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Transport Effects in Semi-metals and Narrow-gap Semiconductors
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Department of Physics, Bristol College of Science and Technology,
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ABSTRACT

The semi-metals and narrow-gap semiconductors are characterized by high
values of the electron mobility, and sometimes, of the hole mobility too. When
both carriers have a high mobility in intrinsic material the bipolar transport
effocts become prominent. Properties that are particularly sensitive to
bipolar conduction are the electronic thermal conductivity and the Nernst
and Ettingshausen coefficients.

When there is a very large magnetoresistance effect, as there is in some
semi-metals at low temperatures, high electric fields can be applied without
excessive power dissipation. This allows the observation of an enhanced
phonon interaction with carriers that are drifting with the speed of sound,
the effect being manifested as a kink in the current—voltage characteristic.
Other non-linear offects have been observed at high current densities due to
self-magnetic fields of the charge carriers. These and other effects can be
influenced by diffusion phenomena associated with the relatively high carrier
lifetimes.

The long relaxation times of the carriers in some of the materials at very
low temperatures allow one to observe oscillations in the magnetoresistance
(and other properties) as well as size-dependent effects.

Most of the materials have multi-valley energy bands for at least one type
of charge carrier. Although the band parameters are given most directly by
cyclotron resonance experiments, they can in general also be determined from
galvanomagnetic measurements under less critical experimental conditions.
Several of the materials belong to the crystal class R3m and have ellipsoidal
(or quasi-ellipsoidal) energy surfaces in the Brillouin zone which are tilted
with respect to the crystal axes. These materials provide an interesting
example of the determination of band structures from the galvanomagnetic
coefficients. Even for a two-band non-parabolic conductor, there are
generally sufficient data to allow the band parameters for any specific model
to be caleulated, provided, of course, that the model is appropriate.

Thermoelectric measurements, together with Nernst or magnetothermo-
electric observations, can provide the dats on the Fermi energy and scattering
law that are needed to complete a description of the material.

The high carrier concentrations in the semi-metals (and the heavily-doped
semiconductors) give rise to the possibility of superconducting behaviour.
In this case, however, a low mobility is an advantage, since a high mobility
implies a weak interaction between the electrons and the lattice.

The recent observations on the variation with voltage of the tunnelling
current at & junction between a semi-metal and an insulator indicate a
promising technique for band-structure studies.

Applications of the semi-metals are somewhat restricted by the parameters
of the presently available materials, but the possibility of thermomagnetic
energy conversion should encourage comprehensive studies of the transport
properties on existing and new semi-metals.
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§ 1. INTRODUCTION

THE intensive study of semiconductors in recent years has, for the most
part, been concentrated on materials with energy gaps of the order of one
or more electron-volts, since it is these substances that can be used in
junction devices such as transistors. However, for some types of applica-
tion it is desirable to choose semiconductors having much smaller energy
gaps. This is immediately obvious, for example, if one wishes to develop
a photoconductor forlong-wavelength infra-red radiation, since the response
falls off sharply when the photon energy becomes less than the energy-gap
width. It is not so obvious that narrow-gap semiconductors are needed
for, say, galvanomagnetic devices until one recollects that, in general,
the charge-carrier mobility increases as the energy gap decreases (Wright
1959). This trend is shown in fig. 1 for the Group IV elements and
ITT-V compounds.

If one wishes to study those effects that depend on high carrier mobilities
one does not, then, normally work with wide-gap semiconductors. In
fact, there is apparently some advantage from this viewpoint if the energy
gap disappears altogether ; in other words, one should employ a semi-metal
rather than a semiconductor.

Before going further we should, perhaps, consider the physical differences
between semiconductors and semi-metals. One can define a semiconductor
as a material in which there is a band of forbidden energy covering all values
of the wavevector. Semi-metals, on the other hand, have no such
forbidden band, though they can still retain a direct energy gap for any
specific wavevector. It might be expected that these simple definitions
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would make it easy to decide if any given material is a semiconductor
or a semi-metal but, in practice, this is not always so. A perfectly pure
semiconductor should have zero electrical conductivity at the absolute
zero of temperature, whereas a semi-metal must retain a finite conductivity
at0°k. However, the donor or acceptor impurities, that are always present,
in any real semiconductor, invariably have very small activation energies
when the gap is narrow, and, unless their concentration is very small,
there is a tendency for them to form impurity bands which overlap the
conduction or valence bands. Thisimplies that, however low the tempera-
ture, the charge carriers are not frozen into the impurity states and the
electrical conductivity does not disappear. Also, it must be realized,
that even when the valence and conduction bands overlap one another,
this does not imply that the carrier concentration must be independent
of temperature. For example, consider the simple case of an intrinsie
conductor with a parabolic density-of-states function and a density-of-
states effective mass m* which has the same value for electrons and holes.
Then the carrier concentration =, is given by :

2rm*ET\ 32 K
’n,=2 —_— F1/2 —-l - . . . . . (1)
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where k is Boltzmann’s constant, 7' is the absolute temperature, % is
Planck’s constant, £, is the energy gap:

P (0)= f " faa,
0

f being the Fermi distribution function. Clearly, even when the energy
gap is equal to zero, the carrier concentration varies as 732, although
the temperature variation of the mobility might prevent the electrical
conductivity from increasing with temperature.

Semi-metals can be doped with impurities so that they become n- or
p-type in just the same way as semiconductors. Furthermore, there
are solid-solution systems for which some compositions are semiconducting
while others are semi-metallic. For example, Jain (1959) showed that
the Bi~Sb alloys are semiconductors over a certain range of composition,
whereas both the elements are semi-metals. ~ Since, then, there is so little
practical difference between semi-metals and narrow-gap semiconductors
it seems appropriate that both types of material should be included in
this review.

It is not intended to make an exhaustive coverage of all the materials
or phenomena that could legitimately be included. It has already been
pointed out that semi-metals and narrow-gap semiconductors tend to
have high carrier mobilities. As the temperature is reduced the mobility
rises, in many instances to extremely large values which are limited only
by crystalline imperfections. In wide-gap semiconductors the low-
temperature mobility tends to be restricted by ionized-impurity scattering
but in many of the narrow-gap materials this does not occur. This is due,
to some extent at least, to the fact that the latter materials generally have
large values of the dielectric constant, thereby reducing the range of
influence of the impurity ions (Conwell and Weisskopf 1950, Brooks 1955).
Also, there is a screening effect at large carrier concentrations. Particular
attention, then, will be paid to those materials which exhibit exceptionally
high mobilities at low temperatures.

One reason for the study of semi-metals and narrow-gap semiconductors
lies in the fact that they can have high concentrations of electrons and
holes present simultaneously. Thus, they permit the easy observation
of the bipolar transport effects, in which there is appreciable energy
transfer without the flow of electronic current. The bipolar effects are
seen to most advantage in materials that have high mobilities for both
electrons and holes.

Naturally enough, the semi-metal bismuth takes pride of place in this
review, since so much effort has been devoted to its study (Boyle and
Smith 1963). The elements antimony and, to a lesser extent, arsenic
from the same group of the periodic table must also be mentioned in some
detail, if only for the purposes of comparison.

There are two other interesting elemental materials, graphite and
grey tin, which would certainly have attracted far more attention but
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for the fact that they are very difficult to prepare in the form of large
crystals. Graphite differs from all the other semi-metals in having a
very low atomic weight (thus reversing the tendency for the energy gap
to rise as the atomic weight falls); in some respects graphite is an almost
ideal semi-metal since it has electron and hole mobilities which are large
and nearly equal. Grey tin, also, has comparable values for the mobility
of the two types of carrier.

Turning to the compounds, the IV-VI semiconductors such as PbTe
and PbS have been widely studied for many years. At least one of the
IV-VI compounds, GeTe, is probably a true semi-metal and is especially
interesting in that it can become superconducting at very low temperatures.

The IT-VI compounds HgTe and HgSe are either semiconductors with
extremely small energy gaps or, less probably, semi-metals with slightly
overlapping bands. They, like the III-V compound InSb, have a very
large ratio of electron to hole mobility and so do not display strong bipolar
effects. On the other hand, the V-VI compounds, such as Bi,Te; have
mobility ratios that are much closer to unity and, in fact, it was with Bi,Te,
that the phenomenon of bipolar heat conduction was first demonstrated.

Although it is simpler from the experimental viewpoint to work with
elements and compounds, there is considerable interest at the present
time in solid solutions. The formation of a solid solution between two or
more metals inevitably leads to a considerable reduction in the relaxation
time of the charge carriers but this need not be so for solid solutions that
are semi-metallic or semiconducting. Since such solid solutions can have
high carrier mobilities they are just as suitable as the pure elements for
many applications and they allow much greater flexibility in the choice
of energy gap or band overlap. In fact, were it not for the technological
difficulty of producing homogeneous solid solutions there would be a much
more widespread use of their potentialities.

§ 2. CHARACTERISTICS OF SPECIFIC MATERIALS
2.1. Crystal Structures

The materials that have been mentioned in the Introduction are more
closely related to one another than might appear at first sight. This
fact is brought out by a discussion of their crystal structures. The Group
V elements, Bi,Te; and GeTe all have the space group R3m.

Bismuth has a rhombohedral structure with a primitive trigonal cell
as shown in fig. 2(a). The symmetry elements include three binary
axes in a plane which is perpendicular to the single trigonal axis. There
are three reflection planes which each contain the trigonal axis and a
bisector of the angle between two of the binary axes. The lattice vectors
a are each of length 4:75 A and the trigonal angle « is equal to 57°14/,
the two bismuth atoms being placed on the trigonal axis of the cell at a
distance %, equal to 0-237a, from each of the vertices (Cucka and Barrett
1962). If this distance u were equal to 0-25¢ and if the trigonal angle
were 60°, bismuth would possessasimple cubicstructure. Itwillberealized,
then, that the bismuth lattice is only slightly distorted from the cubic

U2
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configuration, though it must be emphasized that this does nof imply
that such transport properties as the thermal conductivity, are nearly
isotropic.

Fig. 2
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Trigonal unit cells for (a) bismuth (with ¢=47541 and «=57°14') and
(b) Bi,Te; (with a=10-47 & and «=24° 10).

Arsenic (Wyckoff 1960) and antimony (Barrett ef al. 1963) have the
same structure as bismuth (which is, in fact, usually known as the arsenic
structure) but the deviations from simple cubic are greater for these
elements and the lattice dimensions are smaller. Bismuth and antimony
form solid solutions in all proportions and there is also a complete range
of solid solubility in the antimony-arsenic system. On the other hand
bismuth and arsenic are only slightly soluble in one another (Wyckoff 1960).

Bi,Te; also possesses a rhombohedral structure (Lange 1939). The
trigonal cell contains two bismuth atoms and three tellurium atoms
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arranged along the axis as shown in fig. 2(b). The positions of the
atoms in the Bi,Te; structure can be obtained from those in the bismuth
structure simply by modifying the interatomic spacings in an appropriate
fashion and, of course, substituting three-fifths of the bismuth atoms
by tellurium atoms. Bi,Te; has a melting-point maximum in the phase
diagram close to the stoichiometric composition, but there is, nevertheless,
a wide range of solid solubility in the Bi-Te system between bismuth
and Bi,Te, (Brown and Lewis 1962). Single-phase solid solutions have
been found with all tellurium concentrations between 30 and 60at. 9%,.
These intermediate alloys are rather difficult to prepare and have been
little studied. Most of them are likely to be semi-metallic with far from
equal concentrations of electrons and holes. Sb,Te, has the same structure
as BiyTe,, and a range of solid solubility has been found by Brown and
Lewis in the Sbh-Te system which is even wider than that in the Bi-Te
system. Bi,Se, also has the structure of Bi,Tes,.

A noteworthy feature of Bi,Te; is that the crystals are composed of layers
of atoms following the sequence ~Te-Te-Bi-Te-Bi-Te-Te—, the spacing
between the adjacent tellurium layers being abnormally large (note that
the trigonal axis of the unit cell in fig. 2(b) extends over 15 layers).
It appears that the binding electrons are used up in mixed covalent-ionic
bonds between the bismuth and tellurium layers leaving only very weak
van der Waals bonds between the neighbouring tellurium layers (Drabble
and Goodman 1958). Thus Bi,Te, can be cleaved even more readily than
bismuth along planes perpendicular to the trigonal axis.

Table 1. Trigonal cell parameters of some semi-metals and related

semiconductors

Element or compound el o
Bi 4-75 57° 14’
Sb 4-51 57° 7’
As 4-13 54° 10/
GeTe 423 58° 15’
SnTe 4-44 60°
PbTe 4-55 60°
PbSe 4-33 60°
PbS 4-20 60°
Bi,Te, 1047 24°10°

PbTe, PbSe, PbS and SnTe all possess the rock-salt structure which
may be regarded as a simple cubic structure with alternate sites occupied
by atoms of a different type. Thus, a distortion of the rock-salt structure
towards rhombohedral symmetry produces a structure analogous to that
of bismuth having two types of atom. This distorted rock-salt structure
is observed for the compound GeTe. It is interesting to note that, despite
its thombohedral structure, GeTe forms a complete range of solid solution



280 H. J. Goldsmid on

with SnTe, there being a gradual transition away from the cubic structure
as the GeTe content is increased (Bierly et al. 1963). Similar solid solutions
can be formed between GeTe and AgSbTe, which is a cubic ternary
compound analogous to the rock-salt structured IV-VI compounds
(Rosi et al. 1961) ; the structure remains cubic as GeTe is added to AgSbTe,
until the former reaches a concentration of about 80 mol. %,

The trigonal cell parameters of most of the elements and compounds
mentioned above are given in table 1. The fact that Bi,Te; has a very
different trigonal angle from the other materials is due primarily to the
fact that the unit cell contains five instead of two atoms, though the
rather long weak bonds between the tellurium layers in Bi,Te; do imply
that it is not quite so close to a cubic material as, say, bismuth or antimony.
The implications of the similarities in crystal structures on the energy
band structures have been discussed by Cohen ef al. (1964).

Fig. 3
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Crystal structure of graphite. #=2-46 i and ¢=6-74 &.

Graphite is another material with a layer structure, and single crystals
of it can be cleaved very easily along the basal planes. Its crystal structure
is shown in fig. 3. Graphite is often regarded as a two-dimensional
crystal since the inter-layer spacing of 3-37 4 is so much larger than the
distance between nearest-neighbour atoms in each layer plane of 1-42 .
Although the graphite structure is hexagonal rather than rhombohedral,
its symmetry elements are not too dissimilar from those of bismuth or
Bi,Te;. In particular, crystals of graphite are uniaxial with three-fold
rotational symmetry about the axis which lies perpendicular to the planes
of easy cleavage.

The other substances of interest to us all possess cubic structures derived
from that of diamond. Grey tin, of course, actually has the diamond
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structure, while HgTe and HgSe, like the III-V compounds, have the
zinc-blende structure in which the alternate atoms are of a different type.
There are a very large number of more complex compounds containing
three or more elements that can be derived from the Group IV elements
and IIT-V compounds by the rules of cross-substitution (Goodman 1958).
Thus, by analogy with grey tin and InSb, one might expect CdSnSbh, to
be a narrow-gap semiconductor or perhaps a semi-metal, though in practice
it does not seem possible to form this particular compound. Most of the
work on the ternary and quaternary compounds and their solid solutions
has been confined to the wider gap semiconductors but there are doubtless
alarge number of smaller gap materials that could be studied.

Except in purely qualitative work, it is usually essential to obtain single
erystals of the rhombohedral and hexagonal materials mentioned above,
and, even for the cubic materials, single crystals are highly desirable.
It is beyond the scope of this article to describe the preparation of single
crystals in detail but a few remarks may be helpful. Most of the materials
that have been mentioned can be grown from the melt and an excellent
review of the various techniques is that of Hurle (1963). Bismuth crystals
are commonly grown by the Bridgman method using a soft mould of,
for example, graphite powder to allow for the expansion or solidification.
Strain-free single crystals of controlled orientation can be pulled from the
melt (Porbansky 1959) the main difficulty arising from the reactivity of
bismuth and its tendency to form an oxide scum on the liquid surface.
The oxide can be removed by treatment in hydrogen at an elevated tempera-
ture ; the crystal pulling is best carried out in vacuum. Directional freezing
and zone-melting in horizontal boats have been carried out with varying
success. Thus, Goss and Weintroub (1952) found that the movement of
the interface at a slow speed leads to alineage structure whereas, at a faster
speed, the crystal breaks up into blocks differing to a greater or lesser
extent in their orientation. On the other hand, Brown and Heumann
(1946) have succeeded in producing single crystals of the Bi-Sb alloys by
zone melting. They were obliged to move the interface at less than
Imm/hr in order to avoid constitutional supercooling ; the Bi-Sb alloys
are characterized by a low diffusion coefficient, a segregation coefficient
that is much greater than unity, and a low melting temperature, which
makes it difficult to achieve a steep temperature gradient near the interface.
Lacklison (private communication) has been able to pull a Bi--Sb alloy,
containing 5at. %, of antimony, from the melt using a divided graphite
crucible to maintain a constant composition of the solid in spite of the large
segregation coefficient (5 to 10). The divided (or floating) crucible method
has been described by Airapetyants and Shmelev (1960).

The techniques adopted for the other elements, compounds and solid
solutions are often similar to those mentioned above, though in certain
cases the presence of a volatile constituent (such as selenium or tellurium)
introduces difficulties. It is not easy to obtain large single crystals of
arsenic since it sublimes at atmospheric pressure. However, it can be
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melted at some 820°c if a pressure of about 36 atmospheres is maintained.
Saunders and Lawson (1965) have succeeded in growing large crystals
from the melt under the vapour pressure of the arsenic itself.

Some of the compounds have melting -point maxima that are not precisely
at the stoichiometric composition; thus, growth of crystals from the
stoichiometric melt produces a non-stoichiometric solid which displays
extrinsic rather than intrinsic conduction.

Graphite, of course, present special problems. Some work has been
done using natural crystals of graphite but these are always very small.
Larger samples with near-single crystal properties can be prepared by
pyrolytic deposition followed by reheating at up to 3600°c (Klein ef al. 1962).
It is also extremely difficult to obtain single crystals of grey tin, on account
of its phase change to the metallic form at 13-2°c. Van Leut (1962) has,
however, managed to produce crystals, that are relatively pure and perfect,
from mercury-rich Hg—Sn alloys.

2.2. Electronic Parameters

The transport properties of a conductor depend, in general, on the
mobilities of the different types of charge carrier and on their effective
mass tensors, in so far as it is legitimate to use the concept of an effective
mass. They depend on the positions in k space of the extrema of the
conduction and valence bands, since these positions determine the multi-
plicity of the constant-energy surfaces according to the crystal symmetry.
In addition, unless the material is perfectly pure (and stoichiometric if
itis a compound), it isnecessary to know the excess or deficiency of electrons
as compared with holes ; alternatively the position of the Fermi level with
respect to the band extrema could be specified. The thermal properties
also involve the lattice contribution to the heat conductivity.

The qualification, in the preceding paragraph, in connection with the
use of an effective mass, is particularly significant for a narrow-gap material.
Even for a wide-gap semiconductor such as germanium or silicon, there are
noticeable departures from parabolicity in the bands when the carrier
concentration exceeds about 10'%/cm3 (Cardona ef ¢l. 1960). Non-parabolic
effects become important for narrow-gap semiconductors at appreciably
lower carrier concentrations because of the strong interaction between the
valence and conduction bands when their edges are close to one another.
It seems certain that one should use non-parabolic band models for most,
ifnot all, of the materials discussed here but it is quite common to interpret
the experimental results in terms of a pseudo-parabolic model, the effective
mass then being a function of the Fermi energy.

There are, of course, band extrema at energies which differ from those
at the conduction band minimum and the valence band minimum. When
the carrier concentration is small these other extrema can be ignored,
but for the high carrier concentrations encountered in semi-metals, they
may well account for appreciable numbers of carriers. This will be so
particularly if the additional extrema have energies that are not widely
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different from those of the principal extrema and if they have large effective
mass values associated with them.

A considerable effort has been devoted to the determination of the
energy band structure of bismuth by a variety of experimental techniques,
notall of which have led to even the same qualitative results. In discussing
these results the surfaces of constant energy will be referred to as electron
and hole ellipsoids although it must be accepted that the electron surfaces
are not strictly ellipsoidal and the conduction band is non-parabolic
(Laxetal. 1960, Cohen 1961). Ingeneral, the experiments can be explained
in terms of three or six light-electron ellipsoids and one or two light-hole
ellipsoids of revolution about the trigonal axis, while some workers have
invoked additional carriers—the so-called heavy holes (Lerner 1962, 1963).
Eachelectron ellipsoid is tilted in k space with respect to the crystallographic
axes by some 5° about a binary axis, though in the useful Abeles and
Meiboom (1956) model this tilt is ignored. It is easy to be confused by the
manifold data that are available, but Jain and Koenig (1962) have presented
clear arguments that seem to establish the true picture. They pointed
out that such phenomena as the de Haas—van Alphen effect, and others in
which oscillatory behaviour is observed as the magnetic field is varied,
yield the carrier concentration per ellipsoid whereas Hall effect measure-
ments, for example, give the total carrier concentration. Jain and Koenig
found that these two types of measurement are consistent with one
another only if it is assumed that there are three electron ellipsoids and it
is presumed that these are, in fact, six half-ellipsoids centred at the L
points at the surface of the Brillouin zone (see fig. 4) as suggested by
band structure calculations. Within each valley the effective mass is low
in the binary axis direction and along the axis which is nearly parallel
to the trigonal axis, while it is high along the axis which is nearly parallel
to a bisectrix direction. For pure bismuth at 0°k there are about 1-4 x 1017
electrons per ellipsoid/cm® and about 4 x 107 electrons/em?® altogether.
Although fewer data are available for holes, it seems established that
there can be only one light-hole spheroid, or rather two half-spheroids
centred at the point 7' on the Brillouin zone surface. The measurements
show that the hole effective mass is much higher along the direction of the
trigonal axis than in the binary-bisectrix plane. Jain and Koenig showed
that there can be only a very small number of heavy holes (if any) at low
temperatures though it is by no means certain that the light electrons and
holes are the only carriers at room temperature (Gallo et al. 1963).

Since we are concerned here with the transport properties of bismuth
it is particularly relevant to consider the energy band data that result
from transport measurements. The comprehensive measurements of
the magneto-thermoelectric and galvanomagnetic effects by Smith, Wolfe
and Haszko (1964) were analysed in terms of a non-parabolic electron band
of the form (Cohen 1961):

E\ h’k.m*1k
/ ]- pna =——_’ . . - L] L] . L] 2
E( +EG> 3 , (2)
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where E; is the direct energy gap. The valence band is supposed to be
parabolic so that for the holes

A2k . m*-1 k
—B,-B=————, . ... ..

— E , being the band overlap, and the energy being taken as zero at the
conduction band edge. The results of Smith and his colleagues at 80°
are shown in table 2, which also gives the data of Abeles and Meiboom
combined with those of Gallo et al. (1963). In view of the different
assumptions, the poor agreement between the two sets of parameters is
hardly surprising.

Table 2. Band parameters of bismuth derived from transport measure-
ments at 80°k. Set I refers to Smith, Wolfe and Haszko (1964) while
set 11 refers to Abeles and Meiboom (1956) and Gallo et al. (1963)

Electron masses Hole masses | Pirect | Band
gap overlap

Mgy /110 mzz/ml Mga/m | mog/m | M,[m M ojm Eq —K,

It { 0-002 015 0-005 [ —0-015 | 0-075 | 05 15 mev | 44 mev
i | 0013 0-53 0-022 — 0-077 | 0-29 32 mev

1 Non-parabolic, tilted band.
1 Parabolic, non-tilted band.

The conclusions of both Smith et al. and Gallo et al. were based on the
assumption of isotropic relaxation times for the charge carriers, the
expressions for the relaxation times of electrons and holes being :

O O N 3
and
Ta=A(—E,—EYn, . . . . . . . . (5)

respectively, 4 and A being constants. Smith found that his results could
be fitted best by assuming A,=2,= —0-2, this being appropriate for
acoustic-mode lattice scattering, though other workers have used the
value — 0-5 for the exponent in the relaxation time expressions. The term
‘ mobility * does not have the same significance for a partially degenerate
conductor as it does for a lightly doped semiconductor, since it becomes
a function of the Fermi energy if classical statistics cannot be eraployed.
However, some idea of the magnetic fields that are necessary to produce
high-field effects can be obtained from the mobilities quoted for a sample
of some arbitrary doping level. Table 3 gives values for the mobilities
of electrons and holes in bismuth, in the direction of the trigonal axis
and perpendicular to this direction, at three specific temperatures, according
to Abelés and Meiboom (1956) and Zitter (1962).
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Turning now to antimony, there are a number of qualitative differences
from bismuth that are readily apparent. The electron mobilities are
appreciably smaller for antimony while the carrier concentrations are much
greater. Thus, at room temperature the concentration of electrons or
holes in antimony is about 4 x 10'°/cm® (Epstein and Juretschke 1963)
whereas in bismuth it is only about 2 x 10'8/cm3 (Abeles and Meiboom 1956).

Table 3. Mobilities of electrons and holes in intrinsic bismuth. The
values at 4-2°K are due to Zitter (1962) while those at 80°k and 300°K
are due to Abeles and Meiboom (1956). All values are given in

cm?/vsec
Carrier Direction 4-2°k 80°k 300°k
Electrons || trigonal 30 x 108 33-3x 104 19x 103
Electrons | trigonal 22 x 108 286x10* |16-3 x 103
Holes || trigonal 108 3-33x 10 2-1x 103
Holes | trigonal 12x 108 12:4x 104 7-7x 103

The possible band models for antimony have been reviewed by Hall
and Koenig (1964). All experiments indicate that the electron ellipsoids
(which are deduced to be three in number and probably situated at the X
points on the Brillouin zone face) are tilted by an appreciable angle about the
binary axes in a sense opposite to that for bismuth. Cyclotron resonance
measurements (Datars and Dexter 1961) give effective mass values
my=0-06m, m,=1-8m and mg=0-05m within the principal axis system of
each ellipsoid, the angle of tilt being 36°. The situation for the valence
band is far less clear. Hall and Koenig suggest that some 709, of the holes
have prolate ellipsoidal surfaces of constant energy, centred on the trigonal
axis probably at the 7' points on the Brillouin zone face, while the remaining
holes are accounted for by oblate ellipsoids, also centred on the trigonal
axisat two A points (see fig.4). On the other hand, the galvanomagnetic
measurements of Freedman and Juretschke (1961) and of Epstein and
Juretschke (1963) are more consistent with three or six tilted hole ellipsoids.
Recent cyclotron resonance measurements by Datars and Vanderkooy
(1964) also show that there are three (warped) hole ellipsoids, though their
tilt angle of 4° is rather less than the 20-30° obtained from the galvano-
magnetic coefficients. Whatever the true valence band structure, certain
qualitative features of Epstein and Juretschke’s conclusions must hold
good. Thus, they show that the band overlap is about 190 mev and the
electron and hole mobilities are both of the order of 10% cm?/v sec at room
temperature, in any particular direction.

There has been relatively little work on the third of the semi-metallic
Group V elements, arsenic. Band structure calculations (Falicov and
Golin 1965) indicate close similarities with bismuth, the holes being located
at the T point and the electrons near the L points in the Brillouin zone.
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As might be expected, the Group IV elements, such as tin, act as aceeptor
impurities in the Group V semi-metals while the Group VI elements,
such as tellurium act as donors. The addition of one of the Group V
elements to another does not, of course, disturb the equality of the electron
and hole concentrations but it does lead to interesting changes in the
band structure. Jain (1959) first showed, from measurements of the Hall
effect and electrical conductivity as a function of temperature, that the
addition of between 5at. %, and 40at. 9, of antimony to bismuth changes
it from a semi-metal to a semiconductor. Figure 5 shows Jain’s plot of
E,, the minimum energy gap, against composition. There are some
indications that the energy gap may be even greater than l4mev for
composition containing between 10 and 20 at. %, of antimony ; Brown and
Silverman (1964) deduced a value of 24 mev from the temperature variation
of the resistivity of the Biy,Sh,; alloy.

Fig. 4

Schematic drawing of the first Brillouin zone for the Group V semi-metals
and the V,VI, semiconductors with the R3m space group.

The effect of adding bismuth to antimony is to raise the value of the
direct gap at the X points through an increase in the lattice potential
and to decrease the gap at the L points through an increase in the spin—orbit
coupling. Presumably the minimum energy gap K, reaches its highest
value when the maximum energy of the valence band, or the minimum
energy of the conduction band, is just shifting from the position it occupies
for pure antimony to some other part of the Brillouin zone. If Hall
and Koenig’s interpretation of the band structures of bismuth and antimony
is correct, then E , has its largest value when the electrons at the X and L
points have the same energy.

It must be emphasized that there is an important difference between
the effects of forming alloys or solid solutions between semiconductors
or semi-metals, on the one hand, and between metals, on the other. The
scattering of the charge carriers is always much stronger for a disordered
metal alloy than it is for a metallic element or compound. However,
the carrier mobilities in disordered solid solutions between semiconductors
are generally of the same order as those in the pure elements or compounds.
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This is because the wavelengths of the electrons in semiconductors and
semi-metals are very much greater than the interatomic spacing, so that
disturbances in the short range order do not lead to appreciable scattering.
Thus, the carrier relaxation times at 1-3°k are long enough in a BiyShy
alloy for Smith (1962) to have been able to observe cyclotron resonance.
Smith found that the electron effective masses for this alloy were smaller
than those in bismuth by a factor of two whereas the hole effective masses
were the same as for bismuth. If it is supposed that the only effect of
alloying is to move the bands relative to one another, this provides good
evidence for the non-parabolicity of the conduction band.

Fig. 5
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Energy gap pplotted against antimony concentration in Bi-Sb alloys according
to Jain (1959).

A study of the alloys between arsenic and antimony by Saunders et al.
(1965) has shown that these are semi-metallic at all compositions, the band
overlap rising from 190 mev for antimony to 370 mev for arsenic.

The general features of the band structure of Bi,Te; were first obtained
by Drabble (1958) and by Drabble et al. (1958) from the analysis of the
galvanomagnetic effects at liquid nitrogen temperature. The simplest
model that could account for the observed properties was found to involve
three or six valleys for both the conduction and valence bands. As for
electrons in bismuth or antimony, the surfaces of constant energy are
ellipsoids that are rotated about the binary axes. The électron ellipsoids
are almost spheroidal about an axis almost parallel to the trigonal axis
and are highly compressed in this direction. The hole ellipsoids, too,
are almost spheroidal, being highly compressed in the directions of the
binary axes. Studies by Sehr and Testardi (1963) of the reflection
minima associated with the free-carrier plasma edges have indicated that
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there are six rather than three valleys for both bands, this being consistent
for the valence band with the de Haas—van Alphen data obtained by Testardi
et al. (1962).

Drabble’s analysis was based on the assumption of a quadratic relation
between energy and wave-vector but, in view of the high carrier concentra-
tions that are always encountered in Bi,Te,, this is questionable. In fact,
measurements of the galvanomagnetic properties of strongly doped
n-type material (Delves et al. 1961) can only be interpreted in terms of
a six-ellipsoid model if a different effective mass tensor from that used
by Drabble is employed ; this is another way of saying that the conduction
band is non-parabolic. Drabble also assumed the relaxation time to be
isotropic ; strictly speaking, the galvanomagnetic measurements determine
the combined anisotropy of effective mass and relaxation time within a
valley (Efimova ef ol. 1962). A further complicating feature may be
the presence of carriers in a second conduction band having a minimum
that is not much higher than that of the lowest conduction band minimum.
The second conduction band has been invoked by Ure (1962) to explain
his measurements on uncompensated n-type Bi,Te;.

The minimum energy gap £, for BiyTe; at 0°k is 150 mev (Austin 1958).
The electron and hole mobilities perpendicular to the trigonal axis are
about 1200 cm?/v sec and 500 cm?/v sec at 300°K (Goldsmid 1962) and the
corresponding density of states effective masses are 0-6m and 1-1m. Itis this
combination of properties that ensures appreciable contributions to the
electrical conductivity from both the electrons and holes in intrinsic
material, Bi,Te, thus exhibiting strong bipolar effects. Another significant
feature of Bi,Te, is the fact that its electron or hole mobility increases
monotonically as the temperature is lowered, its value tending towards
some limit that is characteristic of the degree of perfection of the
particular sample. In all specimens that have been studied to date the
carrier concentration remains finite at 0°k ; thus, Bi,Te, invariably displays
a residual resistance effect similar to that encountered for a metal.

Galvanomagnetic measurements on n-type Bi,Se; have yielded a
six-valley conduction band model as for Bi,Te; (Hashimoto 1961). Austin
and Sheard (1957) have determined the energy gap of BiyT'e;—Bi,Se; alloys
from optical absorption measurements. They found that the energy gap of
Bi,Te, rises on the addition of up to about 30 molar %, Bi,Te;, but further
additions lead to a reduction in the gap. Such a discontinuity in the slope
of a plot of energy gap against composition usually indicates a change
in the location in the Brillouin zone of either the valence or conduction
band extrema. There may, however, be another explanation of Austin
and Sheard’s observations. It has been suggested that, when some of the
tellurium atoms in Bi,Te, are replaced by selenium atoms, the latter go
preferentially on to sites in the tellurium layers that lie between the bismuth
layers (see §2.1) (Drabble and Goodman 1958). Of course, this process
can only continue until all these sites are filled, that is at the composition
Bi,Te,Se ; one might, therefore, expect a discontinuity at this composition.



Transport Effects in Semi-metals and Narrow-gap Semiconductors 289

If Drabble and Goodman’s suggestion is correct, Bi,Te,Se should behave
as an ordered solid solution. Misra and Bever (1964) have produced
evidence that ordering occurs if samples of Bi,Te,Se are annealed for a
sufficiently long period, but transport measurements have not been
carried out on material that is known to be ordered.

Sb,Te,, like Bi,Se; forms solid solutions with Bi,Te, in all proportions.
The properties of holes in Sb,Te, are similar to those in Bi,Te; but the
electron characteristics are not known, since the compound is always far
from stoichiometric, with a high acceptor concentration due to the excess
antimony. For the same reason the energy gap of Sb,Te; is unknown
but it is certainly very small and possibly zero.

Since GeTe has a crystal structure that is so little distorted from that
of the cubic IV-VI compounds, it might be expected that its electronic
properties would be similar to those of PbTe, PbSe and PbS. The three
latter compounds all have energy gaps of about 0-3ev and mobilities for
electrons and holes of the order of 1000 cm?/sec. However, in practice the
properties of GeTe are quite different. It isalwaysnon-stoichiometric and
strongly p-type, so attention has been confined to the hole characteristics.
The hole mobility is no more than 50 cm?/vsec, the effective mass
being correspondingly large, of the order of twice the free electron mass
(Moriguchi and Koga 1957). That GeTe is a semi-metal rather than a
semiconductor has been inferred from the values of the Seebeck coefficient
which are small even at elevated temperatures. The fact that the carrier
concentration in GeTe is always so high makes the question of whether
or not it is a semi-metal of hardly more than academic interest.

Fig. 6
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The Brillouin zone and part of the Fermi surface shown schematically for
graphite. There are similar parts of the Fermi surface at each of the
six edges. The warping of the surfaces is not illustrated.

The energy band structure of graphite is rather complex because of the
close proximity, at the edge of the Brillouin zone, of the Fermi surfaces
for electrons and holes. The Fermi surfaces are shown schematically
as ellipsoids at zone edge of the Brillouin zone in fig. 6 but, in fact, both
sets of surfaces are severely warped (McClure 1964). The effective masses of
both types of carrier are of the order of 0-05m perpendicular to the trigonal
axis and an order of magnitude higher in the direction of the trigonal axis.
The band overlap is about 30 mev as deduced from the de Haas—van Alphen
data (Soule 1958).
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In spite of the complexity of the constant-energy surfaces, Klein (1964)
has shown that the transport properties of well-annealed pyrolytic graphite
can be interpreted using a simple two-band (STB) model. The bands
are assumed to be parabolic with cylindrical energy surfaces and a small
overlap in energy between the band edges for the pure material. Within
the terms of this model the values of the overlap energy — £ ,and theeffective
masses must be regarded as phenomenological parameters chosen to agree
with the transport coefficients and not necessarily related in any simple
fashion to the parameters determined from de Haas—van Alphen oscillations
or other effects. Klein’s results, can, in fact, be fitted by the STB model
if the band overlap is supposed to be 10 mev and the effective masses are
equal to 0-0125m. The mobility of both types of carrier in the layer planes
is about 10%cm?/vsec at room temperature rising to about 10%cm?/vsec
for reasonably good samples at very low temperatures. The mobility
ratio p /u, is about 1-1 at room temperature but appears to vary somewhat
with temperature.

It might have been expected that the properties of grey tin and InSb
would be very similar to each other in view of the fact that indium and
antimony lie next to tin in the periodic table. There are, however, marked
differences between their electronic properties. InSb has an energy
gap of 170 mev with an electron mobility of more than 70 000 cm?/v sec,
though the hole mobility is only about 1000 cm?/vsec. On the other hand,
the mobilities of electrons and holes in grey tin are very similar to one
another; both are equal to about 100cm?/vsec at room temperature
(Busch and Wieland 1953). The energy gap of grey tin is 90 mev (Busch
and Kern 1960). The effective mass of electrons in InSb is about 0-01lm
while in grey tin it is of the order of the free electron mass. It seems
clear, then, that the reason for the differences between InSb and grey
tin is likely to be found in their having different conduction band structures.
Since InSb has its conduction band minimum at k=0, we can expect grey
tin to possess a multi-valley conduction band. This has been confirmed
by Paul (1961) whose high pressure experiments suggest that the minima
lie at the edges of the Brillouin zone in the (111) directions.

The two mercury compounds HgSe and HgTe are characterized by
very high electron mobilities and much smaller hole mobilities. Although
some workers have given rather large values for the energy gap of HgSe, it
seems much more likely that the gap is smaller for both compounds. Thus,
Rodot et al. (1961) state that the energy gap of HgTe is 25 mev while that
of HgSe is less than 80 mev. It appears that for both materials the energy
band minima occur at k=0, the effective masses being about 0-03m to
0-05m, but varying with carrier concentration since the bands are non-
parabolic. At 300°k, the electron mobility in HgTe normally exceeds
20 000 cm?/v sec (the mobility ratio b being equal to about 70) while for
HgSe the electron mobility is about 10 000 cm?/v sec.

One narrow-gap semiconductor that has not so far been mentioned
is Cd;As, which has a tetragonal structure and £, equal to 130 mev (Turner
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¢ al. 1961). What makes this material interesting is its high electron
mobility of 15000 cm?/vsec at room temperature as determined for a
sample containing 2x 101 carriers/em® This combination of high
mobility and high extrinsic carrier concentration may well make more
intensive studies of CdjAs, worth while.

§ 3. TRANSPORT PHENOMENA 1N THE ABSENCE OF A MAGNETIC FIELD

3.1. Thermoelectric Effects and Heat Conduction

Before dealing with the more general situation of the transport phenomena
in combined electric and magnetic fields and a thermal gradient, we shall
consider the interesting effects that occur in the absence of a magnetic field.

The transport properties in zero magnetic field for a single-band or
extrinsic conductor are determined by the substitution of the appropriate
band parameters in certain well-known equations (Wilson 1953). Briefly,
for electrons, the electric current density is:

@

_,j=—f eufgdf, . . . . . . . . (6)
0

where e is the electronic charge, % is the electron velocity, f is the Fermi

distribution function and ¢ is the density of states at the energy E. The

rate of flow of heat per unit cross-section area due to the electrons is:

w=f wE-0fgdE, . . . . . . . (7)
0

where { is the energy at the Fermi level, otherwise known as the electro-
chemical potential. There is an additional contribution to the heat flow
from the lattice vibrations.

Incidentally, it is supposed that the flows in the systems of electrons
and lattice vibrations are independent of one another, apart from the
scattering of electrons by phonons and vice versa. In other words,
we do not include the phonon-drag effects (Gurevich 1945, Herring 1958).
It seems that the neglect of the phonon-drag effects is generally valid
for the types of material under discussion here, for a number of reasons.
The materials tend to have large electron mobilities and small lattice
thermal conductivities. Thus, the relaxation time for scattering of
electrons by phonons is long and the relaxation time for scattering of the
phonons tends to be short (though it must be remembered that it is different
groups of phonons that are primarily responsible for the conduction of
heat and for phonon drag respectively). Moreover, even if conditions
were otherwise suitable for phonon drag to occur, the effect would -be
diminished by the presence of large carrier concentrations (the so-called
saturation effect). When the carrier concentration is high, much of the
momentum that is passed on from the electrons to the phonons is returned
subsequently from the phonons to the electrons.

AP, X
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Since we are not at the moment interested in the non-parabolic nature
of the density-of-states function, we can adopt a constant effective mass
m*. We treat this as a scalar quantity here since we are not concerned
for the present with the more general tensor properties. Then the density-
of-states function is:

A (2m* B2 EL2
g=—7—7£—}—bé)————- R |
and
2K
ut= SE (9

Substitution in eqns. (6) and (7) yields:

92
O.=TK0, . . N . . . . . . . (10)
e -— — — - . - - . . 1
. eT(c E, K) ay
and
1 K2
KE=T-2(K2— 1710), I ¢ )

where ¢ is the electrical conductivity, « is the Seebeck coefficient and
kg is the electronic thermal conductivity. Z, is the energy at the edge
of the conduction band and the integrals K are defined by :

87/ 2 32
where K. = ?(h-i) m*VETA(s+ A+ 3)(ET)HHEF o, (13)

Fr=f:§70d§, s P

fo being the equilibrium Fermi distribution function, and where it has
been assumed that the relaxation time may be expressed as in eqn. (4).
The ratio «; /0T, known as the Lorenz number, is thus given as:

1 (K, K
L=€27’_2<7§>—1?o—2)' N ¢ 1)

For conduction by holes eqn. (15) is still applicable but eqn. (11) must
be modified to:
1 Kl '
oc—z({ Ev+fo>, N ¢ O N
where £, is the energy at the edge of the valence band. This implies
that the Seebeck coefficient is positive for hole conduction whereas it
is negative for electronic conduction. The magnitude of the Seebeck
coefficient is directly proportional to a suitable average of the energy
of the charge carriers measured with respect to the Fermi level. Thus,
for a classical electronic semiconductor, the Seebeck coefficient is
{{—E,— (3 +NkT}/eT where {~E, can be regarded as the potential
energy and (§ +A)k7 as the appropriate average of the kinetic energy.
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The Lorenz number L is equal to (n2/3)(k/e)? for a completely degenerate
conductor and to (§+ A)(k/e)? for a classical semiconductor in which the
assumptions outlined above are valid. Thus, for all extrinsic conductors,
whether degenerate or non-degenerate, the Lorenz number is expected to
have a comparatively small range of values, say from 2(k/e)? to 4(k/e)?.

Where there is more than one band of carriers, the contributions of
each band to the flows of charge and heat must be added together. It
may be that there are two or more conduction (or valence) bands with
energy maxima (or minima) at different levels. The following treatment
(Drabble and Goldsmid 1961) is applicable in this case, but it is more
interesting to apply it to the case of one electron band and one hole band.
This is the normal situation for a mixed semiconductor or semi-metal.
_ The electron band will be denoted by the subscript e and the hole band by
. the subscript &.

The equations for the partial flows of current and heat due to the two
- types of carrier are :

rad
le,h=Le§—oe’hae,hgradT .o .. (18)
and
4\,
‘”e,h=<ﬂ'e,h—'é)'e,h—"e,ng"adT, N ¢ X))

7 being the Peltier coefficient.

The electrical conductivity of the mixed conductor is given by the ratio
of the electric current to the gradient of the electrochemical potential
when the temperature gradient is zero. Quite simply:

o=0,+0, e (18)

The Seebeck coeflicient is determined by setting the total current equal

to zero, i.e. i ,= — i,, whence
0Ot RO,

= B )

g

Since o, and a, are of opposite sign, the Seebeck coefficient of a mixed
conductor is generally small compared with that of an extrinsic conductor.
The electronic thermal conductivity is found by summing w, and w,
for the condition that the total current is zero. Thence, it is found that:
O .0

Mlap—a 2T . . . . . (20)

Kp=K,+ K+

and the Lorenz number is

Lo,+L
L= eaeo hah—}-c:;zh(ah—ae)z. N ¢4 3]

It is, at first sight, rather surprising that the electronic thermal conduc-
tivity is not simply the sum of the separate contributions from the two
bands. The additional term arises from the fact that electron and holes can
move together in the same direction, transporting energy but not carrying
any net charge.

X2
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The Lorenz number can be very large for an intrinsic wide-gap semi-
conductor. Thus, if the mobilities and concentrations of the two types
of carrier are more-or-less equal, the bipolar term in eqn. (21) is equal to
about (x,—a,)?/4, which is (E kT +5+2,+A,)2(ke)2/4¢ if classical

Fig. 7
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Thermal conductivity plotted against electrical conductivity for Bi,Te, at
300°k. The lattice and electronic components are shown by the broken

lines.
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statistics can be employed. Typically, with £, of the order of 1ev, the
bipolar Lorenz number at room temperature is no less than about 400(k/e)2.
However, the electrical conductivity is so small for such a material that the
electronic thermal conductivity is negligible compared with the lattice
component. Bipolar heat conduction is much more easily observed for
narrow-gap semiconductors in which the intrinsic electrical conductivity
is relatively large.

Bipolar heat conduction was first suggested as an explanation of what
was apparently a very large value for the thermal conductivity of InSb
(Frohlich and Kittel 1954) but subsequent work (Busch et al. 1959) showed
that the bipolar effect is not normally appreciable for this compound.
This is because the electron mobility of InSb is about 70 times as large as
the hole mobility ; thus, the ratio o 0, /0 falls from the value of }, that it
would have for an intrinsic material with equal carrier mobilities, to about
= It is, in fact, possible to obtain a high bipolar Lorenz number for
InSb, or any similar compound with a high ratio of electron to hole mobility,
if iv is doped with acceptors so that the ratio of the concentration of holes
to that of electrons is equal to the ratio of the electron mobility to the hole
mobility. When this condition holds the ratio o.,0,/0? does attain the
value of ;. The required condition should obtain for any p-type sample
at a specific temperature somewhat below that at which the conduction
is effectively intrinsic.

The bipolar heat conduction effect can be demonstrated very easily
with the compound Bi,Te, (Goldsmid 1956). The lattice thermal conduc-
tivity is no more than about 0-015 w/cm deg at room temperature, while
the electrical conductivity of intrinsic material is as high as 140 ohm— cm—1,
the energy gap being only about 0-13ev. The ratio of the mobilities
of electrons and holes is little more than 2 :1 which means that o,0,/c?
has not fallen much below }. Some experimental results for extrinsic
and intrinsic Bi,Te, are shown in fig. 7. In the extrinsic region, as the
concentration of dopant increases, the thermal conductivity rises with
electrical conductivity, the Lorenz number being given by eqn. (15),
X having the value of —}. However, in the intrinsic region the thermal
conductivity again rises and it is found that the Lorenz number for the
intrinsic compound is about 25(k/e)2. This is in good agreement with the
value of 23-5(k/e)? predicted by eqn. (21).

Gallo et al. (1962) have pointed out that bipolar heat conduction is not
confined to semiconducting materials, but it may also be significant for
semi-metals. This is quite clear from eqn. (21) since the difference
«,—«, between the partial Seebeck coefficients of holes and electrons
does not vanish when the valence and conduction bands overlap. For
example, the bipolar contribution is more than 209, of the total electronic
thermal conductivity, if the band overlap is less than 847, for A= — 14,
or less than 20£7T, for A=4.

Gallo et al. (1963) took account of the bipolar effect for bismuth in the
analysis of measurements of the electrical conductivity, Seebeck coefficient
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and thermal conductivity on single crystals. They determined these
properties with the applied electrical or thermal gradients in both the
direction of the trigonal axis and in the perpendicular direction. Since
the thermoelectric properties depend primarily on the energies of the charge
carriers, Gallo and his colleagues were able to calculate the band overlap
and the position of the Fermi level from their results.

The significance of the bipolar contribution to the thermal conductivity
to a semi-metal has also been discussed in relation to graphite by Klein
and Holland (1963). At ordinary temperatures the lattice thermal
conductivity along the layer planes of graphite is so large that the electronic
contribution can be neglected, but at very low temperatures the fall in
the specific heat is accompanied by a fall in the lattice conductivity.
Thus at 2°K, nearly half the heat conduction is due to the charge carriers.
However, at such low temperature, even with an energy band overlap of no
more than about 10 mev, this is so very much larger than kT that the
bipolar contribution is negligible.

3.2. Size Effect on the Electrical Conductivity

If charge carriers are scattered diffusely at the surface of a conductor,
one certainly expects the electrical conductivity to become size dependent
when the width of the sample is comparable with, or smaller than, the
bulk mean free path length. On the other hand, if the energy surfaces
are spherical, and if carriers are specularly reflected at the boundaries, the
electrical conductivity should be independent of the sample width. An
investigation of size effects on the electrical conductivity in single crystals
requires measurements to be carried out at low temperatures, since it is
only then that the mean free path can exceed the minimum width of
specimen that can be achieved experimentally. For electrons in bismuth
the bulk mean free path is of the order of 1 mm at liquid helium temperature.

For a conductor with non-spherical energy surfaces, such as bismuth,
there should be a size effect even if the surface scattering is specular (Price
1960). The electrical conductivity should fall from its bulk value, as
the width of specimen is reduced, until it reaches some limiting value
which depends on the shape of the energy surfaces and on the orientation
of the current flow with respect to the crystal axes. Figure 8 shows the
results obtained by Friedman and Koenig (1960) for very high purity
bismuth (psg90/Pa-a9- > 400) at 4-2°k.  The sample was oriented so that the
current flow was parallel to a binary axis and the thickness measurement
refers to a bisectrix direction. The results were obtained by successively
electropolishing the sample to reduce its thickness. The data are consistent
with Price’s theory assuming the surface scattering to be specular. It
is noteworthy that Friedman and Koenig were unable to change the nature
of their results by etching the crystals to produce a matt surface or
by mechanically abrading the surface.

There are good reasons for supposing that specular reflection is the rule
for semi-metals and semiconductors. These reasons are based on the fact
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that in these materials electron wavelengths are much larger than in metals
and are actually comparable with optical wavelengths. Thus, one would
at least expect any surfaces that appeared to be specular to visible light
to be specular to these long-wavelengths electrons.

An unsatisfactory feature of the experiments carried out by Friedman
and Koenig is the fact that they had to remove the sample from the liquid
helium for re-etching in between successive measurements. There was

Fig. 8
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Dependence of electrical conductivity on sample thickness for bismuth at 4-2°k.

thus some possibility of altering the bulk properties by introducing strains
during an experiment. For this reason, Aubrey et al. (1964) carried out
size-effect measurements using wedge-shaped crystals to which a number
of potential leads were attached. As fig. 8 shows, there is a considerable
divergence between the results obtained by Aubrey and his colleagues
from those of Friedman and Koenig. Aubrey’s results display a much
greater difference between the bulk conductivity and the thin-sample
conductivity, though they also indicate that the conductivity reaches
a limiting value for very small widths.
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Aubrey et al. discuss their results in terms of a reflectance coefficient
p which is equal to unity under some conditions (otherwise the conductivity
would fall to zero for a sample of infinitesimal thickness) and less than unity
under other conditions. p may, for example, be dependent on both the
electron wavelength and on the angle of incidence to the surface. Asa
simple approach to this problem it is assumed that p =1 when the change
in amplitude A% of the wavevector on specular reflection is less than some
value Ak, whereas if Ak becomes greater than Ak, completely diffuse
scattering (p=0) is assumed. If it.is supposed that Ak;=1-3 x 10°cm1,
the difference between the bulk conductivity and thin-sample conductiv-
ities as measured by Aubrey, can be explained, though the variation with
thickness, when the mean free path is comparable with the sample width,
is not correctly predicted. However, in view of the disagreement between
the two sets of experimental data, it seems important to establish the true
variation of the conductivity with thickness for several orientations
before further refining the theory.

§ 4. GALVANOMAGNETIC EFFECTS
4.1. Determination of the Effective Mass Tensor

The most direct way of determining the effective mass tensor of a semi-
metal or semiconductor is by means of one of the cyclotron resonance
techniques. However, this requires that the product wg should be at
least of the order of unity, w, being the cyclotron frequency and 7 the
relaxation time of the carriers. Even at low temperatures, the relaxation
time is high enough to allow cyclotron resonance to be observed in only
a few materials. Far more widely applicable is the method of determining
the effective mass tensor from the galvanomagnetic coefficients. The
coefficients are usually measured in magnetic fields that are low enough
for the relations between current and electric field to contain terms up
to only the second order in B. Having measured the coefficients, it is
necessary to select a model for the band structure that is consistent with the
experimental data and which is, of course, also consistent with the crystal
symmetry. The method has been described by Abeles and Meiboom
(1956) with specific reference to bismuth, by Drabble and Wolfe (1956)
for Bi,Te,, and by Freedman and Juretschke (1961) for antimony.

Before discussing the galvanomagnetic effects in detail it is worth
mentioning that some of the general characteristics can be deduced from
relatively simple measurements. Thus, in a cubic crystal the electrical
conductivity and Hall coefficient are isotropic but, unless the energy
surfaces are centred at k=0 and are, therefore, spherical, the magneto-
resistance effects depend on the direction of current flow. A particularly
valuable test of whether a material is single-or multi-valleyed is a
comparison of the longitudinal and transverse magnetoresistance effects. If
the longitudinal magnetoresistance is negligible it can usually be assumed
that the surfaces of constant energy are centred at k=0. Figure 9 shows
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how the magnetoresistance of n-type HgSe depends on the angle between
the current flow and the magnetic field. Since the longitudinal magneto-
resistance is so small one can deduce that HgSe hasasingle-valley conduction
band.

It is instructive to consider the galvanomagnetic coefficients for the
crystals of the class 3m which include so many of the materials within
the scope of this article. For these crystals there are twelve independent
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Dependence of magnetoresistance effect on direction of magnetic field for
n-type HgSe (Harman 1961). Ap/p is the magnetoresistance and 8
is the angle between the current and magnetic field directions.
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coefficients at low magnetic fields. These twelve coefficients are included
in the expressions which define the resistivity, Hall coefficient and magneto-
resistivity tensors, that is the equations that give the electric field & in
terms of the electric current i and magnetic field B:

E1/t1=p11t 111181 + p1122Bo® + 1133 Bs® + 2112385 B3,
Ealia=p11+P1122B1% + P1111B2% + p1133B3% — 2011238, By,
&'3/i3= P33+ p3311B1® + P3311Be® + Pasas Bs?,
Ealt3=PagiB1+ pas1Bi® — pas1i Ba® + 2pp323. 8, B3,
E3fiy=pas1Ba+ 20931181 By + 2055038, B3,

&1/tz=p125Bs + 2p1103B1 B3 + (p1111 — P1122) B1 Bos

the other ratios &,/7; being given by the Onsager relation
(Ex[a)(B) = (&1fix)(— B).

pw is the resistivity tensor, p,,, the Hall tensor and p,,,,, the magneto-
resistivity tensor. The directions 1, 2 and 3 refer to the binary axis,
bisectrix axis and trigonal axis respectively.

The coefficients defined above can be found by measuring the components
of the electric field in selected directions for various directions of current
flow and magnetic field. However, certain precautions must be taken
if the results are to be accurate. For example, it is important that there
are no temperature gradients that could lead to thermoelectric voltages.
Such spurious voltages can be avoided by immersing the sample in a liquid
bath or by periodically reversing the direction of the electric current,
thereby eliminating temperature gradients due to the Peltier effect as well
as to any assymetry of the apparatus. The sample should be at least
four times as long as it is wide and any measuring probes should be inset
by at least the width of the sample from its ends (Drabble and Wolfe 1957);
this prevents the ends of the sample from short-circuiting the transverse
field over the region on which measurements are made. Furthermore
the experiments should be performed at different magnetic field strengths
to ensure that terms higher than the second order in B can be neglected
(otherwise eqn. (22) is inadequate to describe the results).

The choice of orientation of the samples differs from one worker to
another. Thus, Drabble and his colleagues confined their experiments
to current flows along the principal crystal axes, rotating the magnetic
field in a plane containing the direction of i. Epstein and Juretschke
(1963) obtained their results on antimony using two sample orientations
with current flow along the trigonal direction and perpendicular to this
direction respectively. In the latter case the current flow was set at
an angle of 15° to a binary axis rather than along a binary or bisectrix
direction in order that all the coefficients could be determined. For
both orientations the magnetic field was rotated in a plane containing
the trigonal axis. Although, it is not necessary to determine the relation



Transport Effects in Semi-metals and Narrow-gap Semiconductors 301

between electric field and current for all magnetic field orientations,
it is wise to do so in order to check that the phenomenological equations
areobeyed. Any departure from the phenomenological relations may reveal
that the sample is non-uniform or cracked.

Having determined the galvanomagnetic coefficients, these must then
berelated to the band parameters. Thenumber of independent parameters
depends on the model thatis adopted. It will be supposed that the material
is degenerate (or the relaxation time energy-independent) so that all the
carriers in a band have the same relaxation time. It is customary to
agsume that the bands are parabolic and that the equal-energy surfaces
are ellipsoids that are tilted through arbitrary angles with respect to the
crystal axes, the parameters at one’s disposal being set by the position of
the ellipsoids in the Brillouin zone. Thus, if the energy surfaces are
centred on the trigonal axis, they must be spheroidal and non-tilted.
The simplest model that leads to twelve non-vanishing galvanomagnetic
coefficients consists of six ellipsoids centred on the reflection planes and
tilted about the binary axes (or three ellipsoids if they are centred at the
face of the Brillouin zone). In this situation the parameters that define
the galvanomagnetic coefficients for a single band are the carrier concentra-
tion n, the mobilities u,, 1, and u, along the axes of each ellipsoid, and the
angle of tilt s between the 3 axis of an ellipsoid and the trigonal (3)
axis in the Brillouin zone. For an intrinsic conductor in which only two
bands are involved the five variables are increased to nine, whereas for a
doped semi-metal, in which the minority carriers cannot be neglected,
there are ten variables. These variables can, then, generally be evaluated
using less than the complete set of twelve galvanomagnetic coefficients
but it is always preferable to make sure that a given solution fits all twelve
coefficients, otherwise there is little to justify the adoption of the particular
model that has been selected.

In calculating the band parameters it is more convenient to deal with the
conductivity coefficients, that occur in the equation for the components
of i in terms of & rather than the resistivity coefficients defined by eqn.
(22). The equations relating to components of the resistivity tensors
to the components of the conductivity tensors have been given by Beer
(1963). They are:

p1= 1/, Priz2= — O1122/011% — ‘72312/0112‘733’
Paz=1/03s, P1133= — 0'1133/"112 - 01232/0113,
P123= — ‘7123/0'112, Pi123= — 0'1123/0112, 93
Pear= — 0231/011033,  Pasii= — O3311/035% — 931%/0110 305 23
P = — o1111/011% Po311= — O9311/011033
P33z3= — O 3333/ 0337 P23z = — O2303/011033 + 30 1239231/ 0112033

In these equations the coefficients of p and ¢ are interchangeable.
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The expressions for the conductivity coefficients (see, for example,
Epstein and Juretschke 1963) are :

20y; =mne[p; + Py + 8%,
093 =ne[sps + C?ug],
— 2093 = * me[pops + 1 (S%e + €%uz) ],
— o193 =t me[p(Ppy+5%u3)],
— 207133 = ne[py + Py + 825 ] [ (Ppa + 8%5) 1,
— 205911 = ne[$Puy + g [papis + pa 8%y + c%u3) ], - (24)
— 30119 + 0111 + 209595 = N[ty + Pun + 8Pp5  [patty + g (830 + €2p5) ],
209305 = ne[s?ua + g [14 (s + 83p15) ],
— 203333 = 01195 — 307111 T 203303 = 210?87y (13 — )%,
— 407393 =NeCSUy (g — pa) [ — pr1 + iy + %3],
— 40951y =NeCS(thg — pig) [apts — p1 (SPua + CPpus) ],

J

where ¢ and s are the cosine and sine of the angle of tilt y. In the equations
for the inverse Hall coefficients, oy, and o445, the upper sign refers to a hole
band and the lower sign to an electron band. We note that for a two-band
conductor the contributions from the n, electrons and the n, holes are
added, so that:

201 =1 £lpy +¢ Ppa+8 us] + npelv +c,va +8,203], }

— 20991 — M elopts + py (8 o+ € Pus) ] + mpelvavs + vi(Sa®vy + € ,42v3)], ete.,

(25)
where the u’s and »’s are electron and hole mobilities respectively.

In a real experiment one can hardly expect any given set of variables
to fit all the observed coefficients exactly. In view of the mass of informa-
tion and the complexity of the equations, one programmes a computer so
that it finds a set of band parameters (or a number of such sets) that are
reasonably consistent with the data. It can happen that some of these
sets will differ in detail quite considerably ; such was the case, for example,
in the evaluation of the conduction band parameters for antimony by
Epstein and Juretschke though the valence band structure was more or
less uniquely determined. It is probably better to work, if possible,
with extrinsic rather than intrinsic material, the number of variables
then being considerably reduced.

The galvanomagnetic measurements do not determine the effective
magss tensor as such, but the effective mass components within a valley
are given by the relations m;=er,/u,, etc. If the relaxation time r is
isotropic, the ratios of the mobilities along the principal axes of each
ellipsoid are the same as the ratios of the reciprocal effective masses. The
absolute values of the effective masses cannot be obtained from the galvano-
magnetic data on their own. It is necessary, in addition, to know the



Transport Effects in Semi-metals and Narrow-gap Semiconductors 303

Fermi energy, which can be found from Seebeck effect measurements
provided that the energy dependence of the relaxation time is known.

An example of the combination of thermoelectric and galvanomagnetic
measurements is to be found in the work of Smith, Wolfe and Haszko
{1964) on bismuth. Their assumptions of a non-parabolic conduction
band with an energy-wavevector relation of the form of eqn. (2) involved
the introduction of an additional variable, the direct energy gap Eg.

Ifthe six-valley tilted ellipsoid model described above hasbeen established
already, the shape and tilt of the ellipsoids can be found from three
anisotropy ratios, namely the resistivity ratio ps;/p;;, the Hall coefficient
ratio pag/p1es and a magnetoresistance ratio pyyq1/pssss (Drabble 1963).
For an extrinsic material with an isotropic relaxation time, the mass
ratios and the tilt are given by :

pss _ 1+K )
P11 2L’
P (MHL)I+K) ' (26)
P123 4KL
puny _ LPBKL+ L+ KM —5M)
P3333 2(1+ K KL-M) ’
where K=cz-7—n—1 —I—s2p,—nf1
My gy
L=s2™1 +02T—1, < R ¢4
My my
2
and M=
My

These expressions are useful if, for example, one wishes to find out how
the band parameters change when one element or compound is added to
an isomorphous material (whose band structure is known) so as to form
a range of solid solutions.

4.2, Oscillatory Magnetoresistance

When the magnetic field is large (uB> 1) the classical theory suggests
that the electrical conductivity should vary as 1/B? (though the
magnetoresistance would be expected to saturate at a relatively low value
for an extrinsic conductor). Thisis the behaviour that is actually observed
at ordinary temperatures but at very low temperatures one frequently
observes oscillations in the magnetoresistance, the so-called Shubnikov—
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de Haas effect, which was, in fact, first seen for bismuth in 1930. Similar
oscillations can be seen for transport properties other than the magneto-
resistance, as well as for non-transport properties that depend on the charge
carriers.

The origin of these oscillatory effects is to be found in the modification
of the density-of-states function on the application of a magnetic field.
A magnetic field B, causes the energy of a free electron to be quantized
into a series of bands (the Landau bands) such that:

27. 2

2k,
Bpp,=n+Pho+—o = o o (28)

where w, is the cyclotron frequency and n the quantum number. The
density of states at the Fermi surface becomes infinite if the Fermi energy
Eg, given by ({—E,) or (E,—{), is equal to (n+})iw, Within the
effective mass approximation, this condition is:

n+i=Egm*eBk. . . . . . . . (29)

The oscillations are thus periodic in 1/B and the period determines the
product of Fermi energy and effective mass.

Fig. 10
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The oscillatory component of the transverse magnetoresistance plotted against
magnetic field for bismuth at 1-2°K according to Vuillemin (1964).
The angle of tilt of the magnetic field in the binary—trigonal plane,
away from the binary axis, is indicated on the right-hand side of each
plot.

Certain conditions must be met before oscillations in the magneto-
resistance can be observed. In the first place the relaxation time must
be appreciably greater than the time for an electron in cyclotron motion
to complete an orbit. This condition, w,r>1, is essentially the same
as the high magnetic field condition, uB>1. It is necessary that the
Fermi energy should be much greater than kT and, also, that it should
be greater than w,.

Magnetoresistance oscillations due to the electrons in bismuth have, of
course, been studied many times since their first observation by Shubnikov
and de Haas. In several recent papers study of the oscillations due to
holes has been made (Suzuki et al. 1964, Smith, Baraff and Rowell 1964
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and Vuillemin 1964). Strictly, the second term on the right-hand side of
eqn. (28) should be written as 1sfiw, where s is the spin quantum number
and w,=eB/m,, m, being the spin mass defined by 2m/g and g being the
effective g-factor. Particular attention has been drawn to the spin-
gplitting of the hole oscillations by Smith and his colleagues and by
Vuillemin. Vuillemin’s observations of the spin splitting, as the magnetic
field is rotated away from the binary axis for bismuth at 1-2°k, are
illustrated in fig. 10.

The conditions for the observation of magnetoresistance oscillations
can be satisfied for several other semi-metals and narrow-gap semi-
conductors besides bismuth, at liquid helium temperatures. For example,
they have been studied in p-type Bi,Te; at 4-2°k by Landwehr and Drath
(1964) using pulsed fields of up to 185koe. These workers were not able
to use a sufficient number of different orientations to allow a completely
independent determination of the effective mass tensor, but their results
were consistent with the band structure obtained from low-field galvano-
magnetic measurements at 77°K.

§ 5. NoN-LINEAR EFFECTS

5.1. Self-magnetic Field and Diffusion Effects

In their measurements of the current—voltage characteristics of bismuth
at 77°k, Hattori and Steele (1963) found an apparent increase in the resis-
tivity for high electric fields. This phenomenon can be attributed to
magnetoresistance arising from the self-magnetic field induced by a large
electric current. Later, Hattori and Tosima (1956) found that, when a
transverse magnetic field of more than a certain strength was applied,
the resistivity appeared to decrease at high electric fields. Hattori and
Tosima’s results are shown in fig. 11. The dimensions of the sample were
about 004 cm, 0-004cm and 0-5cm in the binary, bisectrix and trigonal
directions respectively. The current flow was along the trigonal direction
and the magnetic field lay parallel to a bisectrix axis. Samples with other
orientations have also been studied.

Hattori and Tosima’s observations can be explained qualitatively
in terms of the simple Abeles and Meiboom band model. Briefly, the
change in the current-field characteristic from sublinear to superlinear
form, on increasing the externally applied magnetic field, is due to two
factors. Firstly, the seif-magnetic field and the applied field are additive
over one-half of the cross section whereas they oppose one another over
the other half. Tt is found that the increased magnetoresistance when the
fields act together is insufficient to compensate for the decreased magneto-
resistance when they act in opposition. Secondly, the combination of
self and applied fields leads to a resultant that has a component along the
binary axis, leading to only a weak magnetoresistance effect, whereas,
if there were no self field, the magnetic field would lie wholly along the
bisectrix axis, this producing the strongest magnetoresistance effect.
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Although the above considerations are basically correct they do not
give an accurate prediction of the changeover of the characteristic from
sublinear to superlinear. Some account should, of course, be taken of
such phenomena as self-pinching but it is believed that the primary reason
for the inadequacy of the simple theory lies in a size effect associated
with carrier diffusion. A diffusion-size effect has been demonstrated for
bismuth, also at 77°k, by the same authors (Tosima and Hattori 1964).

In experiments on the magnetoresistance and Hall effect (at low electric
fields, so that the possibility of self-magnetic field effects can be ignored)
Tosima and Hattori found substantial deviations from Abeles and Meiboom’s
(1956) results when the thickness of the sample was less than 0-01cm.
Now the mean free path of the carriers at 77°k is of the order of 10~4cm,
so this cannot be the ordinary size effect which appears when the sample
dimensions approach the free path length. Instead, it must be assumed
that the inter-valley relaxation times are long enough for appreciable
non-equilibrium carrier populations to be built up by diffusion processes.
If the electron-hole relaxation time is long there can be a build-up of non-
equilibrium electron-hole pairs. Also, in view of the fact that the applied
magnetic field and the current flow cannot be parallel to principal axes
for more than one of the three electron ellipsoids, there can be an exchange
of electrons between the other two ellipsoids, if the appropriate relaxation
time is long enough. The experiments are consistent with inter-valley
relaxation times (or lifetimes) of the order of 10-° sec.
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Self-magnetic field effect in bismuth at 77°k. Plot of current against electric
field for different transverse magnetic fields (Hattori and Tosima 1965).
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Very much larger carrier lifetimes are expected at liquid helium tempera-
ture (Ksaki 1962 a). In this connection it is interesting to note the observa-
tion by Zitter (1965) of the photoelectromagnetic (PEM) effect in bismuth
at 42°. It will be recalled that this effect, which is of importance in
determining carrier lifetimes in semiconductors, consists of the separation
of diffusing electron-hole pairs by means of a transverse magnetic field.
It is difficult to observe in a semi-metal because of its very low electrical
impedance, but Zitter was able to match the impedance of the amplifier
to that of his sample by using a superconducting transformer. He found
that the time for recombination of electron-hole pairs is about 10-%sec,
which is an order of magnitude larger than the intra-valley relaxation
time at the same temperature. .In other words, inter-valley scattering
is much less effective than intra-valley scattering in a semi-metal, where
it requires a change of momentum but no change of energy, just as it is
in a semiconductor, where, of course, it requires a change of energy as well.

5.2, Esaki Kink Effect

A non-linear current-voltage characteristic of a different kind was
first observed by Esaki (1962 a, b) when he was making magnetoresistance
measurements on bismuth at liquid helium temperatures. Some typical
experimental results are shown in fig. 12 for a single crystal at 2°k with
current flow along the bisector between the binary and bisectrix axes and
the magnetic field along the trigonal axis. The cross section of the
sample was about 1 mm?2.

Fig. 12
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Current-voltage characteristics for a sample of bismuth in magnetic fields
of 14 and 21 koe at 2°k (Esaki 1962 a).
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Ohm’s law is obeyed until the electric field reaches a critical value
(the kink field) beyond which the differential resistance becomes very much
smaller. The change of slope at the kink field is the more marked, the
higher the transverse magnetic field.

A key to the explanation of the phenomenon is the fact that the electric
field at the kink is proportional to the magnetic field strength for a given
orientation, the constant of the proportionality being about 10-3 v/cm oe.
As Esaki pointed out, the combination of an electric field & with a crossed
magnetic field B leads to a drift of carriers in the mutually perpendicular
direction with a velocity v given by :

v=5- B :10)!
Thus, the kink is observed at a constant drift velocity of about 10% cm/sec
which is close to the appropriate velocity of sound in bismuth. This
suggests that the effect is due to an enhanced interaction between the
charge carriers and the phonons when the drift velocity of the former
reaches the speed of propagation of the latter. The corresponding increase
in the scattering probability reduces the mobility of the carriers and
thereby increases the conductivity in the presence of the strong magnetic
field (the strong-field electrical conductivity is proportional to 1/uB?).
Pippard (1963) has discussed the enhanced electron—phonon interaction
in semiconductors and semi-metals, when the carrier drift velocity exceeds
the sound velocity, in terms of stimulated emission arising from population
inversion. He has pointed out the equivalence of a quantum treatment
(as used by Esaki) and a treatment in terms of a classical bunching process
(Hopfield 1962). Pippard considered specifically the simple example
of a conductor with spherical surfaces of constant energy and showed that,
if both energy and momentum are to be conserved in an electron—phonon
interaction, there must be a planar surface of interaction (in k space)
given by kk,=m*u, where x is the direction of sound propagation and »
is the velocity of sound. The probabilities of absorption and emission
of phonons differ in the value of the factor f,(1 —f,), where f; and f, are
the occupation probabilities of the initial and final electron states. When
the electron gas is in equilibrium, this factor must increase with amplitude
of the electron wavenumber so that phonon absorption is the more probable,
but when a current is flowing the centre of the distribution function is
shifted away from k=0 and it is possible for f,(1—f;) to become greater
for emission rather than absorption of phonons. The required population
inversion occurs when the drift velocity exceeds the velocity of sound.
Amplification of sound waves in the direction of a strong electric field
is now familiar in CdS (Hutson ef al. 1961). Such a field can be applied
to CdS without excessive heating because the electrical conductivity is
very small; the strong piezo-electric coupling between the electrons and
phonons is also an advantage. Inmost other semiconductors the electrical
conductivity is so high that intense heating of the sample occurs when
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it is subjected to a high electric field. On the other hand, the higher the
carrier concentration, the more marked should be the effect if it can be
made to occur. The very high electrical conductivity of the semi-metals,
of course, rules out ultrasonic amplification under the influence of an
electric field alone. However, when a strong transverse magnetic field
is also applied the magnetoresistance effect leads to a very considerable
reduction in the power dissipation for a given electric field. It is essential
that the conductor should be intrinsic and that both electrons and holes
have a high mobility, otherwise the Hall field will reduce the magneto-
resistance effect. This condition is met in pure bismuth and accounts
for the success of Esaki’s experiment.

The Esaki kink effect and its explanation suggest that ultrasonic
amplification in a transverse direction should be possible in a sample of
bismuth that is subjected to crossed electric amd magnetic fields. Such an
effect has been observed by Toxen and Tansal (1963) who reported sound
amplification of up to 14dB/cm at a frequency of 14 Me/sec.

Fig. 13
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Pulsed current transverse magnetoresistance of bismuth in liquid helium.
For experimental details see Goldsmid and Corsan (1964).

It will be appreciated that the Esakieffect israther difficult to demonstrate
even in bismuth, and conditions are certainly less favourable for the other
semi-metals. Magnetoresistance experiments on antimony and arsenic
have, however, also yielded a kink effect at liquid helium temperature,
though this effect is of thermal origin (Eastman and Datars 1963). The
effect manifests itself as a sudden fall in the electrical resistance at a constant
current, when the electric field reaches a critical value. Further increase
in the current leads to a gradual decrease in the electric field. The critical
electric field is proportional to the transverse magnetic field just as for the
true Esaki effect. The phenomenon can be explained by the sudden

Y2
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onset on film boiling of the liquid helium in contact with the sample, when
the rate of heat dissipation at the surface exceeds a certain value. The
relatively poor heat transfer under film-boiling conditions implies that the
temperature of the sample must rise considerably, the mobility then falling
and the conductivity (in a given magnetic field) becoming larger.

The Esaki effect and the thermal kink effect have been observed on the
same sample by Goldsmid and Corsan (1964) whose results are given in
fig. 13. The sample of bismuth was subjected to short pulses of fixed
duration but of variable repetition rate. When the pulse repetition
frequency was low the Esaki kink was clearly seen but as the repetition
frequency was increased the power to be dissipated became greater and the
thermal kink appeared, so preventing the drift velocity of the carriers
from reaching the sound velocity. In the same set of experiments the
Esaki effect was also observed for a sample of reheated pyrolytic graphite.

§ 6. THERMOMAGNETIC EFFECTS
6.1. Nernst and Ettingshousen Effects

Some of the most remarkable of the transport properties of semi-metals
are to be found among the thermomagnetic phenomena. As we shall see
the conditions for the observation of some of these effects can be more
favourable for the intrinsic semi-metals than for any other class of material.
However, first let us consider the origin of the Nernst and Ettingshausen
effects in an extrinsic conductor. The Nernst and Ettingshausen
coefficients, @ and P, are related to one another by Bridgman’s equation :

Pe=QT, . . . . . . . . . (31

which may be compared with Kelvin’s relation between the Seebeck and
Peltier coefficients. It suffices, then, to discuss the origin of one of the
other of the effects; here the Ettingshausen effect is chosen, though the
Nernst coefficient is usually the easier to determine experimentally.

The interaction of a transverse magnetic field with a longitudinal
current flow does not lead to a transverse electric current under the
customary conditions of measurement ; thisis because the field due to the
Lorentz force is balanced by the Hall field. If there were no transverse
movement of the charge carriers whatever, there could be no transverse
heat transfer and, therefore, no Ettingshausen effect. There are, however,
partial flows of the carriers of different energy if the relaxation time is
energy-dependent. The Nernst and Ettingshausen effects, thus, depend
for their sign and magnitude on the energy dependence of the relaxation
time and can be used, in principle, to determine the scattering law, provided
that the density-of-states function is known. According to the usual
conventions P and ) have the same sign as the exponent A in the scattering
law. Care must be taken, however, if optical-mode scattering is thought
to be predominant, since a scattering law of the form of eqn. (4) is not then
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usually applicable (Ehrenreich 1961). It should be noted that the Nernst
and Ettingshausen coefficients tend to zero for high magnetic fields;
a high magnetic field (uB > 1) has the effect of eliminating any phenomena
that depend on differences of relaxation time between the carriers
(Tsidilkovskii 1962).

Fig. 14
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Origin of the Ettingshausen effect in an intrinsic conductor.

Valuable though the low field transverse thermomagnetic effects can
be in determining the scattering law for an extrinsic conductor, the effects
are much larger for an intrinsic conductor. This can be explained with
reference to fig. 14 which shows the origin of the Ettingshausen effect
when there are equal numbers of electrons and holes. The longitudinal
current flow results from the electrons and holes moving in opposite
directions, but the magnetic field causes both types of carrier to move
in the same transverse direction. If the carriers have the same mobility
there will be no Hall field since the partial current flows are then equal and
opposite to one another. In effect, electron-hole pairs are generated at
one face of the sample and annihilated at the opposite face, thus transferring
their ionization energy from one side to the other. This lateral bipolar
flow sets up a temperature gradient so that, in equilibrium, it is balanced
by conduction of heat in the opposite direction. The transverse thermo-
magnetic coefficients associated with the bipolar effect are generally larger
than for a single type of carrier and, moreover, remain largeat high magnetic
field strengths. The bipolar Nernst and Ettingshausen coefficients are
always positive in sign.
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There is an interesting relationship between the high-field Nernst
coefficient and the high-field magnetoconductivity for any intrinsic
conductor, as was first pointed out by Kooi et al. (1963). Suppose that we
have multi-valley valence and conduction bands. Then, for the carriers
in valley I the currents in the x and y directions are:

ar
i) =0 €,—el) T ~ROBLL |

T (32)
iy<l>=oy<1>[&—a(l> - +R(Z>Biz(1)],

the magnetic field B being in the z direction. «ff) and R(l) are the partial
Seebeck coefficient and Hall coefficient that are appropriate to the carriers
within the valley ! and ¢,(I) and ¢ ,(!) are the contributions to the electrical
conductivity in the x and y directions.

The solution of eqns. (32) for the conditions d7'/dx=dT [dy =0 and the
summation of the current contributions ¢,(/) due to each valley immediately
yields the electrical conductivity in the x direction:

a4(l)

o, (B)=3 1+ B2R¥(l)o, (o ()

(33)

When the high magnetic field condition applies for all the carriers, eqn.
(33) becomes :

1 ol
aw(B)=§2z%, N .. 9

where n(l) is the number of carriers in valley I and u,(!) is their mobility
in the y direction.

In order to determine the high-field Nernst coefficient @, ,, for a tempera-
ture gradient d7'/dy leading to an electric field £ ., one applies the conditions
dT[dx=0 and X7,(l)=2%,(0)=0. When this is done it is found that,
for high magnetic fields:

&, nelo, —o,)

Q“EBdT/dy=En(l)e/p,,,(l)’ coee e B

where n, is the total electron or hole concentration. Combining eqns. (33")
and (34):
_ nie(a P& e)

Qyy = "Bl (B) ° (35)

which is the relationship derived by Kooi and his colleagues. In making
use of this expression it should be noted that the partial Seebeck coefficients
have their high field values which may be rather different from their zero
field values. Thedifference o, — « ,, of course, represents the energy carried
by an electron—hole pair (multiplied by 1/eT").
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It is instructive to examine eqn. (34) for an isotropic conductor with
spherical energy surfaces for both electrons and holes. The expression
for the Nernst coefficient at high fields then becomes :

Q=M(ah—ae). S :1i))
e + Ky
Tt isreadily seen that the value of the Nernst coefficient is controlled by the
smaller of the two carrier mobilities. It is necessary that both types of
carrier should have high mobilities if the Nernst coefficient is to be large,
just as they should both be highly mobile for a large bipolar contribution
to the thermal conductivity.

The Nernst coefficient is little more difficult to measure than the Hall
coefficient but the Ettingshausen effect is much harder to observe unless
favourable electronic characteristics are combined with a relatively low
thermal conductivity. This is indeed the situation for bismuth, which
is one of the few materials on which the effect has been studied in any
systematic fashion. The Bi-Sb alloys are also favourable for the examina-
tion of the Ettingshausen effect since they have lower thermal conductivities
than that of pure bismuth.

Although the thermomagnetic effects are very easily detected in a
material such as bismuth, one major experimental difficulty does arise.
The Nernst coefficient of direct theoretical significance is the so-called
isothermal coefficient, as defined above for zero transverse temperature
gradient. In practice, however, one measures the adiabatic coefficient
for which the transverse heat flow is zero. The presence of a transverse
temperature gradient (due to the Righi-Ledue effect) implies that there
must be a transverse thermoelectric voltage between any potential probes
that do not have the same Seebeck coefficient as the sample. It is this
thermoelectric voltage that leads to the difference between the adiabatic
and isothermal Nernst effects and it can be large enough even for the
adiabatie and isothermal coefficients to be of opposite sign. Thus, for
any material that has a large Righi-Leduc coefficient, it is important that
this quantity (and also the Seebeck coefficient) should be determined at
the same time as the adiabatic Nernst coefficient, in order that the isothermal
Nernst coefficient can be found.

6.2. Magneto-thermal Resistance

The measurement of the change of thermal conductivity in a magnetic
field, or the Maggi-Righi-Leduc effect, is in many instances the most
direct way of separating the lattice and electronic components of the thermal
conductivity. The electronic part of the thermal conductivity, like the
electrical conductivity, can be made vanishingly small by the application
of a sufficiently large magnetic field, the remaining heat conductivity
being due solely to thelattice. The heat conduction by thelattice vibrations
can compensate for any lateral heat transfer by the charge carriers, so
that the electronic thermal resistivity in a magnetic field does not reach
saturation in the same way as the magnetoresistivity sometimes does.
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It is most useful to determine the magneto-thermal resistance effect
when the magnetic field is of sufficient strength to reduce the electronic
thermal conductivity to a very small fraction of its zero field value. This
can certainly be done for bismuth and Bi-Sb alloys with less than about
209, antimony, at liquid nitrogen temperature. Thus fig. 15 shows the
effect of a magnetic field of up to 10koe on three different Bi-Sb alloys
at 80°k, according to Kooi ef al. (1963). At the highest field the electronic
thermal conductivity is so small that the lattice component can be
caleulated accurately from the data.

Fig. 15
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Change of thermal conductivity with magnetic field for various Bi-Sb alloys
at 80°k (Kooi et al. 1963). The temperature gradient lies parallel
to a binary axis and the magnetic field is parallel to a bisectrix direction.

At ordinary temperatures the electronic thermal conductivity along
the basal planes of graphite is negligible but Klein (1964) and Holland
have shown that the electronic component accounts for nearly half the
total thermal conductivity at 2°k. They demonstrated this by applying
a magnetic fleld of about 5koe, reducing the thermal conductivity from
7x10-3w/ecmdeg to less than 4x 102*w/emdeg. As is expected for a
strongly degenerate conductor, the Lorenz number was found to have the
value (7%(3)(k/e)? whatever the applied magnetic field. As mentioned
previously, the bipolar contribution to the heat conductivity in graphite
is negligible at 2°K.

The magneto-thermal resistance effect can be used for separating the
lattice and electronic thermal conductivities, even when the change in
the latter on applying a magnetic fieldissmall. Inthis case, one determines
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the ratio of the changes of thermal conductivity and electrical conductivity
in a magnetic field for an extrinsic sample, ensuring that the ratio is
independent of field strength over the range covered by the experiment.
This ratio, like the Seebeck coefficient, is a function of the Fermi energy
Ey and of the scattering exponent A so that, if the Seebeck coefficient is
also measured, By and A can be determined. This in turn allows one to
calculate the Lorenz number and hence the electronic thermal conductivity.
This approach has been examined for Bi,Te; by Bowley ef al. (1958) who
found, however, that it was better to determine F and A from the magneto-
Seebeck effect. The magneto-Seebeck effect, like the Nernst effect,
determines A uniquely whereas the magneto-thermal resistance effect
generally yields two possible values for A.

Before terminating this discussion of the magneto-thermal resistance
effect, mention should be made of a particular situation that prevents the
thermal conductivity from falling to the value of the lattice component.
Strictly speaking, the electronic thermal conductivity only tends to zero
in a high magnetic field for an intrinsic conductor if the transverse electric
field is zero. If, instead, the transverse electric current is zero, there is a
fransverse—transverse contribution arising from the Nernst effect acting
on the electrical conductivity and the Ettingshausen effect (Delves 1964).
In this case the high field thermal conductivity is given by :

w=xp(14+ZT)
Q2B?
where NES R,
k;, being the lattice thermal conductivity. This effect could certainly
be of some importance for bismuth and its alloys which have large values
of Zyy; as will be mentioned later.

6.3. Magneto-Seebeck Effect

It has already been pointed out that the magneto-Seebeck effect in
an extrinsic conductor can be used in determining the scattering law.
As shown by eqns. (11) and (11") the Seebeck coefficient in zero magnetic
field is the sum of one term involving just the Fermi energy and another
involving the kinetic energy. The second term is a function of both the
Fermi energy and the scattering parameter A but can be made independent
of A in a high enough field (for the same reason that the Nernst coefficient
then disappears). If the conductor is non-degenerate with parabolic
bands, the change in Seebeck coefficient is equal to +A(k/e) in a high
field, the upper sign applying for an n-type conductor and the lower for a
p-type conductor. For a partially degenerate conductor the change is
somewhat smaller (Tsidil’kovskii 1962) and is a function of the Fermi energy
aswell as A,

Tt is unusual to have a high enough magnetic field available to achieve
the saturation value for the Seebeck coefficient, but a measurement
of the ratio of change in Seebeck coefficient to change in electrical
conductivity at low fields also suffices to determine A (Bowley ef al. 1958).
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The magneto-Seebeck effect is more complicated for an intrinsic conduc-
tor but, provided that transverse electric fields and temperature gradients
are eliminated, the Seebeck coefficient can be calculated using eqn. (19)
with the values of «, , and o, , appropriate to the magnetic field. The
experimental results obtained by Wolfe and Smith (1962) on bismuth and
Bi-Sb alloys, are, however, much more interesting than this would suggest.

The Seebeck coefficient of bismuth in zero field is negative since the
electrons are more mobile than the holes. On applying a magnetic field,
one would expect the partial Seebeck coefficients to rise (assuming the
scattering exponent A to be negative) but the stronger magnetoresistance
effect on the electrons than the holes would tend to reduce the overall
Seebeck coefficient. One would certainly not expect the magnitude of
the Seebeck coefficient to rise by even as much as —A(kfe), i.e. about
40 uv/deg. Thus, the observation by Wolfe and Smith that the Seebeck
coefficient of bismuth in the direction of the trigonal axis can be changed
from —130uv/deg to about —300uv/deg at 160°K with a magnetic field
of 5koe (applied along a bisectrix direction) is, at first, most surprising.

Fig. 16
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Orientation dependence of the magneto-Seebeck effect in bismuth at 80°k.
The heat flow lies along a bisectrix direction and 8 is the angle between
the transverse magnetic field and one of the binary axes (Smith, Wolfe
andiHaszko 1964).
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Equally curious is the observation of a strong ‘umkehr’ effect for
bismuth. This effect, which can only occur for certain crystal orientations,
manifests itself as a difference between the values of the Seebeck coefficient
for the same magnetic field in opposite directions, i.e. a(B)#«(—B). In
fact, one can obtain a positive Seebeck coefficient with the magnetic field
in one direction and a negative Seebeck coefficient when its direction is
reversed. Comprehensive studies of the umkehr effect in bismuth have
been reported by Smith, Wolfe and Haszko (1964); some of their results
are shown in fig. 16 in which the Seebeck coefficient at 80°k is plotted as a
function of the magnetic field orientation for a magnetic field of 10 koe, with
the temperature gradient in a bisectrix direction. The umkehr effect cannot
occur when the magnetic field lies in a reflection plane (a trigonal-bisectrix
plane) but a rotation of the magnetic field to make an angle of only about
20° with the trigonal axis leads to a very strong umkehr effect indeed.

Fig. 17
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Geometry dependence of the magneto-Seebeck effect in a Biy, Sh, alloy. The
heat flow lies along the trigonal axis and the magnetic field along a
bisectrix axis (Ertl ef al. 1963).

The measurements of Smith and his colleagues were all carried out using
long samples with no transverse flows of heat or electricity. 1tis, therefore,
reasonable to suppose that the magneto-Seebeck effects that they observed
were strongly influenced by the transverse thermomagnetic phenomena.
Longitudinal electric fields can result from the interaction of the Hall
and Nernst effects and of the Nernst and Righi-Leduc effects. If it is
true that the more striking of Smith’s results are due to the transverse—
transverse effects one would expect them to become less strong for samples
of short length, since the electrodes at the end faces act as electrical and
thermal short circuits. Figure 17 shows that the increase in Seebeck
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coefficient with magnetic field for a Bi—Sb alloy does indeed become
smaller as the length-to-width ratio of the sample is reduced, the behaviour
being consistent with the measured values of the transverse coefficients
(Ertl et al. 1963).

6.4. Righi—Leduc Effect

The Righi-Leduc effect is one of the most difficult of the transport
phenomena to observe with any degree of accuracy and it does not usually
lead to any information that cannot be obtained from the other effects.
Where the Righi-Leduc coefficient is determined, thisis primarily to provide
data for calculating the other parameters under isothermal conditions.

For an extrinsic conductor, the Righi-Leduc angle (the tangent of which
is equal to the transverse temperature gradient divided by the longitudinal
gradient) is approximately equal to the Hall angle multiplied by the ratio
xg/k. The Righi-Leduc effect is, then, largest when the electronic thermal
conductivity is an appreciable portion of the total. Unlike the Hall
angle, the Righi-Leduc angle does not continually increase with magnetic
field, since the magneto-thermal resistance effect tends to make the ratio
«g/x small for high fields. The author, has, for example, observed a
Righi-Leduc angle as large as tan— 0-1 for a sample of Biy,Sb, in a magnetic
field of 1koe at a temperature of 80°K whereas the Righi-Leduc angle was
only tan—10-04 in a field of 8 koe.

Righi-Leduc measurements have been reported for HgSe by Whitsett
(1961), the effect being large in this material because of its high electron
mobility and low lattice thermal conductivity. Whitsett observed
tangents of the Righi-Leduc angle as high as 0-2 for some of his samples
at room temperature. The low-field Righi-Leduc coefficient §
at 300°K for a sample containing 6 x 10'7 electrons/cm?® was found to be
3:4 x 103 cm?/vsec. The electronic thermal conductivity of this sample
was calculated to be 6x10-%w/ecmdeg while the total thermal
conductivity was measured as 25 x 103 w/cmdeg. The value of Sk/w is
therefore about 1-4 x 10*cm?/vsec which is very close to the predicted
value of 7uy/8, the Hall mobility uy being equal to 1:5 x 10 em?/v sec.

§ 7. TunxeL ErrECT

Very recently it has been demonstrated, contrary to predictions, that
observations on the tunnelling current between a semi-metal and an
insulator can give information about the band structure of the semi-
metal that is difficult, if not impossible, to obtain by other methods (Esaki
and Stiles 1965). The sample used in the experiments consisted of a film
of Al,O; of several tens of angstroms thickness, deposited on a cleavage
surface of bismuth, with an aluminium counter-electrode of about
10~4cm? area. A plot of dI/dV against V, where I is the current and V
is the voltage, is shown in fig. 18, with the fine structure omitted, the
results having been obtained at 2°k.
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An analysis of the original curve yields eight components with peaks
at the positions indicated in fig. 18. These peaks can be associated with
the various band extrema. Thus the peaks at —15 and + 15 millivolt
correspond to the principal valence band maximum and conduction
band minimum respectively. The peak at + 35 millivolt is due to the
valence band maximum at the same location in the Brillouin zone as the
principal conduction band minimum. The other peaks correspond to
band extrema that have not previously been identified, though Esaki
and Stiles tentatively associate the conduction band that produces the
peak at — 30 millivolt with the principal valence band, in view of the
similar values of the conductance.

As Esaki and Stiles point out, the technique could prove very valuable
in future studies, and they suggest that it should be applied to the Bi-Sb
alloys.

Fig. 18
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Plot of dI/dV against voltage for a bismuth-Al,O4 junction at 2°k (Esaki and
Stiles 1965). The fine structure has been omitted.

§ 8. SUPERCONDUCTIVITY

It is a notable feature of superconductivity that its observation has,
until recently, been confined to the true metals rather than semi-metals
or semiconductors. It has, in fact, been observed for bismuth (Shoenberg
1938) but only for thin films which have a Hall constant thatis much smaller
than for the bulk element and must therefore be regarded as metallic
rather than semi-metallic (Buckel 1959).
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The absence of superconducting behaviour for semiconductors is, of
course, completely consistent with the BCS theory (Bardeen ef al. 1857)
in which one of the criteria for superconductivity is a high density of states
at the Fermi surface. Thus, if one is searching for new superconductors,
one stands little chance if one looks at materials in which the Fermi surface
lies close to the band extrema. On the other hand, the possibility of
altering the carrier concentration in semi-metals and semiconductors
by doping would make the study of superconductivity in such materials
very attractive. As Cohen (1964) has pointed out, semiconductors have
a great advantage over metals in that the carrier concentration and band
structure can be varied independently of one another by using doping
or non-doping impurities.
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Plot of superconducting critical temperature against carrier concentration
for GeTe (Hein et al. 1964).

Cohen has discussed in some detail the conditions under which super-
conductivity might appear in a semiconductor or semi-metal. Basically,
what is needed is a high carrier concentration and strong electron—phonon
coupling. The right conditions are more likely to be found in a multi-
valley conductor rather than a single-valley material. For a given set
of valley parameters, the carrier concentration increases proportionately
with the number of valleys. Also, inter-valley electron—phonon processes
are more favourable than intra-valley processes since they involve large
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momentum transfer and are, therefore, relatively unscreened. Screening
of the intra-valley repulsive Coulomb interaction due to the large number
of carriers is an advantage. A high static dielectric constant, such as
is usually found for semi-metals, also assists in screening the Coulomb
interaction. Other requirements are a high effective mass within valleys
(since this increases the density of states), a high inter-valley coupling
constant, and a large phonon degeneracy factor.

Cohen’s predictions have been well borne out by Hein ef al. (1964)
who have discovered that superconductivity can occur in GeTe. GeTe
has an effective mass that is almost as high as the free-electron mass and
invariably has a large hole concentration which can be adjusted within
limits by changing the concentration of germanium vacancies. In the
reported experiments the hole concentration lay between 7-5x 1020 and
15x 1020 per cm3. The results of Hein ef al. are shown in fig. 19. A
transition temperature of about 0-3°k was observed for the sample with
the highest carrier concentration whereas no superconducting behaviour
could be found when there were less than about 8-5x 1020holes/cm?®.
Hein and his colleagues were careful to check the elemental germanium
and tellurium, that were used in making the compound, to ensure that
there were no traces of superconducting impurities present. It is note-
worthy that the critical carrier concentration in GeTe lies close to the
empirical limit of 10'®holes/em?® proposed by Chapnik (1962) who also
suggested that the interatomic spacing should lie between 2:6-2:9 & and
41 if a given material were to be a superconductor.

More recently (Hannay ef al. 1965) have observed superconductivity
in the so-called intercalation compounds of graphite with the alkali metals,
potassium, rubidium and caesium. The highest of the transition tempera-
tures was found for the potassium-graphite compound with the formula
CK. It will be interesting to see whether the superconducting properties
of the graphite compounds fit in with Cohen’s ideas as outlined above,
or whether they are due essentially to their two-dimensional nature, as
Hannay and his colleagues suggest.

§ 9. APPLICATIONS

The transport properties discussed in this article could be utilized in
certain practical devices. A full consideration of these devices could,
of course, itself occupy a whole article, but a brief mention of the
possibilities will no doubt be of interest.

High mobility materials are certainly required for applications of the
Hall and magnetoresistance effects. However, Hall elements of low
electrical impedance cannot readily be matched to conventional amplifiers,
so the high carrier concentration of all the materials mentioned here is
a great disadvantage. On the other hand, the large non-saturating
magnetoresistance effect in semi-metalsis easily utilized in the measurement
of magneticfields. Forexample, Fukuroi and Fukase (1964) have employed
a magnetoresistance probe of antimony, showing a resistance change of
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100 :1 in a field of 10koe at liquid helium temperature, in their studies
of type II superconductivity. Bismuth is particularly useful for making
magnetoresistance probes since it can be obtained in the form of thin
ductile wires. Unfortunately, although the low-temperature magneto-
resistance of bismuth is very large, it is rather sensitive to strain, and
consistent behaviour from bismuth probes is difficult to achieve.

The non-linear effects observed, particularly for bismuth, at low
temperatures suggest a number of possibilities. For example, Esaki
(1962 b) has proposed that his kink effect could be used in the generation
and detection of electromagnetic waves up to microwave frequencies, but
the need for liquid helium temperature must make the alternative means of
achieving the same result more practicable. The observation of sound
amplification in bismuth by Toxen and Tansal (1963) which has already
been mentioned, could, in principle, lead to the use of semi-metals
in lossless (or amplifying) ultrasonic delay lines but the conditions seem
more favourable for the wide-gap semiconductors, such as CdS, in
which the power dissipation is low due to the very small carrier
concentrations. The semi-metals need both a relatively high magnetic
field and a low temperature.

The most important potential applications lie in the field of direct
energy conversion. Bi,Te; and its solid solutions with SbyTe; and Bi,Se,
are already widely used in thermoelectric refrigeration. The coefficient
of performance for a thermocouple used as a refrigerator (or its efficiency
if it is used as a generator) depends on the so-called figure of merit Z defined
as ao/k (Ioffe 1957). Z reaches its largest values for semiconductors
which have a favourable combination of carrier mobility, density-of-states
effective mass and lattice thermal conductivity ; the quantity p(m*/m)3?/u,
is a guide to the value of a specific material for thermoelectric applications.
Itisalso desirable that the energy gap should be large enough forareasonably
high Seebeck coefficient (say 200-250uv/deg) to be obtained. This
condition is normally satisfied if the energy gap exceeds about 547.

It has been shown by O’Brien and Wallace (1958) that the phenomeno-
logical relations for thermomagnetic energy conversion (utilizing the Nernst
or Ettingshausen effects) are similar to those for thermoelectric energy
conversion. In consequence, the thermomagnetic figure of merit Zyg
as defined in eqn. (37), has the same significance as the thermoelectric
figure of merit. Delves (1962) first showed that the value of Z g, for certain
semi-metals might be appreciably larger than the highest known values
of Z for semiconductors. This possibility arises from the high Nernst
and Ettingshausen coefficients in intrinsic eonductors; the electrons and
holes transport their energy while sharing a common crystal lattice,
whereas in a thermocouple two different materials (one n-type and one
p-type) are needed and the lattice heat conduction is twice as great.

There are also advantages accruing from the application of a strong
magnetic field, which reduces the electronic contribution to the thermal
conductivity, while usually raising the average energy transported by a
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charge carrier. These advantages can, however, sometimes be found
for thermoelectric devices in a magnetic field. In fact, Simon (1964) has
demonstrated the very close relationship between the thermomagnetic
figure of merit of an intrinsic conductor and the thermoelectric figure of
merit of a nearly-intrinsic conductor when both are placed in a strong
magnetic field.

There have already been some notable advances towards useful
Ettingshausenrefrigeration. For example, Kooi ef al. (1963) have obtained
a cooling effect at 36°K from a sink temperature of 156 °K using a rectangular
sample of Biy,Sb; in a field of 15 koe, while Harman ef al. (1964) have been
able to cool one face of a specially shaped bismuth sample by 101°K, the
opposite face being kept at room temperature. Unfortunately this last
experiment depended on the application of a field of 110 koe.

The electron parameters in bismuth and its alloys with antimony are
adequate for thermomagnetic refrigeration but the performance is limited
by the relatively low hole mobility. The fact that a really useful device
could be made from a conductor with high hole and electron mobilities,
a low lattice thermal conductivity and a close-to-zero energy gap must
surely provide a stimulus to work on the transport properties of semi-metals
and on widening the range of materials that is available for study.
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