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PART I.

INTRODUCTION.

In this p a p e r various methods of analysis of suspension
bridges are discussed together with the i r application to several
particular bridges. In the first two articles, are discussed
the cases of a perfectly flexible cable and of an unstiffened
suspension bridge and equations for calculation of deflections
and changes in cable tension produced by live load are de-
veloped. It is shown also that in the case of h e a v y long span
suspension bridges, deflections produced by live load are
very small and a stiffening truss is not required. In the
t h i r d article, the fundamental equations for stiffened sus-
pension bridges are derived and the errors introduced in these
equations by various assumptions, usually made in the process
of derivation, are discussed in detail. In the fourth article
an analysis of a single span stiffened suspension bridge is
given and it is shown that the derivation of the necessary
equations is simplified by using the method of superposition.
For the determination of the most unfavorable distribution
of live load, the use of influence lines is recommended. In
articles 5 and 6 the application of trigonometric series in
calculating deflections is discussed and it is shown that by

(Note--The Frankl in Institute is not responsible for the statements and opinions advanced
by contr ibutors i n the JOURNAL.)
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using these series not only the calculation of deflections and
bending moments can be considerably simplified but also the
calculation of cable tension produced by live load can be
made with b e t t e r accuracy. In article 7 the theory of a
suspension bridge with a continuous stiffening truss is dis-
cussed and there are derived equations for cable tension
produced by live load and for bending moments at the towers.
The use of the method of superposition considerably simpli-
fies the derivation of these equations. In the last article, the
case of a stiffening truss of variable cross section is discussed
and it is shown that by using trigonometric series this problem
can be treated without much difficulty.

1. PARABOLIC FUNICULAR CURVE.

Assume that a uniform and perfectly flexible cable fixed
at points A and B, Fig. I, is submitted to the action of dis-

FIG, I.

T

i

H

tributed vertical load. Then the ordinate y of any point C
of the cable is obtained from the equation of moments with
respect to C of forces to the left of this p o i n t which gives

h
!g~x + H -l x - H y = o . ( a )

In this equation TAx denotes the bending moment at the cross-
section m n of a simply supported beam of span l and carrying
the load acting on the cable. H is the horizontal component
of the tensile force in the cable, and h is the difference in
elevation of the ends of the cable. In the particular case
when the load of intensity w is uniformly distributed along
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the horizontal projection of the cable we have

~3~ = w__x ( / _ x)
2

and equation (a) gives

w x h
y = 7 { 1 ( 1 - x) + ~x (i')

which shows that the funicular curve in this case is a parabola
with vertical axis. If the ends of the cable are on the same
level, we obtain

wx
Y = ~-~r (l - x ) . (2)

Xpplying this equation to the mid-point of the cable, where
the ordinate of the funicular curve represents the sag f, we
obtain

wl" wl2
f - 8 H o r H = ~ • (3)

These equations hold also in the more general case shown in
Fig. I iff is measured from the middle of the line A B joining
the ends of the cable. In our further discussion the length
s of the funicular curve will be required. It is obtained from
the equation

2's = (r + y'2)l/"dx

Developing the expression u n d e r the integral sign into a
series and subst i tut ing expression (2) for y, we obtain

s = ! ~ + 3 5 I~+ 7-l~ . . . . .

In the case of flat parabolic curves, say f / l ~< I/IO, we can
take only the two first t e r m s of the series and use the approxi-
mate formula:

(s = l I + 3 1~] " (4)

To establish the relation between the change in length of
the curve and the change in its sag, we differentiate equation
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(4) , w h i c h g i v e s

a n d

AS = I 6 f

3. a/ (s)

3 laf = - g . ) a s . (6)

T o find the c h a n g e zXf due t o a rise in t e m p e r s t u r e of t
d e g r e e s , we s u b s t i t u t e As = ~ts i n t o e q u a t i o n (6) a n d o b t a i n

8 f f

T h e e l a s t i c e l o n g a t i o n of t h e c a b l e is o b t a i n e d from the
e q u a t i o n

As = AcEcdx ds = ~ (I + y'2)dx

in w h i c h A ~ is the cross-sectional a r e a of the c a b l e a n d E~, i t s
m o d u l u s of e l a s t i c i t y . S u b s t i t u t i n g e q u a t i o n (2) for y a n d
i n t e g r a t i n g , we o b t a i n

~ S = A e E - - - - -~ I -J- ~ - ~ • (8)

T h e c o r r e s p o n d i n g c h a n g e in sag , from e q u a t i o n (6), is *

3 H 1 2 ( I 6 f f )
A f - I6A~Eff I + 3 ~ " (9)

2. D ~ c T x o ~ s o F U ~ S T I F F ~ m m S U S P ~ . N S I O N B R I D O S S .

In the case of a s u s p e n s i o n b r i d g e of l a r g e s p a n the d e a d
load u n i f o r m l y d i s t r i b u t e d o n a h o r i z o n t a l p l a n e is u s u a l l y
m a n y t i m e s l a r g e r t h a n t h a t u n i f o r m l y d i s t r i b u t e d a l o n g the
c a b l e s , a n d we c a n a s s u m e with s u f f i c i e n t a c c u r a c y t h a t the
c u r v e of the c a b l e u n d e r t h e a c t i o n of d e a d load is a p a r a b o l a .
L e t us c o n s i d e r now deflections in t h e c a b l e p r o d u c e d by live
l o a d . A s a f i r s t e x a m p l e we c o n s i d e r the s y m m e t r i c a l case
in w h i c h the load of i n t e n s i t y p is u n i f o r m l y d i s t r i b u t e d a l o n g
the d i s t a n c e 2~ of the s p a n , Fig. 2. T h e full line i n d i c a t e s

* In the der iva t ion of equa t ions (7) and (9) i t is assumed that the change
At" in sag is small and i t s e f f e c t o n the hor izonta l t ens ion H is neglec ted .
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the s h a p e of the c a b l e u n d e r the a c t i o n of d e a d load w o n l y .
L e t .f,, a n d H ~ d e n o t e the c o r r e s p o n d i n g v a l u e s of the sag
of t h e c a b l e a n d of the h o r i z o n t a l c o m p o n e n t of the t e n s i l e
f o r c e in the c a b l e . T h e l e n g t h of the c a b l e then is

S = Z I -~ 3 {V = I I -~'- 2 7 ; [ L , , - ~" • ( b )

A f t e r a p p l i c a t i o n of live load p the s h a p e of the c a b l e will be
a s s h o w n by the d o t t e d line A CD. It c o n s i s t s of two p a r a -
b o l i c c u r v e s A C a n d CD h a v i n g a c o m m o n t a n g e n t a t ( ' .

I , - - . . . . - - 7

• . . . . . . . .o i

Illl l 111II Lfll lllL llLLL,l ll,l  llEl lllllJ ll"

FIG. 2.

T h e c u r v e CD c a r r i e s the load of i n t e n s i t y w + p a n d the
c u r v e A C c a r r i e s t h e load of i n t e n s i t y w. T h e d i s t a n c e 11/2
of the v e r t e x o of this l a t t e r c u r v e from the v e r t i c a l t h r o u g h A
will be f o u n d from the c o n d i t i o n t h a t the t o t a l load a l o n g the
p o r t i o n CO of t h e c u r v e A C O is the s a m e a s the t o t a l load
a l o n g the c u r v e CD. H e n c e

l ,_ z+ p. (c)
2 2 W

W e d e n o t e by f a n d H the s a g of the c a b l e a n d the t e n s i l e
f o r c e in the c a b l e a t D a f t e r a p p l i c a t i o n of the live l o a d . O n e
r e l a t i o n b e t w e e n t h e s e two q u a n t i t i e s is o b t a i n e d by m a k i n g
the e q u a t i o n of m o m e n t s w i t h r e s p e c t t o p o i n t D w h i c h g i v e s

/ = Z r • (d)
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The second equation is obtained from the condition that the
length of the cable remains unchanged * during application
of the live load. Using for the length of the curves AO, CO
and CD the approximate equation (b), the condition of in-
extensibility of the cable is

l ( 8 @ 2 t ll ( I W21l2 )
- I - - { - - = - - I - - ~ - - - H--~2 3 2 24

Introducing notations

p 28
- = n , - - = z , ( f )%, l

we obta in from equation (e)

H = H~n~ + 3nz + 3n2z2 - ( 2 n2 -+- n ) z3. ( Io)

Substituting this va lue of H into equation (d), we ob ta in

I "-~ n ( 2 z - - Z2)

f = J" \ ' i ~ + - - 3 r / z + - 3 - r t 2 z - - 2 (2n2 + ?l)Z3 (II)

To find what portion of the span must be loaded to produce
the maximum deflection at the middle of the bridge, we put
equal to zero the derivative of expression (I I) with respect to
z which gives the equation

(2n 2 + n ) z4 -- 2n(n -- I)Z3 -- 3(n - - I)Z 2 -- 4 z 2V X = O.

Solving this equation for several numerical values of n, we
ob ta in for z the values given in Table I. Substituting these
values of z into equation (II) , we find the values of the sagf
of the cable a f t e r application of the live load. The calcu-
l a t e d ratios of the change in sag to the initial sag are given in
the th i rd line of Table I. In the case of long span bridges,
the ra t io p/w is usually small , t say smaller than I/4, and it

*The small influence on the deflection of an elastic elongation of the cable
will be discussed later.

t In the case of the Washington bridge over Hudson River this ratio is
about x/6.
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m a y be seen from T a b l e I t h a t the d e f l e c t i o n a t the m i d d l e is
of the o r d e r of one h u n d r e d t h of the sag f~ or of one t h o u s a n d t h
of the s p a n l of the b r i d g e . Such deflections c a n be c o n s i d e r e d
as sufficiently s m a l l t o m a k e the u s e of a n y stiffening t r u s s

"FABLE I.
u n n e c e s s a r y .

~/ = 0 0 . I 0

z = 0.333 0.322

f - ~
fu

0.0069

J .047
H~ =

0.25 o. 50 l .oo

o3o6 0.289 ] o .253
I

I

o.o15[ 0.028[ [ o .0456

. . . . . i . . . . . . . . . . . .

i i

I .I [2 1.2T3 t .379

, [

T o c a l c u l a t e the deflection a t the m i d d l e due t o e l a s t i c
d e f o r m a t i o n of the c a b l e p r o d u c e d by live l o a d , we u s e the
a p p r o x i m a t e f o r m u l a (9) in w h i c h H - Itw, i n s t e a d of H,
m u s t be s u b s t i t u t e d . T h e n the deflection due t o the e l o n g a -
t ion of the c a b l e is

3 Hwl l( H ) ( I6f2)
= " A " ) - 1 + 3 - i "

T h e v a l u e s of the r a t i o H/H,~ for v a r i o u s v a l u e s of n c a l c u -
l a t e d from e q u a t i o n (10) are g i v e n in the l a s t line of T a b l e I .
T a k i n g for a n u m e r i c a l e x a m p l e n = 1/4, Hw/A~E~ = o.oo2,*
f /1 = o. 1, we find H/H~, = 1.112 a n d e q u a t i o n (g) g i v e s
Af = 0.00044/. This d e f l e c t i o n m u s t be a d d e d t o the deflec-
t ion o . o o i 5 I I , c a l c u l a t e d from e q u a t i o n ( I I ) , t o o b t a i n the
t o t a l d e f l e c t i o n p r o d u c e d by live l o a d .

L e t us c o n s i d e r now t h e deflection of the c a b l e p r o d u c e d
by a c o n c e n t r a t e d f o r c e a p p l i e d a t the m i d d l e of the s p a n .
T h i s f o r c e can be c o n s i d e r e d a s a load d i s t r i b u t e d a l o n g a
v e r y s h o r t d i s t a n c e , a n d e q u a t i o n ( I I ) can be u s e d also in
this c a s e . F r o m n o t a t i o n (f) it f o l l o w s t h a t

2p~ P
nz - wl - Q - ¢/ (h)

* This value depends evidently on the al lowable ~tresses produced by dead
load.
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w h e r e ¢ d e n o t e s t h e r a t i o of the live load P t o t h e d e a d load
Q of the b r i d g e . S u b s t i t u t i n g ¢ for nz a n d zero for z i n t o
e q u a t i o n (I I) , w e o b t a i n

I + 2¢ ( i2)
f = fw 4 i -t- 3¢ -I- 3¢2

I n the case of long s p a n b r i d g e s , the c o n c e n t r a t e d load P is
s m a l l in c o m p a r i s o n with the d e a d load Q of the b r i d g e a n d ¢
is a s m a l l q u a n t i t y . D e v e l o p i n g then the r a d i c a l in the de-
n o m i n a t o r of e x p r e s s i o n (I2) i n t o a s e r i e s a n d t a k i n g only the
f i r s t t h r e e t e r m s of t h a t s e r i e s , we o b t a i n

2

a n d e q u a t i o n (I2) g i v e s

( i
f =fw I"~-2¢-- ~

H e n c e the d e f l e c t i o n p r o d u c e d in the c a b l e by a c o n c e n t r a t e d
f o r c e a p p l i e d a t the m i d d l e is

9

A s s u m i n g , for e x a m p l e , ¢ = o.oi * a n d fw/l = o.I , we o b t a i n

~ f = o.ooo489/

w h i c h is a v e r y s m a l l deflection. T o find the deflection due
t o e l a s t i c e l o n g a t i o n of t h e c a b l e p r o d u c e d by a c o n c e n t r a t e d
force, we c a l c u l a t e f i r s t the c h a n g e H - H ~ in the h o r i z o n t a l
t e n s i l e force. E q u a t i o n (Io) in this case g i v e s

( 3 3 ¢ ~ )

a n d we o b t a i n

)_ -
* In the case of the Washington Bridge, this value of ~ corresponds to a

concentrated load of 57° tons.
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Substi tuting this for H in equation (9), we find

~J'= 32 AcE, J

For small ~b which we have in the case of la rge spans, this
deflection is a very small one.

We discussed up to now the symmetrical case of loading,
Fig. 2. The case of a non-symmetrical distribution of uniform
live load can be treated in a similar manner. Let us consider
now a general case of vertical live load acting on a cable with
both ends on the same level. The initial ordinates of the
funicular curve are obtained from equation of moments which
gives

~J~w
Y = ) L (i)

In this equation 93~w is bending moment due to dead load
calculated as for a simply supported beam and Hw the hori-
zontal component of the tensile force produced in the cable
by dead load. If live load is now applied, the bending
moment calculated as for a simple beam becomes ~9~w + ~3%
and the horizontal component of cable tension becomes
Hw + Hr. Denoting by n the vertical deflections of the
cable, we obtain, from equation of moments,

+ (j)
y + n - H ~ , + H ~ ,

Subtracting equation (i) from this equation, we obtain

9)2,, -- Hvy (t4)
~7 = H , , , + H p

It is seen that the vertical deflections n can be readily calcu-
lated provided we know the horizontal component Hp of
cable tension produced by live load. This l a t e r quant i ty can
be found from geometrical considerations.

Let us consider an infinitely small element ab of the cable,
Fig. 3. U n d e r the action of~live load this element elongates
somewhat and t a k e s a new position a l b l . We denote by
and n the horizontal and the vertical components of the
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small displacement of point a. The initial length of the
element is obtained from the equation

ds2 = dx2 + dy~. (k)

The length of the same element after application of live load
is found from the equation

(ds + Ads) 2 = (dx + d( )2 + (dy + dn) 2, (l)

in which Ads is the elongation of the element produced by

(~-Jy ' )

¢ . .

~ - - d . 11

÷

FIG. 3.

live load. Neglecting the small change in slope of the cable
produced by live load,* we put

Ads = d s H , ds (m)
A ~E, dx

Since Hpds/dx is that part of the tensile force in the cable which
is produced by live load and which is usually much smaller
than the part produced by dead load, the unit elongation
zXds/ds is usually much smaller than one thousandth. In such
a case (zXds)2 in equation (l) can be neglected. From the
same reason, and from the observation that the curve of the
cable is a flat curve, we neglect also d~2. Then we obtain,
from equations (k) and (l),

which gives
ds2~ds = dxd~ + dyd~ + ½d~72,

d~ ds ,Ads dy
= dx - ~x d'7 - - - -

Substituting expression (m)

i d~ d~.
2 dx

for Ads in this equation and
* The e r r o r in t roduced b y t h i s omiss ion will be d i scussed later , see p. 2 2 7 .
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integrating, we obtain

() £A c E c 3 o d x d x - y % ' d x - - n ' 2 d x . (~5)S , 0 2

With the values of y ' and n ' which are encountered in long
span bridges, the value of ~ usually does not surpass one
thousandth of x.* At the ends of the cable ~vanishes and we
obtain from equation (I5)

I'~, £~ ( d s ) ~ ~,i~ ~/'~
A c E ~ . d x d x = . y ' • ' d x + 2 , , ~ '2dx" ( n )

The integral on the left side of this equation for the assumed
parabolic shape of the cable can be readily evaluated and we
obtain

•z d.r foo (I-I-y'2)3/2dx = l [ ~ ( ~ - [ - ~ )

I 6 f 2 )1/2 32 1 6 f 2 )1/2 .

On the right side of equation (n) we make integration by
parts. Observing that n vanishes at the ends of the cable,
and using equation (2) we obtain

y ' n ' d x = Y ' n - y " n d x . . . . . n d x .
• o . II,~, o

I ( * l ; ] l i ~ol i ] f l " ( D )
2 d o n ' 2 d x -- ~ 'n -- 2 . ~ " 7 1 d x - - n " n d x .

o ":'' ) )

Substituting expressions (o) and (p) into equation (n) and
denoting the integral (o) by L, we obtain

H , w ~ z , £ t
A ~ E c L - i [ ~ . n d x - 2 . , ' % d x . (~6)

This equation, together with equation (I4), give the system
of equations sufficient for calculation of vertical deflections of
the cable.

*The maximumvalueof ~i/x occurs near the supports where~' and y' usually
have their largest numerical values.
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L e t us a p p l y t h e s e e q u a t i o n s t o the a b o v e d i s c u s s e d case
s h o w n in F ig . 2. In this case

l95~p =p~x, for x < - - - (;
2

I ( l )~, l l _ ~
93~p = p ~ x - - 2 p x - - - + ~ for - + ~ > x > ;

2 2 2

l
for x < - -- ~;

2

~ - H ~ + H p P ~ x - 2 P x - - + ~ 2

w x ( l - - x ) H v ] , for -1 I ~.
2H~ 2 + ~ > x > - -' ' 2

,, why l
H ~ ( H ~ + H p ) ' for x < 2 ~'

. - - pH~ + wHp l l
= for - + ~ > x > - - - ~.

H~(H~ + Hp) ' 2 2

S u b s t i t u t i n g t h e s e e x p r e s s i o n s i n t o e q u a t i o n ( I 6 ) , a s s u m i n g
t h a t t h e c a b l e is inextensible, a n d i n t r o d u c i n g o u r p r e v i o u s
n o t a t i o n s (f) , we o b t a i n , for c a l c u l a t i o n of Hp, t h e f o l l o w i n g
q u a d r a t i c e q u a t i o n

H ~ ] + 2 ~ - 3 n z - 3 n 2 z 2 + n z 3 + 2 n 2 z ~ = o ,

w h i c h g i v e s for Hp + H ~ the s a m e v a l u e as o b t a i n e d from o u r
p r e v i o u s e q u a t i o n ( I O ) .

S o m e t i m e s e q u a t i o n (I6) is s i m p l i f i e d by o m i t t i n g the
s e c o n d t e r m o n t h e r i g h t s ide a n d t a k i n g

Hp L - ndx. (17)
A cEc

C o n s i d e r i n g a n i n e x t e n s i b l e c a b l e a n d s u b s t i t u t i n g for n i t s
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expression (I4) we obtain, from equation (I7),

~_,,, ~ ~ pdx 3£'= ~ ~pdx. 08)
Hp = ,~L ydx

In the case shown in Fig. 2 equation (I8) gives

ntI~
H p - (3z - z3).

2

Applying this approximate formula to the numerical ex-
amples given in Tab le I, p. 219, we find that the results ob-
tained are in good agreement with those given in the last
line of Tab le I.

3. FUNDAMENTAL EQUATIONS FOR STIFFENED SUSPENSION BRIDGES.

It is seen from the preceding discussion that the deflec-
tion of the cable produced by live load is small only in the case
of h e a v y long span bridges. Otherwise the deflections may be

J%!j
I

FIG. 4.

considerable. In order to reduce them, stiffening trusses are
usually introduced. A simplest structure of this kind, shown
in Fig. 4, consists of a single-span cable stiffened by a simply
supported truss of constant cross section. It is assumed that
by a proper assembly the dead load of the structure, uniformly
distributed along the span, is entirely transmitted to the cable
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w h i c h t a k e s the p a r a b o l i c form s h o w n in the f i g u r e by full
l i n e . A live load p r o d u c e s d e f l e c t i o n of the c a b l e a n d of the
t r u s s as i n d i c a t e d in the f i g u r e by d o t t e d l i n e s . W e a s s u m e
t h a t bo th tfiese deflections a r e e q u a l . * T h e s p a c i n g of
h a n g e r s is a s s u m e d s m a l l a s c o m p a r e d with the l e n g t h of
s p a n so t h a t t h e a c t i o n of the h a n g e r s on the c a b l e a n d on the
t r u s s can be c o n s i d e r e d as c o n t i n u o u s l y d i s t r i b u t e d a l o n g
the s p a n .

L e t us c o n s i d e r f i r s t the case w h e n the s t r u c t u r e is c a r r y -
ing only d e a d l o a d . T h e t r u s s does n o t s u f f e r b e n d i n g in this
c a s e , a n d the e q u a t i o n of m o m e n t s for the f o r c e s t o t h e left of
a c r o s s s e c t i o n ran , Fig . 4, then g i v e s

~ , ~ . - t lwy = o. (a)

W h e n live load is a p p l i e d a n d deflections n are p r o d u c e d , t h e r e
will be b e n d i n g m o m e n t M a c t i n g in a c r o s s s e c t i o n m n of the
t r u s s a n d the e q u a t i o n of m o m e n t s for the f o r c e s t o the left of
this c r o s s s e c t i o n is

~ o + ~ p - ( H w + H p ) ( y + 7) - M = o. (b)

S u b t r a c t i n g e q u a t i o n (a) from e q u a t i o n (b), we o b t a i n

M = 9Y~p - ( I I w + H p ) n - Hpy . (I9)

F r o m this e q u a t i o n , the b e n d i n g m o m e n t a t a n y c r o s s s e c t i o n of
the t r u s s c a n be c a l c u l a t e d p r o v i d e d t h e h o r i z o n t a l c o m p o n e n t
of the t e n s i l e f o r c e in the c a b l e a n d d e f l e c t i o n n are k n o w n .

In t h e c a s e of v e r y r i g i d stiffening t r u s s e s , the deflections
c a n be n e g l e c t e d a n d we o b t a i n

M = ~ -- H v y . (20)

This b e n d i n g m o m e n t is i n d e p e n d e n t of deflections a n d can be
e v a l u a t e d by the m e t h o d s u s e d in the a n a l y s i s of r i g i d s t a t -
i c a l l y i n d e t e r m i n a t e s t r u c t u r e s . I n v e s t i g a t i o n s show t h a t
the stiffening t r u s s e s in l a r g e - s p a n b r i d g e s a r e u s u a l l y v e r y
flexible, a n d in c a l c u l a t i o n of b e n d i n g m o m e n t s r e c o u r s e
m u s t be made t o the m o r e c o m p l e t e e q u a t i o n (I9) w h i c h

* That is, the elongation of the hangers and their small inclination during
deformation are neglected in this discussion.
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requires the calculation of deflections n * of the truss. Using
for the truss the differential equation of the deflection curve
of a beam

E I d2~ M,
dx ~

we obtain, by using expression (19) , the following equation for
calculation

d2~
E I ~ x2 - (Hw + H ~ ) ~ = I t , , y - 9)5,. (21)

The q u a n t i t y 9)2~ in this equation can be readily calculated
for any distribution of live load over the span. The quanti-
ties y and It , , . are given by equations (2) and (3), and only the
quantity Hp is unknown. It depends on the deflections n,
and for its determination equation (16) of the preceding
article is used. Equation (21) together with equation (16)
completely defined the deflections of the stiffening truss. In
solution of these equations the trial and error method is
used. We assume a certain va lue for Hv, for instance the
value obtained for the unstiffened cable, and with this value
solve equation (21). The obtained expression for n we sub-
stitute in the integrals on the right side of equation (16).
Since Hp was t a k e n arbitrarily, the result of this substitution
usually will not equal the left side of equation (I6), and it
will be necessary to repeat the calculation with a new assumed
value of Hp. These trial calculations are continued so far
as to ob ta in Hp with a sufficient accuracy. The procedure of
this calculation with all details will be discussed in the next
two articles.

Now we will discuss how accurate equations (16) and (21)
are and what is the magnitude of errors introduced in thesc
equations by neglecting various small quantities during the i r
derivation. We begin with the discussion of elongation of the
cable. In the derivation of equation (m) of the preceding
article, we neglected the change in the deflection of the cable

* J. Melan was the first who indicated the importance of considering deflec-
tions in analysis of suspension bridges, see his book, "Theorie der eisernen Bogen-
briicken und der H~ingebrticken," Leipzig x9o6. English translation by D. B.
Steinman, Chicago, I913. Melan's theory has been widely used in analysis of
large span suspension bridges in this country.
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produced by live load. Taking into account this additional
deflection we ob ta in

dsHp ( dS y%, I )
,Ads - AdsHP,E~ [-I + (y' + ~,)2~ - A cE, ~x + + 2 ~,2 .

Using this more accurate expression for Ads we obtain, in-
stead of equation (n) of the preceding article, the following
equation

( 2H,(' es'  ex = / 'ex
AcEcdo d x /

l _ H p [ : l ( _ ~ ) 2 I

The last term on the r igh t side of this equation represents the
required correction. Since H v / A c E ~ is usually smaller than
one thousandth we conclude that the relative e r r o r in the
magnitude of the r igh t side of equation (n) due to the use of
the approximate expression (m) is of the o rde r of one thou-
sandth, which can be disregarded in a practical analysis.

Let us consider now the effect on the bending moment in
the truss of horizontal displacements $ in the cable which
were entirely disregarded in our previous derivation. To take
these displacements into account, we observe that the vertical
distances between the full line and dotted line curves, marked
by ~ in Fig. 4, are more accurately equal to rl - ~ d y / d x , as
shown in Fig. 3. We note also that each element of t h e
load transmitted to the cable, and approximately equal to
- dx(H,o + H p ) d 2 y / d x2, has a ho r i zon t a l displacement ~,
which produces the change in moment of this element equal to

-- ( d x ( H w + H . ) d2y
d x 2

With these two considerations we obtain, instead of expression
(19), the following more accurate value of the bending
moment :

M = gJ~ -- (Hw + Hp)~ -- H p y + (H~, -{: H~)~ ~x

~x d2y
- (Hw + Hp) ..Io dx~~dx. (22)
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T h e r e q u i r e d c o r r e c t i o n in t h e b e n d i n g m o m e n t is r e p r e s e n t e d
b y the l a s t two t e r m s in this e x p r e s s i o n . T o g e t a c l e a r e r idea
r e g a r d i n g t h e m a g n i t u d e of this correction, let us c a l c u l a t e the
i n t e n s i t y of the load a c t i n g on the t r u s s . T h i s i n t e n s i t y is
o b t a i n e d a s the s e c o n d d e r i v a t i v e w i t h r e s p e c t t o x of the
b e n d i n g m o m e n t (22), t a k e n w i t h o p p o s i t e s i g n , w h i c h g i v e s

d2M d~y d2n
dx~ - p + H~ ~ + (H., + H,,) - -d x ~

- ( f t w + t I , ) ~ ~ U ~ • (23)

T h e l a s t t e r m in this e x p r e s s i o n r e p r e s e n t s the c o r r e c t i o n due
t o h o r i z o n t a l d i s p l a c e m e n t s of the c a b l e .

T h e s a m e e x p r e s s i o n for the i n t e n s i t y of the load on the
t r u s s is o b t a i n e d a l s o in a n o t h e r m a n n e r by s u b t r a c t i n g the
i n t e n s i t y of the u p w a r d pull of the h a n g e r s on the t r u s s from
the c o m b i n e d i n t e n s i t y w + p of t h e d o w n w a r d l o a d i n g .
T h e i n t e n s i t y of the v e r t i c a l l o a d i n g on the c a b l e a t a dis-
t a n c e x from the left s u p p o r t is

q = _ (H~+H~,)~xx 2 Y + n - - ~ • (c)

The u p w a r d pull t r a n s m i t t e d t o a l e n g t h dx of the t r u s s a t x
is the d o w n w a r d pull on a h o r i z o n t a l l e n g t h dx[I + (d~/dx)]
a t x + ( on the d e f l e c t e d c a b l e . H e n c e the r e q u i r e d i n t e n s i t y
of the load on the t r u s s is

d~

d= w + p - q - u ~ (q~)" (d)

S u b s t i t u t i n g for q i t s e x p r e s s i o n (c) a n d n e g l e c t i n g s m a l l
t e r m s of h i g h e r o r d e r , we o b t a i n the p r e v i o u s e x p r e s s i o n (23).*

* The correction due to horizontal displacements ~ of the cable has been
discussed in a recent paper by R. J. Atkinson and R. V. Southwell, Proc. of the
Institution of Civil Engineers, session 1938-1939, p. 289. These authors over-
looked the term --~(dy[dx) in the above expression (c) and did not obtain a
satisfactory expression for the correction.
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S u b s t i t u t i n g for ~ the f i r s t two t e r m s in e x p r e s s i o n ( 1 5 )

i n t o the last t e r m of e x p r e s s i o n (23), we find t h a t the c o r r e c -
t ion in the i n t e n s i t y of the load on the t r u s s , due t o h o r i -
z o n t a l d i s p l a c e m e n t s ~, is

d
- (Hw + H~) ~ (~'y')

{ w [ 1.[,, Y ' n ' ]= - ( H + + H , , )

-k y ' [t ~+ EH" s,2s,, ~w , y, , , ] ]+ - ,

w h e r e p r i m e s d e n o t e the f i r s t d e r i v a t i v e with r e s p e c t t o x.
F o r fiat c u r v e s we c a n take

Sr I -11- I $Ir W_ y,2, ~ _ _ _ y ,
z I/:+

w h i c h g i v e s

d
- ( t t w -'k Hp) dx (~'Y')

(ztw + , Z , ) w [ z i p ]= ~(, [ ~ (s'a -1- 3s'2y'2) -- 2yqT'

+ (1t,,, + _lip)n"y '2. (e)

F r o m o u r p r e v i o u s d i s c u s s i o n we c o n c l u d e t h a t the f i r s t term
on the r i g h t s ide of this e q u a t i o n is of the o r d e r of one t h o u -
s a n d t h of w a n d c a n be n e g l e c t e d in p r a c t i c a l c a l c u l a t i o n .
T h e s e c o n d t e r m , (H,,, + H~,)n"y'=, c a n a l s o be c o n s i d e r e d a s
s m a l l in c o m p a r i s o n with the term (Hw q- H p ) n " r e p r e s e n t i n g
the e f f e c t on the i n t e n s i t y of the load of v e r t i c a l deflections
of the c a b l e . H e n c e the t o t a l e f f e c t of h o r i z o n t a l d i s p l a c e -
m e n t s of the c a b l e can be c o n s i d e r e d a s s m a l l a n d u s u a l l y
can be n e g l e c t e d in p r a c t i c a l c a l c u l a t i o n . If we w o u l d like
t o t a k e t h a t e f f e c t i n t o c o n s i d e r a t i o n , we can b e g i n with a
s o l u t i o n of e q u a t i o n s (I6) a n d ( 2 I ) . K n o w i n g n we c a l c u l a t e

from e q u a t i o n (I5) a n d the m o r e a c c u r a t e v a l u e for b e n d i n g
m o m e n t from e q u a t i o n ( 2 2 ) .

In a s i m i l a r m a n n e r the e f f e c t of e x t e n s i o n of h a n g e r s on
the m a g n i t u d e of b e n d i n g m o m e n t c a n be e v a l u a t e d . T h e
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calculation shows that this effect is also very s m a l l and can
be neglected.*

Let us consider now the effect of shearing force on deflec-
t ion of a stiffening t russ . For this purpose we take the differ-
ential equat ion of the deflection curve in the following form :

F~I d2'7 - m + mF~I d2m ( f)
dx2 dx~ ,

in which the second term on the r i g h t side represents tile
effect of shearing force on deflection. The magnitude of
factor m in this term depends on the kind of structure used
for the stiffening t russ . In the case of an I - b e a m , we take

I
= . _ _ (~)

A.,G

w h e r e A~ is the cross-sectional area o f the web of the beam
and G is the modulus of elasticity of the material in shear.

FIG. 5.

In the case of a t russ , as shown in Fig. 5, we take

I
m = (h)

A aE sin ~ cos2

w h e r e Ae is the s u m of cross-sectional area of the two diago-
nals in a panel.

Subst i tut ing for M in equat ion (f) its expression ( ] 9 ) , we
o b t a i n

d2n (Hw + l ip)EI [~ + m(Lrw + L r , ) ] ~ -

= - - fJ~p + H , y - - m E I p - - ~ - w • (24)

* Such calculations were made by F. E. Turneaure, see the book "Modern
Framed Structures" by Johnson, Bryan and Turneaure, Vol. 2, 9th ed., p. 299,
I917.

t See writer's book, "Theory of Elastic Stability," I936, p. 143.
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This e q u a t i o n is of t h e s a m e form a s e q u a t i o n ( 2 I ) a n d we see
t h a t the e f f e c t of s h e a r i n g f o r c e c a n be r e a d i l y t a k e n i n t o
a c c o u n t p r o v i d e d the f a c t o r m is k n o w n .

In d e r i v a t i o n of e q u a t i o n (16) the e l a s t i c e l o n g a t i o n of
t h e c a b l e a l o n e was c o n s i d e r e d . T h e e q u a t i o n c a n be r e a d i l y
g e n e r a l i z e d a n d e x t e n d e d t o t h o s e c a s e s in w h i c h a n e l o n g a -
t ion of the c a b l e d e p e n d s also on a c h a n g e in i t s t e m p e r a t u r e .
I n s t e a d of e q u a t i o n (m) of the p r e c e d i n g article, we u s e in
s u c h a case the e q u a t i o n

dsH, d s
zXds - A ~ E ~ d x + ds~t (i)

w h e r e E is the coefficient of t h e r m a l e x p a n s i o n , a n d H , is the
h o r i z o n t a l c o m p o n e n t of the t e n s i l e f o r c e p r o d u c e d in the
c a b l e by the c o m b i n e d a c t i o n of live load a n d t e m p e r a t u r e
c h a n g e . U s i n g e q u a t i o n (i), i n s t e a d of e q u a t i o n (m), a n d
i n t r o d u c i n g the n o t a t i o n

z d s ) 9 . =

we o b t a i n

H8 L W f o Z I foo ~A cE, + ~tL1 = ~ ~dx - -2 ~ " ~ d x . (25)

T h i s e q u a t i o n , i n s t e a d of e q u a t i o n ( I6 ) , must be u s e d if we
are c o n s i d e r i n g a s i m u l t a n e o u s a c t i o n of live load a n d tem-
p e r a t u r e c h a n g e .

4. ANALYSIS OF STIFFENING TRUSSES.

L e t us b e g i n w i t h the c a s e in w h i c h a s i n g l e c o n c e n t r a t e d
load P is a c t i n g on the t r u s s . M a k i n g the s e c o n d d e r i v a t i v e
of e q u a t i o n ( 2 i ) , we find t h a t deflections of the t r u s s in this
case are the s a m e a s t h o s e o c c u r r i n g in a s i m p l y s u p p o r t e d
b e a m s u b j e c t e d t o the c o m b i n e d a c t i o n of a n a x i a l t e n s i l e
f o r c e H ~ + H p , of a u n i f o r m l y d i s t r i b u t e d u p w a r d l a t e r a l
load of i n t e n s i t y H p w / H ~ , a n d a c o n c e n t r a t e d load e a s s h o w n
in F ig . 6. In s u c h a c a s e , with n o t a t i o n

H,~ + H:o _ k2 (26)
E1
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the deflections produced by the load P in the part of the beam
to the left of this load, (x < l - c), are *

P sinh kc Pcx
7~ = - It~ + Hp k sinh kl Sinh kx + (Hw + Hv)l (27)

.H,)~]llllllLIIILlllllllllllllllll Illllll IIIIlllllll~lB
c , " ( e r e , )

(" 'i

Fw,. 6.

- - X

For the portion of the beam to the right of the toad, (x > 1 - c)
the deflections are

P sinh k(l - c) sinh k(l - x)
71 = - (Hw + Hv) k sinh kl

+ P(l - c)(l - x ) (28)
(H o + H1,)l

The deflections produced by the upward pull are t

Ilp wP [cosh ( ~ - k x )

72 = -- H,,~ " H~,, + H~ t kl
k2l2 cosh/

2
I

x ( l - x ) [ .I
_ _ -J_ ( 2 9 )k2l2 2P ]

The total deflections 7 of the truss are obtained by super-
posing deflections 71 on deflections n2.

To determine the magnitude of tension Hp, entering into
e q u a t i o n s (27) , ( 2 8 ) , and (29) , w e use equation (I7), which is
obtained from equation (16) by omitting the second term on
the right side.~ Substituting expressions (27) to (29) into

* See "St reng th of Materials," Vol. 2, p. 39.
t See "St reng th of Materials," Vol. 2, p. 40.
:~ This term usually has only a small effect on the magnitude of Hp.

effect will be discussed in the next article.
This
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equation (17) a n d p e r f o r m i n g the i n t e g r a t i o n , we o b t a i n , for
c a l c u l a t i n g Hp , the e q u a t i o n

AcE, 1 + --12

(× I - k2l~ + ~ t a n h

i
= P 2-1 I - - l k212sinhkl

× [ - s i n h k l - s i n h k c - s i n h k ( l - c)~ } • (30)

In the case of long span br idges the q u a n t i t y k l is u s u a l l y
a n u m b e r of c o n s i d e r a b l e m a g n i t u d e * a n d all t e r m s in
e q u a t i o n (3o), c o n t a i n i n g k are s m a l l a n d in a first a p p r o x i -
m a t i o n can be n e g l e c t e d . T h e term (H,~ + Hp) /AcE , can
also be n e g l e c t e d as very s m a l l , a n d we o b t a i n

t l p = 3 _ p 1 c ( c )
4 i f . -1 I - l .

F o r c = 1/2 this gives
3 l

H , = 2 P 8 7 "

The s a m e r e s u l t we o b t a i n , for s m a l l ¢, from e q u a t i o n (IO),
w h i c h i n d i c a t e s t h a t b y o m i t t i n g all t e r m s c o n t a i n i n g k we
o b t a i n , from e q u a t i o n (3o), for H p the s a m e v a l u e as in the
case of a n unstiffened suspension b r i d g e .

E q u a t i o n (30) can b e used for c a l c u l a t i n g the i n f l u e n c e
line for Hp . I n such a case we a s s u m e t h a t P is a s m a l l load
m o v i n g a l o n g the truss. T h e n H p can be n e g l e c t e d in com-
p a r i s o n with H,~,, k l ~ 1 4 H ~ / E I , a n d we o b t a i n

1 c ( c ) I
2 1 I - - i k~ l~ sinh k l

H ~ = p 8f__ × [ s i n h k l - sinh kc -- sinh k(l -- c)-]

acE----~ f + ~ i - k21--~ + ~ 2

* In the case of the Ambassadore Bridge (Detroit) kl = 9.52. In the case
of the Washington Bridge, after placing the planned stiffening truss, kl = 35.
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Tile m a g n i t u d e of Hp d e p e n d s n o t only on p o s i t i o n of the load
P but a l s o on the q u a n t i t i e s kl, Hw/AcEc, a n d f/1. In F ig . 7a
is s h o w n the i n f l u e n c e line for Hv c a l c u l a t e d on the a s s u m p -
t ion t h a t kl ~= IO, Hw/AcE~ = 0 . 0 0 2 a n d f,/l--o.I. F o r

~ for ff*.,,i~/4 cod~,
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c o m p a r i s o n t h e r e a r e s h o w n in t h e s a m e f i g u r e by d o t t e d
line the v a l u e s of H , for a non-stiffened c a b l e . I t is seen t h a t
for the a s s u m e d v a l u e of kl t h e s t i f f e n e d t r u s s h a s only a
s m a l l e f f e c t on t h e m a g n i t u d e of H r .
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H a v i n g Hp a n d u s i n g e q u a t i o n s (27) t o (29), we c a n
c a l c u l a t e the deflections of the t r u s s . In F ig . 7b the d e f l e c -
t ion c u r v e is c o n s t r u c t e d for the case w h e r e c = o.751. S i n c e
Hp is n e g l e c t e d in c o m p a r i s o n with Hw, the deflections b e c o m e
p r o p o r t i o n a l t o P a n d the p r i n c i p l e of s u p e r p o s i t i o n h o l d s .
T h e reciproci ty t h e o r e m also h o l d s , a n d the deflection c u r v e in
Fig. 7b is the i n f l u e n c e line for the deflection a t the q u a r t e r
p o i n t C. U s i n g this line we can r e a d i l y c o n s t r u c t the i n f l u e n c e
line for b e n d i n g m o m e n t a t C. N e g l e c t i n g / / p in c o m p a r i s o n
with Hw in e x p r e s s i o n ( I 9 ) , we o b t a i n

M = ~ v - H~,y - tI~n.

T h e f i r s t two t e r m s on the r i g h t s ide of this e q u a t i o n give the
b e n d i n g m o m e n t if the i n f l u e n c e of deflections of the t r u s s is
d i s r e g a r d e d . T h e c o r r e s p o n d i n g i n f l u e n c e line is g i v e n by
the d o t t e d line in F ig . 7c. T h e last term on the r i g h t s ide
g i v e s the e f f e c t of deflection of the t r u s s on the b e n d i n g mo-
m e n t . T a k i n g this i n t o a c c o u n t , we o b t a i n the full line in
F ig . 7c. I t is seen t h a t in this case the deflections h a v e a v e r y
l a r g ee f f e c t on the b e n d i n g m o m e n t a n d c a n n o t be d i s r e g a r d e d .

In u s i n g t h e d e r i v e d i n f l u e n c e line for c a l c u l a t i o n of b e n d -
ing m o m e n t i t m u s t be n o t e d t h a t in o u r d e r i v a t i o n the in-
c r e a s e of t e n s i o n in the c a b l e p r o d u c e d by live load was
n e g l e c t e d . H e n c e the i n f l u e n c e line will give a s a t i s f a c t o r y
r e s u l t only if the live load is v e r y s m a l l in c o m p a r i s o n with
the d e a d l o a d . If it is n o t s m a l l , the i n f l u e n c e line will n o t
give a n a c c u r a t e v a l u e of t h e m o m e n t , a n d c a n be u s e d with
sufficient a c c u r a c y only for a d e t e r m i n a t i o n of the l i m i t s
w i t h i n w h i c h the live load m u s t be d i s t r i b u t e d t o p r o d u c e the
m a x i m u m v a l u e of the m o m e n t . * C a l c u l a t i o n s of deflections
a n d m o m e n t s m u s t then be a c c o m p l i s h e d by u s i n g e q u a t i o n s
(27) t o (3o) w i t h i n w h i c h H ~ h a s b e e n r e t a i n e d .

A s s u m e , for e x a m p l e , t h a t live load is d i s t r i b u t e d a s
s h o w n in F ig . 8. T h e n the e q u a t i o n for c a l c u l a t i n g Hp is
o b t a i n e d from e q u a t i o n (30) by s u b s t i t u t i n g pdc, i n s t e a d of
P , a n d i n t e g r a t i n g the r i g h t s ide of the e q u a t i o n from c = a

* The use of influence lines in analysis of suspension bridges was first pro-
posed by T. Godard, "Annales des Ponts et Chauss~es" 76 s~rie, Vol. 8, I894,
p. IO5.
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to c = b, which gives

H~[ tl,w +.H, . L_ I ( I 2 24
- k2l--~2 + ~ tanh

3/(b 2 - a2) - 2(b 3 - a3)
= 8fp I2P

I

k212

cosh kb- cosh ka ]
b - a + cosh k ( l - a ) - c o s h k(l-b) [

>( l kl sinh kl ] " (3I)

The value of Hv can now be calculated from this equation _by
successive approximations. We s t a r t by omitting all terms

, I I J l l l l t l L l ~ t l l L I l l l L l l l l ~ , '

FIG. 8.

I

containing k and neglect also the term with (Hw + Hp)/AcEc.
In this way we obtain the first approximation for Hv which
will be close to the true value, if kl is of considerable magni-
tude,* say kl = xo. To get a better accuracy, we use the
approximate value of Hv to calculate k from equation (26)
and then substitute this va lue of k into equation (3I) , which
gives then the second approximation for H , which is usually
accurate enough for practical application. If necessary,
further approximations can be calculated in the same manner .
When Hv has been calculated, the deflection c u r v e will be
found by using equations (27) to (29) together with the
method of superposition. To find the deflections for the
portion A C of the truss, Fig. 8, we substitute pdc, for P, into
equation (27) and integrate from c = a to c = b. This gives

* An example of such calculation is given in a paper by A. A. Jakkula, Pub-
lications of the International Association for Bridge and Structural Engineering,
Vol. 4, P. 333, I936.



238 STEPHEN P. TIMOSHENK0. [J. F. I.

( f o r x < l - - b)

pl f b[ sinhkc sinhkx+CX]
~ - H~j+Hp klsinhkl lS dc

_ pl2 [coshka-coshkb (b~-a2)x]
Hw+ Hv k21~ sinh kl sinh kx + 2l3 •

T o o b t a i n the c o m p l e t e deflection, we s u p e r p o s e on this
d e f l e c t i o n the deflection 72 p r o d u c e d by the u p w a r d pull
(eq. 29) w h i c h g i v e s , for x < l - b,

(-- )HvwP c o s h kl kx
2 I X ( I - - X )

Hw(Hw +H~) k~l2 cosh kl k21°" 2l2
2

I n a s i m i l a r m a n n e r the deflections in the p o r t i o n s CD a n d DB
of the t r u s s c a n be o b t a i n e d . A s i m p l e r m e t h o d of c a l c u l a t i o n
deflections is s h o w n in the n e x t a r t i c l e .

If a c o m b i n e d a c t i o n of live load a n d t e m p e r a t u r e c h a n g e
is c o n s i d e r e d , the e q u a t i o n for c a l c u l a t i o n of the a d d i t i o n a l
h o r i z o n t a l t e n s i o n / / 8 is o b t a i n e d by s u b s t i t u t i o n i n t o e q u a -
t ion (31) /-/8 for Hp a n d H,L/AcE~ + ~tL1 for H~L/AcEc
(see p. 232 ).

PP~ = ~ 1 + ~ / 2 - - -

H~o+Hp
[ cosh ka-cosh kb (b2-a2)x ]

× sinh --21 


