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The oscillatory behavior of the transmission coefficient 7" as a function of energy is examined for an
attractive square well and a rectangular barrier. We calculate 7 using resonant state boundary
conditions and demonstrate that the maxima in 7 are correlated with the broad resonances generated
by these potentials. For barrier potentials the maxima signify resonances occurring at energies above
the barrier height. It is shown that the resonance position and width can also be generated from the
complex poles of the amplitude of the transmitted plane wave. We also explain the relation between
the positions of the resonances generated by the square well and the rectangular barrier to the energy
eigenvalues of the corresponding rigid box with the same range. We show for a potential with an
attractive well and a repulsive barrier that 7 exhibits oscillations when the particle energy is below
the barrier, implying that in many cases the simple WKB type barrier penetration expression for T
is not adequate. These features of T are likely to hold for most attractive potentials and flat repulsive
barriers. We also discuss the attractive modified Poschl-Teller type potential for which 7 does not

show oscillations as a function of energy. © 2010 American Association of Physics Teachers.

[DOL: 10.1119/1.3276053]

I. INTRODUCTION

Transmission and tunneling across potential barriers in one
dimension are important topics in undergraduate quantum
mechanics courses. Most textbooks on introductory quantum
mechanics consider only transmission and tunneling across
potential barriers and calculate the transmission coefficients
using WKB type approximations,1 but the physical features
of the transmission across attractive potentials are not con-
sidered in detail. Similarly resonance tunneling is illustrated
for potentials with well separated barriers.”” As a result, stu-
dents might gain the impression that transmission across at-
tractive potential wells or across a barrier when the incoming
particle energy is greater than the barrier height is not of
much physical interest.

The advent of nanotechnology and electronic devices
based on resonant tunneling has made quantum mechanical
transmission and tunneling in one dimension an area of much
interest in the applied sciences.*™ The goal of this paper is
to explore the subtle and interesting features involved in the
transmission across attractive square wells and repulsive bar-
riers and to provide an interpretation of transmission as a
function of energy in terms of broad resonances generated by
the potential.

In three-dimensional systems a potential with an attractive
well followed by a barrier is useful for analyzing bound
states, sharp resonances generated by potential pockets, and
broader resonant states generated by wide barriers."® In con-
trast, in one dimension we usuallgf study a set of two or more
well separated potential barriers. * The gap between two ad-
jacent potential barriers provides a pocket for the formation
of sharp resonant states, which are quasibound states and are
related to reflectionless transmission. These states generate
sharp peaks in the transmission coefficient 7. When the bar-
rier is wide, resonances can occur at above barrier energies.
We term these resonances as barrier top resonant states or
above barrier resonances. A detailed analysis of such narrow
quasibound and broader barrier states generated by twin bar-
riers enclosing a pocket in between and their correlation with
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the positions and widths of 7 peaks when the energy is both
less and greater than the barrier energies is given in Ref. 3.
The motivation of the present paper is to explore the broader
resonances and related subtle features of the transmission
across purely attractive wells and corresponding repulsive
barriers to obtain a deeper understanding of transmission
across a potential in one dimension.

In Sec. II we study the resonant states and transmission for
an attractive square well and relate the oscillations in 7 to the
broad resonance states. Section III does a similar analysis for
above barrier oscillations of 7. In Sec. IV we describe trans-
mission for a potential with a combination of a well and
barrier and give a counterexample of an attractive potential
for which 7T does not exhibit any oscillations generated by
resonances. Our results are summarized in Sec. V.

II. TRANSMISSION ACROSS ATTRACTIVE
POTENTIALS

The equation governing the bound states, resonant states,
and transmission and reflection is the time independent
Schrodinger equation for a particle of mass m with potential
U(x) and total energy E,

&> y(x)

dx?

+ (k2 = V() (x) = 0, (1)

where k>=2mE/#> and V(x)=2mU(x)/#>. For convenience
we choose units 2m=1 and %=1 so that k” is the energy E.
We assume V(x) is symmetric in x so that the wave functions
have definite parity. In particular, we consider an attractive
square well of width 2a given by

Vo (xl<a)

V) = 0 (|x| > a).

(2)

For the study of T and the reflection coefficient R, we seek
a solution ¢/(x), which satisfies the conditions
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such that T=|F/A|> and R=|B/A|*>. For evaluation of the
resonant states, we seek a solution with complex energy
k= (k,—ik;)?=(k2=k?)—i2kk;=Eg=E,—il",/2 with E,>0
and I',>0 such that the wave function behaves asymptoti-
cally as

(x =),

ei(k,—ikl-)x (x _ oo)

x) — e ilkmkY (o). 4)
This behavior implies a positive energy state with width I,
and lifetime %/I",, which diverges exponentially as Ak but
decays exponentially in time because the time-dependent
part of the solution of the Schrédinger equation is ¢~"“% For
potentials vanishing as |x| — o, the bound state energies are
negative. In particular, for short-range potentials satisfying
plane wave or free particle asymptotic boundary conditions,

the bound state wave function has the asymptotic behavior

) — e, (5)

[x|—o0

and the corresponding bound state energy E, is given by
E,=(iky)?=—k.. We see that the bound states can be thought
of as negative energy states with zero width. If the widths are
very narrow, resonant states behave similarly to bound states
in the vicinity of the potential and may be considered quasi-
bound.

We first study the bound states, resonant states, and trans-
mission and reflection generated by the potential in Eq. (2).
For this potential 7 and R are readily calculated. We denote
a?=V,+k* and write the results as'

F 4 ke ke
i 2 2iaa 2 2iaa’ (6)
A (a+k)e —(a—k)%
B K - o? wal F
—=— ZzwsinQaa)ez’ka(—) , (7)
A dka A
B 2i[(? - K)/4kalsin(2aa) ®)
A - e2ika[e—2ioza(a+ k)2 _ eZiaa(a,_ k)Z] ’
B 2i(a? — kK*)sin(2aa) ©)
F dka ’
F|? 4ak)?
T=|-| = 5 (2a )2 O . (10)
A (4ka)” + 4(a” = k°)*sin“(2aa)
B 2 4 2_k2 ) 2
o |B e epaa
A (4ka)® + 4(a” — k7)*sin“(Laa)

In Fig. 1 we show the variation of 7 with energy for a set
of potential parameters. As E— %, T— 1 as it should. In our
numerical calculations we use angstrom as the unit of length
and A2 as the unit of energy and choose parameters such
that the numerical results and figures show the physical fea-
tures we seek to highlight.

The oscillatory behavior of T is due to the sine term in Eq.
(10). It is more interesting to see if these peaks are related to
the resonance states generated by the potential in Eq. (2).
The resonance state positions and widths can be evaluated by
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Fig. 1. Variation of the transmission coefficient T as a function of the energy
E for the attractive square well in Eq. (2) with V,=-3 and a=5.

solving Schrodinger’s equation [Eq. (1)] with boundary con-
ditions given by Eq. (4). Because we have chosen the poten-
tial to be symmetric with respect to the origin, we expect
both even and odd wave functions. The former behave as
cos(ax) near the origin and the latter as sin(ax). Thus for
even resonant states, the matching of the wave function and
its derivative at x=a leads to the condition « tan(aa)=-ik.
As a result the even resonance state energy and widths are
obtained from the complex roots k,, of the equation

k cos(aa) —ia sin(aa) =0. (12)

The roots are just below the real k-axis in the complex
k-plane such that Re k,>|Im k,|. This condition signifies a
positive energy resonant state with finite width. The corre-
sponding equation for the energies and widths of odd states
is

k sin(aa) + ia cos(aa) =0. (13)

By incorporating the asymptotic condition (5), a similar pro-
cedure can be used to obtain the bound state energy eigen-
values E,. Before examining the results based on these cal-
culations, it is instructive to examine the correspondence
between the bound and resonant states generated by the po-
tential in Eq. (2) and the negative and positive energy states
of a particle confined in a one-dimensional box such that

V=g Vo H=a (14)
o0 x| >a.

This potential generates the eigenvalues
E,=—Vo+n*m/(2a)®, n=1,2,.... (15)

Because the potential in Eq. (14) can be considered to be
infinitely repulsive for |x|>a, we expect that the states for
E <0 have higher energies than the corresponding square
well given by Eq. (2). In Table I we summarize the numerical
results obtained using Vy=-3 and a=5. In this case the
square well has six bound states, and the corresponding box
potential has only five negative energy states. We also give
the positions of the peaks of 7. From Table I it is clear that
the peaks positions of T are related to the energies of the
corresponding resonant states, even though there is a small
difference in the numerical values. This difference is prima-
rily due to the large widths associated with the resonances of
the attractive well.
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Table I. Transmission across a square well of depth V;=—3 and range a=5 [see Eq. (2)]. In all tables and figures
the energy unit is A2 and length unit is angstrom. The positive energy box states (E,) coincide with the maxima

of T.

Peak energies

Bound states Half-width I,,/2

Sequence number n Energy levels E, of T and resonance state energies of states
1 —2.90 -2.92 0

2 —2.61 —2.68 0

3 —2.11 —-2.29 0

4 —1.42 -1.75 0

5 —0.53 —1.08 0

6 0.55 —0.39 0

7 1.84 0.55 0.46 0.30
8 3.32 1.84 1.72 0.62
9 4.99 3.32 3.18 0.91
10 6.87 4.99 4.84 1.20
11 8.94 6.87 6.70 1.50
12 11.21 8.94 8.75 1.81

In Fig. 2 we demonstrate a correlation between the bound
and resonance states of the attractive square well and the
corresponding box energy eigenvalues given by Eq. (15).
Along the x-axis we give the sequence number of the reso-
nant states and bound states generated by the box, as they
occur, starting with the lowest energy state. These numbers
can be interpreted as quantum numbers for the bound states.
From Table I we see that the sets of positive energy states
generated by the potential in Eq. (14) and the peak positions
of T for the corresponding well are the same, but the results
for negative energy bound states for the potential given by
Eq. (2) and the corresponding results for the box potential
differ. We defer the explanation of these results to Sec. III.

It is well known that the bound states and resonant states
can be associated with the poles of the S-matrix in complex
k or, equivalently, complex-E plane.14 For transmission
across a potential in one dimension, it is natural to examine
whether the resonant states we have described correspond to
the complex poles of the transmission amplitude F/A. From
Eq. (7) we see that the pole structure of F/A and the reflec-
tion amplitude B/A are the same. The only condition to be
satisfied is that for real positive energies R+7=1, which
means that whenever 7 has a peak R has a minimum. If we
use Eq. (7) for F/A and a convenient numerical procedure
such as an iterative method, we can calculate the zeros of the

E,(A?)
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Fig. 2. Comparison of bound and resonant states of the attractive square
well in Eq. (2) with Vy=-3 and a=5 to the corresponding states for the box
potential (14). The abscissa is the sequence number of the states.
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denominator of Eq. (6), which will generate the poles of F/A
and B/A. From this calculation we can verify that all the
resonance states listed in Table I correspond to the complex
poles of F/A.

We next discuss the reason why the complex poles of F/A
are related to resonances. The amplitude A/F can be under-
stood as the coefficient of an incoming incident wave e** as
x——o when the outgoing transmitted wave e’** for x— o
has amplitude one. Similarly, B/F can be understood as the
coefficient of the reflected wave as x — — for the same con-
dition. If A/ F=0 for a complex k=k,—ik; in the lower half of
k-plane with k,>k;, the resulting wave function satisfies the
asymptotic condition given in Eq. (4) signifying a resonant
state. However, A/ F=0 implies a corresponding pole in F/A,
signifying that F/A has complex poles corresponding to a
resonance. This correspondence is analogous to three-
dimensional potential scattering for which the complex zeros
k=k,—ik; of the coefficient of the incoming spherical wave
component of the regular solution of the scattering problem
represent the resonant states and consequently are identified
as the pole position of the corresponding partial wave
S-matrix S,.l4 This result demonstrates that resonances have
similar interpretations in one and three dimensions. If let
A/F=0, we obtain the condition satisfied by the zeros of
A/lF,

S5 i, (16)

which corresponds to the complex poles of the transmission
amplitude F/A. It is straightforward to verify that Eq. (16)
implies Egs. (12) and (13), which generate the resonance
energies and widths. This verification and the numerical ex-
ample we have described demonstrate that the complex poles
of the transmission amplitude F/A for unit incident wave
signify resonances and generate the peaks of the oscillations
of T for an attractive square well potential.
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Fig. 3. Variation of T with E for the repulsive rectangular barrier [Eq. (17)]
with Vy=3 and a=5.

III. OSCILLATIONS OF T ABOVE THE
RECTANGULAR BARRIER

Transmission across a rectangular barrier is the most com-
monly studied example in introductory quantum mechanics.
In Fig. 3 we show the variation of 7 with energy for the
potential barrier

V)= 0 (|x| > a).

(17)
We take V=3 and a=5 so we can consider the repulsive
counterpart of the attractive square well studied in Sec. II.
Our primary interest is in the interpretation of the oscillations
of T for energies E>V,. Based on our interpretation of the
oscillations in 7 generated by an attractive square well, we
can understand these oscillations in a similar manner. Reso-
nances generated by a reasonably flat barrier are well studied
for nucleus-nucleus collisions.'*"” Barrier top resonances are
broader states compared to the very narrow resonant states
that are generated by the potential pockets sandwiched be-
tween wide barriers. However if the barrier is flatter and
wider, a number of narrower resonance states are generated
for energies above the barrier. This condition is satisfied in
our example of the rectangular barrier with the choice a=5.
Unlike the attractive well, there are no bound states associ-
ated with the rectangular barrier in Eq. (17).

We used the conditions given in Eq. (4) to search for reso-
nance states generated by the barrier at energies above V.
These states along with the maxima of T are listed in Table
II. The expression for T for E<Vj is given by Eq. (10) with
a?=k>-V,. It is clear that the peaks of the oscillations of T at
above barrier energies correspond to the barrier top reso-
nances. As before, there is a small difference between the
peak positions of 7" and the corresponding resonance ener-
gies due to the fact that we are dealing with broad states.
Note that the numerically computed 7 has contributions from
background terms in addition to pole terms. When the imagi-
nary part of the pole position of transmission amplitude is
small, the resonance contribution dominates 7 in the vicinity
of resonance energy, and the peak position of 7" and the cor-
responding resonance position are closer. However, when a
resonance is broad, the background term becomes more sig-
nificant and there is a shift of the peak position of 7 with
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Table II. Comparison of transmission peaks and barrier resonance energies
for the square barrier potential [Eq. (17)] with V=3 and a=5.

Sequence Peak energy  Resonance Resonance
number Energy levels of T energies E, half-width I",/2
1 3.10 3.10 3.10 0.02

2 3.40 3.40 3.38 0.09

3 3.89 3.89 3.86 0.19

4 4.58 4.58 4.53 0.33

5 5.47 5.47 5.40 0.50

6 6.55 6.55 6.46 0.70

7 7.84 7.84 7.72 0.92

8 9.32 9.32 9.19 1.16

respect to the corresponding resonance energy. The numeri-
cal results shown in Tables I and II demonstrate this effect.

To make the comparison between the attractive well and
the corresponding barrier more complete, we examine the
variation of the barrier top resonance position E, with n and
compare it with the corresponding positive energy eigenval-
ues

E,=n*m"/(2a)* +3, (18)
generated by the box potential
Vo=3 (¥ <a)
V(x) = (19)
(|x| > a).

In Fig. 4 we compare these with the energies of the barrier
top resonance state energies. The correlation between box
states and barrier top states is close as in the case for the
attractive well. Figure 2 looks different because of the single
sequencing of bound and resonant states generated by the
well. The positive energy states generated by Eq. (17) and
the corresponding peak position of 7" match very well. The
reason for this common feature can be understood as fol-
lows.

The expression for 7 in Eq. (10) holds for an attractive
square well with a?=k*+V,. The same expression is valid
for the barrier for k> >V, with a?>=k>—V,,. We have taken the
width 2a of the well and the barrier to be large (a=35) to

E (A?

n

— +— Resonance position
—=— Box States

V,=3a=5

w

Fig. 4. Comparison of the barrier top resonant state energies of the repulsive
rectangular potential (17) with Vy=3 and a=35 to the corresponding states
for the box potential (19). The abscissa is the sequence number of the states.
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generate a greater number of states. For both the well and the
barrier, the maxima of 7 are governed by the zeros of
sin(2aa). Thus for the attractive well, the peaks of T are at
positive energies, signifying that the resonances occur at
E,=n’7/(2a)?)-V,>0. Such a close correlation is not
present for the negative energy states, as is clear from Table
I. For the barrier the peaks of T are at E,=(n’>m*/(2a)?
+V, for n=1,2,.... Both sets of E, are eigenvalues of the
corresponding box potentials. In contrast, resonant state en-
ergies and widths are generated from the complex poles of 7T,
and their positions are slightly shifted from the maxima of 7
because the resonances are broader. Tables I and II summa-
rize these results.

IV. EFFECT OF ADJACENT WELL ON BARRIER
TRANSMISSION

We study here the effect of an attractive well on the tun-
neling probability across a repulsive barrier for incoming
particle energies below the barrier. The most common pro-
cedure for studying tunneling across a potential barrier at
energies below the barrier is the WKB expression for the
transmission coefficient.'” The WKB expression for T is
given by

o))

X2 —_—
= expl— 2 f V(V(x) - kz)dx} , (20)
xq
where the Gamow factor @2 is given by
o S
0= explf V(V(x) - kz)dx] . (21)
X

Here x; and x,>x; are the turning points, which define the
classically forbidden region x;<x<x, of the barrier at
E=k>.

This semiclassical approach to tunneling incorporates the
potential between the turning points at a given energy but
ignores the potential elsewhere resulting in the expression
for T given by Eq. (20), which is independent of V(x) in the
domains x<x; and x>x,. In the light of our discussion on
the transmission across a well, it is interesting to see the
difference that an adjacent well makes in tunneling across a
barrier. For this purpose we consider the potential

0 x<-a)

Vi) = -Vy (ra<x<a) -
() = Vi (a<x<b) 22)

0 (x>b).

This potential is a combination of an attractive well followed
by a barrier (V,,V,>0). In Fig. 5 we show the variation of T
for energies below and above the barrier for Vy=3, a=5,
V=6, and b—a=0.5. We have kept b—a small to reduce the
excessive damping of 7 by the barrier at energies below V.
Figure 5 also gives the variation of T generated by only the
attractive well [Eq. (2)] and only the repulsive barrier with
width (b—a). The variation of T for the potential given by
Eq. (22) generates oscillatory structures related to the reso-
nant states of the well. If we used a WKB approach, we
would have obtained a smoothly increasing curve up to
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Fig. 5. Plot of T(E) for the attractive square well (2) with Vy=-3, a=5 as
indicated by W; the repulsive rectangular barrier [Eq. (17)] with V=6 and
a=0.25 is indicated by B, and the combination of attractive square well and
repulsive barrier (22) with Vy=-3, V,=6, a=5, and b=5.5 is indicated by
W-B.

E=V, and missed the oscillatory features. However, T for a
barrier only gives the overall variation of T, implying that the
WKB approach provides a reasonable approximation of T
but does not incorporate finer details. The variation of T by
only a potential well deviates farther from the results ob-
tained by using Eq. (22).

V. TRANSMISSION ACROSS A WELL WITH NO
OSCILLATIONS

We may be tempted to ask if 7 for an attractive well with
bound states always shows oscillations with E. Reference 13
studied the nature of the resonances generated by the poten-
tial pocket sandwiched between well separated barriers and
also the barrier top resonances in three-dimensional scatter-
ing for rectangular type potentials and for more smoothly
varying potentials, and demonstrated that the nature of the
results in both cases is similar. To have a sharper resonance
above the barrier, it is necessary to have a broader barrier. In
the light of this result we might expect that the general pat-
tern of resonances we have found for the attractive rectangu-
lar well and rectangular barrier is applicable even when they
are replaced by smoother potentials. However there can be
exceptions. Such an exception is given by the behavior of T
for the modified Poschl-Teller type potential,16

ANA=1)

Y 72 S
Vo) =-p cosh? Bx’ (23)

This potential has bound states given by
E,=-BN-1-n)? (n=\-1). (24)
The expression for 7 is given by

e

- 1+ p2 ’ 25)
where

B sinh(k/ B)

~ sin(m\N) (26)

An interesting feature of this potential is that 7=1 for
integer A = 1. Our interest here is to examine 7 for a typical
set of N and 8. In Fig. 6 we show the variation of T for three
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Fig. 6. Plot of T(E) for the Poschl-Teller potential (23).

sets of N and B. No oscillatory structure is present, which
implies that no resonant states are generated by this attractive
potential. This property is also evident from Eq. (25). There
also is the important case of the attractive Coulomb potential
U(r)=-1vy/r, with y>0, which generates an infinite number
of bound states but no resonant states. In this case the bound
states are associated with the poles of the S-matrix for the
{th partial wave given by (Ref. 14, p. 429)

_F(l+1—i7])

TTU+1+in)’ .

l
Here 7n=1v/2k is the Rutherford parameter associated with
the Coulomb potential. The repulsive Coulomb potential
with y<<0 also is an example that does not generate resonant
states.

VI. SUMMARY AND CONCLUSIONS

For the attractive square well and its repulsive counterpart,
we have shown that the oscillations in 7 as a function of
energy correspond to the broad resonant state energies ob-
tained by using boundary conditions satisfied by the resonant
state wave function. We found that the resonant energies and
their widths can be obtained in terms of the complex poles of
the transmission amplitude or reflection amplitude in the
lower half of the complex E-plane in the vicinity of the real
axis. This result is similar to the corresponding behavior of
S-matrix poles in three-dimensional scattering and hence
provides a unified understanding of transmission in one di-
mension and potential scattering in three dimensions in terms
of the pole structure of the corresponding amplitudes. For an
attractive square well and the rectangular barrier, the posi-
tions of the maxima of T are the same as the energies of the
states of the corresponding one-dimensional box potentials.
The resonance state energies are also close to the peak posi-
tions of 7. For a potential that is a combination of an attrac-
tive well and a repulsive barrier, T exhibits oscillations even
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at energies below the barrier, in contrast to the WKB type
barrier expression for 7, which does not manifest these fea-
tures. Hence simple WKB type expressions for 7 may not be
reasonable approximation if the total potential has physical
features such as an attractive well outside the barrier region.
The oscillations of T across an attractive potential are likely
to be found for most potentials. But these features can have
exceptions such as was shown for the attractive modified
Poschl-Teller type potential.
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