Journal
The Franklin Institute

Devoted to Science and the Mechanic Arts

Vol. 235 MARCH, 1943 No. 3

THEORY OF SUSPENSION BRIDGES

BY
STEPHEN P. TIMOSHENKO

Professor of Theoretical and Applied Mechanics, Stanford University, California,

PART 1.
INTRODUCTION.

In this paper various methods of analysis of suspension
bridges are discussed together with their application to several
particular bridges. In the first two articles, are discussed
the cases of a perfectly flexible cable and of an unstiffened
suspension bridge and equations for calculation of deflections
and changes in cable tension produced by live load are de-
veloped. It is shown also that in the case of heavy long span
suspension bridges, deflections produced by live load are
very small and a stiffening truss is not required. In the
third article, the fundamental equations for stiffened sus-
pension bridges are derived and the errors introduced in these
equations by various assumptions, usually made in the process
of derivation, are discussed in detail. In the fourth article
an analysis of a single span stiffened suspension bridge is
given and it is shown that the derivation of the necessary
equations is simplified by using the method of superposition.
For the determination of the most unfavorable distribution
of live load, the use of influence lines is recommended. In
articles 5 and 6 the application of trigonometric series in
calculating deflections is discussed and it is shown that by
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using these series not only the calculation of deflections and
bending moments can be considerably simplified but also the
calculation of cable tension produced by live load can be
made with better accuracy. In article 7 the theory of a
suspension bridge with a continuous stiffening truss is dis-
cussed and there are derived equations for cable tension
produced by live load and for bending moments at the towers.
The use of the method of superposition considerably simpli-
fies the derivation of these equations. In the last article, the
case of a stiffening truss of variable cross section is discussed
and it is shown that by using trigonometric series this problem
can be treated without much difficulty.

1. PARABOLIC FUNICULAR CURVE.

Assume that a uniform and perfectly flexible cable fixed
at points 4 and B, Fig. 1, is submitted to the action of dis-

Fic. 1.

tributed vertical load. Then the ordinate y of any point C
of the cable is obtained from the equation of moments with
respect to C of forces to the left of this point which gives

WE,;-{—H%x—Hy:o. , (a)

In this equation M, denotes the bending moment at the cross-
section m#n of a simply supported beam of span / and carrying
the load acting on the cable. H is the horizontal component
of the tensile force in the cable, and # is the difference in
elevation of the ends of the cable. In the particular case
when the load of intensity w is uniformly distributed along
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the horizontal projection of the cable we have
WX
M = — (l — x)
and equation (a) gives
wx n .
=—(l—-x X I
y=Sgl =%+ (1)

which shows that the funicular curve in this case is a parabola
with vertical axis. If the ends of the cable are on the same
level, we obtain

wx
y= = (2)

Applying this equation to the mid-point of the cable, where
the ordinate of the funicular curve represents the sag f, we
obtain

wl? wl?
= H = .
f=sm O 8f

These equations hold also in the more general case shown in
Fig. 1 if f is measured from the middle of the line 4B joining
the ends of the cable. In our further discussion the length
s of the funicular curve will be required. It is obtained from
the equation

(3)

l
s= [ 4y
0

Developing the expression under the integral sign into a
series and substituting expression (2) for v, we obtain

_ 8f  32f! @ﬁ&““).
S_Z(I+3l2 5114—716

In the case of flat parabolic curves, say f/Il = 1/10, we can
take only the two first terms of the series and use the approxi-

mate formula:
_ §f_2)
s=1 ( I+ e (4)

To establish the relation between the change in length of
the curve and the change in its sag, we differentiate equation
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(4), which gives

_16 f
and
)
Af = 1—36 s (6)

To find the change Af due to a rise in tempersture of ¢

degrees, we substitute As = efs into equation (6) and obtain
2 2

af = 31 871 ) :

16 7 ¢ I+gﬁ (7)

The elastic elongation of the cable is obtained from the
equation
s H ds ' H
0 AcEcdx 0 AcEc
in which 4. is the cross-sectional area of the cable and E., its

modulus of elasticity. Substituting equation (2) for y and
integrating, we obtain

As =

(1 + yP)dx

_ HI 16 ﬁ)
AS“AcEc(IJr?lZ ®)
The corresponding change in sag, from equation (6), is *

_ 3. ar ( Iﬁﬁ) .

= W6AEF\ T 3B 9)

2. DEFLECTIONS OF UNSTIFFENED SUSPENSION BRIDGES.

In the case of a suspension bridge of large span the dead
load uniformly distributed on a horizontal plane is usually
many times larger than that uniformly distributed along the
cables, and we can assume with sufficient accuracy that the
curve of the cable under the action of dead load is a parabola.
Let us consider now deflections in the cable produced by live
load. As a first example we consider the symmetrical case
in which the load of intensity ¢ is uniformly distributed along
the distance 2¢ of the span, Fig. 2. The full line indicates

*In the derivation of equations (7) and (9) it is assumed that the change
Af in sag is small and its effect on the horizontal tension H is neglected.
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the shape of the cable under the action of dead load w only.
Let f, and H, denote the corresponding values of the sag
of the cable and of the horizontal component of the tensile
force in the cable. The length of the cable then is

_ §f_£)_ ( 3_w2l2).
s—l(1+312 =] I+24Hw2 (b)

After application of live load p the shape of the cable will be
as shown by the dotted line ACD. It consists of two para-
bolic curves AC and CD having a common tangent at (.

SARRNIRRRARED |
L T L T T

|

l —]

Fic. 2.

The curve CD carries the load of intensity w 4+ p and the
curve AC carries the load of intensity w. The distance /,/2
of the vertex o of this latter curve from the vertical through 4
will be found from the condition that the total load along the
portion CO of the curve ACO is the same as the total load
along the curve CD. Hence

h

l
272t

b
” (c)
We denote by f and /7 the sag of the cable and the tensile
force in the cable at D after application of the live load. One
relation between these two quantities is obtained by making

the equation of moments with respect to point D which gives

j=E| LBy @
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The second equation is obtained from the condition that the
length of the cable remains unchanged * during application
of the live load. Using for the length of the curves 40, CO
and CD the approximate equation (4), the condition of in-
extensibility of the cable is

(125) -4 o2
3 P 24 I
_g(wJ p)[ E%?ﬂégzw]ﬂ[l+é£2(w+p)?], (@

I+

Introducing notations

b _ 28 _
ﬂ,~n, Z_Zy (f)

e

we obtain from equation (e)

I = HNT + 3nz + 3n%? — (2n2—q—“2)~zé. (10)

Substituting this value of H into equation (d), we obtain

fef 1+n(2z~22) .
TUINT 4 3ms + it — (20 + n)

(11)

To find what portion of the span must be loaded to produce
the maximum deflection at the middle of the bridge, we put
equal to zero the derivative of expression (11) with respect to
z which gives the equation

(2n? + n)zt — 2n(n — 1)2® — 3(n — 1)32 — 42+ 1 = o.

Solving this equation for several numerical values of #, we
obtain for z the values given in Table I. Substituting these
values of z into equation (11), we find the values of the sag f
of the cable after application of the live load. The calcu-
lated ratios of the change in sag to the initial sag are given in
the third line of Table I. In the case of long span bridges,
the ratio p/w is usually small,{ say smaller than 1/4, and it

* The small influence on the deflection of an elastic elongation of the cable
will be discussed later.

tIn the case of the Washington bridge over Hudson River this ratio is
about 1/6.
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may be seen from Table I that the deflection at the middle is
of the order of one hundredth of the sag f,, or of one thousandth
of the span / of the bridge. Such deflections can be considered
as sufficiently small to make the use of any stiffening truss
unnecessary.

TasLe 1.
— fua N — \ = ,v;“ —— -__-.r%,.‘.ffg‘. Pl pp—
n = 0 0.10 i 0.23 ] 0.50 1.00
g = 0.333 0.322 " 0.306 0.289 1 0.253
I . SN —
f=te ‘ Lo /
T [« 0.0069 | 0.0151 | 0.0281 | 0.0450
[ ,__.___“_;‘v,__,,,A_"A e e e
Jii Lo ! ‘ -
7= | I 1.047 | LIz 1.213 \ 1.379
| ‘ ‘

To calculate the deflection at the middle due to elastic
deformation of the cable produced by live load, we use the
approximate formula (9) in which H — H,, instead of H,
must be substituted. Then the deflection due to the elonga-
tion of the cable is

,-“éﬁ.ﬁi.f(ﬁ_ )( E@ff). \
V=16 a.E f\m )\t Ty &)

The values of the ratio H/H, for various values of # calcu-
lated from equation (10) are given in the last line of Table I.
Taking for a numerical example #» = 1/4, H,/A.E. = 0.002,*
fll = 0.1, we find H/H, = 1.112 and equation (g) gives
Af = 0.00044J). This deflection must be added to the deflec-
tion 0.00151/, calculated from equation (11), to obtain the
total deflection produced by live load.

Let us consider now the deflection of the cable produced
by a concentrated force applied at the middle of the span.
This force can be considered as a load distributed along a
very short distance, and equation (11) can be used also in
this case. From notation (f) it follows that

_2pt P

nzg wl —6=¢ (h)

~ * This value depends evidently on the allowable stresses produced by dead
load.
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where ¥ denotes the ratio of the live load P to the dead load
Q of the bridge. Substituting ¢ for #z and zero for z into
equation (11), we obtain

_ 1+2¢
T o

In the case of long span bridges, the concentrated load P is
small in comparison with the dead load Q of the bridge and y
is a small quantity. Developing then the radical in the de-
nominator of expression (12) into a series and taking only the
first three terms of that series, we obtain

V1+3¢+3¢2z1+§¢+~§¢2

and equation (12) gives
_ T, -9 :
f—fw(1+2¢ 8¢2)

Hence the deflection produced in the cable by a concentrated
force applied at the middle is

y=r-f=rt(1-2v) (13)

Assuming, for example, ¢ = 0.01 * and f./l = 0.1, we obtain
Af = 0.000489!

which is a very small deflection. To find the deflection due
to elastic elongation of the cable produced by a concentrated
force, we calculate first the change / — H, in the horizontal
tensile force. Equation (10) in this case gives

H =M, I+3¢+3¢2sz(1+g¢+%¢2)
and we obtain

H—H,,,=%Hw¢(1+i¢)'

* In the case of the Washington Bridge, this value of ¢ corresponds to a
concentrated load of 570 tons.
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Substituting this for H in equation (9), we find

29 Mol ( L )( @[ﬁ)
Aj—32 AL-E(-flp 1+4¢ 1—}—3 I {.

For small ¥ which we have in the case of large spans, this
deflection is a very small one.

We discussed up to now the symmetrical case of loading,
Fig. 2. The case of a non-symmetrical distribution of uniform
live load can be treated in a similar manner. Let us consider
now a general case of vertical live load acting on a cable with
both ends on the same level. The initial ordinates of the
funicular curve are obtained from equation of moments which
gives

M. .
= M. @
In this equation I, is bending moment due to dead load
calculated as for a simply supported beam and H,, the hori-
zontal component of the tensile force produced in the cable
by dead load. If live load is now applied, the bending
moment calculated as for a simple beam becomes M, + M,
and the horizontal component of cable tension becomes
H, + H, Denoting by 5 the vertical deflections of the
cable, we obtain, from equation of moments,

D + M,

y+1 = ., I, (7)
Subtracting equation (z) from this equation, we obtain
_ Emp - pY
n = }Iw + Hp <I4)

It is seen that the vertical deflections » can be readily calcu-
lated provided we know the horizontal component H, of
cable tension produced by live load. This later quantity can
be found from geometrical considerations.

Let us consider an infinitely small element ab of the cable,
Fig. 3. Under the action of,live load this element elongates
somewhat and takes a new position a¢b;. We denote by £
and # the horizontal and the vertical components of the
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small displacement of point a. The initial length of the
element is obtained from the equation

ds? = dx* + dy2. (k)

The length of the same element after application of live load
is found from the equation

(ds + Ads)? = (dx + dg)* + (dy + dn)?, 0

in which Ads is the elongation of the element produced by

dx —
3 s
' dy
7 (y&) CH—-—
{ ol
., ¥
dag) | (dysdp
._,}g (avel®) | [
Fic. 3.

live load. Neglecting the small change in slope of the cable
produced by live load,* we put

dsH, ds '

A.E, dx (m)

Ads =

Since H ,ds/dx is that part of the tensile force in the cable which
is produced by live load and which is usually much smaller
than the part produced by dead load, the unit elongation
Ads/ds is usually much smaller than one thousandth. In such
a case (Ads)? in equation (/) can be neglected. From the
same reason, and from the observation that the curve of the
cable is a flat curve, we neglect also dt2. Then we obtain,
from equations (k) and (),

dsAds = dxdt + dydn + idv?,
which gives

ds d 1d
dg = 7 Ads —E%dn — Eggdn.

Substituting expression (m) for Ads in this equation and

* The error introduced by this omission will be discussed later, see p. 227.
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integrating, we obtain

o, ds \? j'*” Ifx ,
& . ,’ L% N . 2
¢ (d_x) d.x—”)3nd,n——2'0 7%dx. (15)

With the values of 4" and 7" which are encountered in long
span bridges, the value of & usually does not surpass one
thousandth of x.* At the ends of the cable £ vanishes and we
obtain from equation (15)

11, l(ds)3 ““J , o R
AL, Jo dax dv = Jo dx+ 2Jo K dx. (11,)

The integral on the left side of this equation for the assumed
parabolic shape of the cable can be readily evaluated and we
obtain

‘] (z_y)s ~fl . {E(é I()fz)
fo(dx dy = (I—{—y)dx——l42+ E

(4 2) s e (1))

On the right side of equation (n) we make integration by
parts. Observing that » vanishes at the ends of the cable,
and using equation (2) we obtain

[ll , ,d , 4 fl . d w f'l d
Jo Y = {3y = ) =y ), [

Ij" o I L O 1 (" '
- dx = - - = "pdx = — = "ndx.
2Jo K 2 0 2.0 T 2Jp o )

Substituting expressions (0) and (p) into equation (#) and
denoting the integral (o) by L, we obtain

(p)
7'n

1

H, w [ I f Lo,
1 ECL f[ ndx =5, n" ndx. (16)
This equation, together with equation (14), give the system
of equations sufficient for calculation of vertical deflections of
the cable.

* The maximum value of £/x occurs near the supports where #” and ¥’ usually
have their largest numerical values.
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Let us apply these equations to the above discussed case
shown in Fig. 2. In this case

M, = ptx, for x<l5—£;

SUEp=PEx—§P(x—£+E)2, for +$>x>%—£;

4

2
I w
"_H_——w+Hpr$x_Ex(l—x)H”]’

l
for x<§—-£,

I | _1( ! )
’7~H,,,+H,,_P£x 215 x—2+E

w l i
—EX(Z—X)HP], for 5—|—£>x>5—£,

I SN YL Y

T T H(H, +Hy T YT
//_—PHw+7”Hp l_ %__
= L, )’ for 2—|—£>x>2 £

Substituting these expressions into equation (16), assuming
that the cable is inextensible, and introducing our previous
notations (f), we obtain, for calculation of H,, the following
quadratic equation

2
(g—’-’) 4 2 (%) — 3nz — 3n’%® + nz® + 2n’2® = o,

which gives for H, + H, the same value as obtained from our
previous equation (10).
Sometimes equation (16) is simplified by omitting the
second term on the right side and taking
H, w [

ACE,;L = Fw A ndx. (17)

Considering an inextensible cable and substituting for % its



Mar., 1943.] THEORY OF SUSPENSION BRIDGES. 225

expression (14) we obtain, from equation (17),

!
f M pdx 3 l .
Hy= ——7— = Ezj; M pdx. (18)

3
f ydx
/0
In the case shown in Fig. 2 equation (18) gives

Hp = n];Iw (32 — 23).

Applying this approximate formula to the numerical ex-
amples given in Table I, p. 219, we find that the results ob-
tained are in good agreement with those given in the last
line of Table I.

3. FUNDAMENTAL EQUATIONS FOR STIFFENED SUSPENSION BRIDGES.

It is seen from the preceding discussion that the deflec-
tion of the cable produced by live load is small only in the case
of heavy long span bridges. Otherwise the deflections may be

FiG. 4.

considerable. In order to reduce them, stiffening trusses are
usually introduced. A simplest structure of this kind, shown
in Fig. 4, consists of a single-span cable stiffened by a simply
supported truss of constant cross section. It is assumed that
by a proper assembly the dead load of the structure, uniformly
distributed along the span, is entirely transmitted to the cable



226 StepHEN P. TiMOsHENKO. [J. F. L

which takes the parabolic form shown in the figure by full
line. A live load produces deflection of the cable and of the
truss as indicated in the figure by dotted lines. We assume
that both these deflections are equal.* The spacing of
hangers is assumed small as compared with the length of
span so that the action of the hangers on the cable and on the
truss can be considered as continuocusly distributed along
the span.

Let us consider first the case when the structure is carry-
ing only dead load. The truss does not suffer bending in this
case, and the equation of moments for the forces to the left of
a cross section mn, Fig. 4, then gives

M — H,y = o. (a)

When live load is applied and deflections 7 are produced, there
will be bending moment M acting in a cross section m#n of the
truss and the equation of moments for the forces to the left of
this cross section is

Mo + My, — (Ho + H)(y+ 1) — M = o. (b)
Subtracting equation (¢) from equation (b), we obtain
M =M, — (Ho + Hp)n — Iy. (19)

From this equation, the bending moment at any cross section of
the truss can be calculated provided the horizontal component
of the tensile force in the cable and deflection 5 are known.

In the case of very rigid stiffening trusses, the deflections
n can be neglected and we obtain

M =M, — Hyy. (20)

This bending moment is independent of deflections and can be
evaluated by the methods used in the analysis of rigid stat-
ically indeterminate structures. Investigations show that
the stiffening trusses in large-span bridges are usually very
flexible, and in calculation of bending moments recourse
must be made to the more complete equation (19) which

* That is, the elongation of the hangers and their small inclination during
deformation are neglected in this discussion.
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requires the calculation of deflections 7 * of the truss. Using
for the truss the differential equation of the deflection curve
of a beam
EI i M,
we obtain, by using expression (19), the following equation for
calculation n
2

RIST — (Hy 4 Hn = My — My (2)
The quantity IR, in this equation can be readily calculated
for any distribution of live load over the span. The quanti-
ties y and H, are given by equations (2) and (3), and only the
quantity H, is unknown. It depends on the deflections 7,
and for its determination equation (16) of the preceding
article is used. Equation (21) together with equation (16)
completely defined the deflections of the stiffening truss. In
solution of these equations the trial and error method is
used. We assume a certain value for H,, for instance the
value obtained for the unstiffened cable, and with this value
solve equation (21). The obtained expression for n we sub-
stitute in the integrals on the right side of equation (16).
Since H, was taken arbitrarily, the result of this substitution
usually will not equal the left side of equation (16), and it
will be necessary to repeat the calculation with a new assumed
value of H,. These trial calculations are continued so far
as to obtain H, with a sufficient accuracy. The procedure of
this calculation with all details will be discussed in the next
two articles.

Now we will discuss how accurate equations (16) and (21)
are and what is the magnitude of errors introduced in these
equations by neglecting various small quantities during their
derivation. We begin with the discussion of elongation of the
cable. In the derivation of equation (m) of the preceding
article, we neglected the change in the deflection of the cable

d?n
2

* J. Melan was the first who indicated the importance of considering defiec-
tions in analysis of suspension bridges, see his book, * Theorie der eisernen Bogen-
briicken und der Hangebriicken,” Leipzig 1906. English translation by . B.
Steinman, Chicago, 1913. Melan's theory has been widely used in analvsis of
large span suspension bridges in this country.
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produced by live load. Taking into account this additional
deflection we obtain

dsH, , dsH, { ds
AR L AE(d—

Using this more accurate expression for Ads we obtain, in-
stead of equation (n) of the preceding article, the following
equation

AECO( )dx*fy

T e — q, (@)2( ! 1 /2)
Hzfo”dx AR ) \ 7+, 07 )dx

The last term on the right side of this equation represents the
required correction. Since H,/A.E. is usually smaller than
one thousandth we conclude that the relative error in the
magnitude of the right side of equation (z) due to the use of
the approximate expression (m) is of the order of one thou-
sandth, which can be disregarded in a practical analysis.

Let us consider now the effect on the bending moment in
the truss of horizontal displacements ¢ in the cable which
were entirely disregarded in our previous derivation. To take
these displacements into account, we observe that the vertical
distances between the full line and dotted line curves, marked
by 7 in Fig. 4, are more accurately equal to y — &dy/dx, as
shown in Fig. 3. We note also that each element of the.
load transmitted to the cable, and approximately equal to
— dx(H, + H,)d*>y/dx?, has a horizontal " displacement ¢,
which produces the change in moment of this element equal to

Ads =

’ ! 1/2).
+ ' +2n

d*y
— ¢&dx(H, + H,) T

With these two considerations we obtain, instead of expression
(19), the following more accurate value of the bending
moment :

, d
M = W, — (Ho+ Hn — Hyy + (Ho + H)E T

dy

— (H» +Hp) ) fdx. (22)
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The required correction in the bending moment is represented

by the last two terms in this expression. To get a clearer idea

regarding the magnitude of this correction, let us calculate the

intensity of the load acting on the truss. This intensity is

obtained as the second derivative with respect to x of the

bending moment (22), taken with opposite sign, which gives
aM

— =5 =p+H

o S 4 (o + 1) 5

sz

—@I+Ha~(§%ﬂ 23)

The last term in this expression represents the correction due
to horizontal displacements of the cable.

The same expression for the intensity of the load on the
truss is obtained also in another manner by subtracting the
intensity of the upward pull of the hangers on the truss from
the combined intensity w + p of the downward loading.
The intensity of the vertical loading on the cable at a dis-
tance x from the left support is

o= - m) (vt —:2) . o

The upward pull transmitted to a length dx of the truss at x
is the downward pull on a horizontal length dx[1 + (d¢/dx)]
atx + £ on the deflected cable. Hence the required intensity
of the load on the truss is

oo () ()
—wtp g o). (@

Substituting for ¢ its expression (¢) and neglecting small
terms of higher order, we obtain the previous expression (23).*

* The correction due to horizontal displacements ¢ of the cable has been
discussed in a recent paper by R. J. Atkinson and R. V. Southwell, Proc. of the
Institution of Civil Engineers, session 1938-1939, p. 289. These authors over-
looked the term —&(dy/dx) in the above expression (c) and did not obtain a
satisfactory expression for the correction.
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Substituting for £ the first two terms in expression {15)
into the last term of expression (23), we find that the correc-
tion in the intensity of the load on the truss, due to hori-
zontal displacements ¢, is

d
- (Hw + Hp) d_oz (E,y,)

— __EU;_ IIP 3 __ //]

H /2// __I__IH]]
+y[AE +Hwn ynrlf

where primes denote the first derivative with respect to x.
For flat curves we can take

e I .Y
s 1+ 2y , N

which gives
d I

— (Ha + Hy) 2 (&)

_ (Hw + Hp)w
= jia

| e (ot a5y — 2|
+ (o + )0y (o)

From our previous discussion we conclude that the first term
on the right side of this equation is of the order of one thou-
sandth of w and can be neglected in practical calculation.
The second term, (H, + H,)n''y"%, can also be considered as
small in comparison with the term (H, + H,)n'’ representing
the effect on the intensity of the load of vertical deflections
of the cable. Hence the total effect of horizontal displace-
ments of the cable can be considered as small and usually
can be neglected in practical calculation. If we would like
to take that effect into consideration, we can begin with a
solution of equations (16) and (21). Knowing  we calculate
£ from equation (15) and the more accurate value for bending
moment from equation (22).

In a similar manner the effect of extension of hangers on
the magnitude of bending moment can be evaluated. The
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calculation shows that this effect is also very small and can
be neglected.*

Let us consider now the effect of shearing force on deflec-
tion of a stiffening truss. For this purpose we take the differ-
ential equation of the deflection curve in the following form :

d*y d"]l[ .

F1d2— Jl[—l—mFIl (f)

in which the second term on the right side represents the

effect of shearing force on deflection. The magnitude of

factor m in this term depends on the kind of structure used
for the stiffening truss. In the case of an I-beam, we take

1
4G (2)

where A4, is the cross-sectional area of the web of the beam
and G is the modulus of elasticity of the material in shear.

wm =

FiG. 3.

In the case of a truss, as shown in Fig. 5, we take }

m = : (0
" A4E sin ¢ cos? ¢

where 4, is the sum of cross-sectional area of the two diago-
nals in a panel.

Substituting for M in equation (f) its expression (19), we
obtain

d2
EITt + m(H., + H,,)]E’; — (H, + H,)7

=-—§UE,,+H,,y——mEI( ——w) (24)

* Such calculations were made by F. E. Turneaure, see the book ‘ Modern
Framed Structures’’ by Johnson, Bryan and Turneaure, Vol. 2, gth ed., p. 299,
1917.

T See writer’s book, ‘ Theory of Elastic Stability,” 1936, p. 143.
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This equation is of the same form as equation (21) and we see
that the effect of shearing force can be readily taken into
account provided the factor m is known.

In derivation of equation (16) the elastic elongation of
the cable alone was considered. The equation can be readily
generalized and extended to those cases in which an elonga-
tion of the cable depends also on a change in its temperature.
Instead of equation (m) of the preceding article, we use in
such a case the equation

dsH, d .

Ads = Asfécd—; + dset (2)

where e is the coefficient of thermal expansion, and H, is the

horizontal component of the tensile force produced in the

cable by the combined action of live load and temperature

change. Using equation (z), instead of equation (m), and
introducing the notation

1 ds)z
f; (dx dx = L

L w fl I fl 144
+ Ly = Jo ndx — 2 ndx. (25)

we obtain

H,
A.E.
This equation, instead of equation (16), must be used if we

are considering a simultaneous action of live load and tem-
perature change.

4. ANALYSIS OF STIFFENING TRUSSES.

Let us begin with the case in which a single concentrated
load P is acting on the truss. Making the second derivative
of equation (21), we find that deflections of the truss in this
case are the same as those occurring in a simply supported
beam subjected to the combined action of an axial tensile
force H, + H,, of a uniformly distributed upward lateral
load of intensity H,w/H,, and a concentrated load P as shown
in Fig. 6. In such a case, with notation

Ho + H, _

2
il k (26)
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the deflections produced by the load P in the part of the beam
to the left of this load, (x < — ¢), are *

P sinh kc Pex

- — L inhbx + —— . (27
n . £ I, Esnh kS G0 ) (27)
4 )
c—f
T T T O T T O T TR T T T e
(H,+H,) C N )
1 i
]
¥
Fic. 6.

For the portion of the beam to the right of the load, (x >/ — ¢)
the deflections are

P sinh k(I — ¢)

= - i — 5
™= T H, 4 Hy) ksmhm SnhkC-©
Pl — o) — x)
. 8
@ oy @Y
The deflections produced by the upward pull are t
kl
o,  wpP [COSh (—2 - kx)
772 = — ’\7—- . —h—-————-—- - —————— e SO
o Ho+ Hy k22 cosh {ef_f
'L
I x(I — x)
et |

|

The total deflections 5 of the truss are obtained by super-
posing deflections 7, on deflections 7,.

To determine the magnitude of tension H,, entering into
equations (27), (28), and (29), we use equation (17), which is
obtained from equation (16) by omitting the second term on
the right side. Substituting expressions (27) to (29) into

* See “Strength of Materials,” Vol. 2, p. 39.

t See “‘Strength of Materials,” Vol. 2, p. 40.

1 This term usually has only a small effect on the magnitude of H,. This
effect will be discussed in the next article.
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equation (17) and performing the integration, we obtain, for
calculating H,, the equation /

Ho+H, L Sf)
H[ 4E 1T\
)y
X( k2l2+k‘3z'st nh -7 )]
8f[ A I
1121 1) T BEsinh b

X [sinh k! — sinh kc — sinh k(I — ¢)] } - (30)

In the case of long span bridges the quantity k/ is usually
a number of considerable magnitude * and all terms in
equation (30), containing & are small and in a first approxi-
mation can be neglected. The term (H, + H,)/A.E. can
also be neglected as very small, and we obtain

3pt
n-irbi(o-

For ¢ = /2 this gives
_3 l
H P —
¥4 Sf
The same result we obtain, for small ¢, from equation (10),
which indicates that by omitting all terms containing % we
obtain, from equation (30), for H, the same value as in the
case of an unstiffened suspension bridge.
Equation (30) can be used for calculating the influence
line for H,. In such a case we assume that P is a small load
moving along the truss. Then H, can be neglected in com-

parison with H,, kl = IVH,/EI, and we obtain

tef o)y L
214 l k0 sinh k!
Hp=p_f X [sinh & — sinh k¢ — sinh k(! — ¢)] .

] . 8f)( 12 2 kl)
AE 12( k2l2+k3l3t nh

* In the case of the Ambassadore Bridge (Detroit) #/ = 9.52. In the case
of the Washington Bridge, after placing the planned stiffening truss, &l = 3s5.
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The magnitude of H, depends not only on position of the load
P but also on the quantities kI, H,/4 .E., and f/l. In Fig. 7a
1s shown the influence line for H, calculated on the assump-
tion that kl'= 10, H,/A.E. = 0.002 and f/l = 0.1. For

/ For flexible cable
P B s\\\\

- S

= x
A N
- D>
P N
~ a “
/7 e g X
Y 3 = X
A + L —— e+ + —+ B
FIG. 7-a 7
1
by
P
A < B
ad

‘ FIG. 7-4

/
/ FIG. 7¢

FiG. 7.

comparison there are shown in the same figure by dotted
line the values of H, for a non-stiffened cable. It is seen that
for the assumed value of kI the stiffened truss has only a
small effect on the magnitude of H,.
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Having H, and using equations (27) to (29), we can
calculate the deflections of the truss. In Fig. 756 the deflec-
tion curve is constructed for the case where ¢ = 0.75/. Since
H , is neglected in comparison with H,, the deflections become
proportional to P and the principle of superposition holds.
The reciprocity theorem also holds, and the deflection curve in
Fig. 7b is the influence line for the deflection at the quarter
point C. Using this line we can readily construct the influence
line for bending moment at C. Neglecting H, in comparison
with H, in expression (19), we obtain

M =W, — Hy — Hon.

The first two terms on the right side of this equation give the
bending moment if the influence of deflections of the truss is
disregarded. The corresponding influence line is given by
the dotted line in Fig. 7¢. The last term on the right side
gives the effect of deflection of the truss on the bending mo-
ment. Taking this into account, we obtain the full line in
Fig. 7¢. It is seen that in this case the deflections have a very
large effect on the bending moment and cannot be disregarded.

In using the derived influence line for calculation of bend-
ing moment it must be noted that in our derivation the in-
crease of tension in the cable produced by live load was
neglected. Hence the influence line will give a satisfactory
result only if the live load is very small in comparison with
the dead load. If it is not small, the influence line will not
give an accurate value of the moment, and can be used with
sufficient accuracy only for a determination of the limits
within which the live load must be distributed to produce the
maximum value of the moment.* Calculations of deflections
and moments must then be accomplished by using equations
(27) to (30) within which H, has been retained.

Assume, for example, that live load is distributed as
shown in Fig. 8. Then the equation for calculating I, is
obtained from equation (30) by substituting pdc, instead of
P, and integrating the right side of the equation from ¢ = ¢

* The use of influence lines in analysis of suspension bridges was first pro-
posed by T. Godard, ‘‘Annales des Ponts et Chaussées’ 7° série, Vol. 8, 1894,
p. 105.
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to ¢ = b, which gives

g [ He tHy L 1(@_‘)2( Iz 2 ’f%)]
ffp[ 4B 1T\ U= g+ pp tanh 3

_ IO —a®) —2(0* —a*) 1
- SfP{ 123 k22
cosh kb —cosh ka 1 ‘
b—a + cosh k(!—a)—cosh k(I=b) |
177 7l sinh %l [

The value of H, can now be calculated from this equation by
successive approximations. We start by omitting all terms

A T Ip
(’L’”,) C L - N— (H~+H’)

b
14

FiG. 8.

containing £ and neglect also the term with (H{, + H,)/A4.E..
In this way we obtain the first approximation for H, which
will be close to the true value, if %/ is of considerable magni-
tude,* say k/ = 10. To get a better accuracy, we use the
approximate value of H, to calculate 2 from equation (26)
and then substitute this value of % into equation (31), which
gives then the second approximation for H, which is usually
accurate enough for practical application. If necessary,
further approximations can be calculated in the same manner.
When H, has been calculated, the deflection curve will be
found by using equations (27) to (29) together with the
method of superposition. To find the deflections for the
portion AC of the truss, Fig. 8, we substitute pdc, for P, into
equation (27) and integrate from ¢ = a toc = b. This gives

* An example of such calculation is given in a paper by A. A. Jakkula, Pub-
lications of the International Association for Bridge and Structural Engineering,
Vol. 4, p. 333, 1936.
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(for x < 1 — b)
Pl f”[_ sinh k¢ cx]
=g H, . Flsinh g SRS | de
PP [ cosh ka — cosh kb (b*—a?)x ]
= Mt i, T FPsmhm Snh ket T '

To obtain the complete deflection, we superpose on this
deflection the deflection 7, produced by the upward pull
(eq. 29) which gives, for x < I — b,

- __ P
n—71+n2— .+,
cosh ka —cosh kb (0*~a*)x ]
[ k%% sinh kI inh kx+ — 23
kl
_ H ,wi? cosh (; B kx) 1 +x(l—x)
Ho(Ho+Hy) | - %l PET TP

k%42 cosh —
2

In a similar manner the deflections in the portions CD and DB
of the truss can be obtained. A simpler method of calculation
deflections is shown in the next article.

If a combined action of live load and temperature change
is considered, the equation for calculation of the additional
horizontal tension H, is obtained by substitution into equa-
tion (31) H, for H, and H,L/A.E. + €L, for H,L/A .E.
(see p. 232).



