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~ B S T ~ C T  

The  semi -me ta l s  a n d  na r row-gap  semiconduc to r s  are charac te r ized  by  h igh  
values  of  t h e  e lectron mobi l i ty ,  a n d  somet imes ,  of  t he  hole mobi l i ty  too. W h e n  
bo th  carriers  h a v e  a h i gh  mobi l i ty  in intr insic  ma te r i a l  t he  b ipolar  t r a n s p o r t  
effects become p romi nen t .  P roper t i es  t h a t  are  pa r t i cu la r ly  sens i t ive  to  
bipolar  conduc t ion  are  t he  electronic t h e r m a l  conduc t iv i t y  and  t he  I~ernst  
and  E t t i n g s h a u s e n  coefficients. 

W h e n  the re  is a ve ry  large magne t o r e s i s t anee  effect, as  the re  is in some  
semi-meta l s  a t  low t empe ra t u r e s ,  h lgh  electric fields can  be  appl ied  w i thou t  
excessive power  diss ipat ion.  Th i s  al lows t he  obse rva t ion  of an  e n h a n c e d  
phonon  in te rac t ion  w i t h  carriers  t h a t  are  dr i f t ing  wi th  t h e  speed  of  sound ,  
the  effect be ing  man i f e s t ed  as a k i nk  in t he  c u r r e n t - v o l t a g e  character is t ic .  
Other  non- l inear  effects h a v e  been observed  a t  h igh  cu r r en t  densi t ies  due  to  
se l f -magnet ic  fields of  t h e  charge  carriers.  These  a n d  o the r  effects c an  be  
influenced b y  diffusion p h e n o m e n a  assoc ia ted  wi th  t he  re la t ive ly  h igh  carrier  
l ifet imes.  

The  long r e l axa t ion  t imes  of t he  carriers  in some  of  t he  ma te r i a l s  a t  v e r y  
low t e m p e r a t u r e s  allow one to observe  oscil lat ions in t he  magne to r e s i s t ance  
(and o the r  proper t ies)  as well as s ize-dependent  effects. 

Mos t  of  t h e  ma te r i a l s  h a v e  mul t i -va l l ey  energy  b a n d s  for a t  leas t  one t y p e  
of charge carrier.  A l t h o u g h  t he  b a n d  p a r a m e t e r s  are g iven  m o s t  direct ly b y  
cyclotron resonance  exper imen t s ,  t h e y  can  in genera l  also be de t e rmined  f rom 
ga lva nomagne t i c  m e a s u r e m e n t s  u n d e r  less cri t ical  e x p e r i m e n t a l  condi t ions .  
Several  o f  t he  ma te r i a l s  belong to t he  c rys ta l  class R ~ m  a n d  h a v e  ellipsoidal 
(or quasi-ell ipsoidal) ene rgy  surfaces  in t h e  Bri l louin zone w h i c h  are  t i l ted  
wi th  respec t  to t he  e rys ta l  axes.  These  ma te r i a l s  p rov ide  a n  in te res t ing  
exampl e  o f  t h e  de t e rmi na t i on  of  b a n d  s t ruc tu re s  f rom the  g a l v a n o m a g n e t i c  
coefficients. E v e n  for a t w o - b a n d  non-parabol ic  conductor ,  the re  are 
general ly  sufficient d a t a  to allow t he  b a n d  p a r a m e t e r s  for a n y  specific mode l  
to be calculated,  provided,  of  course,  t h a t  the  mode l  is appropr ia te .  

Thermoelec t r ic  m e a s u r e m e n t s ,  t oge the r  wi th  N e r n s t  or  m a g n e t o t h e r m o -  
electrie observa t ions ,  c an  provide  t he  d a t a  on  t h e  F e r m i  energy  a n d  sca t t e r ing  
law t h a t  are  needed  to  comple te  a descr ip t ion  of  t he  mater ia l .  

The  h i gh  carrier  concen t ra t ions  in t he  semi -meta l s  (and t he  heav i ly -doped  
semiconductors )  give rise to t he  possibi l i ty  o f  supe rconduc t ing  behaviour .  
I n  th i s  case, however ,  a low mobi l i ty  is an  advan t age ,  s ince a h igh  mobi l i ty  
impl ies  a weak  in te rac t ion  be tween  t he  electrons a n d  t he  latt ice.  

The  recen t  obse rva t ions  on t h e  va r ia t ion  wi th  vo l tage  of  t he  tunne l l ing  
cur ren t  a t  a j unc t i on  be t ween  a semi -me ta l  a n d  a n  insu la tor  indicate  a 
p romis ing  t echn ique  for b a n d - s t r u c t u r e  s tudies .  

Appl ica t ions  o f  t he  semi -me ta l s  are s o m e w h a t  res t r ic ted  b y  t he  p a r a m e t e r s  
of  t he  p re sen t ly  avai lable  mater ia l s ,  b u t  t he  possibi l i ty  of  t h e r m o m a g n e t i e  
energy convers ion  shou ld  encourage  comprehens ive  s tudies  o f  t he  t r a n s p o r t  
proper t ies  on  ex is t ing  a n d  new  semi-meta ls .  



274 H. J. Goldsmid o n  

CONTENTS 
§ 1. INTRODUCTmN. 274 

§ 2. CHARACTEriSTICS OF SPECIFIC MATERIALS. 277 
2.1. Crys ta l  S t ruc tures .  277 
2.2. Elect ronic  P a r ame t e r s .  282 

§ 3. TRANSPORT PHENOMENA IN THE ABSENCE OF A MAGNETIC FIELD. 291 
3.1. Thermoelec t r ic  Effects  a n d  H e a t  Conduct ion .  291 
3.2. Size Effect  on t h e  Electr ical  Conduc t iv i ty .  296 

§ 4. GALVANOMAGNETIC EFFECTS. 298 
4.1. D e t e r m i n a t i o n  of  t he  Effec¢ive Mass  Tensor .  298 
4.2. Osci l la tory Magnetores i s tance .  303 

§ 5. NON-LINEIR EFFECTS. 305 
5.1. Sel f -magnet ic  Fie ld  a n d  Diffusion Effects .  305 
5.2. E sak i  K i n k  Effect.  307 

§ 6. THERMOMAGNETIC EFFECTS. 310 
6.1. N e r n s t  and  E t t i n g s h a u s e n  Effects .  310 
6.2. M a g n e t o - t h e r m a l  Res i s tance .  3 l 3 
6.3. M a g n e t o - S e e b e c k  Effect.  315 
6.4. R i g h i - L e d u e  Effect.  318 

§ 7. TUNNEL EFFECT. 318 

§ 8. SUPERCONDUCTIVITY. 319 

§ 9. AePLICATIONS. 321 

I<~EFERENCES • 323 

§ 1. INTRODUCTIOI~- 

THE intensive study of semiconductors in recent years has, for the most 
part, been concentrated on materials with energy gaps of the order of one 
or more electron-volts, since it is these substances that  can be used in 
junction devices such as transistors. However, for some types of applica- 
tion it is desirable to choose semiconductors having much smaller energy 
gaps. This is immediately obvious, for example, if one wishes to develop 
a photoconductor for long-wavelength infra-red radiation, since the response 
falls off sharply when the photon energy becomes less than the energy-gap 
width. I t  is not so obvious that  narrow-gap semiconductors are needed 
for, say, galvanomagnetic devices until one recollects that,  in general, 
the charge-carrier mobility increases as the energy gap decreases (Wright 
1959). This trend is shown in fig. 1 for the Group IV elements and 
I I I -V compounds. 

I f  one wishes to study those effects that  depend on high carrier mobilitics 
one does not, then, normally work with wide-gap semiconductors. In 
fact, there is apparently some advantage from this viewpoint if the energy 
gap disappears altogether ; in other words, one should employ a semi-metal 
rather than a semiconductor. 

Before going further we should, perhaps, consider the physical differences 
between semiconductors and semi-metals. One can define a semiconductor 
as a material in which there is a band of forbidden energy covering all values 
of the wavevector. Semi-metals, on the other hand, have no such 
forbidden band, though they can still retain a direct energy gap for any 
specific wavevector. I t  might be expected tha t  these simple definitions 
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would make it easy to decide if any given material is a semiconductor 
or a semi-metal but, in practice, tiffs is not always so. A perfectly pure 
semiconductor should have zero electrical conductivity at the absolute 
zero of temperature,  whereas a semi-metal must retain a finite conductivity 
at 0°K. However, the donor or acceptor impurities, tha t  are always present 
in any real semiconductor, invariably have very small activation energies 
when the gap is narrow, and, unless their concentration is very small, 
there is a tendency for them to form impuri ty bands which overlap the 
conduction or valence bands. This implies that ,  however low the tempera- 
ture, the charge carriers are not frozen into the impurity states and the 
electrical conductivity does not  disappear. Also, it must be realized, 
that even when the valence and conduction bands overlap one another, 
this does not  imply that  the carrier concentration must be independent 
of temperature. For example, consider the simple case of an intrinsic 
conductor with a parabolic density-of-states function and a density-of- 
states effective mass m* which has the same value for electrons and holes. 
Then the carrier concentration n i is given by : 

/21rm*kT\al~ F [Ea 
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where k is Boltzmann's constant, T is the absolute temperature, h is 
Planck's constant, Eg is the energy gap : 

F~(x) = x~ f dx, 
0 

f being the Fermi distribution function. Clearly, even when the energy 
gap is equal to zero, the carrier concentration varies as T 312, although 
the temperature variation of the mobility might prevent the electrical 
conductivity from increasing with temperature. 

Semi-metals can be doped with impurities so that  they become n- or 
p- type  in just the same way as semiconductors. Furthermore, there 
are solid-solution systems for which some compositions are semiconducting 
while others are semi-metallic. For example, Jain (1959) showed that 
the Bi-Sb alloys are semiconductors over a certain range of composition, 
whereas both the elements are semi-metals. Since, then, there is so little 
practical difference between semi-metals and narrow-gap semiconductors 
it seems appropriate that  both types of material should be included in 
this review. 

I t  is not intended to make an exhaustive coverage of all the materials 
or phenomena that  could legitimately be included. I t  has already been 
pointed out that  semi-metals and narrow-gap semiconductors tend to 
have high carrier mobilities. As the temperature is reduced the mobility 
rises, in many instances to extremely large values which are limited only 
by crystalline imperfections. In wide-gap semiconductors the low- 
temperature mobility tends to be restricted by  ionized-impurity scattering 
but  in many of the narrow-gap materials this does not occur. This is due, 
to some extent at  least, to the fact that  the latter materials generally have 
large values of the dielectric constant, thereby reducing the range of 
influence of the impurity ions (Conwcll and Weisskopf 1950, Brooks 1955). 
Also, there is a screening effect at large carrier concentrations. Particular 
attention, then, will be paid to those materials which exhibit exceptionally 
high mobilities at low temperatures. 

One reason for the study of semi -metals and narrow-gap semiconductors 
lies in the fact that  they can have high concentrations of electrons and 
holes present simultaneously. Thus, they permit the easy observation 
of the bipolar transport effects, in which there is appreciable energy 
transfer without the flow of electronic current. The bipolar effects are 
seen to most advantage in materials that  have high mobilities for both 
electrons and holes. 

I~aturally enough, the semi-metal bismuth takes pride of place in this 
review, since so much effort has been devoted to its s tudy (Boyle and 
Smith 1963). The elements antimony and, to a lesser extent, arsenic 
from the same group of the periodic table must also be mentioned in some 
detail, if only for the purposes of comparison. 

There are two other interesting elemental materials, graphite and 
grey tin, which would certainly have attracted far more attention but 



Transport Effects in Semi-metals and Narrow-gap Semiconductors 277 

for the fact tha t  they are very difficult to prepare in the form of large 
crystals. Graphite differs from all the other semi-metals in having a 
very low atomic weight (thus reversing the tendency for the energy gap 
to rise as the atomic weight falls) ; in some respects graphite is an almost 
ideal semi-metal since it has electron and hole mobilities which are large 
and nearly equal. Grey tin, also, has comparable values for the mobility 
of the two types of carrier. 

Turning to the compounds, the IV-VI s6miconductors such as PbTe 
and PbS have been widely studied for many years. At least one of the 
IV-VI compounds, GeTe, is probably a true semi-metal and is especially 
interesting in tha t  it can become superconducting at very low temperatures. 

The I I -VI  compounds HgTe and HgSe are either semiconductors with 
extremely small energy gaps or, less probably, semi-metals with slightly 
overlapping bands. They, like the I I I -V  compound InSb, have a very 
large ratio of electron to hole mobility and so do not display strong bipolar 
effects. On the other hand, the V-VI compounds, such as Bi2T % have 
mobility ratios that  are much closer to unity and, in fact, it was with Bi2Te a 
that the phenomenon of bipolar heat conduction was first demonstrated. 

Although it is simpler from the experimental viewpoint to work with 
elements and compounds, there is considerable interest at the present 
time in solid solutions. The formation of a solid solution between two or 
more metals inevitably leads to a considerable reduction in the relaxation 
time of the charge carriers but this need not be so for solid solutions that  
arc semi-metallic or semiconducting. Since such solid solutions can have 
high carrier mobilities they are just as suitable as the pure elements for 
many applications and they allow much greater flexibility in the choice 
of energy gap or band overlap. In fact, were it not for the technological 
difficulty of producing homogeneous solid solutions there would be a much 
more widespread use of their potentialities. 

§ 2. CHAI~ACTERIST1CS 0%' SPECIFIC MATEI~IA~S 

2.1. Crystal Structures 
The materials that  have been mentioned in the Introduction are more 

closely related to one another than might appear at first sight. This 
fact is brought out by a discussion of their crystal structures. The Group 
V elements, Bi~Te 3 and GeTe all have the space group l ~ m .  

Bismuth has a rhombohedral structure with a primitive trigonal cell 
as shown in fig. 2 (a). The symmetry elements include three binary 
axes in a plane which is perpendicular to the single trigonal axis. There 
are three reflection planes which each contain the trigonal axis and a 
bisector of the angle between two of the binary axes. The lattice vectors 
a are each of length 4.75$_ and the trigonal angle a is equal to 57 ° 14', 
the two bismuth atoms being placed on the trigonal axis of the cell at a 
distance u, equal to 0.237a, from each of the vertices (Cucka and Barrett  
1962). I f  this distance u were equal to 0.25a and if the trigonM angle 
were 60 o, bismuth would possess a simple cubic structure. I t  willberealized, 
then, that  the bismuth l~ttice is only slightly distorted from the cubic 

U2 
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configuration, though it must be emphasized that  this does not  imply 
that  such transport properties as the thermal conductivity, are nearly 
isotropic. 

Fig. 2 
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Trigonal unit cells for (a) bismuth (with a=4.75)~ and a=57 ° 14') and 
(b) Bi2Te a (with a=  10.47 _~ and a=24 ° 10'). 

Arsenic (Wyckoff 1960) and antimony (Barrett et al. 1963) have the 
same structure as bismuth (which is, in fact, usually known as the arsenic 
structure) but  the deviations from simple cubic are greater for these 
elements and the lattice dimensions are smaller. Bismuth and antimony 
form solid solutions in all proportions and there is also a complete range 
of solid solubility in the antimony-arsenic system. On the other hand 
bismuth and arsenic are only slightly soluble in one another (Wyckoff 1960). 

Bi2Te a also possesses a rhombohedral structure (Lange 1939). The 
trigonal cell contains two bismuth atoms and three tellurium atoms 
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arranged along the axis as shown in fig. 2 (b). The positions of the 
atoms in the BieT% structure can be obtained from those in the bismuth 
structure simply by modifying the interatomic spacings in an appropriate 
fashion and, of course, substituting three-fifths of the bismuth atoms 
by tellurium atoms. BloT% has a melting-point maximum in the phase 
diagram close to the stoichiometric composition, but there is, nevertheless, 
a wide range of solid solubility in the Bi-Te system between bismuth 
and Bi~Te a (Brown and Lewis 1962). Single-phase solid solutions have 
been found with all tellurium concentrations between 30 and 60 at. %. 
These intermediate alloys are rather difficult to prepare and have been 
little studied. Most of them are likely to be semi-metallic with far from 
equal concentrations of electrons and holes. Sb2Te a has the same structure 
as Bi~Te a, and a range of solid solubility has been found by Brown and 
Lewis in the Sb-Te system which is even wider than that  in the Bi-Te 
system. Bi~S% also has the structure of Bi~Te a. 

A noteworthy feature of Bi2Te a is that  the crystals are composed of layers 
of atoms following the sequence -Te-Te-Bi-Tc-Bi-Te-Te- ,  the spacing 
between the adjacent tellurium layers being abnormally large (note that  
the trigonal axis of the unit cell in fig. 2 (b) extends over 15 layers). 
It appears that  the binding electrons are used up in mixed covalent-ioI~ie 
bonds between the bismuth and tellurium layers leaving only very weak 
van der Waals bonds between the neighbouring tellurium layers (Drabble 
and Goodman 1958). Thus Bi2Te a can be cleaved even more readily than 
bismuth along planes perpendicular to the trigonal axis. 

Table 1. Trigonal cell parameters of some semi-metals and related 
semiconductors 

Element or compound a X a 

Bi 
Sb 
As 
GeTe 
SnTe 
PbTe 
PbSe 
PbS 
Bi2Tea 

4"75 
4"51 
4"13 
4'23 
4"44 
4"55 
4"33 
4"20 

57 ° 
57 ° 
54 ° 
58 ° 
60 ° 
60 ° 
60 ° 
60 ° 

10.47 

14' 
7' 
10' 
15' 

24°10 ' 

PbTe, PbSe, PbS and SnTe all possess the rock-salt structure which 
may be regarded as a simple cubic structure with alternate sites occupied 
by atoms of a different type. Thus, a distortion of the rock-salt structure 
towards rhombohedral symmetry produces a structure analogous to that  
of bismuth having two types of atom. This distorted rock-salt structure 
is observed for the compound GeTe. I t  is interesting to note that,  despite 
its rhombohedral structure, GeTe forms a complete range of solid solution 
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with SnTe, there being a gradual transition away from the cubic structure 
as the GeTe content is increased (Bierly et al. 1963). Similar solid solutions 
can be formed between GeTe and AgSbT% which is a cubic ternary 
compound analogous to the rock-salt structured IV-VI  compounds 
(Rosiet al. 1961) ; the structure remains cubic as GeTe is added to AgSbTe~ 
until the former reaches a concentration of about 80 mo]. %. 

The trigonal cell parameters of most of the elements and compounds 
mentioned above are given in table 1. The fact tha t  Bi~Te a has a very 
different trigonal angle from the other materials is due primarily to the 
fact that  the unit cell contains five instead of two atoms, though the 
rather long weak bonds between the tellurium layers in Bi2Te a do imply 
that  it is not quite so close to a cubic material as, say, bismuth or antimony. 
The implications of the similarities in crystal structures on the energy 
band structures have been discussed by  Cohen et al. (1964). 

Fig. 3 
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Crystal structure of graphite, a-- 2.46 )~ and c-- 6-74 £. 

Graphite is another material with a layer structure, and single crystals 
of it can be cleaved very easily along the basal planes. Its crystal structure 
is shown in fig. 3. Graphite is often regarded as a two-dimensional 
crystal since the inter-layer spacing of 3.37 3, is so much larger than the 
distance between nearest-neighbour atoms in each layer plane of 1.42 ),. 
Although the graphite structure is hexagonal rather than rhombohedral, 
its symmetry elements are not too dissimilar from those of bismuth or 
Bi~Te 3. In particular, crystals of graphite are uniaxial with three-fold 
rotational symmetry about  the axis which lies perpendicular to the planes 
of easy cleavage. 

The other substances of interest to us all possess cubic structures derived 
from that  of diamond. Grey tin, of course, actually has the diamond 
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structure, while HgTe and I-IgSe, like the I I I - V  compounds, have the 
zine-blende structure in which the alternate atoms are of a different type. 
There are a very large number of more complex compounds containing 
three or more elements that  can be derived from the Group IV elements 
and I I I -V compounds by  the rules of cross-substitution (Goodman 1958). 
Thus, by  analogy with grey tin and InSb, one might expect CdSnSb2 to 
be a narrow-gap semiconductor or perhaps a semi-metal, though in practice 
it does not seem possible to form this particular compound. Most of the 
work on the ternary and quaternary compounds and their solid solutions 
has been confined to the wider gap semiconductors but  there are doubtless 
a large number of smaller gap materials that  could be studied. 

Except in purely qualitative work, it is usually essential to obtain single 
crystals of the rhombohedral and hexagonal materials mentioned above, 
and, even for the cubic materials, single crystals are highly desirable. 
It is beyond the scope of this article to describe the preparation of single 
crystals in detail but  a few remarks may be helpful. Most of the materials 
that have been mentioned can be grown from the melt and an excellent 
review of the various techniques is that  of I-Iurle (1963). Bismuth crystals 
are commonly grown by  the Bridgman method using a soft mould of, 
for example, graphite powder to allow for the expansion or solidification. 
Strain-free single crystals of controlled orientation can be pulled from the 
melt (Porbansky 1959) the main difficulty arising from the reactivity of 
bismuth and its tendency to form an oxide scum on the liquid surface. 
The oxide can be removed by  treatment in hydrogen at an elevated tempera- 
ture ; the crystal pulling is best carried out in vacuum. Directional freezing 
and zone-melting in horizontal boats have been carried out with varying 
success. Thus, Goss and Weintroub (1952) found that  the movement of 
the interface at a slow speed leads to a lineage structure whereas, at a faster 
speed, the crystal breaks up into blocks differing to a greater or lesser 
extent in their orientation. On the other hand, Brown and Heumann 
{1946) have succeeded in producing single crystals of the Bi-Sb alloys by  
zone melting. They were obliged to move the interface at less than 
1 mm/hr in order to avoid constitutional supercooling; the Bi-Sb alloys 
are characterized by  a low diffusion coefficient, a segregation coefficient 
that is much greater than unity, and a low melting temperature, which 
makes it difficult to achieve a steep temperature gradient near the interface. 
Lacklison (private communication) has been able to pull a Bi-Sb alloy, 
containing 5 at. % of antimony, from the melt using a divided graphite 
crucible to maintain a constant composition of the solid in spite of the large 
segregation coefficient (5 to 10). The divided (or floating) crucible method 
has been described by  Airapetyants and Shmelev (1960). 

The techniques adopted for the other elements, compounds and solid 
solutions are often similar to those mentioned above, though in certain 
cases the presence of a volatile constituent (such as selenium or tellurium) 
introduces difficulties. I t  is not easy to obtain large single crystals of 
arsenic since it sublimes at atmospheric pressure. ~owever,  it can be 
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melted at  some 820°c if a pressure of about 36 atmospheres is maintained. 
Saunders and Lawson (1965) have succeeded in growing large crystals 
from the melt under the vapour pressure of the arsenic itself. 

Some of the compounds have melting-point maxima that  are not precisely 
at the stoichiometric composition; thus, growth of crystals from the 
stoichiometric melt produces a non-stoichiometric solid which displays 
extrinsic rather than intrinsic conduction. 

Graphite, of course, present special problems. Some work has been 
done using natural crystals of graphite but these are always very small. 
Larger samples with near-single crystal properties can be prepared by 
pyrolytic deposition followed by reheating at up to 3600 °c (Klein et al. 1962). 
I t  is also extremely difficult to obtain single crystals of grey tin, on account 
of its phase change to the metallic form at 13.2°o. Van Leut  (1962) has, 
however, managed to produce crystals, that  are relatively pure and perfect, 
from mercury-rich Hg-Sn alloys. 

2.2. Electronic Parameters 

The transport properties of a conductor depend, in general, on the 
mobilities of the different types of charge carrier and on their effective 
mass tensors, in so far as it is legitimate to use the concept of an effective 
mass. They depend on the positions in k space of the extrema of the 
conduction and valence bands, since these positions determine the multi- 
plicity of the constant-energy surfaces according to the crystal symmetry. 
In addition, unless the material is perfectly pure (and stoichiometric if 
it is a compound), it is necessary to know the excess or deficiency of electrons 
as compared with holes ; alternatively the position of the Fermi level with 
respect to the band extrema could be specified. The thermal properties 
also involve the lattice contribution to the heat conductivity. 

The qualification, in the preceding paragraph, in connection with the 
use of an effecti ve mass, is particularly significant for a narrow-gap material. 
Even for a wide-gap semiconductor such as germanium or silicon, there are 
noticeable departures from parabolicity in the bands when the carrier 
concentration exceeds about 101S/cm 3 (Cardonaetal. 1960). Non-parabolic 
effects become important for narrow-gap semiconductors at appreciably 
lower carrier concentrations because of the strong interaction between the 
valence and conduction bands when their edges are close to one another. 
I t  seems certain that  one should use non-parabolic band models for most, 
if not all, of the materials discussed here but it is quite common to interpret 
the experimental results in terms of a pseudo-parabolic model, the effective 
mass then being a function of the Fermi energy. 

There are, of course, band extrema at energies which differ from those 
at the conduction band minimum and the valence band minimum. When 
the carrier concentration is small these other extrema can be ignored, 
but for the high carrier concentrations encountered in semi-metals, they 
may well account for appreciable numbers of carriers. This will be so 
particularly if the additional extrema have energies that  are not widely 



Transport Effects in Semi-metals and Narrow-gap Semiconductors 283 

different from those of the principal extrema and if they have large effective 
mass values associated with them. 

A considerable effort has been devoted to the determination of the 
energy band structure of bismuth by a variety of experimental techniques, 
not all of which have led to even the same qualitative results. In discussing 
these results the surfaces of constant energy will be referred to as electron 
and hole ellipsoids although it must be accepted tha t  the electron surfaces 
are not strictly ellipsoidal and the conduction band is non-parabolic 
(Laxetal. 1960, Cohen 1961). Ingeneral, the experiments can be explained 
in terms of three or six light-electron ellipsoids and one or two light-hole 
ellipsoids of revolution about the trigonal axis, while some workers have 
invoked additional carriers--the so-called heavy holes (Lerner 1962, 1963). 
Each electron ellipsoid is tilted in k space with respect to the crystallographic 
axes by some 5 ° about a binary axis, though in the useful Abeles and 
Meiboom (1956) model this tilt is ignored. I t  is easy to be confused by the 
manifold data that  are available, but Jain and Koenig (1962) have presented 
clear arguments that  seem to establish the true picture. They pointed 
out that such phenomena as the de Haas-van Alphen effect, and others in 
which oscillatory behaviour is observed as the magnetic field is varied, 
yield the carrier concentration per ellipsoid whereas Hall effect measure- 
ments, for example, give the total carrier concentration. Jain and Koenig 
found that these two types of measurement are consistent with one 
another only if it is assumed that  there are three electron ellipsoids and it 
is presumed that  these are, in fact, six half-ellipsoids centred at the L 
points at the surface of the Brillouin zone (see fig. 4) as suggested by 
band structure calculations. Within each valley the effective mass is low 
in the binary axis direction and along the axis which is nearly parallel 
to the trigonal axis, while it is high along the axis which is nearly parallel 
to a biseetrix direction. For pure bismuth at 0 °K there are about 1.4 × 101~ 
electrons per ellipsoid/cm a and about 4 x 101: electrons/em a altogether. 
Although fewer data are available for holes, it seems established that  
there can be only one light-hole spheroid, or rather two half-spheroids 
centred at the point T on the Brillouin zone surface. The measurements 
show that the hole effective mass is much higher along the direction of the 
trigonal axis than in the binary-bisectrix plane. Jain and Koenig showed 
that there can be only a very small number of heavy holes (if any) at low 
temperatures though it is by no means certain that  the light electrons and 
holes are the only carriers at room temperature (Gallo et al. 1963). 

Since we are concerned here with the transport properties of bismuth 
it is particularly relevant to consider the energy band data that  result 
from transport measurements. The comprehensive measurements of 
the magneto-thermoelectric and galvanomagnetic effects by Smith, Wolfe 
and Haszko (1964) were analysed in terms of a non-parabolic electron band 
of the form (Cohen 1961) : 

E i + - 2 . . . . . . .  (2) 
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where E~ is the direct energy gap. The valence band is supposed to be 
parabolic so that  for the holes 

h~k. m*- l ,  k 
- E g - E =  2 . . . . . . .  (3) 

- E g  being the band overlap, and the energy being taken as zero at the 
conduction band edge. The results of Smith and his colleagues at 80°x 
are shown in table 2, which also gives the data of Abeles and Meiboom 
combined with those of Gallo et al. (1963). In view of the different 
assumptions, the poor agreement between the two sets of parameters is 
hardly surprising. 

Table 2. Band parameters of bismuth derived from transport measure- 
ments at 80°K. Set I refers to Smith, Wolfe and I-Iaszko (1964) while 
set I I  refers to Abeles and Meiboom (1956) and Gallo et al. (1963) 

It  

Electron masses Hole masses Direct 
gap 

m11/m m2~/m mss/m m2a/m M1/m i a / m  EG 

0.002 0.15 0.005 --0-015 0.075 0.5 15 mev 
0.013 0.53 0.022 0.077 0.29 

Band 
overlap 

-E~ 

44 mev 
32 mev 

Non-parabolic, tilted band. 
:~ Parabolic, non-tilted band. 

The conclusions of both Smith et al. and Gallo et al. were based on the 
assumption of isotropic relaxation times for the charge carriers, the 
expressions for the relaxation times of electrons and holes being : 

~'e=AeE ~ . . . . . . . . . . .  (4) 
and 

"rh=Ah(-Eo-E)~h . . . . . . . . .  (5) 

respectively, A and )~ being constants. Smith found tha t  his results could 
be fitted best by assuming 2 e = 2 h = - 0 . 2 ,  this being appropriate for 
acoustic-mode lattice scattering, though other workers have used the 
value - 0.5 for the exponent in the relaxation time expressions. The term 
' mobility ' does not have the same significance for a partially degenerate 
conductor as it does for a lightly doped semiconductor, since it becomes 
a function of the Fermi energy if classical statistics cannot be employed. 
However, some idea of the magnetic fields that  are necessary to produce 
high-field effects can be obtained from the mobilities quoted for a sample 
of some arbitrary doping level. Table 3 gives values for the mobilities 
of electrons and holes in bismuth, in the direction of the trigonal axis 
and perpendicular to this direction, at three specific temperatures, according 
to Abeles and Meiboom (1956) and Zitter (1962). 
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Turning now to an t imony,  there  are a number  of  qual i ta t ive  differences 
from bismuth tha t  are readi ly apparent .  The electron mobilities are 
appreciably smaller for an t imony  while the carrier concentrat ions are much  
greater. Thus,  a t  room t empera tu re  the  concent ra t ion  of  electrons or 
holes in an t imony  is about  4 x 1019/em a (Epstein and Ju re t schke  1963) 
whereas in b ismuth  it  is only  about  2 x 101S/cm 3 (Abeles and Meiboom 1956). 

Table 3. Mobilities of electrons and holes in intrinsic bismuth.  The  
values at  4.2°~ are due to Zi t ter  (1962) while those a t  80°K and 30OOK 
are due to  Abeles and  Meiboom (1956). All values are given in 
cm2/v sec 

Carrier Direction 4.2 °K 80 °K 300 °K 

Electrons 
Electrons 
Holes 
Holes 

II trigonal 
± trigonal 
II trigonal 

± trigonal 

30 x 10 a 
22 x 10 ~ 

10 ~ 
12 × 106 

33"3 × 104 
28.6 x 10 a 
3-33 × 104 
12.4 × 104 

19 x 10 3 
16.3 x 10 ~ 
2.1 x 10 3 
7.7 × 10 3 

The possible band  models for an t imony  have been reviewed b y  Hal l  
and Koenig (1964). All exper iments  indicate t h a t  the  electron ellipsoids 
(which are deduced to be three  in number  and probably  s i tuated a t  the X 
points on the  Brillouin zone face) are t i l ted by  an appreciable angle about  the  
binary axes in a sense opposite to tha t  for bismuth.  Cyclotron resonance 
measurements (Datars  and Dexte r  1961) give effective mass values 
ml=O.O6m , m2= 1.8m and ma=O'O5m within the  principal axis sys tem of 
each ellipsoid, the  angle of  t i l t  being 36 ° . The  s i tuat ion for the valence 
band is far less clear. Hall  and Koenig suggest t ha t  some 70 °/o of the  holes 
have prelate  ellipsoidal surfaces of constant  energy, centred on the tr igonal  
axis probably at  the T points on the  Brillouin zone face, while the remaining 
holes are accounted  for by  oblate ellipsoids, also centred on the  tr igonal 
axis at two A points  (see fig. 4). On the other  hand,  the  galvanomagnet ic  
measurements of F reedman  and Ju re t schke  (1961) and of  Eps te in  and  
Juretschke (1963) are more consistent with three or six t i l ted hole ellipsoids. 
t{eeent cyclotron resonance measurements  b y  Datars  and Vanderkooy  
(1964) also show tha t  there  are three (warped) hole ellipsoids, though their  
tilt angle of  4 ° is r a the r  less t han  the  20-30 ° obta ined from the  galvano- 
magnetic coefficients. Wha teve r  the t rue  valence band  structure,  certain 
qualitative features of Epste in  and Jure tschke ' s  conclusions must  hold 
good. Thus,  t hey  show tha t  the  band  overlap is abou t  190mev and the  
electron and hole mobilities are bo th  of the  order of 103 cm~/v sec at  room 
temperature, in any  par t icular  direction. 

There has been relat ively little work on the th i rd  of the semi-metall ic 
Group V elements, arsenic. Band  s t ruc ture  calculations (Falicov and  
Golin 1965) indicate close similarities with bismuth,  the  holes being located 
at the T point  and the  electrons near  the L points in the Brillouin zone. 
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As might be expected, the Group IV elements, such as tin, act as acceptor 
impurities in the Group V semi-metals while the Group VI elements, 
such as tellurium act as donors. The addition of one of the Group V 
elements to another does not, of course, disturb the equality of the electron 
and hole concentrations but it does lead to interesting changes in the 
band structure. Jain (1959) first showed, from measurements of the Hall 
effect and electrical conductivity as a function of temperature, that  the 
addition of between 5 at. ~o and 40 at. °/o of antimony to bismuth changes 
it from a semi-metal to a semiconductor. Figure 5 shows Jain's plot of 
Eg, the minimum energy gap, against composition. There are some 
indications tha t  the energy gap may be even greater than 14 mev for 
composition containing between 10 and 20 at. °/o of antimony ; Brown and 
Silverman (1964) deduced a value of 24 mev from the temperature variation 
of the resistivity of the BissSb15 alloy. 

Fig. 4 

! 

Schematic drawing of the first Brillouln zone for the Group V semi-metals 
and the V~VI a semiconductors with the R3m space group. 

The effect of adding bismuth to antimony is to raise the value of the 
direct gap at the X points through an increase in the lattice potential 
and to decrease the gap at the L points through an increase in the spin-orbit 
coupling. Presumably the minimum energy gap Ea reaches its highest 
value when the maximum energy of the valence band, or the minimum 
energy of the conduction band, is just shifting fl'om the position it occupies 
for pure antimony to some other part of the Brillouin zone. I f  I-[all 
and Koenig's interpretation of the band structures of bismuth and antimony 
is correct, then Eg has its largest value when the electrons at the X and L 
points have the same energy. 

I t  must be emphasized that  there is an important difference between 
the effects of forming alloys or solid solutions between semiconductors 
or semi-metals, on the one hand, and between metals, on the other. The 
scattering of the charge carriers is always much stronger for a disordered 
metal alloy than it is for a metallic element or compound. However, 
the carrier mobilities in disordered solid solutions between semiconductors 
are generally of the same order as those in the pure elements or compounds. 
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This is because the wavelengths of the electrons in semiconductors and 
semi-metals are very much greater than the interatomic spacing, so tha t  
disturbances in the short range order do not lead to appreciable scattering. 
Thus, the carrier relaxation times at l'3°K are long enough in a Bi95Sb 5 
alloy for Smith (1962) to have been able to observe cyclotron resonance. 
Smith found that  the electron effective masses for this alloy were smaller 
than those in bismuth by a factor of two whereas the hole effective masses 
were the same as for bismuth. I f  it is supposed tha t  the only effect of 
alloying is to move the bands relative to one another, this provides good 
evidence for the non-parabolicity of the conduction band. 

Fig. 5 
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Energy gap ,plotted against antimony concentration in Bi-Sb alloys according 
to Jain (1959). 

A study of the alloys between arsenic and antimony by Saunders et al. 
(1965) has shown tha t  these are semi-metallic at  all compositions, the band 
overlap rising from 190 may for antimony to 370 mev for arsenic. 

The general features of the band structure of Bi~T% were first obtained 
by Drabble (1958) and by Drabble et al. (1958) from the analysis of the 
galvanomagnetic effects at liquid nitrogen temperature. The simplest 
model that  could account for the observed properties was found to involve 
three or six valleys for both the conduction and valence bands. As for 
electrons in bismuth or antimony, the surfaces of constant energy are 
ellipsoids that  are rotated about the binary axes. The electron ellipsoids 
~re almost spheroidal about an axis almost parallel to the trigonal axis 
and are highly compressed in this direction. The hole ellipsoids, too, 
are almost spheroidal, being highly compressed in the directions of the 
binary axes. Studies by Sehr and Testardi (1963) of the reflection 
minima associated with the free-carrier plasma edges have indicated that  



288 H . J .  Goldsmid on 

there are six rather than three valleys for both bands, this being consistent 
for the valence band with the de Haas-van  Alphen data obtained by  Testardi 
et al. (1962). 

Drabble's analysis was based on the assumption of a quadratic relation 
between energy and wave -vector but, in view of the high carrier concentra- 
tions that  are always encountered in Bi2Te 3, this is questionable. In  fact, 
measurements of the galvanomagnetie properties of strongly doped 
n-type material (Delves et al. 1961) can only be interpreted in terms of 
a six-ellipsoid model if a different effective mass tensor from that  used 
by  Drabble is employed ; this is another way of saying that  the conduction 
band is non-parabolic. Drabble also assumed the relaxation time to be 
isotropic ; strictly speaking, the galvanomagnetic measurements determine 
the combined anisotropy of effective mass and relaxation time within a 
valley (Efimova et al. 1962). A further complicating feature may be 
the presence of carriers in a second conduction band having a minimum 
that  is not much higher than that  of the lowest conduction band minimum. 
The second conduction band has been invoked by  Ure (1962) to explain 
his measurements on uncompensated n-type Bi2Te a. 

The minimum energy gap Eg for Bi2Te a at 0°K is 150 mev (Austin 1958). 
The electron and hole mobilities perpendicular to the trigonal axis are 
about 1200 cm~/v see and 500 cm~/v sec at 300°K (Goldsmid 1962) and the 
corresponding density ofs tateseffect ivemassesare0.6mand 1.1m. I t i s th is  
combination of properties that  ensures appreciable contributions to the 
electrical conductivity from both the electrons and holes in intrinsic 
material, Bi2Te 3 thus exhibiting strong bipolar effects. Another significant 
feature of Bi2Te a is the fact that  its electron or hole mobility increases 
monotonically as the temperature is lowered, its value tending towards 
some limit that  is characteristic of the degree of perfection of the 
particular sample. In all specimens that  have been studied to date the 
carrier concentration remains finite at 0°K ; thus, Bi2T % invariably displays 
a residual resistance effect similar to that  encountered for a metal. 

Galvanomagnetic measurements on n-type Bi2Se 3 have yielded a 
six-valley conduction band model as for Bi2Te 3 (Hashimoto 1961). Austin 
and Sheard (1957) have determined the energy gap of Bi~T%-Bi2S % alloys 
from optical absorption measurements. They found that the energy gap of 
Bi2T % rises on the addition of up to about 30 molar % Bi2Tea, but  further 
additions lead to a reduction in the gap. Such a discontinuity in the slope 
of a plot of energy gap against composition usually indicates a change 
in the location in the Brillouin zone of either the valence or conduction 
band extrema. There may, however, be another explanation of Austin 
and Sheard's observations. I t  has been suggested that, when some of the 
tellurium atoms in Bi2Te 3 are replaced by  selenium atoms, the latter go 
preferentially on to sites in the tellurium layers that  lie between the bismuth 
layers (see §2.1) (Drabble and Goodman 1958). Of course, this process 
can only continue until all these sites are filled, that  is at the composition 
Bi2Te2Se ; one might, therefore, expect a discontinuity at this composition. 
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If Drabble and Goodman's suggestion is correct, Bi~T%Se should behave 
as an ordered solid solution. Misra and Bever (1964) have produced 
evidence that  ordering occurs if samples of Bi2T%Se are annealed for a 
sufficiently long period, but transport measurements have not been 
carried out on material that  is known to be ordered. 

Sb~Te3, like Bi2Se 3 forms solid solutions with Bi2Te a in all proportions. 
The properties of holes in Sb2T % are similar to those in Bi2Te 3 but the 
electron characteristics are not known, since the compound is always far 
from stoichiometric, with a high acceptor concentration due to the excess 
antimony. For the same reason the energy gap of Sb2Te 3 is unknown 
but it is certainly very small and possibly zero. 

Since GeTe has a crystal structure that  is so little distorted from that  
of the cubic IV-VI compounds, it might be expected that  its electronic 
properties would be similar to those of PbTe, PbSe and PbS. The three 
latter compounds all have energy gaps of about 0.3 ev and mobilities for 
electrons and holes of the order of 1000 cm2/sec. However, in practice the 
properties of GeTe are quite different. I t  is always non-stoichiometric and 
strongly p-type, so attention has been confined to the hole characteristics. 
The hole mobility is no more than 50 cm~/v sec, the effective mass 
being correspondingly large, of the order of twice the free electron mass 
(Moriguchi and Koga 1957). That GeTc is a semi-metal rather than a 
semiconductor has been inferred from the values of the Seebeck coefficient 
which are small even at  elevated temperatures. The fact that  the carrier 
concentration in GeTe is always so high makes the question of whether 
or not it is a semi-metal of hardly more than academic interest. 

Fig. 6 

The Brillouin zone and part of the Fermi surface shown schematically for 
graphite. There are similar parts of the Fermi surface at each of the 
six edges. The warping of the surfaces is not illustrated. 

The energy band structure of graphite is rather complex because of the 
dose proximity, at  the edge of the Brillouin zone, of the Fermi surfaces 
for electrons and holes. The Fermi surfaces are shown schematically 
as ellipsoids at zone edge of the Brillonin zone in fig. 6 but, in fact, both 
sets of surfaces are severely warped (3/icClure 1964). The effective masses of 
both types of carrier are of the order of 0.05m perpendicular to the trigonal 
axis and an order of magnitude higher in the direction of the trigonal axis. 
The band overlap is about 30 mev as deduced from the de I-Iaas-van Alphen 
data (Soule 1958). 
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In spite of the complexity of the constant-energy surfaces, Klein (1964) 
has shown that  the transport properties of well-annealed pyrolytic graphite 
can be interpreted using a simple two-band (STB) model. The bands 
are assumed to be parabolic with cylindrical energy surfaces and a small 
overlap in energy between the band edges for the pure material. Within 
the terms of this model the values of the overlap energy - Eg and the effective 
masses must be regarded as phenomenological parameters chosen to agree 
with the transport coefficients and not necessarily related in any simple 
fashion to the parameters determined from de Haas-van Alphen oscillations 
or other effects. Klein's results, can, in fact, be fitted by the STB model 
if the band overlap is supposed to be 10mev and the effective masses are 
equal to 0.0125m. The mobility of both types of carrier in the layer planes 
is about 104cm~/vsec at room temperature rising to about 10Scm2/vsec 
for reasonably good samples at very low temperatures. The mobility 
ratio/~ e/~ h is about 1.1 at  room temperature but appears to vary somewhat 
with temperature. 

I t  might have been expected that  the properties of grey tin and InSb 
would be very similar to each other in view of the fact tha t  indium and 
antimony lie next to tin in the periodic table. There are, however, marked 
differences between their electronic properties. InSb has an energy 
gap of 170mev with an electron mobility of more than 70000cm2/vsec, 
though the hole mobility is only about 1000 cm2/v sec. On the other hand, 
the mobilities of electrons and holes in grey tin are very similar to one 
another; both are equal to about 100cm~/vsec at room temperature 
(Busch and Wieland 1953). The energy gap of grey tin is 90 mev (Busch 
and Kern 1960). The effective mass of electrons in InSb is about 0.01m 
while in grey tin it is of the order of the free electron mass. I t  seems 
clear, then, tha t  the reason for the differences between InSb and grey 
tin is likely to be found in their having different conduction band structures. 
Since InSb has its conduction band minimum at k = 0, we can expect grey 
tin to possess a multi-valley conduction band. This has been confirmed 
by Paul (1961) whose high pressure experiments suggest tha t  the minima 
lie at the edges of the Brillouin zone in the (111 ) directions. 

The two mercury compounds HgSe and HgTe are characterized by 
very high electron mobilities and much smaller hole mobilities. Although 
some workers have given rather large values for the energy gap of HgSe, it 
seems much more likely that  the gap is smaller for both compounds. Thus, 
Rodot et al.  (1961) state that  the energy gap of HgTe is 25 mev while that 
of HgSe is less than 80 mev. I t  appears that  for both materials the energy 
band minima occur at k=  0, the effective masses being about 0-03m to 
0.05m, but varying with carrier concentration since the bands are non- 
parabolic. At 300°g, the electron mobility in HgTe normally exceeds 
20 000 cm2/v see (the mobility ratio b being equal to about 70) while for 
HgSe the electron mobility is about 10 000 cmg'/v sec. 

One narrow-gap semiconductor tha t  has not so far been mentioned 
is CdaA% which has a tetragonal structure and E g equal to 130 mev (Turner 
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et al. 1961). What  makes this material interesting is its high electron 
mobility of 15000cm2/vsec at room temperature as determined for a 
sample containing 2× 10 TM earriers/em a. This combination of high 
mobility and high extrinsic carrier concentration may well make more 
intensive studies of CdaA % worth while. 

§ 3. TRANSPORT PHENOMENA IN THE ABSENCE OF A MAGNETIC FIELD 

3.1. Thermoelectric Ef fects  and  H e a t  Conduct ion  

Before dealing with the more general situation of the transport phenomena 
ia combined electric and magnetic fields and a thermal gradient, we shall 
consider the interesting effects that  occur in the absence of a magnetic field. 

The transport properties in zero magnetic field for a single-band or 
extrinsic conductor are determined by  the substitution of the appropriate 
band parameters in certain well-known equations (Wilson 1953). Briefly, 
for electrons, the electric current density is : 

/ e u / g d E  . . . . . . . . .  (6) 
0 

where e is the electronic charge, u is the electron velocity, f is the Fermi 
distribution function and g is the density of states at  the energy E. The 
rate of flow of heat per unit cross-section area due to the electrons is: 

/= 
w =  u ( E - ~ ) f g d E ,  . . . . . . .  (7) 

o 

where ~ is the energy at the Fermi level, otherwise known as the electro- 
chemical potential. There is an additional contribution to the heat flow 
from the lattice vibrations. 

Incidentally, it is supposed that  the flows in the systems of electrons 
and lattice vibrations are independent of one another, apart  from the 
scattering of electrons by  phonons and vice versa. In other words, 
we do not include the phonon-dr~g effects (Gurevich 1945, Herring 1958). 
It seems that  the neglect of the phonon-drag effects is generally valid 
for the types of material under discussion here, for a number of reasons. 
The materials tend to have large electron mobilities and small lattice 
thermal conductivities. Thus, the relaxation time for scattering of 
electrons by  phonons is long and the relaxation time for scattering of the 
phonons tends to be short (though it must be remembered that  it is differeRt 
groups of phonons that  are primarily responsible for the conduction of 
heat and for phonon drag respectively). Moreover, even if conditions 
were otherwise suitable for phonon drag to occur, the effect would b e  
diminished by  the presence of large carrier concentrations (the so-called 
saturation effect). When the carrier concentration is high, much of the 
momentum that  is passed on from the electrons to the phonons is returned 
subsequently from the phonons to the electrons. 

A.P. X 
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Since we are not at the moment interested in the non-parabolic nature 
of the density-of-states function, we can adopt a constant effective mass 
m*. We treat this as a scalar quanti ty here since we are not concerned 
for the present with the more general tensor properties. Then the density- 
of-states function is : 

4~r(2m*)a/~E1/2 
h3 . . . . . . .  (S) 

and 
2E u2_-- 

3m* ° 

Substitution in eqns. (6) and (7) yields : 

and 

. . . . . . . . . .  (9) 

a = ~ K o ,  . . . . . . . . . .  (10) 

K1 

1 / K I ~  
Kr=-T-2(K2-- -Ko]" . . . . . . .  (12) 

where a is the electrical conductivity, a is the Seebeek coefficient and 
K E is the electronic thermal conductivity. E~ is the energy at the edge 
of the conduction band and the integrals K s are defined by : 

where Ks= - ~ \ ~ ]  m*ll2ZA(s+2t+~)(kT)8+a+~Fs+~+½, (13) 

(14)  

fo being the equilibrium Fermi distribution function, and where it has 
been assumed tha t  the relaxation time may be expressed as in eqn. (4). 
The ratio %~aT, known as the Lorenz number, is thus given as : 

1 - ( K2 K12~ . . . . . .  (15) 
L =  e-VTT2 K-0 _ K002]" 

For conduction by holes eqn. (15) is still applicable but eqn. (11) must 
be modified to:  

a=e~(~-Ev÷K-~o) ,  . . . . . .  (11') 

where E v is the energy at  the edge of the valence band. This implies 
that  the Seebeck coefficient is positive for hole conduction whereas it 
is negative for electronic conduction. The magnitude of the Seebeck 
coefficient is directly proportional to a suitable average of the energy 
of the charge carriers measured with respect to the Fermi level. Thus, 
for a classical electronic semiconductor, the Seebeck coefficient is 
{~-E~-(~+,~)kT)/eT where ~ - E  c can be regarded as the potential 
energy and (~+~)kT as the appropriate average of the kinetic energy. 
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The Lorenz number  L is equal to (~r~/3)(k/e) 2 for a completely degenerate 
conductor and to (~ +2)(k/e) 2 for a classical semiconductor in which the 
assumptions outlined above are valid. Thus, for all extrinsic conductors, 
whether degenerate or non-degenerate,  the Lorenz number  is expected to 
have a comparatively small range of values, say from 2(k/e) ~ to 4(k/e) u. 

Where there is more t han  one band of carriers, the contributions of 
each band to the flows of charge and heat  must  be added together.  I t  
may be t ha t  there are two or more conduction (or valence) bands with 
energy maxima (or minima) at  different levels. The following t r ea tmen t  
(Drabble and  Goldsmid 1961) is applicable in this case, bu t  i t  is more 
interesting to apply i t  to the case of one electron band and one hole band.  
This is the normal s i tuat ion for a mixed semiconductor or semi-metal.  
The electron band will be denoted by  the subscript e and the hole band  by  
the subscript h. 

The equations for the  part ial  flows of current and heat  due to the two 
types of carrier are : 

• a e  hgrad ~ 
t e ,~= ' . - a e ,  h~e, i~gradT . . . .  (16) 

e 

and 

~)" h-- Ke, hgrad T, (17) W e ,  h ~ 9Te ,  h - - - -  l e ,  • . . . 

being the Peltier coefficient. 
The electrical conduct iv i ty  of the mixed conductor is given by  the  ratio 

of the electric current  to the gradient  of the electrochemical potential  
when the temperature  gradient  is zero. Quite simply : 

a : ( T  e - ' ~ - a  h . . . . . . . . .  ( 1 8 )  

The Seebeck coefficient is determined by  setting the tota l  current  equal 
to zero, i.e. i e= - i h, whence 

O~h(Th "~- ~ e (~ e . . . . . . .  (19) 
{T 

Since a e and  aa are of opposite sign, the  Seebeck coefficient of a mixed 
conductor is generally small compared with t h a t  of an extrinsic conductor. 

The electronic thermal  conduct ivi ty  is found by  summing w e and wa 
for the condition tha t  the tota l  current is zero. Thence, it  is found tha t  : 

K ~ = K e + ~ h +  ~ e ~  (~h-- ~)~T . . . . .  (20) 
~r 

and the Lorenz number  is 
L Lecr~+Lhah aea h 

= + (ah--ae) 2. (21) 
Er - - ~  . . . .  

It  is, a t  first sight, rather  surprising tha t  the electronic thermal  conduc- 
tivity is not  simply the sum of the separate contributions from the two 
bands. The addit ional  term arises from the fact t ha t  electron a n d  holes can 
move together in the same direction, t ransport ing energy but  no t  carrying 
any net charge. 

X 2  
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The Lorenz number can be very large for an intrinsic wide-gap semi- 
conductor. Thus, if the mobilities and concentrations of the two types 
of carrier are more-or-less equal, the bipolar term in eqn. (21) is equal to 
about (ah--ae)2/4, which is (Ea/kT+5+Ae+Ah)~(]c/e)2/4 if classical 
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statistics can be employed. Typically, with Eg of the order of 1 ev, the 
bipolar Lorenz number at room temperature is no less than about 400(]c/e)% 
However, the electrical conductivity is so small for such a material that  the 
electronic thermal conductivity is negligible compared with the lattice 
component. Bipolar heat conduction is much more easily observed for 
narrow-gap semiconductors in which the intrinsic electrical conductivity 
is relatively large. 

Bipolar heat conduction was first suggested as an explanation of what 
was apparently a very large value for the thermal conductivity of InSb 
(Fr0hlich and Kittel 1954) but  subsequent work (Busch et al. 1959) showed 
that the bipolar effect is not normally appreciable for this compound. 
This is because the electron mobility of InSb is about  70 times as large as 
the hole mobili ty;  thus, the ratio a eah/a 2 falls from the value of 2, tha t  it 
would have for an intrinsic material with equal carrier mobilities, to about  
1 I t  is, in fact, possible to obtain a high bipolar Lorenz number for 
InSb, or any similar compound with a high ratio of electron to hole mobility, 
if it is doped with acceptors so that  the ratio of the concentration of holes 
to that of electrons is equal to the ratio of the electron mobility to the hole 
mobility. When this condition holds the ratio aeah/a ~ does attain the 
value of 2. The required condition should obtain for any p- type  sample 
at a specific temperature somewhat below that  at  which the conduction 
is effectively intrinsic. 

The bipolar heat conduction effect can be demonstrated very easily 
with the compound Bi2Te 3 (Goldsmid 1956). The lattice thermal conduc- 
tivity is no more than about 0.015 w/cm deg at room temperature, while 
the electrical conductivity of intrinsic material is as high as 140 ohm -1 cm -1, 
the energy gap being only about  0.13ev. The ratio of the mobilities 
of electrons and holes is little more than 2 : 1 which means that  aeah/(~ 2 
has not fallen much below ¼. Some experimental results for extrinsic 
and intrinsic Bi2Te a are shown in fig. 7. In the extrinsic region, as the 
concentration of dopant increases, the thermal conductivity rises with 
electrical conductivity, the Lorenz number being given by  eqn. (15), 

having the value of - ½. However, in the intrinsic region the thermal 
conductivity again rises and it is found that  the Lorenz number for the 
intrinsic compound is about 25(k/e) ~. This is in good agreement with the 
value of 23.5(k/e) 2 predicted by  eqn. (21). 

Gallo et al. (1962) have pointed out that  bipolar heat conduction is not 
confined to semiconducting materials, but  it may  also be significant for 
semi-metals. This is quite clear from eqn. (21) since the difference 
ah-a~ between the partial Seebeck coefficients of holes and electrons 
does not vanish when the valence and conduction bands overlap. For 
example, the bipolar contribution is more than 20 % of the total electronic 
thermal conductivity, if the band overlap is less than 8kT, for ~ 1 - -  2 '  

or less than 20kT, for 2 = ~. 
Gallo et al. (1963) took account of the bipolar effect for bismuth in the 

analysis of measurements of the electrical conductivity, Seebeck coefficient 
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and thermal conductivity on single crystals. They determined these 
properties with the applied electrical or thermal gradients in both the 
direction of the trigonal axis and in the perpendicular direction. Since 
the thermoelectric properties depend primarily on the energies of the charge 
carriers, Gallo and his colleagues were able to calculate the band overlap 
and the position of the Fermi level from their  results. 

The significance of the bipolar contribution to the thermal conductivity 
to a semi-metal has also been discussed in relation to graphite by  Klein 
and Holland (1963). At ordinary temperatures the lattice thermal 
conductivity along the layer planes of graphite is so large that  the electronic 
contribution can be neglected, but  at very low temperatures the fall in 
the specific heat is accompanied by  a fall in the lattice conductivity. 
Thus at 2°K, nearly half the heat conduction is due to the charge carriers. 
However, at such low temperature, even with an energy band overlap of no 
more than about  10mev, this is so very much larger than leT that the 
bipolar contribution is negligible. 

3.2. Size Effect on the Electrical Conductivity 

I f  charge carriers are scattered diffusely at the surface of a conductor, 
one certainly expects the electrical conductivity to become size dependent 
when the width of the sample is comparable with, or smaller than, the 
bulk mean free path length. On the other hand, if the energy surfaces 
are spherical, and if carriers are specularly reflected at the boundaries, the 
electrical conductivity should be independent of the sample width. An 
investigation of size effects on the electrical conductivity in single crystals 
requires measurements to be carried out at low temperatures, since it is 
only then that  the mean free path can exceed the minimum width of 
specimen that  can be achieved experimentally. For electrons in bismuth 
the bulk mean free path is of the order of 1 mm at liquid helium temperature. 

For a conductor with non-spherical energy surfaces, such as bismuth, 
there should be a size effect even if the surface scattering is specular (Price 
1960). The electrical conductivity should fall from its bulk value, as 
the width of specimen is reduced, until it reaches some limiting value 
which depends on the shape of the energy surfaces and on the orientation 
of the current flow with respect to the crystal axes. Figure 8 shows the 
results obtained by  Friedman and Koenig (1960) for very high purity 
bismuth (P3ooo/P4.2oo > 400) at 4.2 °K. The sample was oriented so that  the 
current flow was parallel to a binary axis and the thickness measurement 
refers to a bisectrix direction. The results were obtained by  successively 
electropolishing the sample to reduce its thickness. The data are consistent 
with Price's theory assuming the surface scattering to be specular. It 
is noteworthy that  Friedman and Koenig were unable to change the nature 
of their results by  etching the crystals to produce a mat t  surface or 
by  mechanically abrading the surface. 

There are good reasons for supposing that  specular reflection is the rule 
for semi-metals and semiconductors. These reasons are based on the fact 
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that in these materials electron wavelengths are much larger than in metals 
and are actually comparable with optical wavelengths. Thus, one would 
at least expect any surfaces that  appeared to be specular to visible light 
to be specular to these long-wavelengths electrons. 

An unsatisfactory feature of the experiments carried out by Friedman 
and Koenig is the fact that  they had to remove the sample from the liquid 
helium for re-etching in between successive measurements. There was 
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thus some possibility of altering the bulk properties by introducing strains 
during an experiment. For this reason, Aubrey et al. (1964) carried out 
size-effect measurements using wedge-shaped crystals to which a number 
of potential leads were attached. As fig. 8 shows, there is a considerable 
divergence between the results obtained by Aubrey and his colleagues 
from those of Friedman and Koenig. Aubrey's results display a much 
greater difference between tlle bulk conductivity and the thin-sample 
conductivity, though they also indicate that  the conductivity reaches 
a limiting value for very small widths. 
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Aubrey et al. discuss their results in terms of a reflectance coefficient 
p which is equal to unity under some conditions (otherwise the conductivity 
would fall to zero for a sample of infinitesimal thickness) and less than unity 
under other conditions, p may, for example, be dependent on both the 
electron wavelength and on the angle of incidence to the surface. As a 
simple approach to this problem it is assumed tha t  p = 1 when the change 
in amplitude Ak of the wavevector on specular reflection is less than some 
value Ak o, whereas if A/c becomes greater than A/% completely diffuse 
scattering (p = 0) is assumed. I f  it is  supposed tha t  Ak 0 = 1-3 × 105 cm -1, 
the difference between the bulk conductivity and thin-sample conductiv- 
ities as measured by Aubrey, can be explained, though the variation with 
thickness, when the mean free path is comparable with the sample width, 
is not correctly predicted. However, in view of the disagreement between 
the two sets of experimental data, it seems important to establish the true 
variation of the conductivity with thickness for several orientations 
before further refining the theory. 

§ 4. GALVANOIVL~GNETIC EFFECTS 

4.1. Determination of the Effective Mass Tensor 

The most direct way of determining the effective mass tensor of a semi- 
metal or semiconductor is by means of one of the cyclotron resonance 
techniques. However, this requires that  the product wcz should be at 
least of the order of unity, w c being the cyclotron frequency and T the 
relaxation time of the carriers. Even at low temperatures, the relaxation 
time is high enough to allow cyclotron resonance to be observed in only 
a few materials. Far more widely applicable is the method of determining 
the effective mass tensor from the galvanomagnetie coefficients. The 
coefficients are usually measured in magnetic fields tha t  are low enough 
for the relations between current and electric field to contain terms up 
to only the second order in B. Having measured the coefficients, it is 
necessary to select a model for the band structure that  is consistent with the 
experimental data and which is, of course, also consistent with the crystal 
symmetry. The method has been described by Abeles and Meiboom 
(1956) with specific reference to bismuth, by Drabble and Wolfe (1956) 
for BloT%, and by Freedman and Juretschke (1961) for antimony. 

Before discussing the galvanomagnetie effects in detail it  is worth 
mentioning tha t  some of the general characteristics can be deduced from 
relatively simple measurements. Thus, in a cubic crystal the electrical 
conductivity and Hall coefficient are isotropic but, unless the energy 
surfaces are centred at k = 0 and are, therefore, spherical, the magneto- 
resistance effects depend on the direction of current flow. A particularly 
valuable test of whether a material is single-or multi-valleyed is a 
comparison of the longitudinal and transverse magnetoresistance effects. I f  
the longitudinal magnetoresistance is negligible it can usually be assumed 
tha t  the surfaces of constant energy are centred at k = 0. Figure 9 shows 
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how the magnetoresistance of n-type HgSe depends on the angle between 
the current flow and the magnetic field. Since the longitudinal magneto- 
resistance is so small one can deduce that  HgSe has a single-valley conduction 
band. 

It is instructive to consider the galvanomagnetic coefficients for the 
crystals of the class 3m which include so many of the materials within 
the scope of this article. For these crystals there are twelve independent 
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coefficients at low magnetic fields. These twelve coefficients are included 
in the expressions which define the resistivity, Hall coefficient and magneto- 
resistivity tensors, that  is the equations that  give the electric field ~ in 
terms of the electric current i and magnetic field It : 

O~1~1 : Pll + Pll11B12 + P112~B22 + PllaaBa ~ + 2Pll~3B~Ba, 

°~'~/i2 = Pll + Pl122B12 + P1111B2 ~ A-pllaaB3 ~ - 2pl12aB~Ba, 

#8/i3 ----Paa "4-pa.~llBi 2 -4-P3311B22 "4-pazaaB32, 

#~/i3 = p~.alB1 + p 2811B12 - puallB22 A- 2p232aB2B 3, 

#all1 = p~alB2 + 2p2311B1B2 + 2p2823B1B3, 

#1/i~ = P12aB3 + 2p1123BxB3 + ( P 1 1 1 1  - -  P1122)B1B2, 

(22) 

the other ratios £ k / i  t being given by the Onsager relation 

( #k/ iz)(B) = ( @Ji~)( -- B) .  

Pkt is the resistivity tensor, P1~t,~ the Hall tensor and Pkimn the magneto- 
resistivity tensor. The directions 1, 2 and 3 refer to the binary axis, 
bisectrix axis and trigonal axis respectively. 

The coefficients defined above can be found by measuring the components 
of the electric field in selected directions for various directions of current 
flow and magnetic field. However, certain precautions must be taken 
if the results are to be accurate. For example, it is important tha t  there 
are no temperature gradients tha t  could lead to thermoelectric voltages. 
Such spurious voltages can be avoided by immersing the sample in a liquid 
bath or by periodically reversing the direction of the electric current, 
thereby eliminating temperature gradients due to the Peltier effect as well 
as to any assymetry of the apparatus. The sample should be at least 
four times as long as it is wide and any measuring probes should be inset 
by at  least the width of the sample from its ends (Drabble and Wolfe 1957) ; 
this prevents the ends of the sample from short-circuiting the transverse 
field over the region on which measurements are made. Furthermore 
the experiments should be performed at different magnetic field strengths 
to ensure that  terms higher than the second order in B can be neglected 
(otherwise eqn. (22) is inadequate to describe the results). 

The choice of orientation of the samples differs from one worker to 
another. Thus, Drabble and his colleagues confined their experiments 
to current flows along the principal crystal axes, rotating the magnetic 
field in a plane containing the direction of i. Epstein and Juretschke 
(1963) obtained their results on antimony using two sample orientations 
with current flow along the trigonal direction and perpendicular to this 
direction respectively. In the latter case the current flow was set at 
an angle of 15 ° to a binary axis rather than along a binary or bisectrix 
direction in order that  all the coefficients could be determined. For 
both orientations the magnetic field was rotated in a plane containing 
the trigonal axis. Although, it is not necessary to determine the relation 
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between electric field and current for all magnetic field orientations, 
it is wise to do so in order to check that  the phenomenological equations 
are obeyed. Any departure from the phenomenological relations may reveal 
that the sample is non-uniform or cracked. 

Having determined the galvanomagnetic coefficients, these must then 
be related to the band parameters. The number of independent parameters 
depends on the model that  is adopted. I t  will be supposed that  the material 
is degenerate (or the relaxation time energy-independent) so tha t  all the 
carriers in a band have the same relaxation time. I t  is customary to 
assume tha t  the bands are parabolic and that  the equal-energy surfaces 
are ellipsoids tha t  are tilted through arbitrary angles with respect to the 
crystal axes, the parameters at one's disposal being set by the position of 
the ellipsoids in the Brillouin zone. Thus, if the energy surfaces are 
centred on the trigonal axis, they must be spheroidal and non-tilted. 
The simplest model tha t  leads to twelve non-vanishing galvanomagnetie 
coefficients consists of six ellipsoids centred on the reflection planes and 
tilted about the binary axes (or three ellipsoids if they are centred at the 
face of the Brillouin zone). In this situation the parameters that  define 
the galvanomagnetie coefficients for a single band are the carrier concentra- 
tion n, the mobilities/~x,/x2 and ~3 along the axes of each ellipsoid, and the 
angle of tilt ~b between the 3 axis of an ellipsoid and the trigonal (3) 
axis in the Brillouin zone. For an intrinsic conductor in which only two 
bands are involved the five variables are increased to nine, whereas for a 
doped semi-metal, in which the minority carriers cannot be neglected, 
there are ten variables. These variables can, then, generally be evaluated 
using less than the complete set of twelve galvanomagnetic coefficients 
but it is always preferable to make sure that  a given solution fits all twelve 
coefficients, otherwise there is little to justify the adoption of the particular 
model tha t  has been selected. 

In calculating the band parameters it is more convenient to deal with the 
conductivity coefficients, that  occur in the equation for the components 
of i in terms of ~ rather than the resistivity coefficients defined by eqn. 
(22). The equations relating to components of the resistivity tensors 
to the components of the conductivity tensors have been given by Beer 
(1963). They are: 

P l l  : ]/0.11, 

P 3 3  : 1 / ° ' 3 3 ,  

P 1 2 3  : - -  0.123/0.112~ 
P 2 3 1  = - -  0 . 2 3 1 / 0 . 1 1 0 . 3 3 ,  

P 1 1 1 1  - -  - -  0 . 1 1 1 1 / 0 . 1 1 2 ,  

P 3 3 3 3  = - -  0 . 3 3 3 3 / 0 . 3 3 2 ,  

P1122 : -- 0"1122/0"112 --  0.2312/0"1120.33 , 

P 1 1 3 3  = - -  0 . 1 1 3 3 / 0 . 1 1 2  - -  0 . 1 2 3 2 / 0 . 1 1 3 ,  

~ 1 1 2 3  : - -  0.1123/0.112, 
P~3ii = - %3il/0.332 - 0.23i2/0.ii%32, 

P23ii = - 0.231i/0.ii0.33, 
1 2 P2323 = - 0 .2328/~i10.33 + ~0 . i230 .~31 /0 . i i  0.33. 

In these equations the coefficients of p and 0. are interchangeable. 

(23) 
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The  expressions for the  conduct iv i ty  coefficients (see, 
Eps te in  and  Ju re t schke  1963) are : 

2o. u _- ne[ l~  1 + c2tz2 + 82~3],  

a33 = ne[s2t~2 + c2t~3], 

- -  20"231 = _ ne,[fL2ft 3 + fc1(82f~2 ~- C2~b~3)], 

- -  0"123 ----~ ---~ ~e[tzl(C2/~2 "-~- 82~'3)],  

- -  20"1133 ---- ne[ l~  1 + c2~2 -~ 82~3] [~1(c2~2 -~ 82f~3) ] ,  

- 20"3a n = ne[s2 tz2  + c2/~3] [~2/~3 +/~l(S2tZ2 + c2~a)], 

- 3an22 + o.11n + 2o.232a = ne[ l~ :  + c2/~2 + s2/~3] [/~2~3 +/Zl(S2/z2 + cU/za) ], 

2o'2323 ---- n e  [82~2 + C2~3 ] [~1(c2~2 ~- 82~3)] ,  

- -  20'3333 ---- °"1122 - -  3°"1111 -]- 20"3323 = 2nec2821~1 (~2 - -  ~3)  2, 

- -  4°'1123 = necsl~l(tt2 --/z3) [ -- /~1 "~- C2~2 + 82~3],  

- -  4o.23n = necs( l~2  - tta) [/~2~3 - -  ~bbl (82~2 + C21{£3)], 

for example,  

(24) 

where c and s are the  cosine and sine of the  angle of  t i l t  ¢. I n  the  equat ions 
for the  inverse Hal l  coefficients, a2a 1 and  o.128, the  upper  sign refers to a hole 
band  and  the  lower sign to an electron band.  We note  t h a t  for a two-band  
conductor  the contr ibut ions  f rom the  n e electrons and the  n~ holes are 
added,  so tha t  : 

20"11 ---- n e e  [/3'1 ~- c e2~2 -~- 8 e2~3 ] + n h e [ 1'1 ~- C h 2 P2 "[- 8 h 2 ]]3 ], 

- -  20"231 --  n e e  [/z2/~ 3 + ~1 (S e2~2 -~- C e2~3) ] ~- n he [ ~'2v3 + ~'1 (8 h2P2 -~ C h 293 ) ],  etc., J 
(25) 

where the/~'s  and  v's are electron and  hole mobilities respectively.  
In  a real exper iment  one can hard ly  expect  any  given set of  variables 

to  fit  all the  observed coefficients exact ly .  In  view of  the  mass of  informa-  
t ion  and the  complexi ty  of the  equations,  one programmes  a compute r  so 
t h a t  i t  finds a set of band  parameters  (or a n u m b er  of  such sets) t h a t  are 
reasonably  consistent  wi th  the  data.  I t  can happen  t h a t  some of  these 
sets will differ in detail  quite considerably ; such was the  case, for example,  
in the  evaluat ion of  the  conduct ion band  paramete rs  for an t imony  b y  
Eps te in  and Ju re t schke  though  the  valence band  s t ruc ture  was more  or 
less uniquely  determined.  I t  is p robab ly  be t t e r  to  work,  if  possible, 
wi th  extr insic r a the r  t han  intrinsic mater ial ,  the  n u m b er  of  variables 
then  being considerably reduced.  

The  galvanomagnet ic  measurements  do no t  de termine  the  effective 
mass tensor  as such, bu t  the  effective mass components  wi thin  a val ley 
are given by  the relations m 1---erl/l~l, etc. I f  the  re laxat ion  t ime ~ is 
isotropic, the  rat ios of  the  mobilities along the  principal  axes of  each 
ellipsoid are the same as the  rat ios of  the reciprocal effective masses. The 
absolute values of the effective masses cannot  be obta ined  from the  galvano-  
magnet ic  da ta  on thei r  own. I t  is necessary, in addit ion,  to  know the  
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Fermi energy, which can be found from Seebeck effect measurements 
provided that  the energy dependence of the relaxation time is known. 

An example of the combination of thermoelectric and galvanomagnetic 
measurements is to be found in the work of Smith, Wolfe and Haszko 
(1964) on bismuth. Their assumptions of a non-parabolic conduction 
band with an energy-wavevector relation of the form of eqn. (2) involved 
the introduction of an additional variable, the direct energy gap E o. 

If the six-valley tilted ellipsoid model described above has been established 
ah'eady, the shape and tilt of the ellipsoids can be found from three 
anisotropy ratios, namely the resistivity ratio Paa/P11, the Hall coefficient 
ratio P~31/P123 and a magnetoresistance ratio Pll11/P3333 (Drabble 1963). 
For an extrinsic material with an isotropic relaxation time, the mass 
ratios and the tilt are given by : 

P33 1 + K 

Pll 2L ' 

Pc31 (M + L)(I + K) 
P123 4 K L  ' 

Pro1 L 2 ( 3 K L + L + K M - S M )  
P3883 2(1 +K)~(KL-M) 

. . . .  (26) 

where K = c eml + s ~ ml 
m 2 m 3 

and 

L_~82ml _[_c 2ml ' 
m2 m3 

~//~__. m l  2 

m 2 m 3  " 

. . . . . .  (27) 

These expressions are useful if, for example, one wishes to find out how 
the band parameters change when one element or compound is added to 
an isomorphous material (whose band structure is known) so as to form 
a range of solid solutions. 

4.2. Oscillatory Magnetoresistance 
When the magnetic field is large (tLB> 1) the classical theory suggests 

that the electrical conductivity should vary as 1/B 2 (though the 
magnetoresistance would be expected to saturate at a relatively low value 
for an extrinsic conductor). This is the behaviour that  is actually observed 
at ordinary temperatures but at  very low temperatures one frequently 
observes oscillations in the magnetoresistance, the so-called Shubnikov- 
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de Haas effect, which was, in fact, first seen for bismuth in 1930. Similar 
oscillations can be seen for transport properties other than the magneto- 
resistance, as well as for non-transport properties that  depend on the charge 
carriers. 

The origin of these oscillatory effects is to be found in the modification 
of the density-of-states function on the application of a magnetic field. 
A magnetic field B z causes the energy of a free electron to be quantized 
into a series of bands (the Landau bands) such that  : 

h2k~ (28) 
En'*z= (n + ½)hwc + --2ram' " . . . . .  

where w c is the cyclotron frequency and n the quantum number. The 
density of states at the Fermi surface becomes infinite if the Fermi energy 
EF, given by  ( ~ - E c )  or (Ev-~) ,  is equal to (n+l)hcoc . Within the 
effective mass approximation, this condition is : 

n + ½ = E F m * / e B l ~  . . . . . . . .  (29) 

The oscillations are thus periodic in 1/B and the period determines the 
product of Fermi energy and effective mass. 

Fig. 10 
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magnetic field for bismuth at l'2°K according to Vufllemin (1964). 
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plot. 

Certain conditions must be met before oscillations in the magneto- 
resistanee can be observed. In the first place the relaxation time must 
be appreciably greater than the time for an electron in cyclotron motion 
to complete an orbit. This condition, ~OeT>)1, is essentially the same 
as the high magnetic field condition, ~B>)1. I t  is necessary that  the 
Fermi energy should be much greater than kT and, also, that  it should 
be greater than h~%. 

Magnetoresistanee oscillations due to the electrons in bismuth have, of 
course, been studied many times since their first observation by  Shubnikov 
and de Haas. In  several recent papers s tudy of the oscillations due to 
holes has been made (Suzuki et al. 1964, Smith, Baraff and Rowell 1964 
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and Vuillemin 1964). Strictly, the second term on the right-hand side of 
eqn. (28) should be written as ½8hw 8 where s is the spin quantum number 
and % = eB/m~, m s being the spin mass defined by  2m/g and g being the 
effective g-factor. Particular attention has been drawn to the spin- 
splitting of the  hole oscillations by  Smith and his colleagues and by  
Vuillemin. Vuillemin's observations of the spin splitting, as the magnetic 
field is rotated away from the binary axis for bismuth at l'2°K, are 
illustrated in fig. 10. 

The conditions for the observation of magnetoresistance oscillations 
can be satisfied for several other semi-metals and narrow-gap semi- 
conductors besides bismuth, at  liquid helium temperatures. For example, 
they have been studied in p - type  Bi2Te a at 4"2°K by  Landwehr and Drath 
(1964) using pulsed fields of up to 185 koe. These workers were not able 
to use a sufficient number of different orientations to allow a completely 
independent determination of the effective mass tensor, but  their results 
were consistent with the band structure obtained from low-field galvano- 
magnetic measurements at 77°K. 

§ 5. NON-LINEAR EFFECTS 

5.1. Self-magnetic Field and Diffusion Effects 
In their measurements of the current-voltage characteristics of bismuth 

at 77°K, tIat tori  and Steele (1963) found an apparent increase in the resis- 
tivity for high electric fields. This phenomenon can be at tr ibuted to 
magnetoresistance arising from the self-magnetic field induced by  a large 
electric current. Later, Hat tor i  and Tosima (1956) found that, when a 
transverse magnetic field of more than a certain strength was applied, 
the resistivity appeared to decrease at high electric fields, t tat tori  and 
Tosima's results are shown in fig. 11. The dimensions of the sample were 
about 0.04 cm, 0.004 cm and 0.5 cm in the binary, bisectrix and trigonal 
directions respectively. The current flow was along the trigonal direction 
and the magnetic field lay parallel to a bisectrix axis. Samples with other 
orientations have also been studied. 

Hattori and Tosima's observations can be explained qualitatively 
in terms of the simple Abeles and Meiboom band model. Briefly, the 
change in the current-field characteristic from sublinear to superlinear 
form, on increasing the externally applied magnetic field, is due to two 
factors. Firstly, the self-magnetic field and the applied field are additive 
over one-half of the cross section whereas they oppose one another over 
the other half. I t  is found that  the increased magnetoresistance when the 
fields act together is insufficient to compensate for the decreased magneto- 
resistance when they act in opposition. Secondly, the combination of 
self and applied fields leads to a resultant that  has a component along the 
binary axis, leading to only a weak magnetoresistanee effect, whereas, 
if there were no self field, the magnetic field would lie wholly along the 
bisectrix axis, this producing the strongest magnetoresistance effect. 
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Although the above considerations are basically cmTect they do not 
give an accurate prediction of the changeover of the characteristic from 
sublinear to superlinear. Some account should, of course, be taken of 
such phenomena as self-pinching but it is believed that  the primary reason 
for the inadequacy of the simple theory lies in a size effect associated 
with carrier diffusion. A diffusion-size effect has been demonstrated for 
bismuth, also at 77°K, by the same authors (Tosima and Hattori  1964). 

In experiments on the magnetoresistance and Hall effect (at low electric 
fields, so that  the possibility of self-magnetic field effects can be ignored) 
Tosima and Hattori  found substantial deviations from Abeles and Meiboom's 
(1956) results when the thickness of the sample was less than 0-91 cm. 
Now the mean free path of the carriers at  77°K is of the order of 10 -4 cm, 
so this cannot be the ordinary size effect which appears when the sample 
dimensions approach the free path length. Instead, it must he assumed 
tha t  the inter-valley relaxation times are long enough for appreciable 
non-equilibrium carrier populations to be built up by diffusion processes. 
I f  the electron-hole relaxation time is long there can be a build-up of non- 
equilibrium electron-hole pairs. Also, in view of the fact that  the applied 
magnetic field and the current flow cannot be parallel to principal axes 
for more than one of the three electron ellipsoids, there can be an exchange 
of electrons between the other two ellipsoids, if the appropriate relaxation 
time is long enough. The experiments are consistent with inter-valley 
relaxation times (or lifetimes) of the order of 10 -9 sec. 

Fig. 11 
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Self-magnetic field effect in bismuth at 77°K. Plot of current against electric 
field for different transverse magnetic fields (Hattori and Tosima 1965). 
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Very much larger carrier lifetimes are expected at liquid helium tempera- 
ture (Esaki 1962 a). In this connection it is interesting to note the observa- 
tion by Zitter (1965) of the photoelectromagnetic (PEM)effect in bismuth 
at 4"2°K. I t  will be recalled that  this effect, which is of importance in 
determining carrier lifetimes in semiconductors, consists of the separation 
of diffusing electron-hole pairs by  means of a transverse magnetic field. 
It is difficult to observe in a semi-metal because of its very low electrical 
impedance, but  Zitter was able to match the impedance of the amplifier 
to that of his sample by  using a superconducting transformer. He found 
that the time for recombination of electron-hole pairs is about 10 -s see, 
which is an order of magnitude larger than the intra-valley relaxation 
time at the same t e m p e r a t u r e . . I n  other words, inter-valley scattering 
is much less effective than intra-valley scattering in a semi-metal, where 
it requires a change of momentum but  no change of energy, just as it is 
in a semiconductor, where, of course, it requires a change of energy as well. 

5.2. Esaki Kink Effect 
A non-linear current-voltage characteristic of a different kind was 

first observed by  Esaki (1962 a, b) when he was making magnetoresistance 
measurements on bismuth at liquid helium temperatures. Some typical 
experimental results are shown in fig. 12 for a single crystal at  2 °K with 
current flow along the bisector between the binary and bisectrix axes and 
the magnetic field along the trigonal axis. The cross section of the 
sample was about  1 mm ~. 

Fig. 12 
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Ohm's law is obeyed until the electric field reaches a critical value 
(the kink field) beyond which the differential resistance becomes very much 
smaller. The change of slope at the kink field is the more marked, the 
higher the transverse magnetic field. 

A key to the explanation of the phenomenon is the fact that  the electric 
field at the kink is proportional to the magnetic field s t rengtkfor  a given 
orientation, the constant of the proportionality being about 10 -a v/emoe. 
As Esaki pointed out, the combination of an electric field o z with a crossed 
magnetic field B leads to a drift of carriers in the mutually perpendicular 
direction with a velocity v given by  : 

8 
v = ~ . . . . . . . . . .  (30)  

Thus, the kink is observed at a constant drift velocity of about  106 cm/sec 
which is close to the appropriate velocity of sound in bismuth. This 
suggests that  the effect is due to an enhanced interaction between the 
charge carriers and the phonons when the drift velocity of the former 
reaches the speed of propagation of the latter. The corresponding increase 
in the scattering probability reduces the mobility of the carriers and 
thereby increases the conductivity in the presence of the strong magnetic 
field (the strong-field electrical conductivity is proportional to 1/I~B2). 

Pippard (1963) has discussed the enhanced eleetron-phonon interaction 
in semiconductors and semi-metals, when the carrier drift velocity exceeds 
the sound velocity, in terms of stimulated emission arising from population 
inversion. He has pointed out the equivalence of a quantum treatment 
(as used by  Esaki) and a treatment in terms of a classical bunching process 
(Hopfield 1962). Pippard considered specifically the simple example 
of a conductor with spherical surfaces of constant energy and showed that, 
if  both energy and momentum are to be conserved in an electron-phonon 
interaction, there must be a planar surface of interaction (in k space) 
given by  h k  x = m ' u ,  where x is the direction of sound propagation and u 
is the velocity of sound. The probabilities of absorption and emission 
of phonons differ in the value of the factor fl(1 -f2),  where f l  and f2 are 
the occupation probabilities of the initial and final electron states. When 
the electron gas is in equilibrium, this factor must increase with amplitude 
of the electron wavenumber so that  phonon absorption is the more probable, 
bu t  when a current is flowing the centre of the distribution function is 
shifted away from k = 0  and it is possible for f l (1 - f2 )  to become greater 
for emission rather than absorption of phonons. The required population 
inversion occurs when the drift velocity exceeds the velocity of sound. 

Amplification of sound waves in the direction of a strong electric field 
is now familiar in CdS (Hutson e t a l .  1961). Such a field can be applied 
to CdS without excessive heating because the electrical conductivity is 
very small; the strong piezo-electrie coupling between the electrons and 
phonons is also an advantage. In most other semiconductors the electrical 
conductivity is so high that  intense heating of the sample occurs when 



Transport Effects in Semi-metals and Narrow-gap Semiconductors 309 

it is subjected to a high electric field. On the other hand, the higher the 
carrier concentration, the more marked should be the effect if it can be 
made to occur. The very high electrical conductivity of the semi-metals, 
of course, rules out ultrasonic amplification under the influence of an 
electric field alone. However, when a strong transverse magnetic field 
is also applied the magnetoresistance effect leads to a very considerable 
reduction in the power dissipation for a given electric field. I t  is essential 
that the conductor should be intrinsic and tha t  both electrons and holes 
have a high mobility, otherwise the I-Iall field will reduce the magneto- 
resistance effect. This condition is met in pure bismuth and accounts 
for the success of Esaki's experiment. 

The Esaki kink effect and its explanation suggest tha t  ultrasonic 
amplification in a transverse direction should be possible in a sample of 
bismuth tha t  is subjected to crossed electric amd magnetic fields. Such an 
effect has been observed by Toxen and Tansal (1963) who reported sound 
amplification of up to 14 dB/cm at a frequency of 14 Mc/sec. 

Fig. 13 
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Pulsed current transverse magnetoresistance of bismuth in liquid helium. 
For experimental details see Goldsmid and Corsan (1964). 

It will be appreciated that  the Esaki effect is rather difficult to demonstrate 
even in bismuth, and conditions are certainly less favourable for the other 
semi-metals. Magnetoresistance experiments on antimony and arsenic 
have, however, also yielded a kink effect at  liquid helium temperature, 
though this effect is of thermal origin (Eastman and Datars 1963). The 
effect manifests itself as a sudden fall in the electrical resistance at  a constant 
current, when the electric field reaches a critical value. Further increase 
in the current leads to a gradual decrease in the electric field. The critical 
electric field is proportional to the transverse magnetic field just as for the 
true Esaki effect. The phenomenon can be explained by the sudden 
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onset on film boiling of the liquid helium in contact with the sample, when 
the rate of heat dissipation at the surface exceeds a certain value. The 
relatively poor heat transfer under film-boiling conditions implies that  the 
temperature of the sample must rise considerably, the mobility then falling 
and the conductivity (in a given magnetic field) becoming larger. 

The Esaki effect and the thermal kink effect have been observed on the 
same sample by  Goldsmid and Corsan (1964) whose results are given in 
fig. 13. The sample of bismuth was subjected to short pulses of fixed 
duration but  of variable repetition rate. When the pulse repetition 
frequency was low the Esaki kink was clearly seen but  as the repetition 
frequency was increased the power to be dissipated became greater and the 
thermal kink appeared, so preventing the drift velocity of the carriers 
from reaching the sound velocity. In the same set of experiments the 
Esaki effect was also observed for a sample of reheated pyrolytic graphite. 

§ 6. THERMOMAGNETIC EFFECTS 

6.1. Nernst  and Ettingshausen Effects 

Some of the most remarkable of the transport properties of semi-metals 
are to be found among the thermomagnetic phenomena. As we shall see 
the conditions for the observation of some of these effects can be more 
favourable for the intrinsic semi-metals than for any other class of material. 
However, first let us consider the origin of the Nernst and Ettingshausen 
effects in an extrinsic conductor. The Nernst and Ettingshansen 
coefficients, Q and P,  are related to one another by Bridgman's equation : 

PK---- QT . . . . . . . . . .  (31) 

which may be compared with Kelvin's relation between the Seebeck and 
Pc|tier coefficients. I t  suffices, then, to discuss the origin of one of the 
other of the effects ; here the Ettingshausen effect is chosen, though the 
~erns t  coefficient is usually the easier to determine experimentally. 

The interaction of a transverse magnetic field with a longitudinal 
current flow does not lead to a transverse electric current under the 
customary conditions of measurement ; this is because the field due to the 
Lorentz force is balanced by  the Hall field. I f  there were no transverse 
movement of the charge carriers whatever, there could be no transverse 
heat transfer and, therefore, no Ettingshausen effect. There are, however, 
partial flows of the carriers of different energy if the relaxation time is 
energy-dependent. The ~erns t  and Ettingshausen effects, thus, depend 
for their sign and magnitude on the energy dependence of the relaxation 
time and can be used, in principle, to determine the scattering law, provided 
that  the density-of-states function is known. According to the usual 
conventions P and Q have the same sign as the exponent 2 in the scattering 
law. Care must be taken, however, if optical-mode scattering is thought 
to be predominant, since a scattering law of the form ofeqn.  (4) is not then 
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usually applicable (Ehrenreich 1961). I t  should be noted that  the Nernst 
and Ettingshausen coefficients tend to zero for high magnetic fields; 
a high magnetic field (FB >~ 1) has the effect of eliminating any phenomena 
that depend on differences of relaxation time between the carriers 
(Tsidil'kovskii 1962). 

Fig. 14 
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Origin of the Ettingshausen effect in an intrinsic conductor. 

Valuable though the low field transverse thermomagnetic effects can 
be in determining the scattering law for an extrinsic conductor, the effects 
are much larger for an intrinsic conductor. This can be explained with 
reference to fig. 14 which shows the origin of the Ettingshausen effect 
when there are equal numbers of electrons and holes. The longitudinal 
current flow results from the electrons and holes moving in opposite 
directions, bu t  the magnetic field causes both types of carrier to move 
in the same transverse direction. I f  the carriers have the same mobility 
there will be no Hall field since the partial current flows are then equal and 
opposite to one another. In effect, electron-hole pairs are generated at 
one face of the sample and annihilated at the opposite face, thus transferring 
their ionization energy from one side to the other. This lateral bipolar 
flow sets up a temperature gradient so that, in equilibrium, it is balanced 
by conduction of heat in the opposite direction. The transverse thermo- 
magnetic coefficients associated with the bipolar effect are generally larger 
than for a single type  of carrier and, moreover, remain large at high magnetic 
field strengths. The bipolar Nernst and Ettingshausen coefficients are 
always positive in sign. 
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There is an interesting relationship between the high-field Nerns~ 
coefficient and the high-field magnetoconductivity for any intrinsic 
conductor, as was first pointed out by  Kooi et al. (1963). Suppose that  we 
have multi-valley valence and conduction bands. Then, for the carriers 
in valley 1 the currents in the x and y directions are : 

the magnetic field B being in the z direction, a(l) and R(1) are the partial 
Seebeck coefficient and Hall coefficient that  are appropriate to the carriers 
within the valley 1 and ax(1) and qv(1) are the contributions to the electrical 
conductivity in the x and y directions. 

The solution of eqns. (32) for the conditions d T [ d x  = d T / d y  = 0 and the 
summation of the current contributions ix(l ) due to each valley immediately 
yields the electrical conductivity in the x direction : 

%(1) 
% ( B )  = Z 1 + B~R2(1)%(1)%(l) . . . .  (33) 

When the high magnetic field condition applies for all the carriers, eqn. 
(33) becomes : 

1 ~ n(1)e . . . . . . . . .  (33') 
ax(B)  = -B~ 1" ~,(1) ' 

where n(l) is the number of carriers in valley l and/~,(1) is their mobility 
in the y direction. 

In  order to determine the high-field Nernst coefficient Qx~, for a tempera- 
ture gradient d T / d y  leading to an electric field #~, one applies the conditions 
d T / d x = O  and ~ i ~ ( l ) = ~ i ~ ( 1 ) = 0 .  When this is done it is found that, 
for high magnetic fields : 

Q x ~ -  B d T / d y  = Zn(l)e/~,(1)  ' 

where n i is the total electron or hole concentration. Combining eqns. (33') 
and (34): 

Q ~  - n i e ( a h -  ~ )  
B~.ax(B) , . . . . . . . . .  (35) 

which is the relationship derived by Kooi and his colleagues. In  making 
use of this expression it should be noted that  the partial Seebeck coefficients 
have their high field values which may be rather different from their zero 
field values. The difference a h -  a e, of course, represents the energy carried 
by  an electron-hole pair (multiplied by  1/eT).  
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It is instructive to examine eqn. (34) for an isotropic conductor with 
spherical energy surfaces for both electrons and holes. The expression 
for the Nernst coefficient at  high fields then becomes : 

Q -  Izel~--~ (aa-ae) . . . . . . .  (36) 

It is readily seen that  the value of the Nernst coefficient is controlled by  the 
smaller of the two carrier mobilities. I t  is necessary that  both types of 
carrier should have high mobilities if the Nernst coefficient is to be large, 
just as they should both be highly mobile for a large bipolar contribution 
to the thermal conductivity. 

The Nernst coefficient is little more difficult to measure than the Hall 
coefficient but  the Ettingshausen effect is much harder to observe unless 
favourable electronic characteristics are combined with a relatively low 
thermal conductivity. This is indeed the situation for bismuth, which 
is one of the few materials on which the effect has been studied in any 
systematic fashion. The Bi-Sb alloys are also favourable for the examina- 
tion of the Ettingshausen effect since they have lower thermal conductivities 
than that of pure bismuth. 

Although the thermomagnetic effects are very easily detected in a 
material such as bismuth, one major experimental difficulty does arise. 
The Nernst coefficient of direct theoretical significance is the so-called 
isothermal coefficient, as defined above for zero transverse temperature 
gradient. In  practice, however, one measures the adiabatic coefficient 
for which the transverse heat flow is zero. The presence of a transverse 
temperature gradient (due to the Righi-Leduc effect) implies that  there 
must be a transverse thermoelectric voltage between any potential probes 
that do not have the same Seebeck coefficient as the sample. I t  is this 
thermoelectric voltage that  leads to the difference between the adiabatic 
and isothermal Nernst effects and it can be large enough even for the 
adiabatic and isothermal coefficients to be of opposite sign. Thus, for 
any material that  has a large Righi-Ledue coefficient, it is important that  
this quanti ty (and also the Seebeck coefficient) should be determined at  
the same time as the adiabatic Nernst coefficient, in order that  the isothermal 
Nernst coefficient can be found. 

6.2. Magneto-thermal Resistance 
The measurement of the change of thermal conductivity in a magnetic 

field, or the Maggi-Righi-Leduc effect, is in many instances the most 
direct way of separating the lattice and electronic components of the thermal 
conductivity. The electronic part  of the thermal conductivity, like the 
electrical conductivity, can be made vanishingly small by  the application 
of a sufficiently large magnetic field, the remaining heat conductivity 
being due solely to the lattice. The heat conduction by the lattice vibrations 
can compensate for any lateral heat transfer by  the charge carriers, so 
that the electronic thermal resistivity in a magnetic field does not reach 
saturation in the same way as the magnetoresistivity sometimes does. 
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I t  is most useful to determine the magneto-thermal resistance effect 
when the magnetic field is of sufficient strength to reduce the electronic 
thermal conductivity to a very small fraction of its zero field vMue. This 
can certainly be done for bismuth and Bi-Sb alloys with less than about 
20% antimony, at  liquid nitrogen temperature. Thus fig. 15 shows the 
effect of a magnetic field of up to 10koe on three different Bi-Sb alloys 
at 80°K, according to Kooi et al. (1963). At the highest field the electronic 
thermal conductivity is so small that  the lattice component can be 
calculated accurately from the data. 

Fig. 15 
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Change of thermal conductivity with magnetic field for various Bi-Sb alloys 
at 80°K (Keel et al. 1963). The temperature gradient lies parallel 
to a binary axis and the magnetic field is parallel to a bisectrix direction. 

At ordinary temperatures the electronic thermal conductivity along 
the basal planes of graphite is negligible but  Klein (1964) and Holland 
have shown that  the electronic component accounts for nearly half the 
total thermal conductivity at  2°~. They demonstrated this b y  applying 
a magnetic field of about  5 koe, reducing the thermal conductivity from 
7 x 10-aw/cmdeg to less than 4 x 10-aw/cmdeg. As is expected for a 
strongly degenerate conductor, the Lorenz number was found to have the 
value (~r~/3)(k/e) 2 whatever the applied magnetic field. As mentioned 
previously, the bipolar contribution to the heat conductivity in graphite 
is negligible at  2 °K. 

The magneto-thermal resistance effect can be used for separating the 
lattice and electronic thermal conductivities, even when the change in 
the latter on applying a magnetic field is small. In this case, one determines 
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the ratio of the changes of thermal conductivity and electrical conductivity 
in a magnetic field for an extrinsic sample, ensuring that  the ratio is 
independent of field strength over the range covered by the experiment. 
This ratio, like the Seebeck coefficient, is a function of the Fermi energy 
E F and of the scattering exponent ~ so that,  if the Seebeck coefficient is 
also measured, E F and A can be determined. This in turn allows one to 
calculate the Lorenz number and hence the electronic thermal conductivity. 
This approach has been examined for Bi2Te 3 by  Bowley et al. (1958) who 
found, however, that  it was better to determine E F and A from the m agneto- 
Seebeck effect. The magneto-Seebeck effect, like the Nernst effect, 
determines A uniquely whereas the magneto-thermal resistance effect 
generally yields two possible values for A. 

Before terminating this discussion of the magneto-thermal resistance 
effect, mention should be made of a particular situation that  prevents the 
thermal conductivity from falling to the value of the lattice component. 
Strictly speaking, the electronic thermal conductivity only tends to zero 
in a high magnetic field for an intrinsic conductor if the transverse electric 
field is zero. If, instead, the transverse electric current is zero, there is a 
transverse-transverse contribution arising from the Nernst effect acting 
on the electrical conductivity and the Ettingshausen effect (Delves 1964). 
In this case the high field thermal conductivity is given by  : 

K = KL(I + Z~ET ) 
Q2B~ 

where ZNE- KLp(B) ' 

K L being the lattice thermal conductivity. This effect could certainly 
be of some importance for bismuth and its alloys which have large values 
of Z~E as will be mentioned later. 

6.3. Magneto-Seebeek Effect 
I t  has already been pointed out that  the magneto-Seebeck effect in 

an extrinsic conductor can be used in determining the scattering law. 
As shown by  eqns. (11) and (11') the Seebeek coefficient in zero magnetic 
field is the sum of one term involving just the Fermi energy and another 
involving the kinetic energy. The second term is a function of both the 
Fermi energy and the scattering parameter A but  can be made independent 
of h in a high enough field (for the same reason that the Nernst coefficient 
then disappears). I f  the conductor is non-degenerate with parabolic 
bands, the change in Seebeck coefficient is equal to _+ A(k/e) in a high 
field, the upper sign applying for an n-type conductor and the lower for a 
p-type conductor. For a partially degenerate conductor the change is 
somewhat smaller (Tsidil'kovskii 1962) and is a function of the Fermi energy 
as well as A. 

I t  is unusual to have a high enough magnetic field available to achieve 
the saturation value for the Seebeck coefficient, but  a measurement 
of the ratio of change in Seebeck coefficient to change in electrical 
conductivity at  low fields also suffices to determine A (Bowley et al. 1958). 
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The magneto-Seebeck effect is more complicated for an intrinsic conduc- 
tor but, provided that  transverse electric fields and temperature gradients 
are eliminated, the Seebeck coefficient can be calculated using eqn. (19) 
with the values of ae, h and ae, h appropriate to the magnetic field. The 
experimental results obtained by Wolfe and Smith (1962) on bismuth and 
Bi-Sb alloys, are, however, much more interesting than this would suggest. 

The Seebeck coefficient of bismuth in zero field is negative since the 
electrons are more mobile than the holes. On applying a magnetic field, 
one would expect the partial Seebeck coefficients to rise (assuming the 
scattering exponent A to be negative) but  the stronger magnetoresistance 
effect on the electrons than the holes would tend to reduce the overall 
Seebeck coefficient. One would certainly not  expect the magnitude of 
the Seebeck coefficient to rise by  even as much as -A(k/e), i.e. about 
40 Fv/deg. Thus, the observation by  Wolfe and Smith that  the Seebcck 
coefficient of bismuth in the direction of the trigonal axis can be changed 
from -130tzv/deg to about -300t~v/deg at 160°K with a magnetic field 
of 5 koe (applied along a bisectrix direction) is, at  first, most surprising. 

Fig. 16 
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Orientation dependence of the magneto-Seebeck effect in bismuth at 80°K. 
The heat flow lies along a bisectrix direction and 0 is the angle between 
the transverse magnetic field and one of the binary axes (Smith, Wolfe 
and]Haszko 1964). 
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Equally curious is the observation of a strong ' u m k e h r '  effect for 
bismuth. This effect, which can only occur for certain crystal orientations, 
manifests itself as a difference between the values of the Seebeck coefficient 
for the same magnetic field in opposite directions, i.e. a (B)¢ a ( -  B). In 
fact, one can obtain a positive Seebeck coefficient with the magnetic field 
in one direction and a negative Seebeck coefficient when its direction is 
reversed. Comprehensive studies of the umkehr effect in bismuth have 
been reported by Smith, Wolfe and Haszko (1964); some of their results 
are shown in fig. 16 in which the Seeheck coefficient at 80°K is plotted as a 
function of the magnetic field orientation for a magnetic field of 10 koe, with 
the temperature gradient in a bisectrix direction. The umkehr effect cannot 
occur when the magnetic field lies in a reflection plane (a trigonal-bisectrix 
plane) but a rotation of the magnetic field to make an angle of only about 
20 ° with the trigonal axis leads to a very strong umkehr effect indeed. 

Fig. 17 
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Geometry dependence of the magneto-Seebeck effect in a Biga Sb~ alloy. The 
heat flow lies along the trigonal axis and the magnetic field along a 
biseetrix axis (Ertl et al. 1963). 

The measurements of Smith and his colleagues were all carried out using 
long samples with no transverse flows of heat or electricity. I t  is, therefore, 
reasonable to suppose that  the magneto-Seebeck effects tha t  they observed 
were strongly influenced by the transverse thermomagnetic phenomena. 
Longitudinal electric fields can result from the interaction of the Hall 
and Nernst effects and of the :Nernst and l~ighi-Leduc effects. I f  it is 
true that  the more striking of Smith's results are due to the transverse- 
transverse effects one would expect them to become less strong for samples 
of short length, since the electrodes at the end faces act as electrical and 
thermal short circuits. Figure 17 shows that  the increase in Seebeck 
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coefficient with magnetic field for a Bi-Sb alloy does indeed become 
smaller as the length-to-width ratio of the sample is reduced, the behaviour 
being consistent with the measured values of the transverse coefficients 
(Ertl et al. 1963). 

6.4. Righi-Leduc Effect 

The Righi-Leduc effect is one of the most difficult of the transport 
phenomena to observe with any degree of accuracy and it does not usually 
lead to any information that  cannot be obtained from the other effects. 
Where the Righi-Leduc coefficient is determined, this is primarily to provide 
data for calculating the other parameters under isothermal conditions. 

For an extrinsic conductor, the Righi-Ledue angle (the tangent of which 
is equal to the transverse temperature gradient divided by  the longitudinal 
gradient) is approximately equal to the Hall angle multiplied by  the ratio 
KE/K. The Righi-Ledue effect is, then, largest when the electronic thermal 
conductivity is an appreciable portion of the total. Unlike the Hall 
angle, the Righi-Leduc angle does not continually increase with magnetic 
field, since the magneto-thermal resistance effect tends to make the ratio 
KE/K small for high fields. The author, has, for example, observed a 
Righi-Leduc angle as large as tan -10.1 for a sample of Bi94Sb 6 in a magnetic 
field of 1 koe at a temperature of 80°K whereas the Righi-Leduc angle was 
only tan -10.04 in a field of 8 koe. 

Righi-Leduc measurements have been reported for HgSe by  Whitsett 
(1961), the effect being large in this material because of its high electron 
mobility and low lattice thermal conductivity. Whitsett  observed 
tangents of the Righi-Leduc angle as high as 0.2 for some of his samples 
at room temperature. The low-field Righi-Leduc coefficient S 
at 300°K for a sample containing 6 x 1017 electrons/cm a was found to be 
3.4 × 10 a em2/v sec. The electronic thermal conductivity of this sample 
was calculated to be 6×10-aw/cmdeg  while the total thermal 
conductivity was measured as 25 x 10 -a w/cm deg. The value of SK/K E is 
therefore about 1.4 × 104cm2/v see which is very close to the predicted 
value of 7/~H/8, the Hall mobility/*H being equal to 1.5 x 104 cm~/v sec. 

§ 7. TUNNEL EFFECT 

Very recently it has been demonstrated, contrary to predictions, that 
observations on the tunnelling current between a semi-metal and an 
insulator can give information about the band structure of the semi- 
metal that  is difficult, if not impossible, to obtain by  other methods (Esaki 
and Stiles 1965). The sample used in the experiments consisted of a film 
of A1203 of several tens of angstroms thickness, deposited on a cleavage 
surface of bismuth, with an aluminium counter-electrode of about 
10 -4 cm ~ area. A plot of dI /dV against V, where I is the current and V 
is the voltage, is shown in fig. 18, with the fine structure omitted, the 
results having been obtained at 2°K. 
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An analysis of the original curve yields eight components with peaks 
at the positions indicated in fig. 18. These peaks can be associated with 
the various band extrema. Thus the peaks at  - 1 5  and + 15 millivolt 
correspond to the principal valence band maximum and conduction 
band minimum respectively. The peak at + 35 millivolt is due to the 
valence band maximum at the same location in the Brillouin zone as the 
principal conduction band minimum. The other peaks correspond to 
band extrema that  have not previously been identified, though Esaki 
and Stiles tentatively associate the conduction band that  produces the 
peak at - 3 0  millivolt with the principal valence band, in view of the 
similar values of the conductance. 

As Esaki and Stiles point out, the technique could prove very valuable 
in future studies, and they suggest that  it should be applied to the Bi-Sb 
alloys. 
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Plot of dI/dV against voltage for a bismuth-Al~O a junction at 2°x (Esaki and 
Stiles 1965). The fine structure has been omitted. 

§ 8. SUPERCONDUCTIVITY 

I t  is a notable feature of superconductivity that  its observation has, 
until recently, been confined to the true metals rather than semi-metals 
or semiconductors. I t  has, in fact, been observed for bismuth (Shoenberg 
1938) but only for thin films which have a Hall constant tha t  is much smaller 
than for the bulk element and must therefore be regarded as metallic 
rather than semi-metallic (Buckel 1959). 



320 H . J .  Goldsmid on 

The absence of superconducting behaviour for semiconductors is, of 
course, completely consistent with the BCS theory (Bardeen et al. 1957) 
in which one of the criteria for superconductivity is a high density of states 
at  the Fermi surface. Thus, if one is searching for new superconductors, 
one stands little chance if one looks at materials in which the Fermi surface 
lies close to the band extreme. Oa the other hand, the possibility of 
altering the carrier concentration in semi-metals and semiconductors 
by  doping would make the s tudy of superconductivity in such materials 
very attractive. As Cohen (1964) has pointed out, semiconductors have 
a great advantage over metals in that  the carrier concentration and band 
structure can be varied independently of one another by  using doping 
or non-doping impurities. 
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Plot of superconducting critical temperature against carrier concentration 
for GeTe (Hein et el. 1964). 

Cohen has discussed in some detail the conditions under which super- 
conductivity might appear in a semiconductor or semi-metal. Basically, 
what is needed is a high currier concentration and strong electron-phonon 
coupling. The right conditions are more likely to be found in a multi- 
valley conductor rather than a single-valley material. For a given set 
of valley parameters, the carrier concentration increases proportionately 
with the number of valleys. Also, inter-valley eleetron-phonon processes 
are more favourable than intra-valley processes since they involve large 
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momentum transfer and are, therefore, relatively unscreened. Screening 
of the intra-valley repulsive Coulomb interaction due to the large number 
of carriers is an advantage. A high static dielectric constant, such as 
is usually found for semi-metals, also assists in screening the Coulomb 
interaction. Other requirements are a high effective mass within valleys 
(since this increases the density of states), a high inter-valley coupling 
constant, and a large phonon degeneracy factor. 

Cohen's predictions have been well borne out by  Hein et al. (1964) 
who have discovered that  superconductivity can occur in GeTe. GeTe 
has an effective mass that  is almost as high as the free-electron mass and 
invariably has a large hole concentration which can be adjusted within 
limits by  changing the concentration of germanium vacancies. In  the 
reported experiments the hole concentration lay between 7.5 x 1020 and 
15×102°per cm 3. The results of tIein et al. are shown in fig. 19. A 
transition temperature of about  0.3°K was observed for the sample with 
the highest carrier concentration whereas no superconducting behaviour 
could be found when there were less than about  8.5× 10~°holes/cm a. 
Hein and his colleagues were careful to cheek the elemental germanium 
and tellurium, that  were used in making the compound, to ensure that  
there were no traces of superconducting impurities present. I t  is note- 
worthy that  the critical carrier concentration in GeTe lies close to the 
empirical limit of 1019holes/cm a proposed by  Chapnik (1962) who also 
suggested that  the interatomie spacing should lie between 2.6-2.9 A and 
4 ~ if a given material were to be a superconductor. 

More recently (I-Iannay et al. 1965) have observed superconductivity 
in the so-called intercalation compounds of graphite with the alkali metals, 
potassium, rubidium and caesium. The highest of the transition tempera- 
tures was found for the potassium-graphite compound with the formula 
CsK. I t  will be interesting to see whether the superconducting properties 
of the graphite compounds fit in with Cohen's ideas as outlined above, 
or whether they are due essentially to their two-dimensional nature, as 
Hannay and his colleagues suggest. 

§ 9. APPLICATIONS 

The transport properties discussed in this article could be utilized in 
certain practical devices. A full consideration of these devices could, 
of course, itself occupy a whole article, but  a brief mention of the 
possibilities will no doubt  be of interest. 

High mobility materials are certainly required for applications of the 
Hall and magnetoresistance effects. However, Hall elements of low 
electrical impedance cannot readily be matched to conventional amplifiers, 
so the high carrier concentration of all the materials mentioned here is 
a great disadvantage. On the other hand, the large non-saturating 
magnetoresistance effect in semi-metals is easily utilized in the measurement 
of magnetic fields. For example, Fukuroi and Fukase (1964) have employed 
a magnetoresistance probe of antimony, showing a resistance change of 
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100 : 1 in a field of 10koe at liquid helium temperature, in their studies 
of type I I  superconductivity. Bismuth is particularly useful for making 
magnetoresistance probes since it can be obtained in the form of thin 
ductile wires. Unfortunately, although the low-temperature magneto- 
resistance of bismuth is very large, it is rather sensitive to strain, and 
consistent behaviour from bismuth probes is difficult to achieve. 

The non-linear effects observed, particularly for bismuth, at low 
temperatures suggest a number of possibilities. For  example, Esaki 
(1962 b) has proposed that  his kink effect could be used in the generation 
and detection of electromagnetic waves up to microwave frequencies, but 
the need for liquid helium temperature must make the alternative means of 
achieving the same result more practicable. The observation of sound 
amplification in bismuth by Toxen and Tansal (1963) which has already 
been mentioned, could, in principle, lead to the use of semi-metals 
in lossless (or amplifying) ultrasonic delay lines but  the conditions seem 
more favourable for the wide-gap semiconductors, such as CdS, in 
which the power dissipation is low due to the very small carrier 
concentrations. The semi-metals need both a relatively high magnetic 
field and a low temperature. 

The most important potential applications lie in the field of direct 
energy conversion. Bi2Te a and its solid solutions with Sb2Te a and Bi2Se s 
are already widely used in thermoelectric refrigeration. The coefficient 
of performance for a thermocouple used as a refrigerator (or its efficiency 
if it is used as a generator) depends on the so-called figure of merit Z defined 
as ~a/~  (Ioffe 1957). Z reaches its largest values for semiconductors 
which have a favourable combination of carrier mobility, density-of-states 
effective mass and lattice thermal conductivity ; the quanti ty f~(m*/m)3l~/~: L 

is a guide to the value of a specific material for thermoelectric applications. 
I t  is also desirable that  the energy gap should be large enough for a reasonably 
high Seebeck coefficient (say 200-250/~v/deg) to be obtained. This 
condition is normally satisfied if the energy gap exceeds about 5/cT. 

I t  has been shown by  O'Brien and Wallace (1958) that  the phenomeno- 
logical relations for thermomagnetic energy conversion (utilizing the Nernst 
or Ettingshausen effects) are similar to those for thermoelectric energy 
conversion. In consequence, the thermomagnetie figure of merit ZnE 
as defined in eqn. (37), has the same significance as the thermoelectric 
figure of merit. Delves (1962) first showed that  the value of ZNE for certain 
semi-metals might be appreciably larger than the highest known values 
of Z for semiconductors. This possibility arises from the high Nernst 
and Ettingshausen coefficients in intrinsic conductors; the electrons and 
holes transport their energy while sharing a common crystal lattice, 
whereas in a thermocouple two different materials (one n-type and one 
p-type) are needed and the lattice heat conduction is twice as great. 

There are also advantages accruing from the application of a strong 
magnetic field, which reduces the electronic contribution to the thermal 
conductivity, while usually raising the average energy transported by  a 
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charge carrier. These advantages can, however, sometimes be found 
for thermoelectric devices in a magnetic field. In fact, Simon (1964) has 
demonstrated the very close relationship between the thermomagnetic 
figure of merit of an intrinsic conductor and the thermoelectric figure of 
merit of a nearly-intrinsic conductor when both are placed in a strong 
magnetic, field. 

There have already been some notable advances towards useful 
Ettingshausen refrigeration. For example, Kooi et al. (1963) have obtained 
a cooling effect at 36°K from a sink temperature of 156°K using a rectangular 
sample of Bi97Sb a in a field of 15 koe, while Harman et al. (1964) have been 
able to cool one face of a specially shaped bismuth sample by  101°K, the 
opposite face being kept at  room temperature. Unfortunately this last 
experiment depended on the application of a field of 110 koe. 

The electron parameters in bismuth and its alloys with antimony are 
adequate for thermomagnetic refrigeration but  the performance is limited 
by the relatively low hole mobility. The fact that  a really useful device 
could be made from a conductor with high hole and electron mobilities, 
a low lattice thermal conductivity and a close-to-zero energy gap must 
surely provide a stimulus to work on the transport properties of semi-metals 
and on widening the range of materials that  is available for study. 
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