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The relaxation time and the mobility are caleulated for the case of the conduction elec-
trons scattered by impurities possessing localized magnetic moments, The Kane model is
used to describe the energy bands. The perturbing potential is assumed to be of a short
range. The numerical estimations are made for two special forms of perturbation: delta-
like and square-well form, The estimations show that the contribution of the considered
mechanism to the mobility is small compared to that of other scattering mechanisms. How-
ever, there exist transport phenomena which seem to be strongly influenced by magnetic
impurity scattering.

ITpouaBoAuTCA pacueT BPeMeHU DPeJaKCAIUHN U IIOBUKHOCTU 3JIEKTPOHOB IIPO-
BOJAUMOCTH [JIf CJydasl paccessHHs HAa IIPUMECHAX C JIOKAJIM30BAHHEIM MATHHUTHBIM
MoMeHTOM. [[J1f1 OMMcAaHUs 30HHONW CTPYKTYDPHI HCIIOJb3yecTcs momenns HeitHa.
BoaMymatomuii moTenMas pPacCMATDHIBAECTCA KaK IIOTEHUMATI KOPOTHOXEiCcTBY-
oomit, YuciieHHEIe PacyeTH BEITOJHEHE! IJiA ABYX YacTHHIX BUIOB BO3MYIIEHHM :
R KOHTAKTHOTO B3aHMONeHCTBMA M A NMPAMOYTONbHON IOTEHNAJbHONR AMBIL.
YucaeHHEE OIeHKM YKa3BBAKT, YTO BJAHAHNIE paccMaTpMBAaeMOro MeXaHH3Ma Ha
IOABUKHOCTD MAJI0 II0 CDABHEHNIO ¢ BINMAHUEM IPYTHUX MEXaHH3MOB PacCesHUHA.
CymecTBYIOT oTHaKO 3(@erThl, HA KOTOPHIE PacceAHNe Ha MATHUTHHIX MPUMeCAX
nMeeT IO-BUIUMOMY CYLHEeCTBEHHOE BAUAHNE.

1. Introduetion

The relaxation time for various charge carrier scattering mechanisms in semi-
conductors is a basic quantity for any further transport phenomena considera-
tions. In this paper we shall be interested in narrow- and zero-gap semiconduc-
tors. There are several papers treating the problem of the relaxation time in
n-type InSb (e.g. [1, 2]) as well as in n-HgTe (e.g. [3, 4]) for different scattering
mechanisms.

When paramagnetic impurities are present in a semiconductor (such as
manganese replacing mercury atoms in Hg; _,Mn,Te, or germanium atoms in
Ge, ..,Mn,Te), one may think of a scattering mechanism which was not consider-
ed till now in narrow- and zero-gap semiconductors, namely the scattering of
electrons by magnetic impurities. This problem was already considered in the
case of magnetic semiconductors with large energy gap (e.g. [6]). In this paper
we shall calculate the relaxation time for such a process. The calculation is
based on the localized magnetic moment approximation. The scope of our
considerations will be limited to weak external magnetic fields and to low con-
centrations of magnetic impurities (H(G) < 1.0 X 102T, T being absolute tem-
peratureinK ; concentrationofe.g. Mnin HgTe: N<5at%). Forstronger magnetic
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fields one has to take into account the Landau splitting of the conduction band.
This problem will be dealt with in another paper. For weak magnetic field the
scattering may be regarded as an elastic process. Therefore one can introduce
a single relaxation time.

In Section 2 we describe in detail the considered system which consists of
semiconductor and magnetic impurities. Also specified is the interaction of these
two subsystems. Section 3 is devoted to the derivation of formulas for the relaxa-
tion time of the considered scattering mechanism. The numerical estimations
of electron mobility resulting from the relaxation time calculated in the previous
section are presented in Section 4. The mobility was computed in the limit of
high degeneracy for two simple models of short-range perturbations: contact
potential and square-well potential.

2. Speeification of the System

We shall consider the following system: narrow- or zero-gap semiconductor
with InSb-type or HgTe-type energy band structure, containing a small amount
of paramagnetic impurities which substitute Hg or In atoms of the host crystal.
Such impurities possess magnetic moments which, as we assume, are well local-
ized. A direct interaction between two magnetic moments will be neglected.
This is justified for low concentration of impurities when the mean distance
between two impurities is large compared to the spatial extension of the wave
functions of the electrons producing the magnetic moments. Hence the overlap
of these functions of two neighbouring impurities is small, which makes direct
interaction negligible. We assume a random spatial distribution of impurities
in the crystal.

We do not consider eventual clusters of impurities. These clusters can have
a pronounced influence on magnetic susceptibility of the crystal {6], but they
should not affect significantly the transport phenomena. We shall also neglect
the indirect (via conduection electrons) coupling of magnetic moments of the
impurities [6]. Therefore we are dealing with a kind of paramagnetic system of
magnetic moments.

The Hamiltonian of the entire system can be written in the following form:

gf:gge+g€m+‘7€i: (1)
¥, is the conduction electron Hamiltonian. According to Kane’s theory it
gives (e.g. [2, 4]) the following eigenfunctions of conduction electrons:

@;z,k = V—1[2 exp [’Lk . "‘] u,-,(r) . (2)
V is the crystal volume, j, is the projection of the electronic total momentum
on z-axis, and u,(r) is a lattice periodic function equal to ([2, 4])
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Here ky = ky &= 1ky, Ry = Y2(X 4 iY) and X, Y, Z, 8 are Luttinger-Kohn
amplitudes possessing the symmetry properties as x, y, 2, s functions under
operations of the tetrahedral group. The coefficients a, b, ¢ are given in the limit

of E< A by

BB B, o
E, + 2E 3(E, + 2E) 3(E, + 2E)
for InSb-type band structure and
azz-_E_ 2 E+EE 02=3E+Eg (5)
B, + 2B’ 3(E, + 2E)’ 3 E,+ 28

for HgTe type band structure.

4 is the spin-orbit splitting, £, the energy distance between Fs and Iy levels,
and F denotes the energy of the electron in question. | and 4 in (3) denote Pauh 8
spinors for electron spin down and up, respectively.

The eigenvalues of J, depend on the wave vector of the electron in the fol-
lowing way (free electron mass term omitted):

: E B \2 B2l /2
E:—?g ,[<_2§)+Eg2—m-e¥] , (6)

¥ being the effective mass of the electron at the bottom of the conduction band.

The J,, term in (1) describes the system of magnetic impurities. As it was
already said before, we assume that the impurities do notinteract with each other,
80 Hp, is simply the sum of Hamiltonians Hp, each describing a single impurity
in the n-th lattice site:

= 3 9" (7)

It is fair to assume that the wave function y, of a single magnetic impurity in
the n-th lattice site is characterized by two quantum numbers: S,(S, 4 1) and
M,,: the square of impurity spin and its projection on z-axis, respectively. In
other words [Jq, S7] = 0 and [#3, 8] = 0. We shall assume also that for
different M, values eigenfunctions of (7), y4(M,), form an orthonormal set. If
all impurities are identical, S, has the same value for all n and it will be denoted
by §. In such a case the following equations hold:

Spn(Mn) = Muyn(May) }
S'rgi 'n(M'n) = S(S + 1) Xn(Mn) .

In consequence of (7) the full wave function of the whole magnetic impurity
system is a product IT y,(M,). If the external magnetic field H parallel to z-axis
n

(8)

is applied to the crystal, one has to add two further terms to the Hamiltonian
(1). These are
gf X SH and goH, (9)
n

where f = ek/2mc, 6 is conduction electron spin operator, and g, g” are g-factors
of the magnetic impurity and conduction electron, respectively.

The interaction term J€; in (1) describing the coupling of conduction electrons
and magnetic impurities will be adopted in the simple form

J, =X Ve —Ry)— 3 Iir —Ry)o-S,, (10)
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where R, denotes the position of the magnetic impurity, ¥V(r — R,) describes
the spin-independent part of the interaction, and I(r — R,) is an exchange term.
One can easily show that [, S,] = 0, so the value of § is conserved in the
process of interaction. The scattering caused by the exchange part of J; is an
elastic process, provided there is no external magnetio field. Of course, V(r — R,)
leads also to elastic scattering.

When the magnetic field is applied to the system there is an energy exchange
between the scattering electron in the conduction band and the localized mag-
netic moment in the magnetic field. For sufficiently weak fields this energy
exchange is negligible and the scattering is almost elastic. The following condi-
tion for the magnetic field can thus be established: g8H < kg7 In case of Mn
impurities this is equivalent to H(G) < 0.7 X 104T'(K).

1f the magnetic field fulfills the above condition, the process of scattering can
be regarded as elastic. This condition, however, is weaker than the similar
magnetic field limitation

€
horg = b — H < kg

ensuing from the requirement that there should be no Landau splitting of the
conduction band. This latter condition reads H(G) < 7.4 X 103Tm*, which
gives H(G) < 1.0 x 1027 (K) for InSb and H(G) < 1.7 X 10*T(K) for HgTe.

We have therefore three regions of magnetic field (it is more appropriate to
speak about the H/T ratio here). In the first region we have a simple, non-split
conduction band and the scattering is elastic. In the second region we have
a ladder of Landau levels, but the scattering is still elastic, and in the third
region the non-elasticity cannot be neglected. In this paper we consider only the
first region. In this region one can treat the problem of scattering within the
relaxation time approximation.

3. The Relaxation Time

To perform the task of calculation of the relaxation time one has to com-
pute the matrix elements (¢ L 4 | F \(p_kgp {p_ i X e L x), and

<p_ 1 A | ¥, |<P1 A The latter of these matrix elements describes the transi-

tion with conduction electron spin flip. In this problem the spin flip transitions
have two causes:

1. The electron wave function is not a pure spin function but a mixture of
spin up and spin down functions. This leads to spin flip transitions even for the
spin independent perturbing potential.

2. The interaction Hamiltonian depends on electronic spin. The second cause
can lead to spin ﬂip transitions even if the electron wave function is a pure spin
function (which is the case for the InSb structure in parabolic approximation
suitable for very small E values). The calculation of the above-mentioned matrix
elements gives the following results:

1
p | yl1dle | »= ?2 {[<x’lx> vF 4 5 (ELE Saln) +
¥ + n

+

-2

w\;—-

- IEG ST I + TECy | S;Hx»] exp [—ilk — k) R,.]}, a
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where
S =~ Sz + iy,

Ili = f exp [’L(k — k’) 1‘] I(r) (Aik'A;tk — Bik’Bik) dsr s
If = [exp[i(k — k) r] [(r) A%, B, &, P a2)
It = fexp[i(k — E')r] I(r) BipAd  d3r,
of = [ exp [i(k — k') 7] V(r) (A%yAss + BhyByy) dor . |
In (12) we use the notation
dpe—ias 4 LEV2Re g bR L ey
2k gk k 13)
o k, k. Z
Biy =+ b(’;Rt — fﬁ)

The spin flip matrix element is equal to

1 1 —
<‘P1 k’Z’l ‘761 I‘Pl kx> = 72 {[—2— (‘f <X,l Sfa |X> + Kl<x" Sy IX> -+
2 2 ”

IS ) + ) |oxp [tk — #) Rl a4)
where ‘
L= fexp[i(k — k)r] I(r) (A¥pB_; — BXpA_;) d%r,
Kl = f exp ['L(k - k’) r] I(T) Ailc'A—k dsr B .
K, = [ exp [i(k — k) r] I(r) BYxB_; dr,
vy = [ exp[i(k ~ k) r] V(r) (A%wB_; + Bipd_p) dr.
Having calculated the transition matrix elements one can obtain the transition
probabilities according to

. »? ’ ’ 27! ’
P(?z: k) X712 k Y4 ) = 78(Ek' _—Ek) l<¢:,;k/l , gfi I‘p}db‘{Nz (16)

(15)

We shall take an average value of these probabilities over all possible initial
states, ¥, of magnetic impurities:

X wPlis, B, x> oo B, 2V = Pl ke~ 2, K, 1) s (7
%
where
wy, = IT wy
and "
1 gpHM ]
w”——~exp[-————— , (18)
R Z . kgT
s
gpH M, ]
Z = exp| —————/|. 19
2o~ w
The inverse relaxation time is to be calculated according to
1 1 ¢ g
—=52 X X Pk gk, ) (1-cos ), (20)
Tk E oy e,

9 is the angle between k and k’.



364 J. Kossur

We shall proceed now to the calculation of integrals (12) and (15). If, as we
expect, V(r) and I(r) are a short-range functions (their range being the measure
of magnetic impurity localization), rapidly decreasing for # larger than the
unit cell dimensions, one can put exp [—t(k — k') r] equal to unity within the
region of non-vanishing V(r), I(r). The group theoretical consideration yields
that the only non-vanishing matrix elements are (compare [7])

C =8 ISy = [ S*@) I(»)S(r)dr,
2
—_ = * ds
D = (S| Vi) 18y = [ %) Vir)Se) dor, } -
¢ =<X| I(r)|X), |
D' = (X| V(r)|X> J

and equivalent e.g. (Y| ¥V |Y>. Then it is possible to express (12) and (15) in
the form

vE = D[a? + (c® + b?) cos Ja],
If = Cla? + (& — b¥) cos 9] ,
I = Oy%(b-}-cﬁ) sin 9 exio
1 . .
I¥ =4 Cy bcﬁsmﬁe“"’ ,
1 X (z2)
L = —-—2-0yb2 e *?gin 4,
K, = C(a® + c*y cos 9) ,
K, =0,
b = N
Uz = — Dxb -2— —_ Cl/z e——’MPSlnﬂ’

where ¢ = D'/D and y = C’/C.
From (16), (17), and (20) we obtain

1 1 dk 2 1
%;znyszzaE {02 [Lz—gL(l — Lyx + o (= Ly x2]+
+l<S2> o Lz-EL(l—L) +i12(1 — L2+
4 z/av 9 Y 18 i
1 4 21
o (S8 O [Lz— SL0—Lyy+ (- L)Z].+

1
~ Sowe DOy~ 1y | 23)
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for the HgTe—type band structure and

2o el di {D2 [(1 — Ly — gL(l — L)z + —1—L2x2]+

T]c h dE’

+ <Sz>av {(1 — Ly — %L( L) Y + - L2 ]+

4
R [T A R R T
—%<Sz>w De xyLz} (23

for the InSb-type band structure.

In (23), (23’) NV denotes the concentration of magnetic impurities (it was
obtained by means of averaging over possible R, — R, distances), (- « -),v deno-
tes the thermal average value specified by (18), (19), and L = E/(E + 2E).
The short-range potentials V(r) and I(r) can be approximated by contact inter-
actions in the form

Vir)= V) and I(r) = I8(r).

This approximation corresponds to & = y = 0,
Then (23) and (23’) simplify to

1 Nk dk
— 2,4 2 + 2,4
T dE[D + = <S + 88,y C a] (24)

The other, often used, form of short-range potential is the “square-well’” form, i.e.

Vi), Iir) = 7,1 = const in the unit cell,
0 otherwise.

This approximation corresponds to x = y = 1.

The k-dependent electron mobility can be calculated now according to the
formula pp = ery/m*, m* being the energy dependent effective mass. It is
worth noting that the energy dependence of u; is exactly the same as in the
case of acoustic phonon scattering, i.e. it can be expressed in the form

=t (‘w ) =y (25)

where ¥ and p, can be easily deduced from (23) and (23).

4. The Numerical Estimations

In order to estimate the numerical values of the mobility calculated in Sec-
tion 3, one has to compute first the thermal averages {S.>av, <S*S dav, (S:av.
We did that for Mn impurities, i.e. for § = < [8]. In the absence of external
magnetic field, {8,%,, = 0, as we are treating the problem in the paramagnetic
region. The non-vanishing average values are almost independent of 7' and H
in the first H/T region. The masses, energy gap, and other material constants
of InSb and HgTe were used in the calculation (see Table 1). The value of C
was chosen to be 0.4 X 10722 ¢Vem? {9, 10], and the value of D was chosen
to be 2.5 X 10722 ¢Vem? [11].
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Table 1
d&, dE,
m¥ E, a7 dx
(eV) v eV
K %
InSb 0.0145m, 0.23 —9.6 x 1075 —
HeTe 0.025m. 0.303 —4.2 X 104 0.027

The calculation took into account the dependence of £, on manganese concen-
tration [12] (see Table 1). The calculations were carried out for two cases:
x =y = 1, i.e. for delta-like and square-well forms of I(r) and V{(r).

The resulting mobility proved to be only slightly dependent on the actual =
and y values. In case of InSb-type band structure the mobilities for x = y = 0
are slightly smaller than for @ = y = 1. Quite an opposite situation occurs in
case of inverted band structure: mobility for » = y = 0 is slightly larger than
for # = y = 1. This can be understood if we have in mind that the HgTe elec-
tron wave function consists mainly of a p-like part which is not “felt’ by
3-like perturbation. So the probability of scattering is greater (mobility is
smaller) in the case of the smeared out potential. The same arguments help to
understand gualitatively the difference between 2 =y =0 and 2=y =1
cases in the InSb-type structure. The calculations were performed in the regime
of strong degeneracy. As an example we present the results of these caleulations
in case of InSb-type with 5%, Mn (see Fig. 1) with 3-like potential. For compari-
son the mobility curve resulting from ionized impurities, acoustic and optical
phonon scattering taken from [1] is plotted also. Fig. 1 shows that the mobility
is, even for the highest concentrations of Mn ions considered here, always
greater by a factor of at least two than the mobility corresponding to acoustic
phonon + optical phonon - charged centre scattering mechanisms. Therefore,
the magnetic impuritiy scattering up to 5%, Mn is of small importance when
one has in mind its contribution to electronic mobility. This mechanism can,
however, affect strongly other transport phenomena, e.g. Hall effect [10, 13].
Because of the strong electron energy dependence of relaxation time (similar
to that for acoustic phonon scattering), the magnetic impurity scattering may
influence strongly the thermoelectric power at low temperatures.

Since (S83>av, (8t8~ >,y do not depend significantly on the external magnetic
field in the first H/T region, one can expect a very weak magnetoresistance due
to this terms. However, when a magnetic field is applied (8,>,v does not vanish

Fig. 1. Mobility of a hypothetical semiconductor

with InSb-band structure parameters, containing

59, of Mn at T = 300 K. The broken curve re-

presents the mobility resulting from other scatter-
ing mechanisms taken from [1]
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and its strong magnetic field dependence may cause a significant magneto-
resistance via the crossed CD term in (23) and (23’). These problems will be
treated in papers to follow.
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