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Abstract:
The quantummechanicaldynamicsof a particlecoupledto a heatbathis treatedby functional integralmethodsand a generalizationof the

Feynman—Vernoninfluencefunctional is derived.Theextendedtheorydescribesthetimeevolutionof nonfactorizinginitial statesandof equilibrium
correlationfunctions.The theoryis illuminated throughexactly solvablemodels.

1. Introduction

In the last fouror five yearstherehasbeenrenewedinterestin theproblemof describingdampingof
a quantumsystem.Since Pauli’s seminalwork in 1928 [1] a greatvariety of approachesaiming at a
consistentquantum mechanicaldescriptionof dissipation were developed.The most common ap-
proachesare basedon quantummechanicalLangevin equations[2—41or associatedquantummaster
equations[5] which weresuccessfullyusedto describedampingphenomena,e.g. in quantumoptics [6]
andspin relaxationtheory[7,8]. This andrelatedtheoriesareavailablethroughvariousreviewarticles
[9—11].

Unfortunately,the formal simplicity of quantumLangevin and masterequationsis paid for by the
factthat concreteresultscanonly be obtainedfor systemswhich allow for a perturbativetreatmentof
thecoupling to the environmentalheat bath. Basically this restrictsthe approachto weakly damped
systems,wherethe relaxationtime is largecomparedwith the longesttime scaleof undampedmotion
andalso large comparedwith the “thermal” time h/kB T. Theseconditionsare easilyviolatedfor low
temperaturesystems,in particularif their dynamicsinvolves tunnellingtransitions[12—15].

In part becauseof its relevanceto thoseproblems,the functional integral descriptionof damped
quantumsystemspioneeredby FeynmanandVernon[16,17] hasseena remarkableresurgencerecently
[18—21].The method allows for a study of the quantum mechanicaldynamics at arbitrarily low
temperaturesand for arbitrarily strongdamping.In particular, Schmid [18]and Caldeiraand Leggett
[19]havepresenteda detailedstudyof quantumBrownianmotion in the caseof frequency-independent
(Ohmic) dissipation. At present,however, the theory is still of limited applicability due to a
factorizationassumptionfor the initial condition introducedby FeynmanandVernon [161.Subsequent
authorshavemostly adheredto this assumption.

In this article wepresentan approachwhich overcomestheselimitations. The correlationsbetween
the systemand the heatbath in the initial stateare describedby an additional Euclideanfunctional
integral.This apparentcomplicationof the theoryis compensatedfor by thefact that symmetriesof the
equilibrium processare incorporatedexactly in the functional integralrepresentation.Apart from the
relaxation of nonequilibrium initial states, the extendedtheory also allows for the calculation of
equilibrium correlationand responsefunctions.The theorywasdevelopedin Stuttgartsince1985 and
someresultswerealreadygiven elsewhere[22—24].Herewe give a detailedandsystematicaccountof
the approach.Resultsare given for a specific mechanicalmodel: A quantumparticle moving in a
potential field interactslinearly with a heatbathrepresentedby an infinite setof harmonicoscillators.
Apart from the generaltreatmentwithin the functionalintegral approachexactlysolvablecasesof the
model arediscussed.

In part I of this paper the problemsunderlying an exact functional integral representationof
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quantumBrownian motion in a field of forceareexplainedand analyzedstartingfrom first principles.
The time evolutionof experimentallyattainableinitial statesis thoroughlydiscussedandno factoriza-
tion assumptionis made. The environmentaloscillatorsare eliminated exactly and the functional
integralrepresentationof the reduceddynamicsof the dampedparticle is obtained.Wethenexamine
the minimal action pathsandrelate the quantitiescharacterizingthe functional integralto quantities
familiar from thephenomenologicaltheory of Brownian motion.

In Part lithe resultsarespecifiedfor aparticlemoving in a harmonicpotential. Contraryto earlier
work employingfunctionalintegraltechniques,our analysisdoesnot stopat a formallevel inasmuchas
frequencyintegrals over environmentalmodes are evaluatedexplicitly and related to measurable
quantities.Besidesthe relaxationof nonequilibriuminitial stateswe also studytheevolutionunderthe
influenceof a time-dependentexternalforce. Moreover,equilibrium correlationfunctionsandresponse
functionsare calculatedwithin the functional integralapproach.The methodis developedfor systems
with a linear dissipative mechanismof arbitrary frequencydependence,thus providing a complete
descriptionof quantummechanicalGaussianprocessesin termsof functionalintegrals.

Part III examines the quantum dynamics of a dampedfree particle. Previously, Hakim and
Ambegaokar[20]havestudiedthe time evolutionof nonfactorizinginitial statesof a free particlewith
Ohmic damping.We extendthis work in various directions.Studyingenvironmentalspectraldensities
with arbitraryfrequencydependencewefind arich variety of dynamicalbehaviour.For a largedensity
of low frequencyenvironmentalmodesa dissipativephasetransitionto localizedstatesoccursat T=0.
We also discussmodelsleading to subdiffusiveor superdiffusivespreadingof the state.

PART I. GENERAL THEORY

2. Microscopicmodel and preparation of the initial state

The motion of a particle in a potential field is the general theme underlying the theoretical
approachesto many problemsin physicalandchemicalsciences.Brownian motion theoryhasledto an
understandingof such varied phenomenaas interstitial diffusion in solids [25,26], reaction ratesin
chemicalphysics[27],macroscopicquantumtunnellingin Josephsonsystems[12—15,28], and fission in
nuclearphysics [29]. In many applicationsthe coordinateand momentumof the Brownian particle
representthe valueand time rateof changeof a generalcoordinatecharacterizingthe kinetic process
under study. Here, we shall considera concretemechanicalmodel where the calculationsare most
transparent.

2.1. The modelHamiltonian

We considera Brownian particle of mass M moving in a potential V(q, t) which may depend
explicitly on time. The Brownianmotionoftheparticlearisesbecauseofits interactionwith a heatbath
environment.Many authors[2,3, 14, 18—20,30—34] haveuseda modelwheretheenvironmentconsists
of a set of harmonicoscillators coupledlinearly to the coordinateq of the Brownian particle. The
systemunderstudy is thengovernedby the Hamiltonian

H=Ho+HR+HOR, (2.1)
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where

H0 =p
2/2M + V(q, t) (2.2)

is the Hamiltonian of theundampedparticle,

HR = ~ ~(p~/m~+ m~w~x~) (2.3)

describesthe reservoirconsistingof N harmonicoscillators,and

HOR = —q c~x~+ q2 ~ c~/2m~tu~ (2.4)

introducesthe coupling. The last termin eq. (2.4) compensatesfor thecoupling-inducedrenonnaliza-
tion of thepotential (seebelow) andit is introducedhereas a matterof convenience.Naturally, sucha
termcan alwaysbe split off from V(q,t) in eq. (2.2).

The Hamiltoniangiven by (2.1—2.4)haswidely beenusedto model dissipationfor morethantwenty
years.Early studiesof this or relatedmodelsfor harmonicpotentialV(q) includethe work by Rubin
[31]andHemmer[32]for classicalsystems,and Senitzky [2], Ford et al. [3] and Ullersma [33]for
quantumsystems.While theseauthorsdiscussedthe form oftheequationsof motion, explicit resultsfor
measurablequantitiesin thequantumregimewereworkedoutonly within perturbationtheory.A great
body of relatedwork for the harmoniccasewasreviewedby Dekker [11].Zwanzig [34]treatedthe
classicalstatisticalmechanicsof themodel with nonlinearpotential andshowedthat underappropriate
assumptionsfor thespectrumof the reservoiroscillatorstheHamiltonian (2.1—2.4)leadsto aLangevin
equationwith Ohmic dissipation.

While mostofthework from thesixtiesandseventiesenvisagedapplications,e.g.,in quantumoptics
and spinrelaxationtheoryandinvolved approximationsappropriateto thosefields, morerecentwork
[14,18—20,35—37] hasfocussedon theeffect of low temperaturesand/orstrongdamping.In theirstudy
of the quantum mechanicsof the model Caldeiraand Leggett [14] pointed out that a reservoir
consistingof harmonicoscillatorsis rathergeneralandoftenprovidesa suitabledescriptionof a realistic
environmentat sufficiently low temperatures.For instanceeventhe couplingto a Fermionicheatbath
may be relatedto the Bosonicenvironmentconsideredhere[26,38].

2.2. Initial statesandpreparationfunction

The modeldefinedby the Hamiltonian(2.1—2.4)hasto be supplementedby informationconcerning
the initial state.In earlierwork [2,3, 8, 18, 19, 21, 33] it wasfrequentlyassumedthat the initial density
matrix W

0 of the system consisting of Brownian particle and environmentalheat bath factorizes
accordingto

WO=POWR (2.5)

where p0 is the densitymatrix of the particle,while WR= Z~’exp(—/
3HR) is the canonicaldensity

matrix of the unperturbedheatbathat inversetemperaturef~= l/kB T. The factorizationis basedon
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theassumptionthat thereareno correlationsbetweenthe particleand the reservoirat time t = 0 which
is the case if the interaction is switched on for t >0 only. Unfortunately, in most applicationsof
Brownianmotiontheorythecoordinateq and theenvironmentaldegreesof freedomareintegralparts
of the samesystemand their interactionis not at the disposalof theexperimentalist.

A classof initial statesincluding many initial conditions resulting from experimentallyfeasible
preparationsis of the form

w0 = ~ o1w~o;, (2.6)

where

W,3 = Z~
1exp(—f3H) (2.7)

is thecanonicaldensitymatrix describingtheequilibriumof the interactingsystemsin thepresenceof a
time-independentpotential V. The operators0~,0 actuponthe particleonly and leavethe reservoir
coordinatesunchangedbut they may bechosenarbitrarilyotherwise.Incidentallywe notethat thereare
certainconstraintson theseoperatorsif W

0 is askedto bea properdensitymatrix. However,this is not
necessarilyrequiredfor the following analysisto be useful, andphysicalexampleswhere W0 is not a
densitymatrix will explicitly be given below.

The simplest initial stateof the form (2.6) is the equilibrium density matrix W,3 itself. It can be
preparedby waiting sufficiently long so that the systemhasreachedequilibrium at t = 0. Then the
responseof the particle to a time-dependentexternalforceacting at times t >0 may be studied.

A modificationof this problemis the following. The systemmay be displacedfrom equilibrium by
applyinga constantexternalforceF andW~describesthemodified equilibrium in thepresenceof this
force. When the externalforce is switchedoff at time t = 0.~we can study the relaxationtowards
nonconstrainedequilibrium. This relaxationproblemreducesto thedeterminationofthe responseof a
systemwith a Hamiltonianincluding theexternalforceto the specialperturbationF(t) = — Fø(t)where
�~(t)is theunit stepfunction.

Further, for a systemin equilibrium attime t =0 we may performa measurementof a dynamical
variableof theBrownianparticle.This leadsto a reductionof thedensitymatrix. ThestateW0afterthe
measurementwill beof the form (2.6) wheretheoperators0~,0 describetheeffect of themeasuring
device[39].For instanceanidealpositionmeasurementwith theoutcomeq0 — 5/2 < q < q0 + 5/2 leads
to

W0 = PqWpPq, (2.8)

where
+ô/2

Pq=N~”
2 J dqlq)(ql (2.9)

q
0—8/2

projectson themeasuredinterval, andwhereN is a normalizationfactor.
Thirdly, we may perform a scatteringexperimentin which the cross section is related to an

equilibrium correlationfunctionoftheBrownianparticle[40].Now, anequilibriumcorrelationfunction
(A(t)B) may formally be viewed as the expectationvalue of A at time t in the “initial ensemble”
W0 = BW~.Clearly BWI3 is not a properdensitymatrix, however,it is againof the form (2.6).
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In coordinaterepresentation(2.6) reads

W0(q,x~,q’,x~)=(q,x~IW0~q’,x~)

= ~ J~Jd~’01(q,~)°;(~‘~ q’)W~(~,x~,~, x~) (2.10)

where 01(q, ~)= (qlO1I~)and 0(~’,q’)= (q’I0~q’). Hence,the initial statesstudiedareof the
form

W0(q,x~,q’,x~)=Jd~Jd~’A(q, ~, q’, ~‘)WI3(~,xfl, ~‘,x~) (2.11)

where

A(q, ~, q’, ~‘) = ~ 01(q,~)O(~’, q’) (2.12)

is a preparationfunction describingthedeviationfrom theequilibriumdistribution.This functioncanbe
quite arbitrarysincea decompositioninto a sum ofproductsof theform (2.12) is alwayspossible.In the
sequelwe study the time evolutionof initial statesof the form (2.11).

3. Functional integralrepresentationof the density matrix andeliminationof the environment

We are interestedin a reduceddescriptionof the system and focus on the time evolutionof the
Brownian particleonly. Hence,we want to eliminatethe environmentaldegreesof freedom.To that
end it is convenient to employ the functional integral representationof quantum mechanics[17]
introducedby Feynman.Sincefor our model integralsover environmentalcoordinatesareGaussian,
they can be done exactly.

3.1. Euclideanfunctionalintegral

The coordinaterepresentationof the equilibrium density matrix WI3 of the entire systemmay be

written as a so-calledEuclideanfunctionalintegral [17]

~ c~’,i~)=Z~’J~i~i~inexp(_~ SE[~,ij), (3.1)

where the integralis over all pathstj(r), i,~(i), 0 � f&~with t~(O)= ~‘, i~(0)= i~,and ~(h~)=

i~(tiJ3)= ~. The pathprobability is weightedaccordingto Euclideanaction

SE[~,i~]= S~[j] + S~[~~]+ S~R[~,ia], (3.2)

where

S~[~] Jdr~(~,~) = Jdr (~M~
2+ V(~)) (3.3)
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is the Euclideanaction of the undampedparticle moving in the time-independentpotential V(c~)

effectiveduring thepreparationof the initial state,
N

S~[i~]=J ~ J dr(~m~+~m~w~x~) (3.4)

describesthe reservoir,and

N 2

S~R[ci,in]=J dr~~R( i~)=~J dr(_c~~~+ti22m~w~) (3.5)

the interaction. Finally Z~normalizesthe state.If eq. (3.1) is insertedinto eq. (2.11) we obtain a

functional integralrepresentationof the initial stateW0.

3.2. Realtimefunctionalintegral

A purestate~P(q., x~,0) of theentire systemevolvesin time accordingto

~t’(q~,x~,t) = Jdq1 dx~K(q~,x~,t; q~,x~,0)!t’(q~,x~,0), (3.6)

whereK( q, x,~,t; q’, x~,0) is thecoordinaterepresentationofthe time evolutionoperatorexp(—iHt/h)

of the entiresystemwhich may againbe representedas a functional integral[17]

K(qf, x~,1; q~,x~.,0) = J ~q ~ exp(~S[q, ~ (3.7)

where the integral is over all pathsq(s),x~(s),0 ~ s ~ t with q(0) = q., x~(0)= x,~.,and q(t) = q1,
x, (t) = x,~.Herethepathprobability is weightedaccordingto the usualaction

S[q,x~J=Jds~(q,~ (3.8)

where~ is the Lagrangianassociatedwith theHamiltonian (2.1). Hence

~(q, q) = ~M4
2— V(q,s), (3.9)

~R(xfl, i~)= ~ ~ — ~mnw~x~], (3.10)

~ [c~qx~_q2 c~ 2]. (3.11)
n1
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Note that in the Euclideanaction functional(3.2) kinetic andpotential energiesare added,while the
potentialenergyis subtractedfrom thekinetic termin the familiar action(3.8). The canonicaldensity
matrix may be viewed as a time evolution operatorfor imaginary time t = —ih~andthe functional
integral (3.1) is just an imaginary time version of integral (3.7) provided that the potential is
independentof time. The rotationto imaginarytime changesthe signof thekinetictermandtransforms
iS[ q, x~]into —

5E[ q, x~].In thesequel,however,wewill allow for apotentialwhich dependsexplicitly
on time for t>0.

We arenow in thepositionto write down the densitymatrix W of theentiresystemattime t. Using
the time evolutionoperatorwe have

W(qf,x,~,q~,x~,t) = Jdq~dq~dx~dx~K(qf, ~ t; q1, x~.,0)

x W(q1,x,~,q~,x~,0)K*(q, X,~,t; q~,x~,0), (3.12)

which is just the coordinate representation of the familiar operator equation W(t) =

exp(—iHtI?i)W0 exp(iHt/h). Insertingthefunctional integral representations(3.1) and (3.7) and the
generalexpression(2.11)for the initial state,weobtain a representationof thedensitymatrix at time t

in termsof a 3(N+ 1)-fold functional integral

W(q~,x~,~ t)=f ~ A(q1, ~, q~,~‘)Z
1

xJ~q~ ~q’ ~ ~ exp{~(S[q, x,j— S[q’,x~])—~ S1~[~,i~]}, (3.13)

which sumsover all pathsq(s),x~(s),q’(s), x~(s),0 � s � t, with

q(0)=q
1, x~(0)=x~,q’(0)=q~, x~(0)=x~,

q(t) = q~, x~(t)= x,~, q’(t) = q , x~(t)=

in real time and over all paths~(r), i~(’r), 0 � r � h/3, with

q(0)=q’, i~(0)=x~, ~(h~)=~, i~(hf3)x~

in imaginarytime. Note that for the reservoirthe endpoints~ and are connectedby a continuous
pathwhich goesfrom x~to x~= i~(0),thenfollows i~fr)to i,~(hfl)= x,~.from whereit runsto ~ (fig.
1). Contrary to this path the one connecting q and q~is interrupted since q’(O)~ t~(0)and
q(0) ~ q(hf~)in general. These intermediatepoints are connectedby the function A(q1, c~,q, 4’)
describingthedeviationof the initial statefrom equilibrium.
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Fig. 1. A continuouspathdefinedon a contourin thecomplex time planeconnectsthe final coordinatesof thenth environmentaloscillator.

3.3. Integrationover the environmentalcoordinatesand influencefunctional

The expression(3.13)for the densitymatrix still describestheentiresystemconsistingof Brownian
particle andenvironment.Thestateof the Brownian particleis characterizedby the reduceddensity
matrix p = tr~Wwhere trR is the trace over the reservoir.In coordinaterepresentationwe have

p(q~,q, t) = JdXflf W(qf,x~,q, Xflf, t). (3.14)

Since only the part of W diagonalin the environmentalcoordinatescontributesto this integral, the
reduceddensitymatrix p involvesonly integrationsover closedpathsof theenvironment.By virtue of
(3.13)we find

p(qf, q~,t) = Jdq~dq~d~d~’A(q1, ~, q~,~‘) Z
1

J~q ~iq’~exp{~ (S
0[q] — S0[q’]) — ~ SoE[~]} P[q, q’, ~], (3.15)

where the functional integration is over the set of paths q(s), q‘(s), ~(r) of the Brownian particle
describedabove,andwhere

P[q, q’, ‘fl =Jdxflf dx~.dx~.Z~’f ~ ~l’x~£l~i,~exp{~(SR[xflj + S0~[q,x,] — SR[x~]

— SQR[q, x~])— ~ (S~[i~]+ S~R[t~,i~])} (3.16)

is a functionalintegral over all closedpathsx~(s), x~(s),i~(r) of the environmentwith

x~(t)=x~(t)=x~,x~(O)=i~(~)=x~,i~(O)=x~(O)=x~..

This integraldependson the trajectoryof theBrownianparticleasa functional.ZR normalizesFso that
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F= 1 for vanishinginteraction,i.e., ZR is the partition function of the unperturbedbath.The new
normalizationfactorZ in eq. (3.15)is given by Z= Zp/ZR. In eq. (3.15) the influenceof the reservoir
is describedcompletelyby the functional F. Hence,the eliminationof theenvironmentaldegreesof
freedomis reducedto thedeterminationof this so-calledinfluencefunctional.

From eq. (3.16)we seethat F may be decomposedaccordingto

F[q, q’, ~]= f dx~dx~dx~F[q, x~,x~]FE[~,x~,x~]F*[ql, x~,x~], (3.17)

where

F[q, Xn, X~j]= f ~ exp{~(SR[xfll + SQ~[q,x~])} (3.18)

is a real time functional integral over all pathsx, (s) of the environmentconnectingx,~(0) = x,~.with
x~(t)= xi,, and where

FE[I~,x~,x~] = Z1 f ~ exp{_~(S~[~~]+ S~R[c~,iflJ)} (3.19)

is an imaginarytime functionalintegralover all pathsi~(r)connectingi~(0)= x~.with i~(lIf3)= x,.. So
far the analysiscarried out is independentof a particularmodel for theenvironment.

At this point it seemsworth mentioningthat the influencefunctionalF definedin eq. (3.16) differs
from the influence functional discussedin previous work [16,18, 19] based on the factorization
assumption.In our approachthe Euclideanpart FE of the influence functional describesinitial
correlationsbetweenparticleandreservoir.In theconventionalapproachtheimaginarytime functional
integralis absentandthe two real time partsF[ q, ~ x~.]and F*[ q’, ~ x~.]of the influencefunctional
areaveragedover the unperturbedreservoirdistributioh WR(xfl, x

1).
For the harmonicoscillator model of thereservoirdiscussedpreviously the functionals(3.18) and

(3.19) factorize into independentcontributionsfrom eachreservoiroscillator. By virtue of eqs. (2.3)
and (2.4) the functional(3.18) may be written

F[q, X~,x~.]= F~[q,Xk~~Xk}, (3.20)

where

Fn[q,xnc,xnj]=J ~xnexp[~ J’ds{~m~(i~— w~x~)+qc~x~q
2 2m~w~}] (3.21)

describesthe influenceof thenth oscillator. Equation(3.21)is a Gaussianfunctionalintegral over all
pathsx,~(s), 0 ss � t with x~(0) = x,~.,x~(t)= x~whichcanbeevaluatedexactly[17].A brief outline of
thecalculationis given in appendixA. One finds

/ mw \1/2 /j
F~[q,x~,Xfl~]= ~2,rih sin(w~t)) expt,~~ x~

5,x~]), (3.22)
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where

m~w~ 2
P~[q,x~,x~.]= 2 sin(w~t){(x~.+ x~)cos(tu~t)— 2XnXn1}

t t
xn~cn I xnfcn I

+ . I dssin(w~(t— s)) q(s)+ J dssin(w~s)q(s)
sm(w~t)J sin(w~t)0

t S

— C~ ds I du sin(w~(t— s)) sin(w~u)q(s)q(u)

m~tu~sin(w~t)i J
0 0

2 Jdsq2(s). (3.23)
— 2m~w~

The functional (3.19)may alsobe decomposedaccordingto

N

~ 11 F~[4~,x~,xfl, (3.24)
k=1

where

1/2m~w~
F~[4, ~ x~]= (2lTrt sinh(w~h~))exp(— ~ ~ Xn.~~ (3.25)

in which

mnwn ~
X~,x~]= 2sinh(tu~h/3)~(x~+ x~

2)cosh(w~hf3)— 2x~x~}

h/3

— x~c~_____________ xnicn I

sinh(w~h~)J drsinh(w~(hf3— r)) ~(r) — sinh(wh/3)j dr sinh(w~r)~(T)

— ________________
m~w~sinh(w~h/3)J dT Jdorsinh(w~(hI3— r)) sinh(w~cr)c~(T)t~(o)

+ c~2 dr ~2(r). (3.26)
2mwJ

n n

0

The exponentsP,~and ~ are quadraticfunctionsof theendpointsof the bath oscillator. They are
relatedby an analyticcontinuationfrom real to imaginarytime.

Collecting the results (3.20—3.26), the integrandof the functional (3.17) may be written down
explicitly. The remainingevaluationof theGaussianintegralsoverthe intermediatecoordinatesx,, x~,
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Xflf is straightforwardbut tedious.After somealgebraone obtains

P[q, q’, cii = exp(_ ~ ~[q, q’, ci])~ (3.27)

where theexponentis given by

~[q, q’, ~]= — J dr d~K(—ir + iu)ci(r)ci(~) + J dr~~ci2(r)

—i I drJdsK*(s—ir)~(r){q(s)— q’(s)}

+ Jds [du {q(s) - q’(s)}{K(s - u)q(u)- K*(s - u)q’(u)}

+ifds ~{q2(s)—q’2(s)}. (3.28)

Herewe haveintroducedthe kernel

N c2 cosh[w (~h/3—i9)]
K(O) = ~ 2m~w~ sinh(~w~h/3) (3.29)

which is defined for complex times 0 = s — ir, 0 � r � hf~and describesthe influenceof the environ-

ment. The termswith

c~ (3.30)

n=1

arise from thesecond(counter-)termin eq. (2.4).We notethat thepre-exponentialfactorsfrom eqs.
(3.22) and (3.25)andthe partition functionof the unperturbedreservoir

ZR=1J {2siflh(~w~hI3)}~ (3.31)

combinewith the coupling-independentfactorsarising from the Gaussianintegralsover x,., x~.and
to give 1. This is necessaryin order that the influencefunctional becomesequalto 1 for vanishing
coupling.

Theinfluencefunctional(3.27)may bewritten in a morecompactform by introducingthecontour~
in the complexplanedepictedin fig. 2 anddefininga path ci(z) on this contourthrough

Iq’(s) forz=s, 0�s~t,
~z)=1ci(r) forz=—ir, 0�rSh/3, (3.32)

~q(s) forz=—ihj3+s, 0~s~t.



128 H. Grabertet a!., QuantumBrownianmotion

0 q’ t S

q

q

Fig. 2. The integrationcontour(4 in the complex time plane z = s+ ir along which theexponent(P[ q(z)] of the influence functionalhasto be
evaluated.

Thenthe exponent(3.28) can be rewritten as

~[~]=Jdzjdz’K(z_z’)q(z)q(z’)+~ ~Jdzci2(z), (3.33)
z >z’

where the integralsover z andz’ arealong thecontour~ andwherez> z’ meansthat z follows z’ in
the directionof the arrowsin fig. 2.

3.4. Reduceddynamicsandpropagatingfunction

The result(3.27)for the influencefunctionalmay now be insertedinto theexpression(3.15)for the

reduceddensitymatrix of the Brownian particle at time t. We thenfind

p(qf, q~,t) = Jdq1 dq~dci dci’ J(qf,q~,t, q1, q~,~ ~‘)A(q1,ci, q~,ci’) (3.34)

whereJ( qf, q, t, q,, q ~, ci’ ci’) is apropagatingfunctiondescribingthe time evolutionof thestate.The
reservoiris eliminatedsince

J(qf, q, t, q1, q~,~, ci’) = ~ J ~q ~q’ ~ciexp{~ (S0[q] — S0[q’]) — ~ S~[ciJ}

xexp(—~ii[q, q’, ~i) (3.35)

is a functional integralover pathsq(s), q’(s), ti(r) of the Brownian particle satisfying the boundary
conditions

q(0)=q1, q(t)=q~, q’(O)=q, q’(t)=q, ci(O)=ci’, ci(h13)=ci.

Equation(3.34) determinesthe time evolutionof the density matrix starting from the initial state

p0(q,q’)=Jdci dci’ A(q, ~, q’, ci’)Pp(ci’ ci’)~ (3.36)
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where

pI3=trR(WP) (3.37)

is the reduceddensity matrix of the Brownian particle in equilibrium. Relation (3.36) is readily
obtainedby integratingeq. (2.11)over the reservoircoordinates.On theotherhand,eq. (3.36)follows
from eq. (3.34)if we note that eq. (3.35) gives for t =0

J(qf, q,0, q1, q~,ci~ci’) = 5(qf — q~)S(q— q)pI3(ci’ ci’)~ (3.38)

where

PI3(q, ci’) = ~f ~ exp[- ~ S~)+ ~ J drf d~K(-Ir + i~)ci(r)ci(~)

- ~J~r~ ci2(r)] (3.39)

is anexplicit representationof the reducedequilibriumdensitymatrix asa Euclideanfunctionalintegral
running over all imaginarytime pathsci(r) with ci(0) = ~‘ andtKh~)= ~. It shouldbe notedthat the
function A(q, ci~q’, ci’) characterizingthepreparationof the initial stateis notuniquely determinedby
the reduceddensitymatrix p0(q, q’) throughrelation(3.36). RatherA(q, ci’ q’, ‘1’) is only specifiedby
the densitymatrix of the entire systemthroughrelation (2.11). (Seealsosection6.8.)

4. Minimal action pathsanddampingkernel

So far, we haveconsidereda particle coupledto a finite numberof reservoiroscillators.However,
the environmentcan only be consideredas a properheatbathcausingdissipationif the spectrumof
environmentaloscillators is quasi-continuous.Hence,we introducea spectraldensityof the environ-
ment through

N

“ 5(w—w~). (4.1)
n=1

Then sumsof the form (3.29,3.30)may be written as integrals.Using the generalrelation

~i 2rn~w~f(w~)= J ~ I(w)f(cu), (4.2)

we find

I dw cosh[w(~hJ3—iO)J
K(0) = ~ I(tu) sinh(~whf3) (4.3)
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and

Jdw1~2 (4.4)

In the following we shall first transform the exponent(3.28) of the influencefunctional into a form
particularly suitablefor further evaluation.The resultof this calculationis the transformedexponent
(4.29). Subsequently,we discuss the equationsof motion for those paths for which the action is
minimal. This will allow us to relate the influencekernel to the phenomenologicaldamping kernel.

4.1. Thepotential renormalization

The kernel K(0) defined for complex times 0 = s — ir still containsa purely reversiblerenormaliza-
tion of thepotential[14,19] which will be split off in thesequel.Let us first decomposeK(0) into its
real and imaginaryparts

K(s — ir) = K’(s — ir) + iK”(s — ir), (4.5)

where

Idw cosh[w(~hf3—r)]

K’(s — iT) = j —~- 1(w) sinh(~whI3) cos(ws) (4.6)

and

1 dw sinh[w(~hf3—1)]K (s— iT) = —j — 1(w) sinh(~wti~)sln(ws). (4.7)

Since the imaginarypartof theargumentvariesonly within the interval 0 � ‘r ~ h/3, it is convenientto
expandthesekernelsinto a Fourierserieswith respectto T. Introducingthecharacteristicfrequenciesii,~
of the interval /113 given by

= 2irn/hf3, (4.8)

we find for 0 � r /113

cosh[w(~hf3— r)] — 2 exp(iv~r) 4
sinh(~wh13) — /113 w w

2 + v~ ( .9)

and

sinh[w(~h/3— r)] — — 2 ~ . exp(iv~r) 4 10

sinh(~wh13) — /113n-”’~ ~2+p~ ( . )



H. GrabertCt a!., QuantumBrownianmotion 131

by virtue of which eqs.(4.6) and(4.7) take the form

K’(s — ir) = >~ ga(s)exp(iv~r) (4.11)

and

K”(s — ir) = ~if,,(s)exp(iv~r) (4.12)

with theFouriercomponents

1 fdw 2w
ga(s)= M j — 1(w) 2 + 2 cos(ws), (4.13)

0 n

f~(s)= ~j J~ 1(w) sin(ws). (4.14)

Sincethe realpartK’(s — iT) of the influencekernel hasthesymmetry K’(s — if43 + ir) = K’(s — ir) its
FOuriercoefficientsarerealandsatisfyg_~(s)= ga(s).On theotherhand,the imaginarypartK”(s — iT)
hasthe symmetry K”(s — i/1fJ + ir) = — K”(s — iT) which leadsto imaginaryFouriercoefficientsif~(s)
with f.~(s)= —f~(s).

Now, the first term in the exponent(3.28) of the influence functional only involves K(0) for
imaginarytimes 0 = —jr. Noting that K”(s — ir) vanishesfor s = 0 we find

K(—ir) = g~exp(iv~r), (4.15)

whereg~= g~(s= 0). Using eq. (4.4) it is readily seenthatg~may be written as

g~=/.L/M—~~, (4.16)

where

1 fdwl(w) 2v~
ir w w2+v2~ . )

0

Since

~ ~ exp(iv~r)= :8(r): = ~ 8(r — n/1/3) (4.18)

is a 5-function periodically repeatedat times r = ±n1113, the decomposition(4.16) of g~splits the
imaginary time kernel (4.15) into a local and a nonlocal part. Accordingly, the first term of the
exponent~[q, q’, j] definedin eq. (3.28)may be written as
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- dr Jd~K(ir + iff)ci(r)ci(ff) = - J dr ~ci2(r)+ J dr J d~k(r -

0 0 0 0 (4.19)

where

k(r) = ~, exp(iv~r). (4.20)

The first termof eq. (4.19)now exactlycancelsthe secondtermin eq. (3.28). For a model without a
countertermin eq. (2.4) the first term in eq. (4.19)would leadto a renormalizationof thepotential
V(ci) in the action S~[ci] [cf. eq. (3.15)]. Hence,thecountertermsimply removesthe frequencyshift
suchthatthe potentialin the Hamiltonian(2.2) is thephysicallyobservablepotential [14].Thelast term
in eq. (4.19) does not contain a further potential renormalization.This becomesobvious if it is
transformedinto the form

Jdr Jdu k(r - u)ci(r)~)= -~ Jdr Jd~k(r - ~){ci(r)- ci(~)}2~ (4.21)

clearlydisplaying its nonlocal character.Equation(4.21) is readily verified by performingthesquare
andnoting that

T drk(r) = M~

0 =0. (4.22)

For real times the realand imaginaryparts of the kernel (4.3) read[cf. (4.6), (4.7)]

K’(s) =J ~ 1(w) coth(~w/113)cos(ws) (4.23)

and

K”(s) = — J ~ 1(w) sin(ws). (4.24)

Now, the fourth termof the exponent(3.28) of the influencefunctional splits into

Jdsf du{q(s)- q’(s)}{K(s - u)q(u) - K*(s - u)q’(u)}

= Jds/ du K’(s - u){q(s) - q’(s)}{q(u) - q’(u)}

+iJdsfduK”(s— u){q(s)—q’(s)}{q(u)+ q’(u)}. (4.25)
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Theimaginarypart K”(s) of the kernelagaincontainsa reversiblerenormalizationof thepotential and
may be written

K”(s) = ~d~(s)/ds, (4.26)

where

n(s)=21 ~ cos(ws). (4.27)

By virtue of eq. (4.26) the secondterm of eq. (4.25) may be integratedby partswith respectto u to
yield

i J ds/ du K”(s - u){q(s) - q’(s)}{q(u) + q’(u)} = - ~ J ds~(0){q2(s) - q’2(s)}

+ ~ {q(0)+ q’(O)}Jdsn(s){q(s)_q’(s)}

+ ~ J ds/du~(s- u){q(s)- q’(s)}{4(u)+ 4’(u)}. (4.28)

Because of q(O) = ~ the first term in eq. (4.28) just cancels the last term in eq. (3.28).Hence, the
potential renormalization implicit in K(s) is again eliminated by the counterterm. The last term in eq.
(4.28) contains no further potentialrenormalizationsince it doesnot havethestructureof a potential
energycontributiondueto its dependenceon the particlevelocity.

Collecting the results(4.19),(4.25),and(4.28),the exponent(3.28)of the influencefunctionalnow
takesthe form

~[q, q’, cii = ~ J dr J d~k(T - ~)ci(r)ci(~)- i J drJ dsK*(s - ir)~(r){q(s)- q’(s)}

+ J ds/ du K’(s - u){q(s)- q’(s)}{q(u) - q’(u)}

+ ~ J dsJdu~(s- u){q(s)- q’(s)}{4(u) + 4’(u)}

+ ~ {q(O) + q’(O)} Jdsn(s){q(s)- q’(s)}. (4.29)

Thefirst two termsdescribetheeffectof initial correlationsbetweentheenvironmentandtheBrownian
particleon thesubsequenttime evolutionof theparticle.The remainingthreetermsjust constitutethe
exponentof the influencefunctionalof the conventionalFeynman—Vernontheory [16]which neglects
correlationsbetweentheparticle andtheenvironmentin the initial state.We remarkthat Caldeiraand
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Leggett [19]omitted the last term in eq. (4.29) in their treatment of the conventional theory.
The result (4.29) suggeststhe introduction of sum and difference coordinatesof the Brownian

particle, i.e.

xq—q’, r=(q+q’)/2 (4.30)

with initial and final values defined accordingly. The functional integral representation(3.34) of the

densitymatrix is then recastinto

p(X~,rf, t) = Jdx~dr~dci dci’ J(xf, rf, t, x1, r1, ~‘ ci’)A(x1, r~,~, ci’)~ (4.31)

where thepropagatingfunction

J(xf, r~,t, x~,r1, ~‘ ci’) = z
1 J~x~r ~ciexp{~(S

0[r + x/2] — S0[r — x/2])

— ~ S~[ci]} P[x, r, cii (4.32)

is a functionalintegralover all pathsx(s), r(s), 0 ss� t in real time with

x(0)= x1 , r(0) = r~, x(t) = x~, r(t) =

and over all paths ci(r), 0 � r s /113 in imaginary time with ci(0) = ci” ci(hP) = ci• The influence

functional now becomes

P[x, r, ~] = exp(_ ~ ~[x, r, ii), (4.33)

wheretheexponentis givenby eq. (4.29)expressedin termsofthenewvariables(4.30).The functional
integral(4.32) can thus be written

J(x~,r~,t, x~,r1, ~‘ ci’) = Z

1 J2~x9~r~ exp(~~[x, r, ci]) (4.34)

where£[x, r, cii is an effectiveaction given by

~[x,r,ci]=iJdr[~ ~2+V(ci)+ ~ J d~k(r_~)ci(r)ci(~)]+JdrJdsK*(s_ir)ci(T)x(s)

+ Jds [Mi,~— V(r + x/2, s) + V(r — x/2, s) — r
1~(s)x(s)]

- ds[/du ~(s- u)x(s)~(u)+ ~ / du K’(s - u)x(s)x(u)]. (4.35)
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The kernelsoccurringin eq. (4.35) havebeendefinedin eqs. (4.3), (4.20), (4.23),and (4.27).Note

that the potential may dependexplicitly on time only for t>0.

4.2. Minimal action paths

Frequently,thedominantcontributionto the functionalintegral(4.34)comesfrom pathsfor which
theaction.1 is extremal.The equationsof motion satisfiedby theminimal actionpathsareobtainedin
the usual way by variation of the effective action (4.35). Variation with respectto ci(r) with fixed
endpointsti(0) = ci’, ci(~/3)= ci leadsto

M~-Jd~k(r-u)ci(~)-dV(ci) f(r), (4.36)

wherethe inhomogeneity

f(T) = —ifds K*(s — ir)x(s) (4.37)

dependson the real time pathx(s). Accordingly,we find by variationof .~ [x, r, ~] with respectto x(s)

with fixed endpointsx(0) = x1, r(0) = r1, x(t) = Xf, r(t) = r~an equationof motion for r(s) of the form

M1+fdun(s_u)?i(u)+ ~ {V(r+x/2,s)+V(r—x/2,s)}

= —r~~(s)+ iJduK’(s — u)x(u)+ Jdr K*(s — ir)ci(r). (4.38)

Note that r(s) is coupledto both the real time pathx(s) and to the imaginary time path ci(r). Carrying
out the samevariationwith respectto r(s) we get the equationof motion for x(s)

Mi — f du ~(u — s)i(u) +2 ~- {V(r + x/2, s) + V(r — x/2, s)} = —x~r~(t— s), (4.39)

wherethe inhomogeneityarisesfrom thevariationof the termproportionalto ~(u)in eq. (4.35) as a
boundarytermafter a partial integration.For later conveniencewe rewritethe real time equationsof
motiOn (4.38) and (4.39)in the form

M~’+~-fduri(s_-u)r(u)+ {V(r+x/2,s)+V(r—x/2,s)}

= i /du K’(s — u)x(u)+ J dr K*(s — ir)ci(r), (4.40)
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MI — ~ f du q(u — s)x(u)+ 2 {V(r + x/2, s) + V(r — x12,s)} = 0, (4.41)

where partial integrationsremovedthe boundary terms in the inhomogeneitiesof eqs. (4.38) and
(4.39).

To gain additionalinsight in thephysicalmeaningof the influencekernelK(O) westudy the classical
limit of the equationsof motion derivedabove.Consideran initial densitymatrix which is diagonalin
coordinaterepresentation,i.e.

p(x1, Ti, 0)= 8(x~)w(r~,0). (4.42)

To determinethe probability distribution w(rf, t) = P(Xf =0, r~,t) evolving from this initial state,we
have to evaluatethe functional integral (4.34) by summing over all pathssatisfying the boundary
conditions x1 = = 0 and c~= ~‘ = r1. In the limit 11 —*0 thepathprobability sharply peaksaboutthe
minimal action pathsand their equationsof motion simplify considerably.The evolution equation
(4.39)for x(s) admitsfor theboundaryconditionsx1 = =0the trivial solutionx(s)= 0. Therefore,the
equationof motion (4.36)for the imaginarytime pathci(r) becomeshomogeneous.Further,sincethe
interval /1/3 vanishesin the classical limit, the minimal action path ci(r) with boundaryconditions
ci(0) = ci(hj3) = r~just contractsto the point ci = r1. The equationof motion (4.38) for r(s) then
becomes

I dV(r,s)Mr+jdu’q(s—u)r(u)+ dr =0, (4.43)

wherewe notedthat the inhomogeneityvanishesbecauseof x(u) 0 and

JdrK*(s_iT)=~(s). (4.44)

It seemsworth mentioningthat within the conventionaltheorybasedon the factorizationassumption
theclassicalequationof motion(4.43)doesnotbecomehomogeneous;rathertheterm — r~n(s) survives
on the rhs of eq. (4.43). This showsthatevenclassicalprocessesgenerallydependon thepreparationof
the initial state [41]. The complete classical theory including thermal noise is obtainedfrom the
functionalintegral (4.34)if one takesGaussianfluctuationsabout theclassicalpathinto account.The
Gaussianapproximationbecomesexactin the classicallimit andeq. (4.43)is replacedby theclassical
Langevinequationwith thermalGaussiannoise.

4.3. Formulation of the theory in teTmsof the dampingkernel

The classicalequationof motion (4.43)showsthat ij(s) is afriction kerneldescribingthedissipative
influence of the environmentaloscillators. For later purposesit is convenient to introduce the
mass-independentdampingkernel

y(s)= ~(s)IM (4.45)
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in termsof which theclassicalequationof motion takesthe familiar form

~ ‘~“~ =0. (4.46)

We will demonstratenow that for the model underconsiderationthe influenceof the environmentis
characterizedby this dampingkernel.From (4.27)and(4.45)we seethat thedampingkernelis related
to the spectraldensity1(w) of the environmentby

2 I dw 1(w)y(s) = ~j j — cos(ws). (4.47)

The frequencydependenceof thedissipativemechanismbecomesapparentif weintroducetheLaplace

transform~‘(z)of the dampingkernel

= Jdsy(s)exp(—zs), (4.48)

which may be written in termsof 1(w) as

1 (dwl(w) 2z

(4.49)

On the otherhand, the dampingkerneldeterminesthespectraldensity1(w) by virtue of the relation

1(w) = MwJds y(s)cos(ws) = lim ~Mw[~’(e+ iw) + ~‘(e— iw)], (4.50)

which is obtainedby inversionof eq. (4.47).
Now, we are in the position to re-expressthe quantitiescharacterizingthe functional integral

representationof quantum Brownian motion in terms of the phenomenologicaldamping kernel.
Combiningeqs. (4.3)and(4.50) the influencekernelK(0) for complextimes 0 = t — ir takesthe form

M I sinh(vs)
K(0) = j ds y(s) ~ cosh(vs)— cosh(vO)

= — 2(hp)2Jdsy(s)[sinh2{~v(0+ s)} + sinh2{~v(0— s)}], (4.51)

where p = p
1 = 2ir/fi/3. For real times, that is in the limit r—*0~,this expressiongives
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K(t) = - 2(/1p)2J dsy(s)[sinh2( ~p(t + s))+ sinh2( ~ v(t - s))] + i ~(t). (4.52)

The integral is regularsince in the limit r—*0~the pole [~v(s — t)i2 of the integrandat s= t is
replacedby

(1 ~)_2 lim[{(s — t)2 — T2} I {(s — t)2 + 2)2]

For imaginarytimes (t = 0) the kernelis realand reads

K(—ir) = ~ f ds y(s) ~ cosh(ws)—cos(vr). (4.53)

Further,by virtue of eq. (4.19) the transformedkernel k(r) may be written

k(r) = —K(—ir) + ~:5(r):

= ~ J ds y(s) ~- ~ + My(0):5(r):. (4.54)

Here, we used~.t= My(0) which follows from eqs. (4.4)and (4.47).
For later purposeswe also note that the Fouriercomponents(4.13) and (4.14) of the real andimaginarypartsof the influencekernel K(0) may be transformedby virtue of eq. (4.47)to read

ga(s)= y(s) — ~~(s), (4.55)

id
f~(s)= — — ~ ~~(s), (4.56)

wherewe introduced

= ~J ~ ~ ~ cos(ws). (4.57)

Now, using eq. (4.50),we can express~~(s)in termsof thedampingkernel as

= f du y(u)[exp(—Iv~(s+ u)I) + exp(—~v~(s— u)I)]. (4.58)

Finally, becauseof eq. (4.17), the ~ (s= 0) arejust theFouriercomponents~, of the imaginarytime
kernelk(’r). Using eq. (4.48) we obtain

(4.59)
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The theory presentedso far is determinedcompletely by the massM, thepotential V(q, t) and the
spectraldensity1(w). Since 1(w) is uniquely determinedby the damping kernel y(s), the quantum
mechanicaltheory of Brownian motion developedhereon the basisof a microscopicmodel can be
formulatedentirely in termsof quantitiesappearingin theclassicalequationof motion (4.46) [42].This
featureis connectedwith thefactthat the frictional influenceof theenvironmentis describedby a linear
relation, i.e. the dampingkernel doesnot dependon the stateof the Browman particle.Since linear
dissipationplaysanimportantrole in manyareasofphysics,theaboverelationsareparticularlyhelpful
for a phenomenologicalmodellingof irreversiblequantumsystems.

PART II. DAMPED HARMONIC OSCILLATOR

5. Time evolution of a dampedharmonicoscillator

In this sectionwe discussthe quantumdynamicsof a dampedharmonicoscillator. Although this
problemwasinvestigatedextensivelyin thepast[2,3, 11,33],newresultson anomalouslow tempera-
turebehaviourwereobtainedin morerecentwork [18,19, 35—37,43,44] mostlyaddressingthecaseof
Ohmicdissipation.Herewe employthe methodspresentedin part I to study the time evolutionof the
densitymatrix of a harmonicoscillatorinteractingwith a dissipativemechanismof arbitraryfrequency
dependence.Hence,wewill not usea particularform of thespectraldensity1(w) of theenvironment.
However,in orderto avoid unphysicaldivergencies,werequire1(w) to vanishfor w —*0 and to remain
boundedfor w —* ~. Specific formsof the damping will be discussedin subsequentsections.

We considera Brownian particlein a harmonicpotential

V(q,t) = ~Mw~q2— qF(t), (5.1)

where we allow for a time-dependentexternalforceF(t) coupledlinearly to the particle.As hasbeen

statedbefore,F(t) is assumednot to influencethe initial state,i.e.

F(t)=0, for tsO. (5.2)

Insertingeq. (5.1), the potential term in theeffective actionX [x, r, cii becomes[cf.(4.35)J

—V(r+ x/2,s)+ V(r— x12,s)= —Mw~xr+xF(s). (5.3)

The equationsof motion (4.36—4.41) are now linear and can be solved exactly. Furthermore,the
functional integral (4.34) is now Gaussian.Henceit is sufficient to determinetheeffective action
.X[x, r, ~] along the minimal action pathssatisfying (4.36—4.41)becausethe fluctuationsaboutthese
pathsonly contributeatime andtemperaturedependentfactor.Ratherthanperfonningthesummation
over the fluctuation modesexplicitly, this latter factorcanalso be determinedfrom theconservationof
the normalizationof thedensitymatrix.
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5.1. Extremalimaginary timepath and reducedequilibrium densitymatrix

We first considerthe equationof motion (4.36) for thepathci(r) in imaginarytime

M~-Jd~k(r - ~)ci(~)- Mw~j=f(r), (5.4)

where the inhomogeneityf(r) is given by eq. (4.37). We needa solution in the interval0 � TS 1113.
Thereforeit is convenientto usetheFourierseriesexpansion

ci(r)~ ~cinexp(1~mnr). (5.5)

TheFourier representationof the imaginarytime kernelk(r) is givenby eq. (4.20)and from eqs.(4.11)
and (4.12) theexpansionof the inhomogeneity(4.37) is found to read

f(r) = p~exp(iv~r), (5.6)

where theFouriercoefficients

p~= -i Jds [f~(s)+ g~(s)]x(s) (5.7)

are functionalsof the real time pathx(s).
TheFourierseriesexpansionfor ci(r) periodically continuesthepathoutsidethe interval0 sr �h/3.

This leadsto jump andcuspsingularitiesatthe endpoints.Hence,for the periodicallycontinuedpath,
the equationof motion (5.4) is satisfied only for r ~ nlI/3, n = 0, ±1,±2,...and there are 5- and
8’-function singularitiesat r = nh/3. These singularitiesmust be accountedfor in the equationof
motion (5.4) which for theperiodically continuedpath reads

M~—Jduk(r—~)ci(~)—Mw~ci=f(r)+Ma:8’(r):+Mb:8(r):~ (5.8)

where :5(r): is the periodically continued8-function definedin eq. (4.18),while :8’(r): is its time
derivative. The constantsa and b in eq. (5.8) are related to the jumps of ci(r) and ci(T) at the
boundariesby

— + — — — + — — —‘ —a=q(0 )—q(0 )=q(0 )—q(/1/3 )=q —q (5.9)

and

~ (5.10)
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By virtue of eqs. (4.18), (4.20), and (5.6) the equationof motion (5.8) transformsinto a relation

amongtheFouriercoefficients
(5.11)

which gives

(5.12)

wherewe introducedthe abbreviation

2 2 —1

u~=(w0+v~+~~). (5.13)
Thecoefficientsa andb must now be determined so that the pathci(r) satisfiestheboundaryconditions

ci(0~)=ci’, (5.14)

ci(~13i= ci(0) = ci. (5.15)

Becauseof thediscontinuitiesoftheperiodicallycontinuedpathat theendpoints,caremustbe takenin

performingthe limit r—*0. From eqs. (5.12) and(5.13)we find

ci(r) = ~ >~‘ ~- exp(ii.~,r)— -k-- ~‘ -~- u~(w~+ ~~)exp(iv~r)/3 ~=—~ iii~ /3 ~=—~

1
— ~ u~(b+ p~)exp(iv~r), (5.16)

wheretheprimemeansthe sum over all elementsexceptn =0. The secondsumin eq. (5.16) is regular

in the limit r —*0 andgives avanishingcontribution.The third sumis also regularandgives for r =0

~ ~ u~(b+p~)=bA+~ ~U,,p,,, (5.17)

where we introduced

l’c, 1~ 1
L ~ L 2 2 (5.18)

“p

The first sum in eq. (5.16),however,is discontinuousat theendpointsand describesa sawtooth-like
behaviourwith

1 ~a . ahm ~ ~— exp(1i.~~,r)= ± ~. (5.19)

By virtue of eqs.(5.17—5.19)we obtain from eq. (5.16)
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lii~~ci(r) = —bA — ~.:u~p~± ~, (5.20)

which combineswith eqs. (5.14) and(5.15) to yield

b=— ~ [ci+ci’)+~~unpn]. (5.21)

Using eqs. (5.9) and (5.21) we finally obtain for the Fourier coefficient ci~of the imaginarytime
trajectory

cin~n[n(ci_ci’)+j(ci+ci’)+~j,t~mpm_pn] (5.22)

This relationdeterminestheminimal actionpathci(r) in imaginarytime asa functionof theendpointsci
and ci’ andasafunctionalof therealtime pathx(s).Thedependenceon x(s) arisesthroughtheFourier
componentsp~definedin eq. (5.7).

TheFourier representation(5.5) of ci(r) and the definition (4.45) of the dampingkernel y(s) may
now be insertedinto theexpression(4.35)for the effective actionZ [x, r, ~]. Noting that ~(r) hasa
componentproportionalto :8(r): which mustbe split off, we obtain for the harmonicpotential (5.1)

- - . - - .M 2 --

.X[x, r, q] = 1 ~ (i~~q~— q’ + q)(—iv~q_~— q’ + q) + i ~ (w0+

+ ~ p,,~t,,+ JdsM[ir_ w~xr+ F(s)x(s)— r1y(s)x(s)

— Jdu y(s— u)x(s),~(u)+ ~ Jdu K’(s — u)x(s)x(u)], (5.23)

where we madeuseof eq. (4.37) andits Fourier representation(5.6). The first sum comesfrom the
kinetic term of the imaginarytime path.The singularitiesof the integrandat the endpointsof the
correspondingintegralin (4.35) are an artefactof the Fourierseriesrepresentationand they do not
contributeto thephysicalaction.Now, the first threesumsin eq. (5.23)may be evaluatedexplicitly by
insertingeqs.(5.7) and(5.22) which yields

~ ~[~(i~ - ci + ci’)(ii’~ci-~ - ci+ ci’) + ~(w~+ ~ + i~ci-~1

=~M[~(~~)+ ~ (ci_ci~)2]

+MJ dsx(s)[~(ci+ci’)Ci(s)-i(ci-ci’)C2(s)+ ~ / duR’(s,u)x(u)], (5.24)
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wherewe introducedthe frequency

~ ~ ~ 22 (5.25)
/3 n-~ /3 ~=-~ w0 + p~+

The functionsC1(s)and C2(s) are given by

C1(s)= ~ u,g,,(s), (5.26)

C2(s)= ~ ~unvnfn(s), (5.27)

and thekernel R’(s, u) reads

R’(s, u) = —AC1(s)C1(u)+ ~ u~[g~(s)g~(u)— f~(s)f~(u)]. (5.28)

Insertingeq. (5.24) into eq. (5.23), we obtain the effective action .~ [x, r, ~] evaluatedalong the
minimal action pathci(r) as a functionof its endpointsci and~‘ andas a functionalof the real time
pathsx(s) and r(s). In termsof F=(ci+ ci’)/2 andx= ci— ci’ we have

I[x, r, ci] = ~ F) + .X,[x, r], (5.29)

where

F
2+ p12) (5.30)

and

~ rJ = J dsM[i~ - w~xr+ ~ ~(s)x(s)- x(s) ~- / du y(s- u)r(u)]

+ M JdsJdu R(s,u)x(s)x(u). (5.31)

Herewe introducedtheforce

F(s) = F(s) + M[FC
1(s) — iiC2(s)] (5.32)

and the kernel

R(s,u) = R’(s, u) + K’(s — u)/M. (5.33)



144 H. Grabertet a!., QuantumBrownian motion

The action . (i~,F) is the minimal action of the Euclideanfunctionalintegral (3.39) for harmonic

potential. Accordingly, the reducedequilibrium densitymatrix p,3(i, F) maybe written as

M 1/2 1
p~(i,F) = (2irhA) exp[_ ~ F)], (5.34)

wherethe pre-exponentialfactor follows readily from thenormalizationof the state.
5.2. Extremal real timepathsand minimal effectiveaction

To proceedwe haveto determinetheminimal actionpathsx(s) and r(s) in real time. For harmonic
potential (5.1) but arbitrary dampingkernel (4.45) the equationsof motion (4.40,4.41)for the real
time pathsx(s) and T(s) become

~+ ~- / duy(s—u)r(u)+ w~r=~ ~(s)+iJduR(s, u)x(u) (5.35)

and

I— ~Jduy(u_s)x(u)+w2ox=0. (5.36)

Naturally, theequationsof motion(5.35) and(5.36) arealso readily obtainedby variationof eq. (5.31)
with respectto x(s) and r(s), respectively.

The valueof theaction£~[x, r} evaluatedalongtheminimal actionpathscannow be determinedin
two different ways. Firstly, we canformally solvethe equationsof motion (5.35)and(5.36),andthen
insertthesolutions in eq. (5.31)to obtain~ asa functionof theboundaryvaluesx1, r~,x~,Tf, ~, andF,
where thedependenceon thelast two variablesarisesfrom the forceF(s) given by eq. (5.32).After a
partial integrationof the first termin eq. (5.31) the action .I~[x, r] takestheform

~,[x, r] = M(xf~f— x1i~~)— ds Mx[~ + w~r+ ~- / du y(s— u)r(u) — ~

+ M / ds du R(s,u)x(s)x(u). (5.37)

Dueto the equationof motion (5.35), the last two termscancelpartly if theaction is evaluatedalong
the minimal action paths x(s)and r(s) andwe obtain

~ Tf, x~,r~,i, F) = M(x~~~— x~~1)— ~M / ds Jdu R(s,u)x(s)x(u). (5.38)
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On the otherhand,we cansplit the force (5.32) into its realand imaginaryparts F(s) = F’(s) + iF”(s).
Accordingly, the minimal action path r(s) splits into r’(s) + ir”(s) where r”(s) satisfiesthe boundary
conditions r”(O) = r”(t) =0. Now, by disregardingthe imaginarypart r”(s) and evaluatingthe action
(5.37) alongx(s) and r’(s) we find

~(xf, rf, x~,r~,1, F) = M(xf~— x~~)+ iJ dsx(s)[~”(s)+ ~ /du R(s,u)x(u)], (5.39)

wherewe took advantageof the fact that r’(s) satisfiesthe realpart of eq. (5.35). However,we can
easilyshow that eq. (5.39) is in fact the sameas eq. (5.38).The imaginarypart of eq. (5.35) gives

dsx(s)[fr”(s) + M J du R(s,u)x(u)] = / ds Mx(F” + wfr’ + ~- / du y(s— u)r”(u)). (5.40)

Now, the last term of the rhs of eq. (5.40)may be integrated by parts to give

/ dsx(s) ~- J du y(s— u)r”(u) = — /ds r”(s) ~- J du y(u — s)x(u). (5.41)

This and two partial integrations of the first term on the rhs of eq. (5.40)yields

/ dsx(s)[~’(s)+ M/ du R(s,u)X(u)] = M(xf~— x~~7), (5.42)

wherewe madeuseof eq. (5.36) and theboundaryconditions r”(O) = r”(t) =0. Hence,the rhsof eq.
(5.39) coincidesindeedwith the rhsof eq. (5.38). Consequently,it is sufficient to determinethe real
componentsof theminimal actionpathsand to evaluatetheactionwith thesesolutions.A correspond-
ing simplificationof thecalculationwasalso notedby Hakim andAmbegaokar[20]in theirtreatmentof
free Brownian motionwith frequency-independentdamping.

To proceedwehaveto solve the realpartof eq. (5.35)with boundaryconditionsr’(O) = r1, r’(t) = Tf
andeq. (5.36) with boundaryconditionsx(0) = x1 andx(t) = Xf. The homogeneouspartsof eqs.(5.35)
and (5.36) look very similar. In fact wecaneasilyshowthat eq. (5.36) is thebackwardequationof the
homogeneousequation(5.35).Substitutingz(t — s) for x(s), the lhs of eq. (5.36) becomes

z(t— s) — f du y(u — s)z(t— u) + w~z(t— s)

(—S

duy(t—s—u)z(u)+w0z(t—s)

= 2(t — s) + d(d ) J du y(t — s — u)z(u)+ w~z(t— s), (5.43)
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where the dot denotes the derivativewith respectto the argumentas usual. This last expressionhas
exactly thesamestructureasthehomogeneouspartof eq. (5.35) albeitat time t — s. Hence,solutions
r(s) of the homogeneousequation(5.35) are time-reversedsolutions r(t — s) of eq. (5.36),and vice
versa.

The homogeneouspart of eq. (5.35) can be Laplacetransformedto give

2. . 2..z r(z) — zr(0) — r(0) + zy(z)r(z) + w0r(z)= 0, (5.44)

where the hat denotesthe Laplace transformof a time-dependentquantity [cf. eq. (4.48)]. Fromeq.
(5.44) we have

2 ~ 2 r(0)+ 2 1 2r(0), (5.45)
z + z-y(z)+ w0 z + zy(z) + w0

which enablesus to write down two fundamentalsolutions of eq. (5.35). These solutions are
distinguishedby their initial conditions. The fundamentalsolution satisfying~(0)= 1, r(0) = 0 will be
denoted by G~(t) and its Laplacetransformreads

O+(z) = (z2+ z~(z)+ w~)_1. (5.46)

A second solution, H÷(t),which satisfies the initial conditions i~(0)= 0, r(0) = 1 has the Laplace

transform
E1~(z)= 2 ,.~ 2 = zO±(z). (5.47)

z +zy(z)+w0

Since G~(0)= 0, we have

H~(s)= G±(s). (5.48)

Usingeq. (5.48)thesolutionof the inhomogeneousequation(5.35)satisfyingtheboundaryconditions
r(0) = r~and r(t) = r~can be expressedentirely in termsof thefunction G~(s).The real part reads

G~(s) 1. G±(s)
r (s) = T1 G~(t)+ r1LG+(s) — G~(t)G~(t)

+ ~j / du G÷(s- u)E’(u) - ~ /du G~(t- u)~’(u), (5.49)

where F’(s) is the realpartof the force (5.32).
Dueto the relation (5.43)thesolutionof theequationof motion(5.36) for x(s) canbebuilt up using

the fundamentalsolutions G+(t — s) and G~(t— s). With the boundary conditions x(0) = x1 and
x(t) = Xf we get

x(s)= x~G~(t-s)+ xf[~+(t - s) - G~(t-s)O+(t)]. (5.50)
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To proceed,it is convenientto introducealsoafundamentalsolutionof eq. (5.36) satisfyingthe initial
conditionsx(0)= 0 and1(0) = 1. This solutionwill be denotedby G..(s). By virtue of eq. (5.43) the
function G(t — s) satisfies the homogeneousequation (5.35) with the final conditionsT(t) = 0 and
~(t)= 1 and can thus be relatedto thefundamentalsolutionsG~(s) and H.. (s) through

G ( ~ G~(t—s)H~(t)—G÷(t)H+(t—s) 551- S - G+(t)R~(t)- G÷(t)H~(t) . (.

It is readily seenthat

_____= O~(t — s) — G~t~)5)O+(t). (5.52)

Now, in terms of the Green’s functions G.,. (s) the minimal action paths r’(s) and x(s) take the
transparentform

r’(s) = r~~t~5) + r~ - ~ Jdu G÷(t- u)~’(u)+ ~ Jdu G±(s-

0 0 (5.53)

G~(t—s) G(s)

x(s) = x1 G~(t) + Xf G(t) (5.54)

These solutions may now be inserted into eq. (5.39). Using the specific form (5.32) of F(s), we obtain
aftersomealgebra

O(t) / 1 1
~ G±(t)—M~x1T~G~(t)+x~r1G(t)

+ MJ ds[xi Go + x~~ ](~F(s) + FC1(s) - iiC2(s))

2 1 1 G+(t—s) G~(t—u)

+ ~ Mx1 j dsj duR(s,u) G±(t) G~(t)

G±(t-s)G(u)

+lMx1xfj dsj duR(s,u) G±(t) G(t)

+ ~ Mx~JdsJduR(s,u) ~ ~. (5.55)

Finally, inserting this result into eq. (5.29) the effective action evaluatedalongtheminimal actionpaths
emergesasan explicit functionof the boundaryvalues
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~ Tf, t, x~,r1, 1, F) = L~~(x,F) + ~ Tf, x1, r~,I, F)

= iM(~ F

2 + ~ ~2) + /ds[ G÷(t-s)+ x~~ F(s)

O~(t) / 1 1
+ M(xfTf + X.T~)G~(t) — Mkxlrf G+(t) + XfTi G(t)

+ MF(x
1C~(t)+ x~C~(t))— iMi(x~C~(t)+ x~C~(t))

+ ~ M[x~R~(t)+ 2x~xfR~(t)+ x~R (t)], (5.56)

wherewe usedeq. (5.30) and introducedthe functions

C(t)=JdsC1(s) ~ j=1,2, (5.57)

ç(t)=JdsC1(s) ~, J=1,2, (5.58)

and

R~(t)= JdsJdu R(s,u) G÷(t-s) (5.59)

with R+ + (t) andR - - (t) definedaccordingly.In view of the relation(5.52)expressingG_(s) in termsof
G~(t— s), thesefunctionsare not all independent.In fact it is readily seenthat

C(t) = G~(t) ~ C~(t). (5.60)

By the sametokenwe can connectthe functions R~~(t),R~(t),and R~(t).Introducing

W(t, t’) = J ds Jdu R(s,u) G+(t-s) G+(t’-u) (5.61)

we have

R~(t)= ‘I’(t, t) , (5.62)

R~(t)= R~(t) = G~(t)[a’I’(t, t’)19t1,,. , (5.63)

R~(t)= G~(t)[a
2~1’(t,t’)Iat9t’],,, , (5.64)

so that all functions defined in eqs. (5.57—5.59)canbe expressedin termsof C~(t),C~(t),and ~1’(t,t’).
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As we havealready noted, the functional integral (4.34) is Gaussianfor a harmonically bound

particle. Thus the propagatingfunction takesthe form
J(x~,r~,t, x1, r1, i, F) = f~J(t)exp[~X(x~,Tf, t, x1, r1, i~,F)] , (5.65)

whereN(t) is a normalizationfactorarisingfrom the fluctuationmodesabouttheminimal actionpaths.
On theotherhand, sincethe factorN(t) is independentof theendpointsXf, Tf, x~,r1, i, andF it can
more easily be determinedfrom the conservationof normalization of the density matrix. This
calculationanda numberof furtherconclusionsresultingin asimplificationofJ(xf,r~,t, x~,r~,1, F) will
be presentedin the following section.

6. Equilibrium correlationfunctionsandresponsefunctions

In theprecedingsectionwe havecalculatedthe minimal action1~(x1,Tf, t, x1, r1, 1, F) of a damped
harmonicoscillatorwhich, apartfrom a time-dependentnormalizationfactor, determinesthe function
J(xf, Tf, t, x1, r1, I~,F) governing the time evolution of the density matrix. Although the result (5.56)
manifestlydisplaysthedependenceof theminimal actionon theboundaryvalues,the time dependence
of theaction is still expressedin termsof auxiliary functionsthephysicalmeaningof which is unclear.
In this sectionwe shall apply the theory to calculatebasic propertiesof the stationaryequilibrium
processof quantumBrownian motion. In turn, this will allow us to recastJ(xf, Tf, t, x1, r1, 1, F) into a
form particularlyuseful for furtherapplications.

6.1. Linear responseof the coordinateto an appliedforce

Let us first considerthe responseof a systeminitially in equilibrium to an externalforce F(t) acting
for t � 0. Then,we haveW0 = W~ and,in termsof thesum anddifferencevariables(4.30),the function
A( q, ~ q’, ci’) characterizingthe initial deviationfrom equilibrium [cf. (2.11)] simply becomes

A~(x1,r1, 1, F) = 8(x~— .~)5(r~— F). (6.1)

It is convenientto introducethe reducedfunction

J,3(xf,Tf, t, x~,r~)= fd~ dFJ(xf, Tf, t, x~,r~,~, F)A~(x~,r~,~, F)

= J(Xf, Tf, t, x1, r1, x1, r~) (6.2)

in termsof which the expectationvalue (f( q) ) of a variablef which is a function of the particle

coordinateq takestheform

(f(q))~= fdr~f(rf)p(rf, x~= 0, t) = Jdrf dx1dr1 f(rf) J~(0,r~,t, x~,r1). (6.3)

Furthermore,we introducethe vectornotation
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= (~:)~a~= (h). (6.4)

Now, inserting eqs. (5.65) and (5.56) into eq. (6.2) we obtain for Xf = 0

J,3(0,Tf, t, x~,r1) = ~ exp[_ ~ ~ (rf — ~ Jds G±(t— s)F(s))] exp(— ~a1M(t)a1),

0 (6.5)

where the time-dependent matrix M(t) is given by

M(t) = — 2C~(t) + R~(t) —i(O+(t)IG÷(t) + C~(t))’~ (6.6)
11 \—i(G~(t)IG~(t)+ C~(t)) 1/A J

Using eqs. (6.3) and (6.5),we obtainfor f(q) = 1 the normalizationcondition

1 1 1 1/2

(1),= Jdrf dx~dT1 .1,3(0,T1, t, ~ ~) = 2irtI M G+(t)I(2iT11 MA) =1, (6.7)

wherewe used

JdTfexp(_ ~ ~ r~xj)=2irh G+(t)I5(x~). (6.8)

The result (6.7) showsthat the normalizationfactor N(t) is given by

1 1 1/2
N(t) = 2irll ~ IG+(t)I(2ir/1 M n) . (6.9)

The sameresultcan be obtainedby performingthe functionalintegralover the fluctuationsaboutthe
classicalpathsexplicitly.

Now, the responseof the coordinateq to the time-dependentforceF(s) follows from eq. (6.3) for
f(q)=q. We find

(q)1 = Jdrf dx~dr1 rfJ,3(O, r~,t, x1, T~)= JdsG±(t— s) F(s), (6.10)

where we took advantageof the fact that

J dr1 Tf exp(— ~ G+(i~)rfx~)= 21Ti(~) G+(t)IG+(t)I8 ‘(xi), (6.11)

in which S‘(x) denotesthederivativeofthe5-function. Hence,a partial integrationanduseof eq. (6.8)
readily leadsto the secondequalityin eq. (6.10). TheresponsefunctionX(t) of thequantumoscillator
definedthrough
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(q)~=Jdsx(t_s)F(s) (6.12)

thus reads

x(t) = (1IM)G~(t) , (6.13)

for t � 0. In view of eq. (5.46), theLaplacetransformedrespOnsefunction is given by

1 1

x(z)=M w~+z2+z~(z). (6.14)
This resultis in factidenticalwith the classicalresponsefunctionof a dampedharmonicoscillatorwith
frequency-dependentdamping.For a strictly linear systemas the onediscussedhere,the absenceof
quantumcorrectionsto the responsefunction is a consequenceof Ehrenfest’stheorem[35].

6.2. Coordinateautocorrelationfunction

Let us nextconsidertheequilibrium coordinateautocorrelationfunction

C(t) = (q(t)q) = tr(q(t)qW~), (6.15)

where tr denotesthe trace over all coordinatesof the entire system.Hence,C(t) may formally be
lookeduponastheexpectationvalueof thecoordinateq at time t of a systemwith an initial “density
matrix” W~= qW,~. As alreadymentionedin section2 the initial state W

0 need not be a positive
normalizeddensity matrix for the presenttheory to hold. In view of eq. (2.11) the corresponding
functionA(q, ci, q’, ci’) thentakesthe form

Aq(Xi, r1, ~, F) = (r~+ ~x~)A~(x~,r~,1, F) . (6.16)

Using eq. (6.2) the correlationfunction C(t) may thus be written

C(t) = f drf dx~dr1 r1(r1 + ~x1)J~(0,Tf, t, x~,ri). (6.17)

Now, we insert eq. (6.5) for vanishing external force F(s). The integral over r~may readily be
performedby meansof eq. (6.11).This gives a 8-functionsuchthat the integraloverx1 becomestrivial
leavingus with

C(t)= — (~G+(t)) Jdri (~— ~Mi2(t)r~)exp(_ ~ r~). (6.18)

Finally insertingM12(t) from eq. (6.6) and N(t) from eq. (6.9) we gain

C(t) = S(t) + iA(t) (6.19)
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wherethe realpart

S(t)= ~ A(O÷(t)+ G+(t)C~(t)) (6.20)

is the symmetrizedcorrelation(1/2)(q(t)q+ qq(t)) while the imaginarypart

A(t) —~ G~(t) — ~X(t), for t�0 (6.21)

is the antisymmetrizedcorrelation (1/2i) ( q(t)q — qq(t)) which is related to the responsefunction
(6.13) in the usual way [45].

6.3. Thefluctuation dissipationtheorem

Becauseof the fluctuation dissipationtheoremS(t) andX(t) arenot independent.To recoverthis

relation from our resultswe first notethat eqs. (4.59), (5.13),and (5.46)combineto give

u~=O+(Iv~l). (6.22)

Hence,inserting eqs.(4.55) and (5.26) into eq. (5.57)we find

G+(t)C~(t)= ~ O~(~~~I)JdsG~(t- s)[y(s) - ~~(s)]. (6.23)

The Laplacetransform~(z) of the symmetrizedcorrelationfunction (6.20) thus takesthe form

~(z) = ~j AzO~(z)+ ~ O+(k’~I)O+(z)[$’(z)— t~(z)]. (6.24)

Using eq. (4.58) we can relate theLaplacetransform~~(z)to ~(z) through

2 2 [~I~nI~(I~nHw~(z)]. (6.25)
z —

Furthermore,thefrequency-dependentdampingcoefficient ‘5’(z) maybe eliminatedin favour of O~(z)
by meansof eq. (5.46).Finally, the LaplacetransformS(z) emergesas

~(z) = —~j ~ 2 2 [O÷(z)— O+(Iv~l)], (6.26)f3 n=-~~~z

wherewe usedeqs.(5.18)and(6.22).Dueto thestationarityof theequilibriumprocess,S(t) is aneven
function of t so that its Fouriertransform

= J dt S(t)exp(iwt) (6.27)
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is relatedto the Laplacetransform~(z) by

S(w)= .~(iw)+ ~(—iw). (6.28)

Hence,using eqs. (6.13) and (6.26),we obtain the fluctuationdissipationtheorem

= ~ 2 2 [~(iw)— ~(—iw)]. (6.29)
f3 n=-~tu +

To castthis relation betweenthe correlationandresponsefunctionsinto the usualform we introduce
the dynamicsusceptibility

i(w) = J dtx(t) exp(iwt) = ~(—iw), (6.30)
wherethesecondequalityholdssincethe responsefunctionvanishesfor t <0. From eq. (6.29)andthe

seriesexpansion(4.9) for r =0, we easilyseethat the imaginarypart

= ~i[,~’(iw)— .—iw)] (6.31)

is relatedto S(w) by

S(w)~11coth(~wh/3)j”(w) (6.32)

which is a familiar form of the fluctuation dissipationtheorem[45].

6.4. Linear responseof the momentumto an applied force

So far we haveconsideredthe responseand correlation functions for the coordinateq of the
Brownianparticle only. However,for a systeminitially in equilibrium which is subjectto an external
forceF(t) for t >0we may also study the responseof themomentumof theparticlewhich is given by

1 /11 o\
(p), = J dxfdrf S(x1)~--~)P(Xf, r~,t)

=JdTidxi dr1 -~- J,3(xf, r1, t, x1, ri)]. (6.33)

Inserting eqs. (5.56)and (5.65) in eq. (6.2) we obtain

f Jp(xt,rt,t,xi,ri)] =M[rt ~ —ix1(C~(t)—R~(t))

+ rj(C~(t)- G(t)) + Jds ~ ~]J~(o,Tf, t, x~,ri). (6.34)
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The integralover r1 in eq. (6.33) maynow beperformedusingeqs. (6.8) and(6.11).The integralover

x1 is thenagaintrivial andwe areleft with

(p), = (21r ~ it) 1/2f dr~J dsF(s)(~ G~(t- s)+ ~)exp(_~ r~), (6.35)

where terms proportionalto r1 in the integrandwere droppedsince they do not contribute to the
integral. Now, by useof eqs.(5.52) and (6.13), the responseof the momentumbecomes

(p)~=MJds~(t_s)F(s). (6.36)

Indeed,this result is an immediateconsequenceof p = M.

6.5. Further coTTelationfunctions

We nowturn to themomentum-coordinatecorrelationfunction

Cpq(t) = (p(t)q) = tr(p(t)qW~). (6.37)

Following the reasoningleadingto eq. (6.17) we easilyseethat Cpq(t) may be written as

Cpq(t) = f drf dx1 dr~(r~+ ~x~)[~ -~~— ~ T1, t, x1, T1)] (6.38)

Now, insertingeq. (6.34) for vanishingexternalforce, andperformingthe integrationsoverTf andx~as
above,the correlation(6.38) becomes

— 21Th~G+(t)I
1d ~ i/l G

Cpq(t)_ N(t) J T~L~M+

+ T~(C
1(t)— G(t) +i ~ O+(t)M12(t))] exp(_~~~ . (6.39)

The remaining Gaussianintegral is easilydone giving

Cpq(t) = hA(C~(t) - G
1(t)) + 11AO÷(t)(C~(t)+ ~)- i ~ O÷(t). (6.40)

Sincethe function C~(t)is connectedwith C~(t)by eq. (5.60) it canbe expressedin termsof G~(t)
and S(t) by meansof eq. (6.20). This yields

C~(t)= —O~(t) + + ~ [s~ — ~ S(t)] . (6.41)



H. Grabertet a!., QuantumBrownian motion 155

Further,eq. (5.51)gives

1 — ~‘+‘.~i — I (642)
G_(t) — G±(t) +‘1

Collectingthe results,we find

Cpq(t)= MS(t) — i ~ O+(t) = M~J(t), (6.43)

which is againan immediateconsequenceofp = M.

Let us now determinethe coordinate-momentumcorrelationfunction

Cqp(t) = (q(t)p) = tr(q(t)pW’~), (6.44)

where the coordinateis measuredafter the momentum.To calculatethis quantity directly from the
functional integral we must consideran initial “density matrix” of the form W0= pW~ which is
associatedwith the preparationfunction

A~(q~,ci,q,ci’)=~~- A~(q1,ci,q,~’)=—~~ (6.45)

It is at this point that we first encounteran explicit exampleof an initial statewhich can be treated
within our approachonly becausewe havedistinguishedbetweenthe.endpointsof the imaginarytime
pathand thestartingpointsof the real time paths.The time evolutionof this stateis describedby the
function

J~(x1,T1, t, x~,r1)=JdidFA~(x1,r~,i, F)J(x1, r1, t, x~,r~,1, F)

= J(xf, Tf, t, x~,r1, q, q’)] - -,

1 ~3q qq1,q=q1

= M[xj(~C~(t)+ i(17 — C~(t)))+ xf(~C~(t)— iC~(t))+ ~ ri]

x J~(x1,Tf, t, x1, r~), (6.46)

whereweusedeqs. (5.56)and (5.65) to obtain the last line. Thecorrelationfunction(6.44)may now
be written as

Cqp(t)= f dr1 dx~dr1 r1J~(0,r1, t, x1, r1) . (6.47)

Insertingeq. (6.46)andperformingthe integrationsover Tf andx1 by themethoddescribedabove,we
arriveat
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Cqp(t) = — 2IT1M (h/M)2G÷(t)IG÷(t)I

xjdr. [~C~(t)—iC~(t)+i(1— ~ Mi
2(t)r~]exp(_~jr~). (6.48)

Now, insertingM12(t) from eq. (6.6) weseethat C~(t)cancels.Further,combiningeqs.(4.56),(5.27),
and (6.22),the function C~(t)definedin eq. (5.57) takesthe form

C~(t)=-~ ~ O+(Iv~I)/ds~t()5) ~- c(s). (6.49)

The Laplacetransformof G÷(t)C~(t) cannow readily beexpressedin termsof O.,.(z) by meansofeqs.
(5.46)and (6.25). Comparingthe resultwith eq. (6.26)we find

C~(t) = G(t) + 11, (6.50)

where (2 is definedin eq. (5.25). From eq. (6.48) thecorrelationCqp(t) now emergesas

Cqp(t)= —MS(t) + i ~ O~(t)= — M~(t), (6.51)

which is in accordancewith the symmetryCpq(t) = — Cqp(t).
It is alsostraightforwardto calculatethe momentumautocorrelationfunction

C~~(t)= (p(t)p) = tr(p(t)pW~) (6.52)

which in termsof J~(x1,Tf, t, x1, r1) may be written as

C~~(t)= f drf dx~dr~[~—/-- J,,(x~,Tf, t, x~,ri)] (6.53)

After the r1 and x1 integrationsthis gives

1/2 .

C~~(t)= (2~A) Jdr1 (Mri[O+(t)(.o — C~(t))— C~(t)— ~ c~(t)— ~ O+(t)C~(t)]

+ i ~ {G+1t)( ~ + C~(t))+ C1~(t)— G(t) ]~~) exp(_~ r~). (6.54)

The remainingintegrationover r1 is readily performedand we obtain the expectedresult

C~~(t)= —M

2S(t) + ~Mf1G~(t) = —M2C(t) (6.55)

where the expressions(5.60) and(6.50) for the functions C~(t) were used.
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6.6. Variances

So far we havenot consideredquantitieswhich explicitly dependon the functionsR±±(t) appearing
in the action (5.56). However,the termscontainingthesefunctions are necessaryin order that the
equilibrium processbe stationary. This is readily seen by studying the variancesat time t of an
equilibrium system.Theyare given by

= fdrf dx1 dr1 r~J~(0,rf, t, x~,r1), (6.56)

~(pq + qp)~= Jdr~dx~dr~~ [~- J~(xf,r~,t, x~,ri)], (6.57)

= — Jdr~dx1 dr1h
2 ~ Jfi(xf, Tf, t, x~,ri)]. (6.58)

We maynow insertthe explicit expressionforJ,
3 (xe, rf, t, x1, r1) which is in fact thegeneralexpression

(5.65) for J(xf,Tf, t, x1, r1, 1, F) with the effectiveaction (5.56) takenat r= r1 andi = x1. Performing
theGaussianintegralsin theusualorderwe obtain aftersomealgebra

= (~G+(t)) [M11(t)— ~ AM~(t)], (6.59)

~(pq + qp)~= M(q~), + hG+(t)(R~(t)— C~(t))

+ i —~-G+(t)(Cj~(t)— G (~))Ml2(t), (6.60)

= hMR~(t)+ hMA[C~(t)- G(t)] + M
2 ~ ((q2)t -2 ~ A)

+M (pq+qp)
1, (6.61)

wheretheelementsM,1(t) of thematrix M(t) were introducedin eq. (6.6).To proceedwe nowhaveto
determinethe functions R±±(t) more explicitly using the Laplacetransformtechniqueswhich were
employed above to transform the functions C~(t).The correspondingcalculation is outlined in
appendixB. The results for all auxiliary functionsappearingin the action (5.56) are summarizedin
table 1. Using eq. (6.6) andtable 1, thevariances(6.59—6.61)become

= (h/M)A, (6.62)

~(pq+qp)1=0, (6.63)

(p
2)

1=hM(1, (6.64)
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Table 1
Relationbetweenthe functionsC

7(t), R~(t)andthe functionsG~(t),S(t)

* 1IMC1 (t)= G~(t)L~i~5(t)— G~(t)

Ci(t)=ii~1{S(t)_ ~ 5(t)]— O,(t)+~~~~

C(t)=~~+f2

c- M[.. O~(t)

R**(t) = (1 + 2 ~ + G~(t)[i — (~5(t))]

R(r) = .~ {sf — g±~j~S(t)] — G~.(t)F(~A)O+(t)+ G+(t)S~)S(t)— G,(t)S2(t)]

R~(t)= £1 — ~ — ~ S(t)] + A

Clearly, the variancesare time independentas they should be for a systemin thermalequilibrium.
Furthermore,for eq. (6.26)we find

S(O)= lim z~(z)= ~ O~v~j)= ~A, (6.65)

~(O)=limz[z~(z)—S(O)]=O, (6.66)

~ ~Q, (6.67)

so that we recoverthe familiar relations

(q
2)=S(O), (6.68)

(6.69)

(p2) = —M2~(O). (6.70)

Table2 collectsthekey formulasconnectingvariances,correlationfunctionsandresponsefunctionsof

a dampedharmonicoscillatorwith the model parametersM, ~ and ~(w).

6.7. Propagatingfunction
Our previousresult (5.56), (5.65) for the propagatingfunctionJ(xf, r~,t, x~,r

1, i, F) can now be

rewrittenentirely in termsof the correlationC(t). Using table 1 we gain

J(Xf, Tf, t, x~,r~,i, F) = [4irlA(t)I]’(2ir(q
2))112exp(~£(xf, r,, t, X

1, T~,~, F)), (6.71)

where
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Table2
Thevariances,correlationfunctions,andresponsefunctionsof adampedharmonicoscillatorin equilibrium in termsof themodelparametersM, w~

and ~(w)

Quantity Laplacerepresentation Fourierrepresentation

J dw w~’(—iw)1 ~ 2 2 1 (q
2) = 2~ 2 2 2 2.2 . coth(lwfiP)varianceof position (q2) (q2)= ~+ kI~(kI) ~— w) + w y (—iw)

M w~+Ii~I~(Iv..I) ~p2)M!i f dw w3~’(—iø)
2 2~2 2.2 . coth(lø&$)varianceof momentum(p2) (p2) = 2 + ~÷I~I~(I~I) ~~ — w + w y (—iw)

antisymmetrizedposition
autocorrelationfunction

I dw o~5’(—iw)
2 2~2 2.2 siIl(Wt)A(c)= (1/2i)([q(t), q]> A(z)= -(~/2M)[w~+ z2 +z~(z)]~ A(t)= - ~j ~ ( - W) + w y(-iw)

symmetrizedposition
autocorrelationfunction

dw ur5’(—iw)S(t) = (1/2)(q(t)q+ qq(t)) ~(z) 2 2 2 2.2 coth(lwfI$)cOS(wt)2 ±z1A0A1p1 S(t)=~J ~ (—w ) +uy (—iw)

additional formulae

position autocorrelationfunction C(t)= 5(1) + iA(t);

responsefunction x(t) = —(21t1)A(:)ø(t);

Green’sfunction G~(t)= M~(t)= —(2/Fi)MA(t)ø(t).

~(x
1, rf, t, x~,r~,~, F) = i(2(h2) F

2 + (P~)~2)

A2(t)~
+ (x

1r1 + XfTf)M
A(t) 2A(t) — XfT1 ~ M2(A(t) — A(t) /

+ x1rf
________ ____ MS(t) 1

+ xiF[_ M A(t) — hS(t) ] + i.~[_ ~2> + 2A(t)]
A(t) 2(q

2)A(t)

A2(t)\ M
+ XfF[~ M2(A(t) — A(t) ) + ~ ~ — t) S(t)}]

~ {~ ~ ___ ____ ____ ____— S(t)} + ~ [ (p2) — MS(t) + h(q2) (~— S2(t) \12fi 2A(t) 8A2(t) \ (q2)2)]A(t)

1M21 A __ __

+IXIXf[_ —~—j~~(t)~ — ~(t)} + ~ {A(t)(~ S2(~)
2)+ A S(t)S(t)(t) (q

2)22(t)

q2)+ ~‘ ) — M2 IA(t)+ ~~~[M2A2(t) ‘ 2
2~A2(t) 2~ 2h(q2) ~ S(t)-

t t

A(t-s)
+ x~f ds A(t) F(s) — X~ f ds ~ M[A(t — s) — A(t — s) ~t)]F(s). (6.72)

0 0
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Clearly, theexpression(6.71)is not definedfor timest whereA(t) = 0. Exceptfor thespecialcasest = 0
and ~ co treatedbelow, thereare additionalzerosof A(t) at intermediatetimes ç in thecaseof an
underdampedoscillator. For t = t,~the function J(Xf, Tf, 1, X1, r1, 1, F) must be definedby a limiting
procedure.The needfor this regularizationarisesfrom the fact that for A(t~)= 0 there is perfect
focussingof all minimal actionpathsx(t) starting from x~.We obtain

J(xf, rf, ç, X~,r1, X, F) = lini J(Xf, rf, t, ~ r~,x, F)

= [2ir(q2)(1 — + ~ MA(tfl)xf) exp[~~‘ (x1, Tf, ~, x~,r1, ~, F)] p~I,F),

(6.73)
where

~‘(x1,Tf, t, x~,r1, 1, F) = i ~ (x~+ — 2x1~)+ i ~- ~(t)x~(x1— i)

—i M
2~2(t) ~ M2A(t)x

1(F—r~)+ M~5x1F—Jds ~ MA(t — s)F(s)xf

[~q2~ — cf)] [MA(t)(F_ r~)— ~ (~,— .~-;~5F)

+ i ~ ~(t)(x1- I + -~ ~ - JdsA(t - s)F(s)]. (6.74)

Here we madeuseof

urn (4irIA(t)I)’ exp[_ 8A
2(t) (i - ~2)x2] = [21r(q2)(1 - ]h/2~(x). (6.75)

Hence,J(x
1, r1, t, x1, r1, I, F) is well definedfor all times 0< t < ~ Specialcaremustbe takenfor the

zeroof A(t) at t = 0 sincefor t—~0 the factor(1 — S
2(t)/ ( q2)2) approacheszeroaswell. However,for

small times we can usethe lowest order terms in theTaylor expansionsof the correlationfunctions.
From eqs. (6.66), (6.68),and (6.70) we get

S(t) = (q2) — t2 + 0(t4), (6.76)

~(t) = - t + 0(t3). (6.77)

Further,eq. (6.21)readily gives

A(t)= —(I1/2M)t+0(t3), (6.78)
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whereweusedO~(0)= 1. Now, inserting(6.76—6.78)in eqs.(6.71), (6.72)we find that for shorttimes
J(xf,Tf~t, X~,r1, I, F) takestheform

-- M FiM 1 --
J(xf, rf, t, x1, r~,x, r) = ~—j~exp[-~-(xf — x~)(rf— r1) + 0(t)] p,3(x, r) , (6.79)

which in the limit t—~0 becomes

J(Xf, Tf, 0, x1, r1, I, F) = ~(x1— x~)5(rf— rj)pp(i, F). (6.80)

Hence,thedensitymatrix properlyreducesto the initial densitymatrix p0(x1,r~)for t—~0.
The result(6.71,6.72)is particularlyconvenientfor furtherapplicationsaswill becomeclearbelow.

The function J(xf, rf, t, x1, r1, I, F) determinesthe time evolution of a large class of initial states
resulting from the preparationproceduresdiscussedin section2. As far as its practical value is
concerned,J(Xf, r~,t, x1, r1, I, F) can be compared with the conditional probability of a classical
Gaussianprocess.However,due to its dependenceon I and F it is in fact a morecomplicatedquantity
which fully takesinto accountthe dependenceof theprocesson thecorrelationsbetweenthe particle
and the reservoir in the initial state.

6.8. Effectof initial correlations

Initial correlationsbetweenthe particle and the heat bath influence the stochasticprocessof
Brownian motion alreadyin theclassicallimit [41].However,theirinfluenceon thestochasticprocessis
more subtle in the quantumregime.By way of example,let us considerthe initial state

~ (6.81)

which leadsto the reduceddensitymatrix

pi = + (p
2)~2~(ppp+ p~jp). (6.82)

It is clear from eqs. (6.62—6.64) that in coordinaterepresentationthe reducedequilibrium density

matrix takesthe form

p~(x,r)=(21r(q2)yh/2exp[_~ ~ x~)]. (6.83)

This result is also readily obtainedfrom eq. (5.34). Inserting eq. (6.83) into eq. (6.82) we find

p
1(x, r) = (i + (p

2)112~-)p~(x, r) = (i + (p2)”2 ~ x)p~(x,r). (6.84)

On theother hand,the samereduceddensitymatrix is obtained,e.g. from the initial state

2 1/2 1W
2=W~+(p) ~ (6.85)



162 H. Grabertet a1., QuantumBrownianmotion

The two densitymatricesW1 andW2 are associatedwith different preparationfunctionsA( q, ~, q’, ~‘)
and, consequently,the Brownian particlewill undergoa different stochasticprocessfor eachprepar-
ation despitethe fact that the initial reduceddensitymatricesare identical. However, thedifference
betweenthe two preparationsvanishesin theclassicallimit. Since thecommutator(i/h)[ , ] reducesto
thePoissonbracketwe have

W~= W~’— (kBTM)
1’2 ~- W~’= W~+ (kBTM)1’2pW~= W~, (6.86)

where we used(p2) CI = kBTM and whereW’~denotesthe classicalprobability distribution in phase
space. It is in fact a generalfeatureof the presenttheory that in the classicallimit the function
A(q, ~, q’, ci’) which dependson four variablesreducesto afunëtion determineduniquely in termsof
the initial probability distribution in the two-dimensionalphasespaceof theBrownianparticle.

The explicit resultsobtainedin this sectionclarify thephysicalmeaningof someconceptsintroduced
above. The quantum mechanicalstochasticprocess is characterizedby a “propagatingfunction”
J(xf, Tf, t, X

1, r1, I, F) and a “preparationfunction” A(x1, r~,I, F). The function J(xf,r1, t,x~,r1, I, F)
replacesthe classicalconditionalprobability. For the classof initial statesintroducedin section2, the
propagatingfunction is determinedentirelyin termsof equilibrium propertiesof theprocessasit is the
casefor the classicalstationaryconditional probability.The preparationfunctionA(x1, r1, I, F) charac-
terizesthe particular initial statewithin the preparationclass and replacesthe classicalinitial phase
spacedistribution. Apart from characterizingthe initial stateof theBrowmanparticleit also contains
the additional information neededto specify a particularprocessout of those reducingto the same
processin the classicallimit.

7. Ohmic dissipation

In the precedingsectionwe have shown that the time dependenceof the propagatingfunction
J(Xf, T1, t, x1, r~,I, F) can be expressedentirely in terms of the symmetrizedpart S(t) and the
antisymmetrizedpart A(t) of thepositionautocorrelationfunction. However,for an arbitrarydissipa-
tive mechanismthesequantitiescan only be determinedin termsof their Laplacetransforms.To gain
explicit resultswe haveto specifythe frequencydependenceof thedampingcoefficient. In this section
we consideran Ohmic heatbathleadingto frequency-independentdamping.Ohmic reservoirsare of
greattheoreticaland experimentalrelevancebecausethey lead to Markovian damping terms in the
classicalequationsof motion and they were successfullyapplied to explain recentexperimentsin the
quantum regime [28]. Further, for Ohmic dissipation we can determine the time dependenceof
correlationfunctionsexplicitly andsomeof thecalculationscarriedout sofar simplify considerably.In
fact,thebulk of previouswork [14,18—201 hasdealtexclusivelywith Ohmicreservoirs.A Markovianor
Ohmicdampingkernel

y(t) = 2y5(t) (7.1)

hasa frequency-independentLaplace transform 5’(i-.o) = y [cf. eq. (4.48)]. The classicalequationof

motion (4.46) thensimply becomes
~+y4+~j~-V(q,s)=0. (7.2)
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From eq. (4.50)we seethat Ohmicdampingemergesfrom the microscopicmodel only if thespectral
densityof the environment1(w) takesthe form [14]

1(w) = Myw. (7.3)

Clearly, the Markovianmodel canonly be anapproximationto the realworld sincea realisticspectral
densityvanishesin the limit w —+ oc~Nevertheless,a realheatbathwith a high frequencycutoffwC but a
linear spectraldensityof the form (7.3) for small frequenciesw ‘~ can still behavelike an Ohmic
reservoiron the time scalesrelevant for an experimentprovided theyare large comparedwith w 1

As is familiar from the theory of classicalMarkov processes,Ohmic damping leadsto sum rule
divergencies.Such adivergenceariseshereif we considerthe equilibrium variances[35].Using table2
we have

(q2)= n~-co 0)02+ p~21+~

and

22 (7.5)
/3 n=-=w

0+v~+~v,,~y

The last expressionhasan unphysicallogarithmic divergencewhich points to its dependenceon the
environmentalcutoff. The divergenceis readily removedif weconsidera realisticdampingkernel with
finite memory.For instance,a Drudemodel with y(t) = Y

0)D exp(—~D~) leadsto a finite valueof (p2)
given by

2
,

2~M ‘c~ Wo+’/VflwDI(WD+ ~)
2 2

n=-= w0 + v,1 + ‘y i’~WD/(wD +

Clearly, in the limit ~
0D~ ~ y, the Drude model behaveslike an Ohmic modelexceptfor very short

times of order1 1~D~The temperaturedependenceof thevariances(q2) and (p2) for a Drudemodel
is depictedin fig. 3. We see that for high temperaturesthe variancesare independentof y and
proportionalto T astheequipartitionlaw predicts.For low temperaturesthevariancesapproacha finite
value. Note that the coordinatedistribution of the dampedoscillator is narrowerthan that of the
undampedoscillatorwhile the momentumdistribution becomesbroaderdue to dissipation.

It shouldalso be noted that theconstant~ given by eq. (4.4) is divergentfor theOhmicmodel. This
does not affect the theory since ~ cancelsagainstthe potential renormalizationarising from the
influencekernel K(O). However,in a model without a countertermin eq. (2.4)one hasto take into
accountthe potential renormalizationand a proper treatmentof the high frequencyenvironmental
modesis neededto keep~ finite.

Let us now considerthe explicit form of someof our previousresultsin the Ohmiccase.Fromeq.
(4.51) we seethat Ohmic damping arisesfrom an influencekernelK(O), 0 = t — ir, of the form

K(0) = — sinh2(~vO), (7.7)
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kBT/~wO kBT/liwO

Fig. 3. The temperaturedependenceof the equilibrium variances(a) (q
2) and (b) (p2) of a dampedharmonicoscillator is shownfor a Drude

model where ~(w)= YWDI(W+ WD). Resultsaredepictedfor w
0= 10w, andfor various valuesof y.

where ii = = 2irlhf3. For real times (r—~0~)this gives

K(t) = — sinh
2(~vt) + iMyS‘(t), (7.8)

while the imaginarytime kernel is given by

K(—ir) = sin2(~vT). (7.9)

TheFouriercoefficients(4.55), (4.56) of the influencekernel aredeterminedthrough

= yli’,~exp(—~v~s), (7.10)

which follows from eq. (4.58) by virtue of eq. (7.1). Using table 2, the Laplacetransformof the

Green’sfunction G÷(t)emergesas

O~(z)=(z2+w~+zy)’ = ~ (~ — z+A
1)’ (7.11)

whereA12 are the eigenvaluesof a harmonicoscillatorwith Ohmicdampinggiven by

(7.12)

with the frequencyof dampedoscillations
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2 1 2 1/2

~(~o~Y ) , (7.13)
which becomesimaginaryin theoverdampedcasey > 2w~.The inverseLaplacetransformofeq. (7.11)
is easily determinedto read

G÷(t)= ~ [exp(—A2t)— exp(—A1t)] = sin(~t)exp(— ~yt). (7.14)

Accordingly, the backwardGreen’sfunctionG_ (t) follows from eqs. (5.48) and (5.51) as

G...(t)= sin( ~t) exp(~yt). (7.15)

Our result (5.56) may now be comparedwith the findings of Caldeiraand Leggett [19]who studied
quantum Brownian motion in a harmonic potential with Ohmic damping using the factorization
assumptionfor the initial state.As mentionedin section4, in our approachthecorrelationsbetweenthe
particleandthe environmentin the initial statearedescribedin termsof the imaginarytime path~

and we recoverthe conventionalFeynman—Vernontheoryby dropping all contributionsarising from
c~(r).Accordingly, the action describing the time evolution of factorizing initial statesis the ~-

independentpart of eq. (5.55)which for vanishingexternalforceF(s) is given by

~FV(x1 T1, t, x1, r~)= M(xfrf + x,r1) — M(XITI G+(t) + XfT1 G(t))

+ ~ x~JdsJduK’(s_u) G~(t-s)G~(t-u)+ixixffdsfduK(s_ u) G÷(t-s)G(u)

+ x~JdsJdu K’(s - u) G~ __ (7.16)

wherewenoted that termsproportionalto the functionsC1(s), C2(s),andR’(s,u) arisefrom t~(T)asis
explicitly seenfrom eq. (5.24). Hence,in the last threetermsof eq. (5.55)only thepart (1/M)K’(s —

u) of R(s,u) [cf. eq. (5.33)1 gives a contribution to ~ TV Noting that in the Ohmic casethe formula
(4.23) for the realpart of the real time kernelK(s) becomes

fdw 1
K’(s)=Myj -~-wcoth(~wh/3)cos(ws), (7.17)

theaction(7.16)with (7.14)and (7.15)can nowbe comparedwith theresultobtainedby Caldeiraand
Leggett[191.Theireq. (6.26)agreeswith ourresult(7.16)exceptfor a differencein the first termwhich
springsfrom the fact that theydisregardedthe last termin eq. (4.29).

Let us now considerthe explicit time dependenceof the correlationfunctionsS(t) andA(t) which
determinethe time evolutionof the propagatingfunctionJ(Xf, Tf, t, x1, r1, I, F). The antisymmetrized
correlationfunction(6.21) follows readily from eq. (7.14) as
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A(t)= — ~-~sin(~t)exp(—~yt). (7.18)

The Laplacetransform(6.26) of thesymmetrizedcorrelationfunctionS(t) becomesin theOhmiccase

~ 2 ~ (7.19)/3

wherewe insertedeq. (7.11). Rewriting this expressionin the form

1 ~~i1 1 / 1 1 1 1
S(z)= ~ ~I~I+A2+ v~—A2— p,~+A1— I~~HA1

1 / 1 1 \ 1 / 1 1 \1
~z+A1 k~~~—A1— Iv~I+A1)+z+A2~IvI+A — IvI—A)i’ (7.20)

we obtain the correlationfunctionS(t) asa sum of exponentials.We find

S(t) = ~ [exp(—A2t)coth(~ifi/3A2)— exp(—A1t) coth(~ih/3A1)]— 1(t), (7.21)

where we madeuseof eq. (4.9) and introduced

— y ‘c~ t’~~exp(—jv~~t)2 22 22~ (.)
JVI~n-°~ ~ + v~)— y v~

Hence,werecoverfrom the functionalintegralapproachthestandardresult[35].The expression(7.22)
for 1(t) may be written as

1(t) = 2i~~M(~- [F(1, ; 1 + ; e’
t) — F(1, — ; 1 — ; e”)]

— [F(1, ; 1 + ; e”) — F(1, — ; 1 — ; e~’)]) (7.23)

where F(a,b; c; z) is a hypergeometricfunction.
For later referencelet us briefly discussthe long-timebehaviourof S(t) in the underdampedcase

where y <2w~.For high temperatureskBT ~ FIyI4ir the function.1(t) decaysvery rapidly and the
long-timebehaviourof thecorrelationfunction is governedentirelyby the exp(—~yt) decayof the first
two terms in eq. (7.21).For lower temperaturesthe n = ±1 termsin eq. (7.22) becomeincreasingly
importantand in the regime 0<kBT< hy/4ir we asymptoticallyhaveS(t)ac exp(—vt). For T = 0 all
elementsof the sum (7.22) add up to a long-time tail and we find S(t) c ~2 for long times t ~‘ 2 /y
[35,37]. These findings directly extendto the overdampedcaseif y is replacedby ~, — (.~,2— ~ 2)1/2

With eqs.(7.18) and(7.21)we know theexplicit time dependenceof thepropagatingfunction in the
Ohmiccase.Naturally,explicit resultsmayalso be obtainedfor morecomplicatedformsof thespectral
density. Once ‘~‘(z)is a rational function of z we can always determinethe time dependenceof the
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correlationfunctionsS(t) and A(t) in termsof the eigenvaluesof the associatedclassicalequationof
motion. For the specialcaseof a Drudemodel where G~(z) has threepoles most of the algebra
necessaryis providedin recentwork [35,44].

8. Relaxationof nonequilibriuminitial states

In sections5.1—6.7we computedtheexactpropagatingfunctionJ(xf,Tf~t, x1, T., I, F) of a quantum
mechanicaloscillator which is dampedby a linear dissipative mechanismof arbitrary strengthand
arbitraryfrequencydependence.This result allows for a study of the time evolutionof a largeclassof
initial states.In the following we treat various situationsof interest. The generaldiscussionwill be
independentof the form of the dissipativemechanismbut more specific resultswill be given for the
Ohmiccase.We will makeno useof the externalforceF(t) in this section.

8.1. Approach to equilibrium

Let us considerthe densitymatrix

P(Xf, r~,t) = Jdx~dr1dI dFJ(x1,Tf, t, x1, r~,I, F)A(x~,r~,I, F) (8.1)

in the limit t—+~. We shall assumethat we approachm through a sequenceof times which avoidsthe
exceptionalpointst~with A(t~)= 0 occurringin theunderdampedcase.Then wecan explicitly usethe
form (6.71), (6.72) of the propagatingfunction.The extensionto arbitrarysequencesof timepointsis
straightforwardusing the regularizedform (6.73), (6.74)whenevernecessary.

Here, we consider the casethat G~(t) and consequentlyA (t) and S(t) as well as their time
derivativesvanishfor ~ oc~Further,sincewe excludedthezerosofA(t) the ratioA(t) /A(t) is bounded
so that termslike S(t)A(t)/A(t)alsovanishin the limit considered.It shouldbe noted,however,that
although thecorrelationsdo decayfor mostdissipativemechanismsof interestit is not themostgeneral
case.If thespectrumof environmentaloscillatorshasa sharpcutoff (i.e. 1(w) = 0 for w> ~D) and the
cutoff frequencyis smalleror of theorderof ~, or if 1(w) hasa bandstructurewith finite gapswhere
1(w)= 0, it canhappenthat the correlationsdo not decayfor long times.

To proceedit is convenientto introducea scaledvariable k1 = x~/A(t)in termsof which eq. (8.1)
takesthe form

P(Xf, Tf, t) = ~— f dk1 dr1di dF A(A(t)k1, r~,I, F)p~I,F)

x exp[~.~(xf,r~,t, A(t)k1,r1, I, F)] (8.2)

For large times the exponentbecomes

£(x1, Tf, t, A(t)k~,r~,I, F) = i ~ (q
2)k~+ j(~(q2) Xf — ~ rt)kj

/ (p2) M2 2 A2(t) ~ 2 A(t)
2t1 ~ > A(t))~1+MA(t))fTf4~~t~ (8.3)
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where i~.E,containsterms vanishing in the limit t—+ ~. Since the first argument of the function
A(A(t)k1, T1, I, F) approacheszero for f—pm, the integral over k1 can be performedessentiallyby
completingthe squarein theexponent.We areleft with

f p~,T1, t) = p~(x1,r1) Jdr~dI dFA(0, r~,I, F)p~(I,F). (8.4)

Now, becauseof eq. (3.36)we have

J dr1 dIdFA(0, T1,X, F)p~(I,F) = JdT~p0(O, r1) = tr(p0). (8.5)

Hence,if we startout with a normalizedinitial state,thesystemapproachesfor t—~ theequilibrium
statep13 independentof theparticular form of the functionA(x1, T1, I, r). This resultremainsvalid at
T=0but theapproachto equilibrium maybeextremelyslow due to thelong time tails discussedin the
previoussection.

8.2. Relaxationof expectationvalues

The decayof nonequilibriuminitial statesis easily monitoredby studying the time evolution of

expectationvalues. Let us first considerthe averagecoordinatewhich may be written as

(q),=JdTfdx~dTjdIdFTfJ(0,Tf, t,x~,r~,I,F)A(x1,r~,I,F). (8.6)

Inserting theexplicit form (6.71), (6.72) of thepropagatingfunctionwe obtain aftersomealgebra

(q), = O~(t)(q)0+ G.~.(t)(p)0+ ~ — O+(t)](F)0 — [~ ~(t) + ~ G+(t)] i10
(8.7)

where (q ) ~and (p) 0 denotethe initial nonequilibriumvaluesof thecoordinateandmomentumwhile

(F)0 = J dr1 dI dF A(0, r~,I, F)Fp13(I, F), (8.8)

(i)~= Jdri dIdFA(0, r~,I, F)1p13(I, F) (8.9)

areadditionaltermsarisingfrom thecorrelationsbetweentheBrownianparticleandtheenvironmental
oscillatorsin the initial state.Using table 1 andeq. (5.57)weseethat the time dependenceof the last
two termsin eq. (8.7) may be relatedto the functionsC1(s) introducedin eqs. (5.26), (5.27) by

— G~(t)= JdsG+(t — s)C1(s), (8.10)

~ ~(t)+ ~ G+(t)=JdsG÷(t-s)C2(s), (8.11)
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so that eq. (8.7) may be rewritten in the form

(q>, = O+(t)(q)0 + G~(t)(p)0+ ~j J~sG+(t-s)(E(s)>0, (8.12)

where

F(s) = MC1(s)F—iMC2(s)I (8.13)

is the force introducedin eq. (5.32).Clearly, the averagecoordinateis a solution of

M(4),+~jJdsMy(t_s)(q)2+Mw~(q),=(E(t))0, (8.14)

which is theclassicalequationof motion (4.43)with aninhomogeneity(P(t)>0 — My(t) ( q>0. In view of
Ehrenfest’stheoremtheaverageforce (F(t))0 shouldbe relatedto the initial valuesof thecoordinates
and momentaof the environmentaloscillators.This is shownin appendixC.

For laterconveniencewe introducethe time-dependentcoordinates

q1(t) = O~(t)q, (8.15)

= G+(t) pIM, (8.16)

q3(t) = [S(t) / ( q
2> - O~(t)]F, (8.17)

q
4(t) = — ~ [M~(t) + ~j (P2>G÷(t)]I, (8.18)

in termsof which the result(8.7) may be written in the compactform

(q),=~(q~(t))0. (8.19)

The functionsq,(t) andq2(t) describethedependenceof theexpectationvalueon the initial coordinate
and the initial velocity of the Browman particle, while the functions q3(t) and q4(t) describethe
influenceof the initial valuesof the environmentaloscillators.Clearly, theaveragemomentumof the
Brownianparticle attime t takesthe form

(p),=M>~ (4a(t))0 (8.20)

and thus containsno additional informationaboutthe relaxationprocess.
Next, let us studythe time evolutionofthesecondmoments(q

2)~,~(pq + qp) and(p2) given by



170 H. Grabertet a!., QuantumBrownian motion

= Jdr1dx~dr1dIdFr~J(0,Tf, t, x~,r~,I, F)A(x~,T1, I, F), (8.21)

~(pq + qp), = JdXf drf dx1dr1dI dF~(xt)rt(~j_)J(xt, r1, t, x1, r~,I, F)A(x1, r~,I, F), (8.22)

(p
2),= J dx

1dr1 dx~dr1 dl dF~(x1)(—h
2)-~-~J(x~,r~,t, x~,r~,I, F)A(x

1,r~,I, F). (8.23)

Again insertingtheexplicit form (6.71),(6.72)of thepropagatingfunctiona straightforwardcalculation
leadsus to

(q

2) = (q2)[i - S2(t)] + G~÷(t)+ 2G÷(t)~(t)+ ~ (q~(t)q~(t))
0, (8.24)

q

d 2

~(pq+qp)1=~M~(q >1

= ~2> G~(t)O+(t)+ MO÷(t)~(t)+ MG+(t)~(t)- M~t~t)

(q )
+ M ~ ~(4~(t)q~(t)+ q~(t)4~(t))0 (8.25)

p. ~ = 1

(p
2),= (p2)[O~(t)+1]- M2~4~+ 2M2O÷(t)~(t)+ M2 E (4~(t)4~(t))

0. (8.26)q

Theseformulasgive thesecondmomentsin termsof theirinitial values(q
2>0, ~(pq + qp >0, (p2>0 and

their final equilibrium values (q2), (p2). There are also additional terms proportional to
(qF)

0, (qI)0, (pF)0, (p1)0, (F
2)

0, (Fl)0, and (12)0 which arise from correlationsbetweenthe
Brownianparticleand the reservoirin the initial state.Clearly,we maydeterminethe time evolutionof
the higher momentsby the samemethod. Thesecontain new information only if the initial density
matrix is non-Gaussian.A more detaileddiscussionof the relaxationof expectationvaluesfor specific
initial stateswill be given in sections8.3 and8.4.

8.3. Relaxationoffactorizing initial states

In this sectionwe briefly considerthe time evolutionof expectationvaluesfor a Brownian particle
startingfrom a factorizinginitial state.This caseis obtainedfrom the resultsin section8.2 by settingall
termscontainingI and F equalto zero. The first momentsthenread

(q)FV = O~(t)(q)0+ G+(t)(p)0 (8.27)

and

(p)FV=MO(t)(q)o+O(t)(p)o (8.28)
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For an Ohmic heat bath the evolution of the second equation is discontinuousat t =0 since
lim1,..,~0(p)~“ = (p >0 — My( q >0 is generallynot equalto (p )~[cf.eq. (7.14)].This is due to thefact
that O~(0)~ 0 for a strictly Ohmic reservoir.Oncewe introducean environmentalcutoff

0)D’ we have
O,~(0) = 0 and the jump of (p) no longerhappensinstantaneouslybut takesplace on thetime scale
~j1 On theotherhand, for a nonfactorizinginitial statewe havelim

1~0(p ) ~“ = (p )o — My(( q >0 —
(F) ~)so that even for Ohmic damping an initial discontinuity occurs only for preparationswhere
(q>0~(F)0.

Thetime evolutionof thesecondmomentsfor factorizinginitial statesareobtainedaccordingly.The
meansquareof the coordinateis given by

(q
2)FV = O~,(t)(q2)

0+ ~ G~(t)(p~)0+ ~ G~(t)O~(t)(pq+ qp)0

+ [i — ~2]q2 +2G~(t)~(t)+ ~ G~+(t)(p
2). (8.29)

Caldeiraand Leggett [19] have studied this quantity for an initial wavepacketwith (p2)
0= p~+

h
21(4(q2)

0)and (pq + qp)0 =0. In this caseeq. (8.29) is equivalentto their eq. (6.34)if the term
neglectedby theseauthorsis restored.Clearly, the correctapproachof the equilibrium variance(q

2)
for ~ oc is evident from both the result (8.29) for factorizing initial statesand the more general
expression(8.24).

8.4. Coherentand squeezedstates

We nowturn to a classof initial states,namelycoherentandsqueezedstates,which areofinterestin
variousfields including quantumoptics,optical communications,and,high precisionmeasurementsnear
the quantumlimit. Coherentstateshave beenwidely usedto describethe radiationfield of lasers
[9,46], and the questionof how a dissipativeenvironmentaffects their time evolutionwas recently
discussedby several authors [47,48] mainly on the basis of masterequationmethods.The weak
coupling masterequation,thoughbeinga very good approximationfor manyproblems,cannotbeused
for temperaturescloseto zeroand/ormoderateto strongdamping [13,49]. Thefollowing analysis[23]
is not subjectto thoselimitations anddescribessystemsfor arbitrarily low temperaturesandarbitrarily
strongdamping.

Coherentstatesareeigenstatesof theannihilationoperatora = (Mw

012h)’ ‘
2q + i(2hMw

0)~‘
2p ofthe

harmonicoscillatordefinedby [46]

ala)ala), (8.30)

wherea is thecomplex eigenvalue.A coherentstateis obtainedby letting thedisplacementoperator

D(a) = exp(aa’ — a*a) (8.31)

acton the groundstate,i.e.

Ia)=D(a)jO). (8.32)
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A generalizationof thesestatesis obtainedby consideringthe eigenstatesof the operator

b = cosh(IzI)a + exp(—i4~)sinh(IzI) a’4’, (8.33)

which is again an annihilation operator. satisfying [b, b~]= 1. Here, z is a complex parameter
z = z exp(i4t~).Theseso-calledsqueezedstatesor two-photoncoherentstates[50]are generatedby
letting the squeezeoperator

S(z)=exp[~a2—~ a’4’2] (8.34)

andsubsequentlythe displacementoperatorD(a) acton the groundstate,i.e.

IS(a, z)) = D(a)S(z)I0). (8.35)

Hence,by putting z = 0 we recoveracoherentstateas a specialcaseof a squeezedstate.
While in a coherentstate the variancesof potential and kinetic energyare equaland fulfill the

minimum uncertaintyrelation upoq = 112/4, thesevariancesdiffer from eachotherin asqueezedstate.
For examplethespatialwidth of a stateis “squeezed”at thecostof a wider momentumdistribution.
This squeezingcouldimprovethe attainablesignalto noise ratio which is importantin manypractical
problemsin fibre optics, opticalwaveguides,or gravitationalwavedetection[51].

Thegeneralmechanismto generatesqueezedstatesis to acton thesystemby a perturbationof the
Hamiltonian which contains componentsproportional to ca + c* a’4’ for displacing the state and
proportionalto (d/2)a2+ (d*12)a’4’2 for squeezingthe state.Note, that the time evolution operator
associatedwith H then hastermsof the form of the displacementoperatorD(a) and the squeeze
operatorS(z), respectively.Then aftera while theperturbationis expectedto causea nonequilibrium
partof thedensitymatrix which is closeto a coherentor squeezedstate.Letusassumethat theeffect of
this perturbationon a systeminitially in equilibriumgeneratesa nonequilibriuminitial stateoftheform

w, = o,w
130,’4’ , (8.36)

where

O~= D(a)S(z) (8.37)

is anoperatoractingon thecoordinatesof theBrownianparticleonly. Hence,thedensitymatrix (8.36)
belongsto theclassof initial statesdiscussedin section2. Clearly, if wetrace(8.36)over the reservoir
the resulting densitymatrix is not the densitymatrix of an ideal squeezedstate(8.35).However,by
includingthe full environmentalcoupling, eq. (8.36)is muchcloserto theexperimentalsituation and
we shall call

p~=tr~(W~)=O,p130,’4 (8.38)

the densitymatrix of a “real” squeezedstate.In the limit of zerodamping and zero temperaturewe
have
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lim lim p,1S(a,z)>(S(a,z)I, (8.39)
T—~.07(w)—.0

so that thedensitymatrix reducesto theprojectionon an ideal squeezedstate.
Let us now considerthe coordinate representationof the operator0,. Here, we choose the

squeezingparameterz to be realwhich meansthat thenondiagonalvariance0pqvanishesinitially. Then
the state is squeezedsuch that the principal axes of the uncertainty ellipse are coordinateand
momentum.This is the caseof interest, generally. For complex z the ellipse gets rotated in the
p,q-plane.Now, the matrix elementof the squeezeoperatorcan be written

(q~S(z)Iq’) = (qIexp(~) exp(~ zpq)Iq’). (8.40)

Takingthederivativewith respectto z andusingthecoordinaterepresentationof theoperatorsp andq
we obtain thedifferential equation

ía a 11~~-—q~--—~j(qIS(z)Iq)0. (8.41)

With the boundarycondition (qIS(0)Iq’) = ö(q — q’) thesolutionis foundto read

(qIS(z)Iq’) = ~“2ö(~q — q’), (8.42)

where

~=exp(z). (8.43)

Thesamemethodreadilyyields thecoordinaterepresentationofthedisplacementoperator.Writing eq.

(8.31) as

D(p
0, q0)= exp(_ ~ q0p)exp(~poq)exp(~poqo), (8.44)

wherewe defined

= (2111Mw0)”
2 Re(a), (8.45)

Po = (211Mw
0)”

2 Im(a), (8.46)

we obtain

(qJD(po,qo)Iq’)=exp(~ poq)exp(~jp
0qo)o(q—q0—q’). (8.47)

From eq. (2.12)we havethat thepreparationfunction A,( q, ~, q’, ti’) is connectedwith theoperator
O~by

A5(q, ~, q’, ‘i)= (qIO5Icj)(t~’~O~q’). (8.48)
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Using theresults(8.42) and(8.47), its representationin sum and differencecoordinatesbecomes

A~(x,r, 1, F) = ~exp(~ pox)ô(~x— I) ô(~(r— q0) — F), (8.49)

which gives for the initial reduceddensitymatrix

p,(x,T)=(21T~2(q2)yh/2exp[_2(~2)(r—q0)
2— ~> x2+ ~ ~ (8.50)

We cannow usetheresultsof the previoussectionto determinethe time evolutionof theexpectation
valuesof the dynamicalvariables. Since the initial statedescribedby eq. (8.50) is Gaussianit is
characterizedby its first andsecondmoments.From (8.50) we easilyobtain

(q)
0=q0 (p)0=p0, (8.51)

as well as

(q
2>

0=q~+~
2(q2); ~(pq+qp)

0=p0q0 (p
2)

0p~+~
2(p2). (8.52)

Hence,theparametera occurringin thedisplacementoperator(8.31) is relatedto theinitial position

and momentumby
M 1/2

a = (—i) (q)
0+i(211Mw0)”

2(p)
0, (8.53)

while the constantz in the squeezeoperator(8.34) determines the squeezingof the width of the
distribution in coordinateandmomentumspaceaccordingto

u(0) j 2q _~P — —

2 —exp z.
(q ) o~(O)

Here, we introducedthe variancesof position

O~q(t)= (q
2),—(q)~2 (8.55)

and momentum

o~~(t)= (p2), — (p)~, (8.56)

which for thesqueezedstate(8.50)are relatedby

O~q(0)O~p(0)=(q2)(p2) . (8.57)

We notethat for complexparameterz this relationgeneralizesto read

O~q(O)=~q(O)o~p(O)~ (q2)(p2) , (8.58)
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where

(8.59)

is thecrossvariance.Besideseqs. (8.51)and(8.52) we alsohaveto determinethe initial expectation
valuescontainingI and F [cf. eqs.(8.8), (8.9)]. Using the form (8.49) of thepreparationfunctionwe
find

(1)~=0; (F>0=0, (8.60)

(12)o=0; (Fx)00; (F
2)

0=(q
2), (8.61)

(qx)
0=0; (qr)0=~ (q ), (8.62)

(pl)0=(11li)~ (pF)00. (8.63)

Fromeqs. (8.19), (8.51),and(8.60)the time evolutionof thecoordinateexpectationvaluefollows as

(q)1= q0O~(t)+ (1/M)p0G÷(t), (8.64)

while eq. (8.20)gives for the averagemomentum

(p)1 = q0MG+(t) +p0O÷(t). (8.65)

Hence, the meanvaluesof coordinateand momentumof a squeezedstatefollow the well-known
classicaltrajectoriesandare temperatureindependent.

The relaxationof the initial displacementandmomentumis convenientlyvisualizedby defining, in
analogyto eq. (8.53), a complextime-dependentdisplacementparameter

a(t) = (Mw0/211)
1’2(q), + i(211M’w

0)’”
2( p), . (8.66)

Insertingeqs. (8.64,8.65) we have

~j Ia(t)12 = ~— q~O~(t)[O~(t)+ w~O+(t)]+ (M11w
0)”p~O+(t)[O~(t)+ w~G~(t)]

+ (11w0)”
1p

0q0(G+(t)[O+(t) + w~G+(t)]+ O+(t)[G+(t) + w~G+(t)]). (8.67)

In the caseof Ohmicdissipationwe can usetheequationof motion for theGreen’sfunction

+ yO~(t)+ w~G+(t)= 0 (8.68)

to obtain

~j Ia(t)1
2 = — ~ [O~~1qo+ ~j O+(t)po] (8.69)

which is clearlynegative.Hence,the absolutevalueof thedisplacementparameterdecreasesmonoton-
ously towardszero. The resultingtrajectoryin thep, q-planeis aspiral approachingthe origin.
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The time evolution of the secondmoments is obtained by inserting the initial values(8.52) and
(8.61—8.63)in thegeneralexpressions(8.24—8.26).Further,inserting(8.64,8.65)for (q),and (p),we
find

O~q(t)= 2G+(t)S(t)(1 — ~)— 2O,~.(t)S(t)(1 — i’’) + (q2)[1 + O~.(t)(1— ~_1)2]

+ ~2> G2
4,(t)(1 — ~)2 (8.70)

O~pq(t)= ~M ~ O~q(t), (8.71)

o,(t) = 2M

2G~(t)S(t)(1 — ~)— 2M2G~(t)S(t)(1— i”) + (q2)M2O~(t)(1—

+ (p2)[1 + O~,(t)(1— ~)2] (8.72)

Sincethe initial state(8.50) is Gaussianand theHamiltonianfor t>0 is quadratic,the reduceddensity
matrix will remain Gaussianfor all times. Thereforeit is determineduniquely by its first and second
momentsderivedabove.In fact, it is easily shownthat the density matrix at time t is given by

2 (t

p(x, r, t) = (2ir~q(t))~2exp[_ 2~q(t)(r - (q)
1)

2 - ~ (~- u~(t)

u(t)
+ ~ {(p>t+ ~(t) (r- (q)t)}x], (8.73)

which reducesto p,(x, r) for t = 0 andgoesto p
13(x, r) for t—~°~. In orderto discussthedecayof the

squeezedfluctuationsin moredetail it is convenientto introducetheWigner representation[52]

W(p,q,t)=-~-~jdxp(x,q,t)exp(_~ px) (8.74)

of the density matrix (8.73). The Wigner function which is the quantum analogueof a classical
probability distribution emergesas [23]

W(p,q, t) = ~- [~q(t)~(t)k(t)]~
2 exp[_ ~ { ~ +

2r (t)

- crq(t)ITp(t)k(t) (q - (q)

1)(p - (p)1)}]~ (8.75)

where k(t) = 1 — O~pq(t) i(o~~(t)°~q(t)). Let us further introduce the dimensionlessvariables ~ =

(2Mw0I11)~
2qandji= (2/fIMw

0)”
2p and the variances~q(t), ~~(t), and pq(t) scaledaccordingly.

Settingtheexpressionin bracesin eq. (8.75)equalto 1 definesan uncertaintyellipse in thej, i-plane
which is centredat j’ = ~ and ~ = (t7), andcharacterizesthewidth of the fluctuations.At t= 0 the
principal axes of this ellipse point in the j9~-and i-direction and they havethe lengths~/2(0) and
~i/2(0) For t>0 theellipsegetsrotatedand the lengthsof theaxesoscillate.Note thatwe havescaled
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thevariablessuchthat thegroundstateof theundampedoscillatoris describedby a unit circle while the
equilibrium stateis ellipsoidal dueto thedissipation.

Although the relation (8.58)characterizingthe initial “real” squeezedstateis not valid for t>0 due
to the dissipation,we may saythat thesystemis in a squeezedstateaslong asthe fluctuationsin one
variablearesmallerthanthe fluctuationsof thegroundstate.In termsofthescaledvariablesthis means
that the minor axis of theuncertaintyellipse is shorterthan1. Now, theprincipal axesof the rotated
ellipse are given by [23]

x~(t)= [~(ô:q(t)+ ~~(t) ±\/(~q(t)— ~~(t))2 + 4~,q(t))]”
2 , (8.76)

wherethe plus andminussignhold for themajorandminor axis, respectively.Figure4 showsthe time
evolution of theseaxesfor a Drudemodel with ~(w) = 7~D’(~+ ~D) for two temperatures.For those
times t,, when ~pq(tn) = 0 theaxesx~(t~)point in theJ3’- andci-direction. If thestateis initially squeezed
suchthat ~q(to 0) < 1 theminor axis will againpoint in the i-directionfor evenvaluesof the indexn
labelling the timepointst,,. For a sequenceof thesetimepointsthe time evolutionof the uncertainty
ellipse in the 3, i-planeis shownin fig. 5.

Dissipationinfluencesthesqueezingin two ways. It leadsto a decayof thesqueezedfluctuationsand
changestheir absolutevalues.Let usfirst discussthelifetime of thesqueezing.It is seenfrom fig. 4 that
the decayrate is roughly temperatureindependent.This can be understoodby using the explicit time
dependenceof the Green’sfunctionandcorrelationfunction for frequency-independentdamping [eqs.
(7.14) and (7.21)]. For high temperaturesT> t1y/4lTkBall termsin eqs.(8.70—8.72)for thevariances
decayasexp(—yt) or fasterso that thedampingconstantis theonly relevantparameterfor thelifetime
of the squeezing.For lower temperatureswe still havetermsproportionalto exp(—yt) but someof the
additionaltermsproportionalto exp[ — (~y + i~)t} decayslower. Formoderateto strongdampingthese

3 T=O

3 kBT=O.5fl~Q
7= wo

wot
Fig. 4. Time evolution of theprincipal axesx, (t) of theuncertaintyellipseofa squeezedstatefor a Drudemodelwith w,~= IOu,andfor an initial
squeezingparameter~= 2. The horizontalline marks thesizeof thevacuumfluctuations.
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a-

t=o

t=t4
tt8 7~\~

t=t16 7\/ \
t=t32 +t=:(~W

Fig. 5. Time evolutionof theuncertaintyellipseof asqueezedstate in thep, j-plane for someof the timepointst~where ~ vanishes.The
centreof theellipsegives the oscillation amplitudes (q), and (p), while the axesarex~(t~)= ~~2(t~) andx,,(t~)= ~~2(t~). Depictedarethe
resultsfor aDrudemodel with w0 = lOu0, y = 0.01w~,~= 2, T = 0, j, = 5 and~, = 2.

lattertermsdeterminethe lifetime of thesqueezedfluctuationswhich is of theorderof 27_i. Forweak
damping (y ‘~ ~ onehasto notethat all termswhich decayslowerthanexp(—yt) are by a factorof
y~~osmallerso that they becomeimportantonly aftera periodof time whenmostof thesqueezinghas
alreadydied out. Hence,for weakly dampedsystemsthe lifetime ofthesqueezingis of ordery~ for all
temperatures[23]and the result of the weak coupling theory[48]is valid evenat T=0.

Figure 4 also shows that the initial squeezingbelow the vacuum fluctuations is increasedby
dissipation. While strongerdamping leadsto a faster decayof the “dynamical” squeezing(i.e. the
squeezingproducedby the generationmechanism),the “static” squeezingof the equilibrium variance
below thevacuumlevel is increasedby thedamping.This secondeffectof dissipationis not described
by a weak coupling theory and it is more pronouncedfor strongerdamping. However, evenfor the
weakly dampedsystemshown in fig. 4 it hasthe consequencethat the T=0 curvefor theminor axis
takesabouttwice aslong to reachthevacuumline thanthe finite-temperaturecurve. The conditionof
low temperaturesis not very stringent in the optical regime where even at room temperature
kBT<0.1hw~but it requiresmillikelvin temperaturesif oneworks with microwaves.

PART III. FREE BROWNIAN MOTION

9. Time evolution of a dampedfree particle

In this sectionwe continueour discussionof linear dissipativesystemsby consideringa Brownian
particle which is not subjectto an externalpotential. The Hamiltonian
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H= + ~ + ~ ~ — c~)2] (9.1)

upon which we basethis study follows from (2.1—2.4) by putting V(q, t) = 0. This is the simplest
microscopic model for a dissipative system. In contrast to the harmoniccase treatedabove the
coordinateof the Brownian particle is not bounded.Without loss of generalitywe can assumethat
c~= m~w~becausein this casethe spectraldensity (4.1) takesthe form

1(w) = ~ ~ m~w~(w— w~)

which can still model any desired frequency dependenceprovided we choose the spectrumof
environmentaloscillators accordingly. With this choice of parametersthe model describedby the
Hamiltonian (9.1)canbevisualizedasa particleof massM with manyharmonicoscillatorsattachedto
it as depictedin fig. 6. In this form the model is explicitly translationallyinvariant [20].

9.1. The displacementcorrelation function

To obtain thepropagatingfunctionfor free Brownian motion wehaveto takethe limit w
0 —~0 of our

previousresults for the dampedharmonicoscillator. For simplicity we also assumethat F(t) = 0. The
coupling to an externalforce bearsno newfeaturesas comparedwith the harmoniccaseand it can
easily be restoredat a later stage.In the limit w0 —~ 0 thevariance (q

2) becomes(cf. table 2)

(q2)F = lim (q2)= 2 + lim 1 2 (9.2)
M/3 n=1 i’,, + v~y(v~)w

0-.0 Mf3w0

m1 m2
m3

M

WI’

m~

Fig. 6. A mechanicalmodelof the Hamiltonian (9.1) for ç = ~
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where the superscriptF denotesquantities for free Brownian motion, henceforth. Clearly, the
expression(9.2) divergesdue to the last term. This is a consequenceof the fact that theparticleis not
bound.The sametype of divergenceis met whenwe considerthesymmetrizedcoordinateautocorrela-
tion function. Using table2 the LaplacetransformSF(z) is found to read

v~~~z2[Z2+~(Z) - v~+z~(v~)]M~? z+~(z) ~oM/3zw0 (9.3)

which is againdivergent.However,thequantity ofinterestin the theoryoffree Brownianmotion is not
the autocorrelationfunctionof thecoordinatebut the correlationof thedisplacementq(t) — q(0) with
the initial coordinateq(0). This displacementcorrelationis definedby

QF(t) = ~ {([q(t) — q(0)]q(0)) + (q(0)[q(t) — q(0)])} = SF(t) — (q

2)F . (9.4)

By virtue of eqs.(9.2) and(9.3), theLaplacetransform~F(z) ofthedisplacementcorrelationbecomes

~F(z) = ~(z) — (lIz)(q2)F

_1f1 1 2’~ ~ 1 95
M$~z2z+’~(z)+ L~ v~_z2Lz+~’(z) — z v~+~(v~) ( . )

This expressionis regular so that wecan employthedisplacementcorrelationQF(t) insteadof SF(t) to
formulate the theory. Using the stationarity of the equilibrium processit is readily establishedthat
QF(t) determinesthe meansquaredisplacementof the Brownian particle accordingto

s(t) = ((q(t) — q(0))2) = _2QF(t) (9.6)

which is the quantity investigatedusually in the theoryof Brownianmovement.
Since the antisymmetrizedcorrelationfunctionA(t) vanishesinitially, no subtractionsuchasin eq.

(9.4) is necessary.We have

AF(t) = ([q(t) — q(O), q(0)]) = ([q(t), q(0)J) , (9.7)

so that the time-ordereddisplacementcorrelationfunctionreads

CF(t) = ([q(t) — q(0)]q(0))= QF(t) + iAF(t) . (9.8)

Using table2 and taking the limit w
0 —~ 0 we obtain for theLaplacetransformof AF(t)

“F ~~ “F 11 2 —1

A (z)=_~—~G÷(z)=_~J~j(z+zy(z)) . (9.9)

More explicit results for the time dependenceof thecorrelationfunctionscan only be obtainedif we
specify the frequencydependenceof the damping coefficient ~(w).
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9.2. The propagatingfunction

Let us first considertheequilibriumdensitymatrix of a free Brownianparticle.By simply taking the
limit (q2)—~ re in eq. (6.83)theprefactorwould go to zeroasa consequenceof the factthat thedensity
matrix of a nonlocalizedparticlecannotbe normalizedon the interval (_oo,+~).Hence,wedefine an
equilibrium densitymatrix p~(q, q’) which is normalizedon an intervalof lengthL accordingto

p(q, q’) = L~’ exp[_ (2)F (q — ql)2] (9.10)

In contrastto the equilibrium state,most initial statesof interestcan be normalizedon the entire
interval. It is then convenientto introducethe density matrix

~ q’) = Lp(q, q’) = exp[_ ~ (q — q?)2] (9.11)

which is normalizedon an intervalof length1 and to redefinethe preparationfunctionA~(q, t~,q’, ~‘)
for free Brownianmotionsuchthat all normalizationfactorsareincludedin A~(q,~, q’, ci’). The initial
reduceddensity matrix is thenwritten as [cf. eq. (3.36)]

p
0(q,q’)=f d~d~’A~(q,~, q’, ~ i’). (9.12)

Using the definition (9.4) of the displacementcorrelation function we can now determinethe
propagatingfunction (6.71), (6.72) in the free Brownian motion limit. Then termsproportional to
((q

2 ) F) 1 vanish,andthepropagatingfunctionfor free Brownian motion dependsonly on the relative

coordinates

Y=Tf—T~ ~=r
1—F. (9.13)

This fact is of course a natural consequenceof the translational invariance of the model. The
propagatingfunction reads

JF(x y, t, x~,I, ~)= 4I~FOl exp[~~ y, t, x1,I, ~)]~ (9.14)

where

F -_ ___l~(xf,y,t,x1,x,y)=1 211

AF(t) 11 2 1 AF(t)
2

+ (x
1y + Xfy)M AF(t) + X1)) 2A’~(t)— X~Y ~ M

2[A’~(t) — AF(t)

+ ~ [~F(t)AF(:) _.QF(t)]
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+. 2~(p2)’~ — MQF(t) — 11QF(t)1X
1 L 211 2AF(t) 4A’~(t)

2

+ ixIxf[_~ {~F(t) ~ - ~F(t)} + 2AF(t)2 {AF(t)~F(t) - 2AF(t)QF(t)}]

+ [(2)F + ~ {QF(t) — AF( Q’~(t)}] . (9.15)

HereJF(x y, t, x
1, I, 5~)is normalizedin accordancewith eq. (9.11)anddeterminesthedensitymatrix

at time t accordingto

P(Xf, r~,t) = f dx1 dy dl d~JF(x y, t, x1, 1, ~)AF(rt— y, x~,~, 1). (9.16)

The preparationfunction AF(r x1, ~3T,I) is relatedto the function A~(q, c~,q’, ~‘) defined aboveby

x1, ~, 1) = A~(r+ x112, r — ~ + 1/2, r — x112,r — — 1/2). (9.17)

As in theharmoniccasethe time dependenceof thepropagatingfunction is determinedcompletelyby
the correlationfunctionsA’~(t)and QF(t). Again, the propagatingfunction(9.14, 9.15) is not defined
for timeswhereA’~(t)= 0. Thereis always azero of A’~(t)at t = 0 wherethepreviousresult(6.80)for
the harmonicoscillator remainsvalid. We have

JF(x y,0, x., I, ~)= ~~(I)~(xf — x1)5(y). (9.18)

OtherzerosofA’~(t)areusually not expectedfor free Brownianmotion. However,for particularforms
of ~‘(z)leading to suchzeros,the sameregulanzationof the propagatingfunction as in the harmonic
casemay be applied.

10. Ohmicdissipation

In this sectionweconsiderspecificallytheOhmicmodelintroducedin section7. There5’(w) = y, and

we obtain from eq. (9.9)

A’~(t)= —(hI2My){1 — exp(—yt)} (10.1)

which gives the well-known expression

xF(t) = (1 IM7){1 — exp(—yt)} (10.2)

for the responsefunction of a free Brownian particle. The time dependenceof the symmetrized
displacementcorrelationfunctionQ’~(t)can alsoreadily beevaluatedfor anOhmicheatbath. Inserting

= y in eq. (9.5) the expressioncan be rewritten in the form
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“F 111 1 = 1 1 = 2 1 = 2y 1
~ Z+7~, v~+~yZ+,~, v(y2—v2)z+v~

(10.3)

The inverseLaplacetransformof this expressionis easily obtainedas

F 1 1 2 = 1 11

Q (t)__~jjj~~t+Mf3’y2 J5yf/3~
2—~-M—cot~—~--)exp(—yt)

2y ‘c~ exp(—v~t)
+ st ~ 2 2 (10.4)

n=~ ~(y — v)

where we usedthe representationof cot(x) asan infinite sum, i.e.

cot(x) = ~ ~ X (10.5)

In theclassicallimit t1—÷0 theexpression(10.4) for thedisplacementcorrelationfunctionsimplifies to
give the familiar result

Q~1(t)= )~fJ3 ~+ Mf3y
2 (1 — exp(—yt)) (10.6)

which is proportionalto t for long times. For lower but finite temperaturesthe long time behaviourof
thequantummechanicalcorrelationQF(t) is also governedby the term — t/(M/3y), sincethe remaining
termsin eq. (10.4)areeitherconstantorvanishfor larget. Thediffusion coefficient cannowbe defined
in theusual way through

D = ~lim! s(t)= —urn ~ Q’~(t) (10.7)

which for T>0 gives the familiar Einsteinrelation

D=llMf3y=k
8T/My. (10.8)

Note that the long-time behaviourof the Brownian particle characterizedby D is not affectedby
quantumfluctuations.

The case T= 0 needsspecial care. Then the diffusion coefficient vanishesand the displacement
correlationgrows at a slowerrate. Since thefrequenciesv,, becomecontinuousthe sumshaveto be
replacedby integralsaccordingto

~ ~ f(v~)=~_Jdvf(v). (10.9)

For the time derivativeof the displacementcorrelationwe obtain from eq. (10.4)in the limit T—~0
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F
1 \ — Fly f exp(—~t)

dv 2 2 10.10)
IT 0

This integralcan beevaluatedin termsof theexponentialintegral functionEi(x) which for all x not on
thepositive real axis is definedby

Ei(x)=J dy e~~) (10.11)

and which for x >0 is continuedby

~(x) = lim ~[Ei(x+ ir) + Ei(x — ir)]. (10.12)

Since QF(o) = 0 (cf. eq. (9.4)), we find from eq. (10.10)

Q~(t)= 2hM Jds[Ei(—ys)exp(ys)— ~l(ys) exp(—ys)]. (10.13)

For long times this integralgrows like the logarithm [20]

Q~(t)— — ITAly log(yt), for t—~~, (10.14)

which showsthat in theabsenceof thermal fluctuationsthemeansquaredisplacementof a Brownian
particle grows slowerthanin a diffusion process.

In the Ohmiccase the momentumdispersionis again logarithmically divergentlike the expression
(7.5) for the harmonicoscillator. From table 2 we obtain in the limit w0 —~0

(2)F = ~ ~ ~ (10.15)

However,this ultraviolet divergencehasnothingto do with the infrareddivergenceof thecorrelation
function (9.3). Rather,it is a consequence of the unphysicalhigh-frequencybehaviourof an ideal
Ohmicreservoir.The divergenceof (p

2) F is readily removed if we introducean environmentalcutoff,
e.g. by the Drude regularizationdescribedin section7.

The asymptoticbehaviourof the propagatingfunction (9.14, 9.15) for t—~ cannotbe studiedin
parallelto the harmoniccasebecausethecorrelationfunctionsdo not go to zeroin the free Brownian
motion limit. Rather,we insertthe asymptotic laws QF(t) = — Dt and A’~(t)= —a into (9.14,9.15).
Since themeansquaredisplacementgrows diffusively, we haveto retaintermsof ordery/t”2 while all
otherterms~t” (v <0) vanish. The propagatingfunction then becomes

- - -F -F - 1 í ID (~2)F MD\ 2
J(Xf, y, t, x

1, x, y)—~Pp(Xf)Pp(X) ~j— exp~—I,~~t + 2112 —

Ii - /(2)F MD\ MD 1 1
+ ~ (y + y) + ~ 112 — — -~- xfjxj]~ for t—~o~,T>O.
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Completingthe squarein the exponentwe havein the limit t—~~, T >0

J(Xf, y, t, x1, 1, ~) (x1)~5(1)~-~——exp[_-~t(xj + ~ y)~]exp(_~-~~2)

= ~5~(xf)j5~(1)ö(x1)(4ITDt)
t~2exp(_~-~~2) (10.17)

To obtainthe secondequalitywe notedthat the first exponentialapproachesa s-functionas ~ c~•An
initial statecharacterizedby AF(r~ — y, x

1, ~, 1) thus asymptoticallybecomes

p(X~,r~,t) (4ITDt)”
2 exp(_~j r~),~(x~)J dr

1 dl d~AF(r1,0, 7~1),~(1), (10.18)

for t—~~, T>0. Here, weput y = r~— r1 in eq. (10.17)andnotedthat the terms~ vanishin the limit
~ since for a state initially localizedaroundtheorigin it is the final coordinatewhich is responsible

for thegrowthof y. Now, the integralin the last line is just the traceof the initial state.Hence,for a
normalizedinitial statelocalized in a finite regionthe asymptotictime-evolutionof thedensitymatrix
becomes

p(Xr, r~,t)=(81TDty1/2exp(_~~jr~)exp(_~ x~), (10.19)

for t—~~, T>0, where the first exponentialtogether with the prefactor describesthe diffusive
spreadingof thestatewhile the last termrepresentstheequilibrium distributionof themomentum.A
correspondinganalysisshowsthat at zerotemperaturetheapproachto equilibrium happensata slower
rate accordingto the logarithmic law (10.14).

11. Frequency-dependentdamping

11.1. Spectraldensityand dampingcoefficient

For a frequency-dependentdampingmechanismwe canin generalno longerobtain exactresultsfor
the correlationfunctions like we did in the Ohmic case.We can, however,examinethe asymptotic
behaviourfor arbitrary frequencydependenceof the damping [24].The long-time dependenceof a
function is determinedby its Laplacetransformfor argumentswith a small positive realpart. Hence,
the resultswill dependmainly on the low-frequencypropertiesof the damping.Let us considera class
of reservoirswherethespectraldensity1(w) atlow frequenciesis ccw” wherethespectralexponentais
a realpositive number.Negativevaluesof a cannotoccurbecausethedefinition (4.1)of the spectral
densityimplies1(0) = 0. In orderto describea realisticheatbath,wehaveto cutoff thespectraldensity
at high frequencies.Choosinga sharpcutoff at w~,the reservoiris describedby

J(w)=Mg~w”�1(w~_w);a>0. (11.1)

Wenotethat mostof thefollowing resultsdo not dependon this specialchoiceof thecutoffbut arealso
met if we considera soft cutoff, where1(w) vanishescontinuouslyasw —~co• In fact, thehigh-frequency
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propertiesof the heat bath affect the long time behaviourof the correlationsonly if the spectral
exponenta � 2 wherethedampingleadsto a renormalizationofthe massoftheBrownianparticle(see
below). For timest ~‘ w~‘ a real reservoircanthereforebe describedby a spectraldensityof the form
(11.1) coinciding with the true spectraldensityat low frequenciesplus a modified baremassof the
particlewhich compensatesfor the high frequencydeviationsfrom eq. (11.1).Reservoirsof the form
(11.1) were discussedin variouscontexts.For instance,thecoupling of a chargeddefect to electrons
canbemodelledby Ohmicdissipation,i.e. a= 1. In thecaseof a phononbathin d dimensionsonegets
a = d or a= d + 2 dependingon the symmetryof the coupling.

Insertingthe spectraldensityin eq. (4.49), the frequency-dependentdampingcoefficient is foundto
read

(11.2)

where F(a,b; c; z) is the hypergeometricfunction. For small frequencies we can use the asymptotic
expansionof the hypergeometricfunctionyielding [24]

for 0<a<2,

(g2/IT)wln(1+w~Iw
2), for a=2,

= (2g~w~2I1T(a—2))w[1 — {ir(a —2)/2sin(~ir(a—2))) (11.3)

X(wIw~) +O(wIw~)], for 2<a<4,

(2g~w~2IIT(a— 2))w[1 + O(w2/w~)], for a � 4,

where we included the next to leading order term in the case 2< a <4 for later purposes. For w 0 the
damping coefficientis only analytical for odd integervaluesof a. Otherwise,derivativesof ordern of
~(w) diverge when n � a — 1.

11.2. The antisymmetrizeddisplacementcorrelationfunction

Now, the antisymmetrizeddisplacementcorrelationfollows from (9.9) as

j=+e

AF(t) = iFl J dz exp(zt) (11.4)
4irM z +zy(z)

— 1 + E

Let us first considerthecasea <2. Insertingeq. (11.3) we obtain

j=+e

AF(t\~ itt sin(ira/2) t’~’’ 1 dx exp(x) (115)

‘ / 4irM g~, J x~’[1 + O(x/w~t,(x/w~t)2”)] ‘

for t—~co• For long times we can expandthe integrandin a power series in x/w~t.The leading term
yields a representation of Euler’s gammafunction, so that

A’~(t) — tt0~[1+ O((w~t)’,(w~t)”~2)], (11.6)
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for t—+ oo. This long time expansionincludesthe correspondinglimit of the exactOhmic result (10.1)
since thecorrectionsvanishfor w~—* co~

For a= 2 an analogousanalysisof eq. (11.4) yields

A’~(t) — IT11 ~—~——[1+ O(ln’(t))] (11.7)
g

2 no

for t—~~, where we omittedtheconstantwhich rendersthe argumentof the logarithmdimensionless.
The value of this constantdependson thecorrectionsto the leading ordertime dependence.

In thecasea >2 we obtain

F ~ I M ga 2—a —2 —2 —a —a 1A (t)~—~-tLl+ M1 sin(IT(a—2)/2)F(4—a)t +O(w~t w~t )j 11.8

for t—+ ~, where we introducedthe renormalizedmass

Mr = M[1 + 2g~w~
2/IT(a—2)], (11.9)

for a >2. For later usewe have includedin eq. (11.8) the leadingcorrectionfor 2< a <4.
We can now discusstheeffect of a constantdriving forceon theBrowman particlein thedifferent

regimes.The responseof themomentumto anappliedforceis (p)~= G~(t)F = _(2M/h)AF(t)F. For
a <1 (sub-Ohmicdamping)the forcedragstheparticleawaybut thevelocitybecomesarbitrarily small
for largetimes wherethestrongdampingatlow frequenciesis important.In theOhmiccase(a 1) we
obtainaconstantvelocity ashasbeenarguedbefore.For a > 1 (super-Ohmicdamping)thevelocityof
the particle grows as time increases.As the spectral exponenta exceeds2, the damping effectively
vanishesfor long times, and we obtain a constantaccelerationF/Mr of the particle. Hence, the
Browman particle behaves as a free particle for a >2, albeit with a renormalized mass Mr [24].This
mass renormalization is the only effect of the environmental coupling that survives for long times. This
is easilyunderstoodif weconsiderthe definition (11.9)of Mr in termsof themicroscopicmodel. Using
eqs. (11.1) and(4.1) we have

Mr=M+2J~~)=M+>~:.mn (11.10)

so that the renormalized mass is just the sum of the masses of the Brownian particle and all
environmentaloscillators.For a >2 theseoscillatorsaredraggedalongby theBrownian particlein the
long-timelimit. For a � 2 the sum of themassesof the environmentaloscillatorsis infinite. ThenMr
does not appearin the theory and the Brownian particle is dampedwhen it movesrelative to the
motionlesscentreof massof the environment.

11.3. Thesymmetrizeddisplacementcorrelationfunction

Let us now consider the long-time behaviour of the real part QF(t) of thedisplacementcorrelation.
While the imaginary part A’~(t)and the Green’s function G~(t) which we discussedbefore are
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temperature-independentquantities,the asymptotic time dependenceof QF(t) at finite temperatures
differs stronglyfrom thezero temperaturecase.At finite temperatures,all termsin the sumin eq. (9.5)
giving the Laplacetransform of Q’~(t)lead to exponentially decayingor constanttermsin the time
domain. Thus, the leading long-time dependencestemsfrom the first term in eq. (9.5). This term,
however,is connectedwith the antisymmetrizedcorrelationby

~F(z)~~ A°~, for z—÷0,T>0. (11.11)

Accordingly,we havefor long times

QFot)~...~...JdsAF(s) for t—+x, T>0, (11.12)

so that in the long-time limit the symmetrizeddisplacementcorrelationis but a time integral of the
antisymmetrizedcorrelation.Using (11.6—11.8)we havein the limit t—~~, T >0

sin(mra/2) —1 a—2

M/3gF(a+1) t [1+O(t ,t )], for a<2,QF(t)~ —(IT/4M~3g2)(t
2/ln(t))[1+O(ln~(t))], for a=2, (11.13)

~(t2/2Mrf3)[1+ O(t~,t2_a)] , for a >2

Becauseof eq. (9.6) theseasymptoticlaws also determinethe long-time dependenceof the mean
squaredisplacementin equilibrium. For a <2 themeansquaredisplacementgrows Qcta which includes
diffusivebehaviouroct in theOhmiccase.Sub-Ohmicdamping(a<1) resultsin subdiffusivegrowthof
themeansquaredisplacementwhile super-Ohmicdamping (a> 1) yields afaster,superdiffusivetime
dependence.In the borderlinecasea =2 we get no simplepowerlaw behaviour,while for a >2 we
againobservethe asymptoticvanishingof the friction. The particlebehavesasif it hadstartedwith a
certainvelocity which is then conserved.The damping is effective only on an intermediatetime scale
neededto establishthis velocity.

Let us now considerthecorrelationQF(t) for T =0. Thenthe frequenciesv,, arecontinuousandthe
sum in eq. (9.5)hasto be replacedby an integral. We have

~(z)=Jdv
212[f(p)_j(z)]=~Jdv 2121(v), (11.14)

where

J(z)= z
2A’~(z). (11.15)

In the time domainthis givesa relation betweenQ~(t)andAF(t)

Q~(t)= J dx x2— 1 A”(t/x). (11.16)
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We can now insert the asymptoticlaws (11.6—11.8) for the antisyminetrizedcorrelationA’~(t)and
obtain the long-time dependenceof Q~(t).Evaluatingthe integral (11.16)for t—~~ one finds [24]

11(2—a)

_[h/M(2_ a) ~ )][sin(IT ~)/ga]

x[1+O((’)], for a<1,

— 11 ln(t)[1+O(ln~(t))], for a=1,

Ii 1 2/ 2—a\ / / 2—a\1 a-i

2Mg~F(a)[Sin !~~,IT 2 )/cosyr 2 )jt

Q~(t)_—~ x[1+O(t”2)], for 1<a<2, (11.17)

— 11IT2 ____ [1+ O(ln~(t))], for a =2,

g
2 ln (t)

Fig Al 1 / a—2\1 3- 2-a

2F(4—a) M~Lc0~Y~2 )] ~ a[1+o(t )], for 2<a<3,

— ~ ln(t) [1+ O(ln~(t))], for a = 3 ,

constant, for a >3.

For a sub-Ohmicreservoir(a<1) at zero temperaturethe symmetrizeddisplacementcorrelation
remainsfinite in the limit t—~~. We will seein section12 that this hasprofoundconsequencesfor the
time evolutionofnonequilibriuminitial states.For a = 1, we havethe long-timeexpansionof theexact
Ohmiccorrelation (10.13).For 1 < a <2, the zero temperaturedisplacementcorrelationgrows by a
powerlaw. Thecasea =2, however,is not describedby a simplepowerlaw behaviour.For 2< a<3,
we againhavea power law growth.The casea = 3 correspondingto thecoupling to a3-dimensional
phonon bath is similar to the Ohmic case(a = 1) and the displacementcorrelation again grows
logarithmically. Likewise, the situation for a >3 resemblessub-Ohmicdamping. Then Q~(t)ap-
proachesa constant

=

Q~s3)=—Jdz[A’~(z)+~-M-.-~], (11.18)

for a >3 in the long-time limit. This last expression,however, cannot be evaluatedusing the
low-frequencyexpansionof thedampingcoefficient. Apart from themassrenormalization,thevalueof
Q~(t—*oo) for a>3 is the only result where the high-frequencypropertiesof the dampingenterthe
long-timebehaviourof the correlations.

For later useit is worthwhile to recollect the asymptoticresults for all correlationfunctions. To
simplify thenotation,we introducethe length

q. = [ii/M(2 — a)sin(2~a)][5jh1(IT ~)/ga]~

2 a) (11.19)
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for a <1 and theconstants

for a=1,

(1l/2Mg~F(a))sin2(IT(2~a)/2)/cos(ir(2—a)/2), for 1< a <2,

da= ‘zr2Fl/(8Mg

2), for a=2, (11.20)
[hMg~/2M~F(4—a)cos(w(a—2)/2)], for 2<a <3,

hMg3/(ITM~), for a=3.

Further, for a � 2

JMg~F(a+1)/Sin(ITa/2), for a<2,

P~a~4Mg2/IT, for a2, (11.21)
is a generalizedmobility which is connectedwith thegeneralizeddiffusion coefficient Da by

Da = l /f3ILa = kBT//.La . (11.22)

Finally, for a >2

= (M~/3)~

12= (kBT/Mr)112 (11.23)

is the meanthermalvelocity of a particle with massM~.In termsof thesedefinitions, the asymptotic
time lawsaresummarizedin table3. The exponentof theasymptotictime dependenceof the response
function andthe meansquaredisplacementis shownin fig. 7 as a functionof thespectralexponenta

Table 3
Asymptotic long-time dependenceof the mean squaredisplacementLs,(t) for T= 0 ands(t) for T>0Jand
the antisymmetrizedpartA”(t) of thedisplacementcorrelationfunction in termsof theexponentaandthe
quantitiesdefined in eqs. (11.19—11.23). The symnietrizedpart Q”(t) of the displacementcorrelation

function is given by QF(t) = —s(t)/2

a s
0(t) [T0] A”(t) s(t) [T>01

O<a<1
2q~.

a = I 2d
1 ln(t) (atlI2/.L,~)t~’ 2D,t’~
x [1+ O(1n’(t))] X [1 + o(t

1, t~2)] X [I + O(t’, t” )1
1<a<2 2d~,t”1

x [1 + O(t~2)J

a = 2 2d
2r11n

2(t) —(h/p
2):/ln(t) 2D2t

2Iln(t)
x [1+ O(ln’(t))] x [1+ O(ln’(t))] x [1+ O(ln’(t))]

2<a<3 2d,t3~
x [1+ O(t2_~)1

—(t112M,)t 2(v~/2)t2
a = 3 2d

3 ln(t) x[l + O(~
2,t2~)] x Li + O(t2,t2~)]

x[i + O(ln’(t))]

3< a constant
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=t/ln(l)
ia/

=t
2 / in(t)

/ 1n2(t)
01 / A
-~ ~/ ~a-i,/ \=t~

~ / on~j 1n(t)~~=consl. a

Fig. 7. (a) The exponentof the asymptotic time dependenceof the responsefunction X(t) is shownasafunctionof thespectralexponenta. (b) The
solid (dashed) line showsthe exponent of the asymptotic time dependenceof themean square displacements(t)(s

0(t))for finite (zero)temperature
asa function of thespectralexponent a.

characterizingthespectraldensityof thelow frequencyenvironmentalmodes.Theseresultscanalso be
derivedby a more standardapproachin which dampingis describedthrough a memorykernel [53].

12. Relaxationof nonequilibrium initial states

Let us now discussthe time evolutionof a free Brownian particle startingfrom a nonequilibrium
stategeneratedby apreparationmechanismof the form describedin section2. We haveseenthat the
dynamicsof such a statecan be expressedentirely in termsof the displacementcorrelationfunction
C’~(t).Sincein the precedingsectionwe haveobtainedanalyticresultsfor the long time behaviourof
this correlationfor practicallyall lineardissipativemechanismsof interest,wearenowin thepositionto
study how (or whether)a nonequilibriuminitial stateapproachesequilibrium.

12.1. Time evolution of a Gaussiandensitymatrix

Let us first consideraBrownian particle which is initially localized. Such a statemay be prepared,
e.g., using a device which lets passparticles at position q with probability w(q,0). This position
measurementis describedby theprojectionoperator

Pq=Jdqw1I2(q,0)~q)(ql. (12.1)

If we especiallywant to prepareaGaussianwavepacket,the measuringdevice canbe visualizedasa
Gaussianslit againstwhich an ensembleof particles propagates.We are theninterestedonly in the
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dynamicsin theplaneof theslit andnot in thedirectionof this propagation.Choosinga statelocalized

aroundthe origin with width ~I2 the initial probability distribution w(q,0) is given by
w(q,0) = (2irff0)~

2exp(—q212ff
0). (12.2)

The normalizedinitial densitymatrix is simply W0= PqW~~Pq so that thepreparationfunction follows
from eqs. (2.12) and(9.17) as

x, ~, 1) = (2ITo0)~
2exp(_~_— ~-) 6(x — 1)ô(~7). (12.3)

Note that thepositionmeasurementalso influencesthe nondiagon~lcoordinateof the density matrix
and thereforeaffectsthe momentumdistribution. As theuncertaintyrelationrequires,a localizationin
positionspaceyields abroaderdistributionin theconjugatevariable.At time t = 0 the reduceddensity
matrix is given by

p
0(x, r)=(2rnToyV2exp[_~-— ((p

2)F + ~_)x2]. (12.4)

Inserting the preparationfunction (12.3) andthe propagatingfunction (9.14, 9.15) in eq. (9.16) we
obtain thedensitymatrix at time t as

p(x, r, t) = [21rff(t)]112exp(_ (~2)F x2)

1 1 1 2 / F AF(t)AF(t)
X exp[— 2o(t) ~r + 2 ~ MxrkQ (t) — _________

— ~_ x~[~F(t)~— AF(t)2{1 + 2 QF(t) } — 2 AF(t)AF(t)QF(t)]}] . (12.5)

Since the particle hadno averagevelocity in the initial state,the wavepacketremainscentredat the
origin. The width o~2(t)can be expressedthroughthe correlationsQF(t) andAF(t) via

0(t)= o~— 2Q’~(t)+ A’~(t)2Icr
0. (12.6)

Since the symmetrizeddisplacementcorrelationQ’~(t)= —5(t)/2 is always negative,the wavepacket

can only becomebroaderwith increasingtime.

12.2. Asymptoticspreadingof the state

Let us now discusshow the long time behaviourof the variance(12.6) dependson thedissipative
mechanism.To that aim we can usethe asymptoticlaws for the correlation functions which are
summarizedin table 3. At finite temperatureswe obtain [24]for t—~cc,
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2Data, for a<2,

0(t) 2D2t
2/ln(t) , for a = 2, (12.7)

(u~+ Fl2/4u
0M~)t

2, for a >2.

Hence,thestatespreadsdiffusively in theOhmiccase(a= 1) while for sub/super-Ohmicdampingwe
havea sub/super-diffusiverate of growth of the variance,respectively.For all a � 2 the asymptotic
behaviourof o(t) is completely determinedby the symmetric part QF(t) of the displacement
correlation.The antisymmetrizedpart contributesonly for a >2 wherewe haveakinematicspreading
with a velocity v~,given by

= v~+ h2/4o~
0M~. (12.8)

In the classicallimit only the first term in this expressionsurvives. It stemsfrom the symmetrized
correlationand gives simply the thermal velocity of a particle with the renormalizedmassMr~The
secondterm in eq. (12.8) is a quantumcorrectionoriginating in the antisymmetriccorrelation.It
becomesincreasinglyimportantatlower temperatures.This contributionto theasymptoticvelocitymay
be viewed upon as a consequenceof the uncertaintyrelation since it gives the minimal velocity
fluctuationsof a particle of massMr initially localized with varianceo~.

At zero temperaturetheslowerrateof increaseof QF(t) resultsin a slowerspreadingof thestatefor
a � 2 while for a >2 the asymptoticbehaviouris qualitatively unchanged.Using table 3 we havefor
t—~co,T=0

2q,,+00, for a<1,

2d1 ln(t), for a = 1,
2 2 2

2a—2

o
0(t) — (a 11 ~‘

4P~ao
0)t , for 1 < a <2, (12.9)

(2h
2/j.~o~

0)t
2/ln2(t), for a = 2,

(Fl2/4u
0M~)t

2, for a>2.

Here it is theantisymmetriccorrelationAF(t) which dominatestheasymptoticbehaviourfor all a> 1.
For a >2eq. (12.8)for theasymptoticvelocity is still correctsincethe thermalcontributionv~vanishes
as T—* 0. Betweena = 1 and a = 2 we cover the sub- and superdiffusiveregimesincluding diffusive
behaviourfor a = 3/2. For Ohmic dampingwe now have a logarithmic growth. Most remarkable,
however, is the behaviourfor sub-Ohmicdissipation (a <1). The initially localized stateremains
localizedfor all times althoughthereis no externalpotentialhinderingtheparticlefrom drifting away.
The localizationlength [24]

= o~2(t—*cc) = (2q= + u
0)

112 (12.10)

consistsof a dynamicalpart springingfrom the asymptoticvalue2q,,, of themeansquaredisplacement
s
0(t) plus the initial width of the state.For a—*0 the localizationlength approachesthe initial width

whereasit divergesas the Ohmic caseis approached.This correspondsto the crossoverfrom the
localized regionto the logarithmicspreadingof the state.
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A localizationof a particle by the dissipativeinfluenceof a heatbath was also found for Ohmic
dampingin thepresenceofa periodicpotential [54].In this case,however,theOhmiccouplingconstant
hasto exceeda critical valuein orderto obtain a confinedstatewhile in our problemall nonvanishing
valuesof the coupling lead to the localizationof theparticle as long asthe exponentof the spectral
densityis less than1. We addthat for very low temperatureswherethestatedoesspreadasymptotically
accordingto eq. (12.7)the particle is still localizedfor times of orderh/k8T~whichmaybecomevery
long dueto the continuousvanishingof the leadingtime dependencein (12.7) as T—*0.

12.3. Long time behaviourfor arbitrary initial statesat finite temperatures

Let us nowconsiderthegeneralbehaviourof thepropagatingfunction(9.14,9.15)for thedifferent
types of damping. Using the asymptoticcorrelationssummarizedin table 3, we can determinehow
initial statesdescribedby an arbitrarypreparationfunctionof the form discussedin section2 behavefor
long times. This analysisis carriedout in detail in ref. [24].For an arbitrary stateinitially localized
around0 one finds for the densitymatrix in the limit of long times for a <2, ~ cc, T >0

P(Xf, rf, t) =(4ITDataYV
2 exp(—~t~r~)exp(_ (~2)F ~ (12.11)

wherethe first two termsdescribethespreadingof thestatein positionspacewhile the last termshows
that the momentumdistributionof arbitrary initial statesapproachesthecorrectequilibrium distribu-
tion. For a = 2, ~ cc, T>0 the analysisyields

1/2 2 F

P(Xf, rf, t) [4~~t2] exp(_4Dt2 r~)exp(_~ x~), (12.12)

wherethespreadingin positionspaceoccursaccordingto the fasterlaw t2/ln(t). In summary,for a � 2
the stateof the Brownian particle always approachestheequilibrium stateas ~—* cc~

For a >2, however,theevolutionof thedensitymatrix of aninitially localizedstatefor long times is

given by

P(Xf, r
1, t) ~ exp(—~x~)Jdx1A(x~)~ -~-~rf(xi — j~J-~~)]

= (Mr/ht)A~=(]~rrf/ht)exp(~~rtxt) exp(_~ x~) (12.13)

fort—*oo, T>0,a>2, with

~(P
2)F M22 (12.14)

The reducedpreparationfunction A is definedby

A(x
1)= f dr1dl d~AF(rj, x~,~, I)

x exp[_~ {(p
2)’~(l—x

1)
2 + 2MMTV~X~(1—x~)+ M~v~x~}] (12.15)
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with Fourier transform

A°°(k1)= ~— f dx1 A(x1)exp(—ik1x1). (12.16)

From eq. (12.13)it becomesclear that the asymptoticform of the densitymatrix still dependson the
initial statefor a >2. This is dueto the fact that for a>2 the centreof massvelocity of the entire
systemis a conservedquantity the statisticsof which is time independent.

Let us examinethe distributions in coordinateand momentumspacein more detail. The Wigner
function correspondingto eq. (12.13) is given by

/M \ / — /Mq\ 1 1 / q\
21

W(p, q, t) ~-~)(2IT~)’ 2A°°(~—~j—)exp[—~~p — M -i-) j (12.17)

for ~— cc, T >0, a>2. Accordingly, the probability distribution in position space

w(q,t)=fdpW(p, q,t)=p(0, q,t)

_~(Mr/ht)A=(Mrq/ht), for t—*cc, T>0, a>2 (12.18)

dependsonly on the scaledvariable v = qit. Defining the probability distribution

11(u)= urn tw(vt, t) = (Mr/t1)lt=(MrV/h) (12.19)

of this variablewe have

w(q, t) = t~fl(q/t) (12.20)

for ~ cc, T>0, a>2. Hence,the probability distributionin coordinatespacebehavesasymptotically
as if the statehad initially been localized at the origin with velocity distribution (1(u). Then the
spreadingof the state is kinematicalaccording to q = vt. The dissipation is effective only during
intermediatetimes wheremomentumis transferredfrom the particleto the reservoir.Afterwards,the
particle behavesasif it were free. The asymptoticvelocity distribution (1(v) is thedistribution of the
centreof massvelocity which dependson both the coupling to the heatbathandon thosepropertiesof
the initial stateenteringits reducedpreparationfunction.

The velocity distribution (1(u) differs from theasymptoticmomentumdistributionof theBrownian
particle which is given by

w~~(p)1irnJdqW(p, q, t)

= (2ir~)~’2Jdu(2(v)exp[_~ (p — MV)2], for T>0, a>2. (12.21)
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Hence,apart from the momentumcorrespondingto the value given by 11(u) there are dynamical
fluctuations of magnitude 4. in the momentum distribution. These fluctuations result from the
environmentalcoupling [24].

12.4. Long timebehaviourfor arbitrary initial statesat zero temperature

As we have already seenin the example of an initially localized wave packet, the long time
behaviourat zero temperaturediffers from the finite T results.Let us start ourdiscussionof thezero
temperatureasymptoticswith the region0<a <1. Usingtable 3 weobtainfor thepropagatingfunction

i—a

F — — —F —F — I2atJ (Xi, y, t, x1, x, y)pp(xf)pp(x) 2ITah

x exp[_!~-~t
22a{X~+ i(ah/2~çqj~)(y+ fl}2] exp[_~—(y + ~)2]

— ~ exp[_ ~— (y + j~)2] (12.22)

for t—* cc, T = 0, a <1. Hence,for a <1 every localizedinitial statekeepsa finite width for all times.
This extendsour finding for theGaussianinitial stateconsideredin section12.1 to thegeneralcase.We
may againdefine a reducedpreparationfunction by

= Jdr~dl AF(r
1, 0, r~— 1, l),5~(l). (12.23)

Thenthe asymptoticWigner functioncan be written as

tim W(p, q, t) w(p)w,0(q) (12.24)

for T =0, a<1 with the equilibrium momentumdistribution

w(p) = (2IT(p

2~)~2 exp(_2(p2)F) (12.25)

and the coordinatedistribution

w(q)= (4irq)~2 J dFexp[_ ±~(q — ~)2] A~(F) (12.26)

for T = 0, a <1, which shows that the localization length is roughly the sum of the asymptotic
contribution2q,~plus aneffectivewidth of the initial statewhich is inherentin the reducedpreparation
function A~(i). Since theeffectsof the reducedpreparationfunctiondie outat finite temperatures,our
model with a < 1 providesa simple examplefor adissipativephasetransitionat T = 0.

For Ohmic dampingthe asymptoticdensitymatrix is found to read
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P(Xf, r1, t) —~[4ITd1ln(t)]hI2exp[_4d~(t)] exp(_ (~F x~) (12.27)

for ~—* cc, T = 0, a = 1, wherethe prefactortogetherwith the first exponentialdescribesthe logarithmic
spreadingin positionspacewhile the momentumdistribution reachesequilibrium as describedby the
last term. Hence,the effects of the initial preparationdie out completely and the systemis ergodic
inasmuchasevery initial statereachesa uniqueequilibrium statein the limit ~—* cc~

Finally, we considerthe super-Ohmiccasea> 1. The finite temperaturedefinition (12.15)of the
reducedpreparationfunction simplifies at T 0 to read

A(x1) = Jdr1 dl d~iAF(rj, x1, ~, i)~(l — x1) (12.28)

and the densitymatrix for long times now takesthe form

p(X~,rr, t) — [2IA’~(t)(]~exp(~cartxr) ,~(xf)i~(rf/2IA’~(t)I) (12.29)

for ~—* cc, T = 0, a> 1, where Ca = a — 1 for 1< a <2 and ca = 1 for a � 2. The probability
distributionof the coordinateis given by

w(q, t) = ~ (12.30)

for ~—* cc, T =0, a > 1, andthe asymptoticmomentumdistributionfollows from eq. (12.29)as

w(p) = lim (2IT( p
2)~2Jdk £~(k)exp[_

2( 1 {p - 2MCa IAF(t)~k}] (12.31)

for t—* cc, T= 0, a > 1. For1 < a s2 theantisymmetriccorrelationA’~(t)growsslowerthancat. Hence,
the initial stateis not coupledto the final variables and the momentumdistribution approachesits
equilibrium form, eq. (12.25).Again we find that thesystemis ergodic.Fora >2 thecorrelationAF(t)
grows oc~and thesituationis basicallythesameasin the finite temperaturecase.Again thespreadingin
position space resemblesan ensembleof free particlesthat startednearthe origin with a velocity
distribution given by eq. (12.19).The momentumdistribution(12.31)may be transformedto read

w,~(p)= (2IT(p

2)~’12 Jdv 11(v)exp[_ 2(p2~~ — MV)2] (12.32)

for ~—* cc, T = 0, a >2, which is the zerotemperaturelimit of eq. (12.21).Again the systemis not
ergodic since the final momentumdistribution dependson the preparationvia the centreof mass
velocity distribution (2(v). The dependenceof theasymptoticstatesfor ~—* cc offree Brownian motion
on a and T is illustratedin fig. 8.
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2~

Fig. 8. Theregionsin the a—T-planewith different propertiesof the asymptoticstatesfor t— areshownin a phasediagram. Region I: unique
asymptoticmomentumdistributionbut localizationin positionspace.Region II: unique asymptoticstateindependentof initial conditions.Region
III: asymptoticmomentumdistribution dependson initial conditions.

Appendix A. Elimination of an environmentaloscillator

We want to computethe integral (3.21)

~ 2~2)]’ (A.1)

where we haveto sum over all pathsx~(s)of the nth environmentaloscillator with x~(0)= x,,~and
x~(t) = Xflf• Sincethe functionalintegralis Gaussian,its dependenceon theboundaryvaluesx,, x,, may
be obtainedby expandingabout thepathx,,(s) minimizing theaction in theexponentof eq. (A. 1) [17].
Decomposing

x~(s)= x~(s)+ ~~(s) (A.2)

wherei~~(0)= x~and i~(t)= X~,we have

1 1 -~-2 2—2 — 2 C~
~ 2)]

Fl 2mo0

xJ ~ exp[~Jds(~m~(~— w~))]. (A.3)

The functionalintegralover sumsover all pathsi(s) with ~~(0)= ~~(t) = 0 so that thedependenceon
x,~andXflf is completelyincludedin the first exponential.To obtain eq. (A.3) we madeuseof the fact
that x,,(s) is a trajectorythat minimizesthe action,i.e. that termslinear in ~,, (s) areabsent.

Let us first considerthe first termin eq. (A.3). The Lagrangianequationof motion reads

m~~~(s)+ m~w~,i~~(s)= c~q(s), (A.4)
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where the termon the rhs is a time-dependentforceactingon the environmentaloscillator dueto its

coupling to the Brownian particle.The solutionof eq. (A.4) satisfyingthe boundaryconditions is

ia(s) = Xflf + x~— ~ Jdux~(t— u)q(u) — Jdu x~(s— u)q(u)], (A.5)

where

x~(t)= (m~w~)~sin(w~t) (A.6)

is the responsefunction of the nth environmentaloscillator. To computethe actionof the trajectory
ia(s) we perform an integrationby parts andusetheequationof motion (A.4). This yields

1 11 ~-2 2—2 — 2 CJ ds [~ m~(x~— w~x~)+ qc~x~— q 2 “ 2
m~w~

= ~ - i~(0)~(0))- ~ Jdsq(s)i~(s)- 21 ds q2(s). (A.7)
0 2m~w~

Inserting the solution(A.5) into this expressionwe get the result (3.23).
Westill haveto evaluatethe pathintegralover the fluctuations~,, (s) aroundthe classicalpathx,,(s).

Even thoughthis integraldependsneitheron the boundaryvaluesx,, , Xflf nor on the pathq(s) of the
Brownianparticle it may still contributea time-dependentfactorto th~normalizationof F~[q, x,,~,x~].
This factor canbe determinedby expandingthe integrandinto a Fourier seriesaccordingto

= ~ sin(v~s); ~‘a= ira/t, (A.8)

wherewe alreadymadeuseof the factthat only pathswith ~ç,(O)= ~~(t) = 0 haveto be summedover.
Due to the orthogonalityof the sine functions, the integrandin thesecondterm of eq. (A.3) becomes

exp[~Jds(~m~(~— w~~))]= exp[i ~_t ~ (~2(~2— w~))] (A.9)

while the integrationmeasureis

J ~~...fj(N-1fd~a...),

whereN is a constantindependentof w~which arisesfrom theJacobianof the transformation(A.8). By
virtueof eqs.(A.9) and (A. 10) the functionalintegralfactorizesinto regularGaussianintegralsoverthe
Fouriercomponents~ which can be done separately.One finds
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f~(t)= J ~,, exp[~Jds(~m~(~— w~.~))]= C [1 (1— w~/v~)~2 (A.11)
0

where the constantC collectsall factors independentof w~.Noting that

n (i — w~t2)= sin(w~t), (A.12)

a1 ira w~t

we have

1/2

f~(t)= c[ sin(w~t)] . (A.13)
The constantCcanbe determinedby evaluatingtheJacobianof thetransformation(A.8). Ontheother
hand,it caneasilybe obtainedby comparingeq. (A. 11) with the well-knownresult for a free particle.
In the limit w,,—*0 we have[17]

= 0) = C = (m~/2iriht)~2. (A.14)

Collecting the results,we obtain eqs. (3.22) and (3.23).

Appendix B. Determinationof theauxiliary function 1P(t, 1’)

Let us considerthe function

P(t, t’) = G~(t)G~(t’)’P(t,t’) . (B.1)

Using eq. (5.61) we find for thedoubleLaplacetransform

~‘(z, z’) = O~(z)O~(z’)R(z,z’), (B.2)

where by virtue of eq. (5.33)

k(z,z’) = k’(z, z’) + ~ [fC’(z)+ k’(z’)]. (B.3)

From eq. (4.11) we obtain for r =0

K’(s) = ~ ~.: ga(s) (B.4)

so that the Laplacetransform k’(z) becomes

k’(z) = f~~ (~‘(z)— t~(z)), (B.5)
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where we usedeq. (4.55). By virtue of eq. (6.25) this yields

k’(z) = 2 2 (z~(z)— lv~I’~’(Iv~I)). (B.6)
n=-~ z —

Further, the doubleLaplacetransform of R’(s, u) follows readily from eq. (5.28) using eqs. (4.55),
(4.56), and (6.22). We obtain

k(z, z’) = -A~1(z)~1(z’)+ >~O~v~)

x [(~(z)_ j~(z))(~(z’)- j~(z’))- -~ (zt~(z)- ~~)(z’j~(z’)- ca)]. (B.7)

Inserting eq. (6.25) for ~~(z)andeq. (4.59) for ~, we find

1~’(z,z’) = -A~1(z)~1(z’) + ~ O~(~v~)(z2 ~2)

x [z~’(z)—v~I~’(Ip~I)][z’~’(z’)—~ . (B.8)

The results(B.6) and (B.8) may now be insertedin eq. (B.3) to yield the doubleLaplacetransform
R(z,z’). Eliminating the damping coefficient ‘~‘(z)in favour of G~(z) by meansof eq. (5.46) we get
aftersomerearranging

k(z,z’) = —Ac~1(z)~1(z’)+ ~ ~ z’), (B.9)

where

~ z’) = ~ [~~‘>~O÷(Iv~)+ >~O+(Iv~I)(w~+ ~ (B.10)

R2(z,z’) = [O~(z)O+(z’)]~ ~ [zO+(z) ~ _z12 (O+(Iv~I)- O~(z’))

+ z’O+(z’) 2 2(O+(Iv~I)- O~(z))+ O+(z) 2 ,2(z’
2O÷(z’)- v~O+(Iv~I))

v~—z v~—z

+ O~(z’) 2 - z2 (z2O+(z)- v~O+(Iv~I))], (B.11)

R
3(z,z’) = ~ [O+(z)O~(z’)]’>~ , (B.12)

R4(z,z’) = ~ [O÷(z)O+(z’)]
1~ ~‘ ~ [~2Z2 + Z 2~,2] (B.13)
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In view of eq. (B.9) we can rewrite (B.2) as

(B.14)

where

(B.15)

and

~a(z,z’)O+(z)O+()1~a@,7.’) a=1,2,3,4. (B.16)

Now, we can determinethe inverseLaplacetransformof the terms in eq. (B.14). SinceO~(z)t~(z) is
theLaplacetransformof G÷(t)C~(t) which is connectedwith thecorrelationfunctionby eq. (6.20),we
have

P0(t, t’) = _n[~ S(t) — O+(t)][~~S(t’) — O+(t’)] . (B.17)

Next, using eqs. (5.18) and (5.25)we can write the inverseLaplacetransformof ~~1(z,z’) as

cP1(t, t’) = AO+(t)O~(t’)+ I1G+(t)G+(t’) , (B.18)

wherewe took advantageof the factthat G+(0)= 0. In orderto identify P2(t, t’) let us first notethat

the Laplacetransformof the derivativeof the correlationfunction S(t) is given by

~ 2 2[z
2O+(z)- v~O÷(~v~j)]. (B.19)M13 ~=-~ — z

Now, using eqs.(6.26) and (B.19) we readily seethat

P
2(t, t’) = ~ [G~(t)~(t’) + G÷(t’)S(t)— O~(t)S(t’) — O~(e)S(t)]. (B.20)

The inverseLaplacetransformof ~3(z,z’) can be written in termsof hyperbolic functionsas

~3(t, t’) = ~ ~ O+(l v~~)[cosh(~~t)cosh(v~t’)— sinh(m.’~t)sinh(v~t’)]

= ~ ~O+(Iv~I)cosh[v~(t—t’)J. (B.21)

Finally, the last termin eq. (B.14) takesthe form

~4(z,z)= ~ [~(z)+~(z’)], (B.22)
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where

~ 2 2 O±(z). (B.23)hh3n=-oop—~

Clearly, the inverseof 43(z) is the convolution

4(t) = — ~ ds G÷(t— s)cosh(v~s). (B.24)

Now, sinceeq. (B.22) is equivalentto

~4(t, t’) = [4(t — t’) + 4(t’ — t)], (B.25)

we obtain by insertingeq. (B.24)

~4(t, t’) = —~ ~ J ds [G~(t — t’ — s)— G+(t’ — t + s)] cosh(v~s). (B.26)

Collecting the resultswe get from eq. (B .1)

— ~ M f ~(t) + ~(t’) 1 — ~‘~1S(t) S(t’)
(t, t ~— Fl L G±(t) G~(t’)i h

2fl G~(t)G~(t’)

+ [G~(t)G~(t’)]~ >~O~v~)cosh[v~(t— t’)]

— ~ [G~(t)G~(t’)]~ ~ f ds [G±(t— t’ — s) — G±(t’— t+ s)] cosh(v~s).

(B.27)
With (5.62—5.64) this resultreadily leadsto the functionsR±~(t) given in table 1.

Appendix C. Microscopicorigin of the inhomogeneityin the equationof motion for (q)~

In this appendixwe relatethe inhomogeneityof eq. (8.14) to theinitial conditionof thebath.At
t=0, the meanvalue of thecoordinatex~of thenth oscillatormay be written

(xn)o=Jdrid~d~’A(0,r
1, ~, ~‘)(~ItrR(xflW$)I~’). (C.1)

The quantity (t~ItrR(xflW~) I q’) differs from the reducedequilibrium densitymatrix Pp ( ~, q’) only
inasmuchasthe traceover thenth environmentaloscillatorcontainsan additionalfactorx,~.Fromeqs.
(3.25), (3.26) it is easilyseenthat this gives rise to afactorJ~dr4~,(r)tI(r)in the functionalintegral
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representationof (t~ItrR(xflWP)I i’), where

c,~ sinh[w~(hh3— T)] + sinh(w~r) c,~ cosh[w~(~hl3— r)]

cfr~(r)= 2m~w~ cosh(w~hf3)— 1 = 2m~o.~sinh(~w~h/3). (C.2)
We find

(qItrR(xflW~)Iq)= ~J~~

xexp[-~ {s~[~]+~Jdr J d~k(T-0)~(r)~(u)}], (C.3)

where the functionalintegralruns over all pathsconnectingc~(0)= ~‘ with ~(h~)= ~. Herewe took
advantageof thefact that in theabsenceof x,, we obtainthe functionalintegralrepresentation(3.39)of
Pp ( ~ i’). The formula(C.3) is still valid for arbitrarypotential.In theharmoniccaseit canreadily be
evaluatedsinceonly theminimal actionpathgivesacontributionto theadditionalfactor. The minimal
actionpathis asolution of theequationof motion(5.4) for vanishinginhomogeneity.Hence,inserting
eq. (5.22) for p,, = 0 we readily obtain

(q~trR(xflW~)Iq)= ~ + ~‘)p~, q’) ~ (C1L1 ~. (C.4)

A similar calculationshows that

(qItrR(pflW~)Iq)= ~J ~ Jdr ~~(r)q(r)

x exp[_~{s~[~]+ ~ Jdr Jd~k(r - ~(r)~)}], (C.5)

where

i sinh[w~(1h/3— T)]
ifr~(r)= ~ c~ sinh(~w~h/3), (C.6)

which in the harmoniccasegives

(qltrR(pflW$)Iq)=i(~-~’)P~(~,~‘) ~ >~ ~ (C.7)

By virtueof eqs.(C.4)and(C.7)the initial meanvaluesof theenvironmentaloscillatorsmay bewritten
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(C.8)

1 C P2U.
(Pa)O = 2 2 i(I)~. (C.9)/3 ~ w,, +

Theserelationshold for all initial statesof theform discussedin section2. Next, we note that as a
consequenceof eqs.(4.1), (4.13),and (4.14)thefunctions(5.26),(5.27)may be transformedto read

1 N c~u
1

C1(s)= MFl A 2 2 cos(w~s), (C.10)
/3 ,,=~ ~ m~(w~+

N ~ 221 1 c~v1u1
C2(s)= MFI° 2 2 sin(w~s). (C.11)

P n=i ~ m~w~w,~+

Combining(C.8—C.11) the averageforce (8.13) canbe castinto the form

~ c~[(x~)ocos(w~s)+ ~ sin(w~s)]. (C.12)
n1 m~w~

It is now easily checkedthat eq. (8.14) with (C.12) is indeedidentical to the equationof motion
following from the averagedHeisenbergequationsof motion.
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