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The electric conductance of the graphite ribbon with locally applied gate voltage has
been studied in terms of the Landauer approach. In the low-energy region, nano-graphite
ribbon with zigzag boundaries exhibits the single electronic transport channel due to
the edge states. The chemical potential dependence of the electric conductance shows
qualitatively different behavior, depending on whether the magnitude of the potential
barrier (gate voltage bias) Vj is larger than the energy gap A of the single channel region
of the zigzag ribbon. For positive V; with V; < A, the zero-conductance resonances
appear for 0 < E < V,, and average transmission probability is quite small in this
region. However the transmission probability is almost one, i.e. perfect transmission, for
E > Vy. This step-function-like behavior of the conductance shows that it is possible to
fabricate a nano-graphite-based switching device by the application of weak gate voltage
bias.

1. Introduction

Nanometer-sized carbon systems such as carbon nanotubes’? and nano-
graphites3~7%10 have attracted much attention due to their possibilities as carbon-
based molecular-electronic devices. In these systems, the topology of sp? carbon
networks has much influence on the electronic states near the Fermi level. Recent
theoretical studies indicate that in nano-size carbon systems with open boundaries,
the size of the system and shapes of graphite edges strongly affect their m-electronic
states.? For the model of graphite ribbons, it has been shown that ribbons with
zigzag edges (zigzag ribbon) possess localized edge states with energies close to
the Fermi level.®?10 These edge states correspond to the non-bonding molecular
orbitals, where the electrons are strongly localized near the zigzag edge. Although
the non-bonding state cannot carry the electric currents, the overlap of two edge
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states from the two edges of a ribbon yields bonding and anti-bonding states and
gives the single channel for electron transport.'!:13

Recently there are some experimental attempts to control and fabricate the
nano-size carbon systems.®® One is the preparation of a single nano-graphene
derived from heat-treated nano-diamond particles on a highly oriented pyrolytic
graphite (HOPG),® another is the fabrication of the nano-graphite ribbon on the
metallic substrate using the epitaxial growth techniques.” The progress of exper-
imental research becomes the basis of the fundamental technology toward the
nanographite-based electronic devices. Therefore, from theoretical and experimen-
tal point of view, it is interesting to study the electronic transport properties of
nanographite ribbons.!»!3 In this paper, we study the electrical conductance of the
zigzag nanographite ribbons with local application of gate voltage, which suggest
the possibility of nanographtie-based switching electronic devices.

2. Electronic States of Zigzag Ribbons
We use tight-binding Hamiltonian defined by

H =3t )01+ Y Vilo)ls (1)

where t; ; = —t if ¢ and j are nearest neighbors, otherwise 0, and |¢) is a localized
orbital on site i. The summation ) g 18 taken for all sites applied gate voltage. We
incorporate the effect of the application of local gate voltage via the variation of the
onsite potential in this tight binding model. The nearest-neighbor hopping integral
t is used as the unit of energy throughout this paper. Electrical conductance is
evaluated using the Landauer formula,!2

e2
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where T and ¢ are the transmission probability and transmission coefficient. We
use the recursive Green function techniques for the calculation of transmission
coefficients.!* Here, F is the chemical potential of the lead lines. We take e?/mh as
the unit of conductance throughout this work.

In Fig. 1(a), the graphite ribbon with zigzag edges (zigzag ribbons) is shown.
The ribbon width NV is defined by the number of zigzag lines. We define the length
of the unit cell as a, which is set as unity. We show the energy band structure of
the zigzag ribbon for N = 10 in Fig. 1(b). The zigzag ribbons is metallic for all
N. One of the remarkable features is the appearance of partly flat bands at the
Fermi level (E = 0), where the electrons are strongly localized near zigzag edges.?
Although the edge state has non-bonding character, the overlap from the two sides
of the ribbon yields bonding and anti-bonding configurations. As a result a weak
dispersion of these states along the ribbon is realized, which leads to one channel
for electron transport. We define the magnitude of the single-channel energy region
as A. This A decreases with increasing ribbon width, i.e. A oc 1/N.1°
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The effect of the gate voltage is represented by rectangle potential with length
L and height V;, as shown in Fig. 2. The length L of the potential barrier is defined
by the number of slices of applied gate voltage.
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Fig. 1. (a) Graphite ribbon with zigzag edges, the rectagle with dashed line is the unit cell.
(b) The energy band structure of zigzag ribbon for N = 10.
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Fig. 2. The rectangle potential with the magnitude Vj is applied from 1st slice to Lth slice.
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3. Numerical Calculation

In this section, we demonstrate the result of numerical calculation on the electri-
cal conductance through the zigzag nanographite ribbon with locally applied gate
voltage. The application of the local gate voltage can make the single or double
potential barrier in the graphite ribbon. The chemical potential dependence of the
electric conductance shows qualitatively different behavior, depending on whether
the magnitude of the potential barrier (gate voltage bias) Vj is larger than the
energy gap of the single channel region of the zigzag ribbon A. In the case of the
single-barrier potential with positive V, of V; < A, the zero-conductance resonances
appears in the 0 < E < V,, and average transmission probability is quite small in
this region, but the transmission probability becomes almost one for E > V. This
result supports that it is possible to make a switching device by the application of
weak gate voltage bias. In the case of the double-barrier potential, we found the
clear resonant tunneling behavior of the conductance. This result supports that we
can fabricate a quantum dot system on the nanographite zigzag ribbon by using
the two seperate gate.

3.1. Single potential barrier

It is instructive to study the electron tunneling through the potential barrier with
L = 1. There are two types of carbon slices in the zigzag ribbons, which called o and
0 slice as shown in Fig. 3. For even IV, the a and (3-slice are not equivalent. However,
for odd N, the o and (-slice are equivalent, because of the mirror symmetry with
respect to the translational axis of the zigzag ribbon. Figure 4 shows the chemical
potential dependence of the conductance through the L = 1 potential barrier, for
(a) N =10 and (b) N = 11. For even N, there are differences in the behavior of the

ap

Fig. 3. Two kinds of slices in a zigzag ribbon for N is (a) even and (b) odd.
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Fig. 4. The chemical potential dependence of the conductance of zigzag ribbon with the potental
barrier of L =1 and V = 0.3, for (a) N =10 and (b) N = 11.

conductance between a and (-slice. But, for the odd N, both « and §-slice work
equivalently as expected. This even-odd effects rapidly disappear with the increase
in the length of the potential barrier. It should be noted that these dip structures
are perfect reflection, i.e. zero-conductance resonance.!!''3 We have also checked
that the phase of the transmission coefficient has the clear m-phase jump at each
zero-conductance energy point. The m-phase jump guarantees perfect reflection.!!
Since the simple 1D free electron systems with single electron channel do not show
such dip structures, these dip structures are originated from the topological nature
of the hexagonal lattice.!® It is also mentioned that the results for negative V, can

be obtained by reversing the sign of the chemical potential, i.e. £ — —F.
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Figure 5 shows chemical potential dependence of the conductance for the po-
tential barrier with L = 10. We change the height of the potential in the range
0.1 <V, <1.0. Here we restrict the chemical potential in the single-channel energy
region of the left lead line, i.e. |[E| < A, where A ~ 0.4 in this case.

In Fig. 5, it is found that the behavior of the conductance is quite different
irrespective of the height of potential V; as compared to the energy width of a
single-channel region A. When the potential Vj is smaller than A, we can find the
clear dip structures in the region of 0 < E < V. Interestingly, the conductance has
the almost perfect transmission except for the region 0 < E < V. These results
remind us that the application of gate voltage can be a good switching method in
zigzag nano-graphite ribbons. On the other hand, when the height of the potential
Vg is larger than A, quite irregular dependence of the conductance appears.

Here we explain the reason behind the qualitative change of the conductance
behavior based on the energy band structures of zigzag ribbon. Figure 6 shows
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Fig. 5. The chemical potential dependence of the conductance of zigzag ribbon (N = 10 and
A ~ 0.4), where the potential barrier is L = 10, (a) V5 = 0.1, (b) V; = 0.2, (¢) Vg = 0.3,
(d) Vg =0.4, (e) Vg = 0.6, (f) Vg = 0.8 and (g) Vg = 1.0.
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energy band in (a) the lead line and (b) the region applied where the gate voltage
Vs < A. The energy band in the potential barrier shifts with the magnitude V,
in accordance to the magnitude of the gate voltage. It should be noted that an
electron with energy F € (0,A) passes through the single channel in the whole
sample. However, when V; > A (Fig. 7), an electron with energy of E € (0,A) in
the lead comes to multi-channel in the potential. Therefore the multiple scattering
of the electrons with inter-band transition occurs in the potential barrier region,
resulting in the complicated behavior of conductance for V; > A. In addition, if the
potential Vj is larger than the half of the bandwidth (~ 3t), there is no conducting
channel in the potential barrier region. As a result, no electron transmission occurs.

Figure 8 shows the chemical potential dependence of the conductance for N =
10, V; = 0.3 and A ~ 0.4. Here we change the length L of the potential barrier
in the range of 1 < L < 50. The perfect reflection appears in the range where the
width of the potential L is almost equal to the width of the ribbon N. Furthermore,
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Fig. 6. The schematic energy band structure of zigzag ribbon with N = 10 in the (a) lead line
and (b) potential barrier when Vg < A.
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Fig. 7. The schematic energy band structure of zigzag ribbon with N = 10 in the (a) lead line
and (b) potential barrier when Vy; > A.
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for L > N, the transmission probability becomes close to zero with the energies
lower than V.

Now let us consider rather a more realistic potential barrier than the simple
rectangle potential barrier. In the realistic system, both ends of the potential might
have a certain amount of inclination. Here we express both ends of the potential by
the Gaussian function Vge"”("""*"""o)2 as shown in Fig. 9. Here, V} is the maximum
of potential energy, L is the length between centers of two gaussian functions, and
a is the Gaussian parameter.
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Fig. 8. The chemical potential dependence of conductance of zigzag ribbon with N = 10, V5 = 0.3
for (a) L=1, (b) L=2,(c) L=3, (d) L =10 and (e) L = 50.

Fig. 9. The potential barrier both ended with Gauss function
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Figure 10 shows chemical potential dependence of conductance for N = 10,
L =10 and a = 0.1. Here we change the potential height V. Also in this case, an
anti-resonance state appears in the domain of V< A. For V' > A, the conductance
irregularly depends on the chemical potential. Since similar behavior as the case of
rectangle potential has been observed, the rectangle potential can well-reproduce
the realistic cases in the low-energy electron transport of the nanographite ribbon
systems.

Figure 11 shows the chemical potential dependence of conductance for N = 10,
L = 10 and V = 0.3. Here we change the Gaussian parameter in the range of
0.01 < a <£5.0. For 0 < E <V, the conductance becomes quite small, otherwise
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Fig. 10. The chemical potential dependence of the conductance of the zigzag ribbon (N = 10,
L = 10) with Gaussian potential barrier of (a) Vy = 0.1, (b) Vg =0.2, (c) Vg =0.3, (d) V5 = 0.4,
(e) Vg =0.6, (f) Vy =0.8, and (g) Vg = 1.0, where a = 0.1.
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Fig. 11. The chemical potential dependence of the conductance of the zigzag ribbon (N = 10, L =
10,Vy = 0.3) for (a) a = 5.0, (b) @ = 1.0, (c) o = 0.5, (d) «=0.1, (e) a = 0.05 and (f) & = 0.01.

the conductance becomes almost one. Thus, we can recognize that the rectangular
potential is simple, but can well-reproduce the results of more realistic potential
cases.

3.2. Dowuble barrier system — quantum dot

In this section, we briefly mention the electronic transport through the double
potential barrier system as shown in Fig. 12. In this system, the region sandwiched
by the barriers plays the role of a quantum dot. The electron can tunnel through the
discrete energy levels, resulting in resonant tunneling. In Fig. 13, it is shown that
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Fig. 12. The geometry of the double barrier potential system.
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Fig. 13. The chemical potential dependence of the electrical conductance in the double barrier
system, where V3, N = 10, Vi = Vo = 0.3 and L1 = Ly = 10 for (a) L3z = 10, (b) L3 = 20,
(¢) L3 =30 and (d) L3 = 40.

the chemical potential dependence of the double barrier system with V3 = V5 = 0.3
and Ly = Ls = 10 for various L3. The clear resonant tunneling states are found
in the energy region with £ < Vi. This result demonstrates that it is possible to
fabricate the quantum dots in the zigzag graphite ribbons by the application of two
separate gate voltage.
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4. Summary

In this work, we have studied the electrical conductance of zigzag graphite ribbons
through locally applied gate voltage. The chemical potential dependence of the elec-
trical conductance shows qualitatively different behavior, depending on whether the
magnitude of the potential barrier V; is larger than the energy gap of the single
channel region of the zigzag ribbon A. For single potential barrier with positive Vj
of V; < A, zero-conductance resonances appears in the 0 < E < V, region, and
average transmission probability is quite small in this region, otherwise the trans-
mission probability is almost one. This result supports the fact that it is possible to
make a switching device by applying a very weak gate voltage bias. For V; > A, the
transmission probability shows quite irregular behavior, which is due to the multi-
ple inter-subband electron scattering in the potential region. Futhermore, we have
also also studied the double-barrier potential problem, we found the clear resonant
tunneling behavior of the conductance. This result supports that we can fabricate
a quantum dot system on the nanographite zigzag ribbon by using the two seperate
gates.
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