taken into account.
The imaginary part of Zg)(w) which comprises only the contributions from the last
two terms of (2.11) in I can be written in compact form as

R A u? w\t  mkyT1?
n 26) = 3y tEala) oA
2 (Byd) o
X [1 + ST (B D) Z] (2.2)

for low temperatures and low energies up to the (w/4)? and (w/4) (k5T 4)? terms. The
real part of the self-energy can not be written so neatly. We find
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The function g{x), given by
"
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is represented in Fig. 1. In the case of low asymmetry (H/4 <€ 1), the expressions (2.2)
and (2.3) expanded in powers of E4// reduce to our earlier result for the self-energy
given by (2.13) in I. (There is an error in the second line of (2.13) of I — it should be
409/90 instead of 319/90.) Using 2(1;)(0)) given by (2.2) and (2.3) we can discuss the
effects of arbitrary asymmetry on various properties of the model for not too large
a correlation.

3. Results and Discussions

3.1 The asymmelry parameter

In our formalism the measure of the asymmetry of the model is B4/, E; being the
position and A the half-width of the virtual bound state in the Hartree-Fock approxi-
mation. The parameter which has usually been used as a measure of the asymmetry of
the Hamiltonian is # = —g4/U (equal to + in the case of electron-hole symmetry),
although one might prefer n = + — @ = + + £4/U (which is zero in the symmetric

5%
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4 Fig. 2. E4/A as a function of n = - + &3/U for various values
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case). Both z or 7 contain only the quantities which appear in the Hamiltonian, namely
the position of the impurity level with respect to the Fermi level, ¢4, and the intraionic
Coulomb integral U. At arbitrary temperature the Hartree-Fock parameter £, is the
solution of the equation (derived in the Appendix)

By 1 4 . By
ﬂnu_—A———[—uImw[é——{—W(l-l—z—A—)], (3.1)
where y(z) is the digamma function. At T = 0 this equation reduces to
E
U = % -+ w arc tan (Zd) (3.2)

For a given u, (3.1) or (3.2) gives a single-valued correspondence between n and B4/ 4.
A numerical solution of (3.2) for various values of u is given in Fig. 2. For relatively
low asymmetry (|Eq/A4]| < 1) (3.2) can be solved approximately with the result

LA S ST
4 14w 3 (14 u)? 5 (14 )

The convergence of this expansion is best for small «, but even for » > 1 it is still good
for small enough 7.

As can be seen from (3.1), B, is also temperature dependent. For the fixed values
of u and ), | B4/ 4| grows with the increase of temperature and reaches its maximum
value |7nu| in the limit T — oo, that is,

Im Ey(T) =nU =¢eq ++ U .

T—>c0

n -+ ] (3.3)

[Eg4{o0) — E4(0)|/|E4{0)] grows with the increase of u for a given 7 and decreases with
the increase of 7 for a given u. For » < 1 this ratio is always less than unity. We are
not going to investigate in detail the dependence of E4 on temperature since we are
interested only in qualitative dependence of various quantities on the asymmetry and
not in the exact values of £ at given temperatures. Moreover, since we are going to
discuss the low-temperature properties of the model for not large values of w, we will
completely ignore the temperature correction to E,; which is quite negligible in that
case. Of course, if one wants to investigate the behaviour of the model for finite tem-
peratures, one has to solve (3.1) and find Ey(T) for given values of v and 7.
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3.2 Renormalized position of the resonant level

As noted in I, the quantity Ed = B4 + X3}0)|r-0 can be interpreted as the renorma-
lized position of the virtual bound state (v.b.s.), which is related to the number of
localized d-electrons of a given spin orientation via the Friedel sum rule (Shiba [7]).

Using the second-order self-energy (2.3) we can write E4 as

Ey = E, [1 — b(%‘) u? + ] (3.4)
with the function
o < Fle )
(i‘? — 2) —-(%—2—%7—) 22 + ... jzl <1 (3.5)
al —In2) l—x—lin 2) —%4- lz] > 1

given in Fig. 3. One can see from (3.4) and (3.5) that the Coulomb correlation pushes
the renormalized position of the v.b.s. closer to the Fermi level (with respect to the
Hartree-Fock position). This effect reaches its maximum for the symmetric case and
becomes strongly reduced with the increase of asymmetry. As E4/A approaches large
values for a given u, f?d returns to the H-F value Z,.

For relatively low asymmetry (E,/4 < 0.25) £, is given by [1]

By ~ (1 + w) Zo(w) By,
where 73 = 7% + X}, = Xeven — Xoda iS the charge susceptibility for the system with
electron—hole symmetry. Since 73(u) = 0 for any value of u, the slope of E4 as a func-
tion of B, at B4 = 0 is always positive irrespective of u. The spurious critical value of u
(see the discussion following Fig. 7 of I), at which the slope of E; seems to change sign,
and which depends on the order to which one has calculated %i{u), may thus be under-
stood as the limit of the applicability of the expansion of ¥3(u) to a given finite order
in u.

3.3 Specific heat
The low-temperature impurity specific heat is given by [8]

2m?

5

Oy = T H304(0) 77T,
where g4(w) is the density of states (per spin) for the localized electrons and y is the
enhancement factor given by (3.4) of I. Thus we have

2k 1 vk

0, = Z» . (” BT) (3.6)
314 g\ 4

and noticing that F:’d is fixed by the Friedel sum rule (as is E, in the H-F approxima-

tion), we can see that the low-temperature specific heat is enhanced by ¥ over the H-F

value due to the intraorbital Coulomb correlation.
The enhancement factor ¥ is given by

v=1+4+a (%) w4 .. (3.7)
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Fig. 3. The functions b(x) = a,(x)/x and a,(z)
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represented in Fig. 3. Here we find again that the asymmetry works against the intra-

ionic Coulomb correlation, this time reducing the enhancement of the low-temperature

specific heat. As with E, this reduction of the correlation effects is even in £y, i.e. it is

the same for the resonant levels spaced equally above and below the Fermi level.
There is an exact relation

7 =1In (3-8)
which holds between 7 and the contribution to the static impurity susceptibility
1t = 7 (gup)® 04(0) X1t (3.9)

which originates from the correlation between electrons with parallel spin. This rela-
tion was first proved by Yamada [4] for the symmetric case and later by Yoshimori
(8] for the general case. In order to check the consistency of our second-order results,

we calculate gy given by (4]

aflasst | (> + Topbf +
+2 et ‘+f\%\f+-~

I

(3.10)

for the asymmetric case. The first two diagrams in (3.10) represent the zeroth- and
second-order RPA contribution and the last two give the lowest-order correction due
to Coulomb correlation. Evaluating these diagrams we find

1 1 . - E\ . 1
= 5 o 25700 |5 — 2(28) 70 3 Z800)|, @.1)
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where ¥ is given by the expression (3.7) and xy(0) = 7w 4oF¥(0) = [1 + (B4/4)%] 1.
Expanding 04(0) in (3.9) up to »? and comparing the resulting expression with (3.11)
we find Y3 = Zﬁ) as expected.

3.4 Transport coefficients

The transport coefficients for dilute alloys are evaluated from the Boltzmann equation
and are thus determined by the transport integrals [9]

2 o ¢
K, = EQC(O) vF J‘EnT(E) (—S—Q de, (3.12)

where vy and p,(0) are the conduction electron velocity and density of states (per spin)
at the Fermi level, f is the Fermi-Dirac distribution function, and 7(¢) is the energy-
and temperature-dependent transport relaxation time. We neglect here the contribu-
tions due to the energy dependence of the density of states and velocity of the con-
duction electrons, since they are small compared to the contribution arising from the
energy dependence of t{¢). (In (3.12) we have also assumed a spherically-symmetric
Fermi surface and cubic lattice of the host.) In the multiple scattering approximation
we can write for t(e) -
1

— == —2¢Im¢ ,

o ¢ Im tg(e)

where f3:(¢) is the diagonal element of the scattering matrix for the single impurity,
b = Via GR(0) Var

and ¢ = Nipp/N is the impurity concentration. Using (3.2) of I and 4 = = | Viq]? 0,(0)
we have

1 24

— = ¢ ——— gq4le) . 3.13

7(8) 0,(0) Qu(e) (3.13)
One obtains therewith the contribution of impurities to the resistivity

R(T) = (e*Ky)! (3.14)
and the diffusion part of the thermoelectric power (TEP)

1 K,
ST) = — T, (3.15)

For low temperatures (k57 <€ A) we apply the Sommerfeld expansion to K, to
obtain the lowest-order temperature corrections to R(7') and Sy(7). Thus we find

R % 72 (kL T\2
R(T) = 0 [1~ _ —(—B—) ; J 3.16
=] + (Byf 2y 1+ (Bap 3\ 4] " (3:19)

where R, = 3c/me? 03(0) v§ is the resistivity in the unitarity limit (maximum possible
scattering, reached for ¥; = T = 0) and

L, -
%= % 4 21y [1 — (%1) J-{-%(R{)' + 2Ry). (3.17)

Here Ry and —I; denote the real and the imaginary part of A[82Z¥(w)/00]p=r=0
and (4/3) (wkpT|A)* Ry is the T2 part of Re ZF(0). The enhancement factor x» cal-
culated with X§)(w) given by (2.2) and (2.3) is represented in Fig. 4 as a function
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Fig. 4. The enhancement factor » of the low-
temperature resistivity, plotted as a function of
E4/4 for various values of «

! 1 I
g 1 2 3 4
E,14

of B,/ for various values of u. One can see that the enhancement is strongest in the
symmetric case and drops down quickly with the increase of asymmetry, reaching
its H-F value xgy = 1 for By/d Z 1.

In the symmetric case the ratio Jx/7, given by

b _ (142 (L )2]”2

y xeven
starts with 1 for « = 0 and increases rapidly up to J'3 for » = 1 [4]. Thus in the s~d
limit one finds the low-temperature resistivity scaled by the same parameter deg =
= A[y as the T-linear term of the specific heat or TEP (see below). Although we are
unable to reach the s—d limit with our second-order results for the asymmetric case, we
observe for u 5 1 qualitatively the same behaviour of Vx]y as that given by the above
expression for Eq = 0, that is, }x/y as a function of  for any given E, begins to
flatten out as u increases, signalling the onset of the universal behaviour. We also
notice that the s—d limit is the more quickly approached, the lower the asymmetry is.

For the diffusion part of TEP the Sommerfeld expansion of the transport integrals

in (3.15) gives

2m?ky,  Egd [ (kgT @ nZ(kBT)a
Sy(T) = E dc e i PR d = |- (318
=51 1+(Ed/4>2[y( A) A A ] o

As we have noted earlier [10], the effects of the Coulomb correlation on the 7T-linear
term of Sy can be simply understood as the separate renormalization of the position
of the resonant level (Ey — E,) and its width (4 — 4/%). Since K, is fixed by the
charge neutrality condition in the same way as K, in the H-F approximation, the
T-linear term of Sy is enhanced over the H-F value by % just like the 7-linear term
of the specific heat. The coefficient g in the cubic term cannot be given such a simple
interpretation as it contains many terms of the self-energy, originating from the first-,
second-, and third-order derivative of the relaxation time. However, the ratio 7(};/5'/
shows qualitatively the same behaviour as /»/7, indicating that in the limit of large
the T3-term of 8,(7T) is scaled by the same A as its T-linear term.

The cubic term which has the opposite sign from the linear term leads to the
attenuation of the low-temperature TEP and the appearance of a maximum of |S4(7)|
at some temperature Ty. In the temperature range where S4(7) can be fairly ap-
proximated by (3.18), (kzT/4 < 0.5) the temperature Ty is given by

kgTy 1 By 2) 71 3.19
=2+ (23] o
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v & Fig. 5. The position of maximum of the thermoelectric power,
3 determined from the cubic approximation, plotted as a func-
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In Fig. 5 we give T'y plotted as a function of E4/ 4 for various values of u, calculated
from (3.19) with the second-order expressions for B4, 7, and ¢. Although the numerical
values of T'y; should not be taken too seriously due to the second-order approximation,
especially for 4 = 0.3, the qualitative behaviour of 7' is in agreement with that of
the previously studied quantities. 7', decreases with the increasing u, while the asym-
metry reduces the effect of Coulomb correlation.

3.5 Comparison with Yamada’s results at T = 0

In a recent paper Yamada [6] has presented a perturbation calculation for the asym-
metric Anderson Hamiltonian with d-orbital fixed to the Fermi level (¢; = 0 or
7 = 5 in our notation) and at T = 0. Although it is an expansion with respect to
small % in this particular case of relatively high asymmetry, it can generally be viewed
as an expansion in powers of both » and 7, whose convergence depends on both of
these parameters. One can do this calculation along the same lines as in [6] for arbi-
trary asymmetry and obtain expressions which reduce to those of Yamada for the

special value 7 = . Thus, for instance, for &, (equal to X(0) in Yamada’s notation)
one obtains [11]

219.: U {ﬁ(u) + (mTnu)? [% u — (%9- ——Z—) u? 4 (%% — 3n2>u3 + } -
— (anu)t (% u -+ ) ~+ } . (3.20)

For = L this expansion reduces to Yamada’s relation (18) of [6].
We have shown in I that E, is given by

E - (B B4\
== (L + u) Z8(u) (j‘) + Blu) (j‘) o (3.21)
for small £4/4. Expanding 8(x) in powers of u we find
w17
Blu) = (_4___9_> u? — 4ud + ..., (3.22)

where t;.he u*-term has been obtained from (2.3) and (2.4). In order to compare our
expression (3.21) with (3.20) we insert the expression (3.3) for E /4 into (3.21) to
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obtain
E B o) 1 .
S e e
4 1 2 _
- (in_?_ulb)su [’g (1 - gu) Xe(u) — ﬂ(u)] + } . (3.23)

Inserting f(u) given by (3.22) and Z53(v) given in [6] into (3.23) and expanding the
denominators in (3.23) for w <{ 1, we obtain an expression for Ey/4 which agrees
with (3.20) (and Yamada’s equation (18) for # = }) up to % while the comparison
of u® terms yields

Thus our result for Ed and consequently for X}(0) = E; — E4 agrees with the result
obtained in a different way by Yamada up to the fifth order in % (and not up to the
third order in u, as we have erroneously concluded in I, due to the incorrect expression
(3.22) of I for E, in the case = +).

In the same way we can compare our second-order result for ¥ with Yamada’s
expression (26) of {6]. Using ¥ for the symmetric case [4],

2
=14 (3 - %) u? 4 0.0553ut +- ...,

as well as our second-order result (3.7) expanded in powers of E /4, we write ¥ in
the form

55 [(28 37 e ‘ Eq\?
y =7y [(3 4)u +Bu3+...](d>+...

Inserting here the expression (3.3) for B/, we obtain the agreement with Yamada’s
(26) of [6] up to the fourth order in . Moreover, comparing the u5-terms we find

172
B =2=n 2—T__06281

We must notice, however, that while Yamada’s expansion [6] is the one with respect
to asymmetry and thus breaks down for large 1), our expansion is the one with respect to
deviations from the H-F solution and is thus expected to retain or rather improve
its convergence for large asymmetry.

3.6 Conclusion

Various properties which we have calculated here using the second-order perturbatlon
theory for the asymmetric Anderson Hamiltonian with arbitrary asymmetry give
a rather consistent picture of an isolated impurity embedded in the sea of conduction
electrons. We can conclude that the effects of the intraionic Coulomb correlation
reach their maximum in the case of electron~hole symmetry and become less impor-
tant with growing asymmetry. This reduction of the correlation effects is even in
E /4, i.e. the almost filled virtual bound state behaves in the same way as the almost
empty one.
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Appendix

The number of localized electrons of a given spin direction in the H-F approximation
is given by

1 3 r
(nas) = Giol07) = — — f do () Im Gz (@) =§ f w j‘@“;’)i“; R

(A.1)

where f(x) = (e* 4 1) and § = 1/kgT. One can write f(z) in terms of the digamma
functions as

1 1 1 .z 1 .z
=5 =galv [+ 75%) (35

and since the first (second) digamma function is analytic in lower (upper) complex
half-plane, one can transform the real-axis integral in (A.1) to a contour integral in
the complex plane, closing the contour with arcs of infinite radii in the lower (upper)
half-plane. The theorem of residues then yields

<naa>———1———1 w[ ﬂA (1+

(A.2)

)

Combining (A.2) with the relation
Edo' = &4 +’ <nd, —c> U

one can obtain the self-consistency equations either for {nq;> and {nq,) or Eq; and Ej,.
Edo ﬂA (

Choosing the latter we obtain
- — A
i u {m') Imy [ o A )J} , (A.3)

where 7 = + 4 £4/U and u = UJz4d. For our perturbation expansion we take the
“non—magnetlc solution By = Eq = E4 of (A.3), which exists at all temperatures
and for arbitrary values of u and #, in contrast with the “magnetic’” solutions E4 ==
=+ Ky, which exist only for u > u,(n, T). (The critical « is an artifact of the Hartree-
Fock theory, and it increases with both the asymmetry and temperature, which thus
diminish the region of existence of the “magnetic’” solutions.)
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