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The relaxation time and the mobility are calculated for the case of the conduction elec- 
trons scattered by impurities possessing localized magnetic moments. The Kane model is 
used to describe the energy bands. The perturbing potential is assumed to be of a short 
range. The numerical estimations are made for two special forms of perturbation: delta- 
like and square-well form, The estimations show that the contribution of the considered 
mechanism to the mobility is small compared to that of other scattering mechanisms. HOW- 
ever, there exist transport phenomena which seem to be strongly influenced by magnetic 
impurity scattering. 

nPOM3BOAHTCFI PaCqeT BpeMeHH PeJIaHCaUHH H IIOABElXHOCTEl 3JIeIcTpOHOB IIpO- 
BOAHMOCTH L(JIFI CJIyqaR PaCCeFIHHFI Ha IIpHMeCFIX C JIOHaJIH30BaHHbIM MaI'HHTHbIM 
MOMeHTOM. nJIR OIIElCaHHFI 30HHOfi CTPYHTYPbI HCnIIOJIb3yeCTCR MOAeJIb KefkHa. 

mmElf. %lCJIeHHbIe paCW3TbI BbIIIOJlHeHbI UJIfI HBYX 4aCTHbIX BHAOB B03MYweHHHfi : 
AJIR KOHTaKTHOI'O B3aElMOn$!fiCTBHR R AJIR IIpHMOyrOJIbHOfk IIOTeHUaJIbHOfi IIMM. 

IIOJlBElHFHOCTb Man0 no CpaBHeHEIIO C BJIHRHMeM APYI'HX MeXaHH3MOB PaCCeIIHHR. 
CYIqeCTBYH)T OAHaHO 3@@eKTbI, H a  HOTOpbIe PaCCeRHHe Ha MarHHTHbIX IIpHMeCFIX 
ElMeeT IIO-BElAElMOMy CyqeCTBeHHOe BJIHFIHHe. 

Bo3~y1qamq~fi noTemian paccMaTpbIsaecTcR KaH noTeHwaa xopoTKogefkcTBy- 

YkicneHHbIe oUeHm Y K ~ ~ ~ I B ~ I O T ,  w o  BnmxHne paccMaTpmaeMoro M ~ X ~ H H ~ M ~  Ha 

1. Introduction 
The relaxation time for various charge carrier scattering mechanisms in semi- 

conductors is a basic quantity for any further transport phenomena considera- 
tions. I n  this paper we shall be interested in narrow- and zero-gap semiconduc- 
tors. There are several papers treating the problem of the relaxation time in 
n-type InSb (e.g. [l, 21) as well as in n-HgTe (e.g. 13, 41) for different scattering 
mechanisms. 

When paramagnetic impurities are present in a semiconductor (such as 
manganese replacing mercury atoms in Hgl-,Mn,Te, or germanium atoms in 
Gel-,Mn,Te), one may think of a scattering mechanism which was not consider- 
ed till now in narrow- and zero-gap semiconductors, namely the scattering of 
electrons by magnetic impurities. This problem was already considered in the 
case of magnetic semiconductors with large energy gap (e.g. 151). I n  this paper 
we shall calculate the relaxation time for such a process. The calculation is 
based on the localized magnetic moment approximation. The scope of our 
considerations will be limited to  weak external magnetic fields and to low con- 
centrations of magnetic impurities (H(G) < 1.0 x 102T, T being absolute tern- 
peratureinK; concentrationof e.g. Mnin HgTe: N<5at%). Borstrongermagnetic 

l) Address: Institute of Physics, Polish Academy of Sciences, Al. Lotnikdw 32/46, 
02-668 Warsaawa, Poland. 



360 J. KOSSUT 

fields one has to  take into account the Landau splitting of the conduction band. 
This problem will be dealt with in another paper. For weak magnetic field the 
scattering may be regarded as an elastic process. Therefore one can introduce 
a single relaxation time. 

I n  Section 2 we describe in detail the considered system which consists of 
semiconductor and magnetic impurities. Also specified is the interaction of these 
two subsystems. Section 3 is devoted to  the derivation of formulas for the relaxa- 
tion time of the considered scattering mechanism. The numerical estimations 
of electron mobility resulting from the relaxation time calculated in the previous 
section are presented in Section 4. The mobility was computed in the limit of 
high degeneracy for two simple models of short-range perturbations : contact 
potential and square-well potential. 

2. Specification of the System 
We shall consider the following system : narrow- or zero-gap semiconductor 

with InSb-type or HgTe-type energy band structure, containing a small amount 
of paramagnetic impurities which substitute Hg or In  atoms of the host crystal. 
Such impurities possess magnetic moments which, as we assume, are well looal- 
ized. A direct interaction between two magnetic moments will be neglected. 
This is justified for low concentration of impurities when the mean distance 
between two impurities is large compared to  the spatial extension of the wave 
functions of the electrons producing the magnetic moments. Hence the overlap 
of these functions of two neighbouring impurities is small, which makes direct 
interaction negligible. We assume a random spatial distribution of impurities 
in the crystal. 

We do not consider eventual clusters of impurities. These clusters can have 
a pronounced influence on magnetic susceptibility of the crystal [6], but they 
should not affect significantly the transport phenomena. We shall also neglect 
the indirect (via conduction electrons) coupling of magnetic moments of the 
impurities [GI. Therefore we are dealing with a kind of paramagnetic system of 
magnetic moments. 

The Hamiltonian of the entire system can be written in the following form: 

X e  is the conduction electron Hamiltonian. According to  Kane’s theory it 
gives (e.g. [ 2 ,  41) the following eigenfunctions of conduction electrons: 

V is the crystal volume, j z  is the projection of the electronic total momentum 
on z-axis, and ujZ(r) is a lattice periodic function equal to ( [ 2 ,  41) 

x = x, + x m  + xi> 

@ j z , R  = V-1/2 exp [ilc - T] uj,(r) . 

(1) 

( 2 )  
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Here k* = k,  & ikv ,  R, = l/(2(X 3 iY) and X ,  Y ,  2, S are Luttinger-Kohn 
amplitudes possessing the symmetry properties as x, y, z, s functions under 
operations of the tetrahedral group. The coefficients a, b, c are given in the limit 
o f E < A b y  

for InSb-type band struct,ure and 

for HgTe-type band structure. 
A is the spin-orbit splitting, E, the energy distance between r, and r, levels, 

and E denotes the energy of the electron in question. $and? in (3) denote Pauli's 
spinors for electron spin down and up, respectively. 

The eigenvalues of X e  depend on the wave vector of the electxon in the fol- 
lowing way (free electron mass term omitted) : 

w$ being the effective mass of the electron a t  the bottom of the conduction band. 
The Xm term in (1) describes the system of magnetic impurities. AS i t  was 

already said before, we assume that the impurities do not interact with each other, 
so Xm is simply the sum of Hamiltonians XE, each describing a single impurity 
in the n-th lattice site: 

X m = 2 X & .  (7) 
n 

It is fair to  assume that the wave function xn of a single magnetic impurity in 
the n-th lattice site is characterized by two quantum numbers: S,(Sn + 1) and 
M,: the square of impurity spin and its projection on z-axis, respectively. I n  
other words [ X k ,  Si] = 0 and [X;, Si] = 0. We shall assume also that  for 
different Mn values eigenfunctions of ( 7 ) )  xn(Mn), form an  orthonormal set. If 
all impurities are identical, S, has the same value for all n and i t  will be denoted 
by S. I n  such a case the following equations hold: 

(8) 1 X i X n ( a n )  = Mnxn(Mn)  9 

S&n(Jfn) = S(S + 1) Xn(Jfn)  * 

I n  consequence of (7) the full wave function of the whole magnetic impurity 
system is a product 17Xn(M,). If the external magnetic field H parallel to  z-axis 

is applied to the crystal, one has to  add two further terms to  the Hamiltonian 
(1). These are 

n 

g p Z : % H  and g'PazH, (9) 
n 

where ,!I = eh/2mc, 0 is conduction electron spin operator, and g, g' are g-factors 
of the magnetic impurity and conduction electron, respectively. 

The interaction term Xi in (1) describing the coupling of conduction electrons 
and magnetic impurities will be adopted in the simple form 

Xi = 2 V ( r  - R,) - Z I ( r  - Rn)o  - S,, (10) 
n n 
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where Rn denotes the position of the magnetic impurity, V ( r  - Rn) describes 
the spin-independent part of the interaction, and I ( r  - R,) is an exchange term. 
One can easily show that [Xi, S,] = 0, so the value of S is conserved in the 
process of interaction. The scattering caused by the exchange part of Xi is an 
elastic process, provided there is no external magnetic field. Of course, V ( r  - R,) 
leads also to elastic scattering. 

When the magnetic field is applied to the system there is an energy exchange 
between the scattering electron in the conduction band and the localized mag- 
netic moment in the magnetic field. For sufficiently weak fields this energy 
exchange is negligible and the scattering is almost elastic. The following condi- 
tion for the magnetic field can thus be established: gaH < k,T. In case of Mn 
impurities this is equivalent to H ( G )  < 0.7 x 104T(K). 

If the magnetic field fulfills the above condition, the process of scattering can 
be regarded as elastic. This condition, however, is weaker than the similar 
magnetic field limitation 

e 
m *c 

h o ,  h-H < k,T 

ensuing from the requirement that there should be no Landau splitting of the 
conduction band. This latter condition reads H ( G )  < 7.4 x 109Tm*, which 
gives H ( G )  < 1.0 x 10aT(K) for InSb and H(G) < 1.7 x 102T(K) for HgTe. 

We have therefore three regions of magnetic field (it is more appropriate to 
speak about the HIT ratio here). I n  the first region we have a simple, non-split 
conduction band and the scattering is elastic. I n  the second region we have 
a ladder of Landau levels, but the scattering is still elastic, and in the third 
region the non-elasticity cannot be neglected. I n  this paper we consider only the 
first region. I n  this region one can treat the problem of scattering within the 
relaxation time approximation. 

3. The Relaxation Time 
To perform the task of calculation of the relaxation time one has to com- 

(y-L,x‘I Xi IyLkx). The latter of these matrix elements describes the transi- 

tion with conduction electron spin flip. In  this problem the spin flip transitions 
have two causes: 

1. The electron wave function is not a pure spin function but a mixture of 
spin up and spin down functions. This leads to spin flip transitions even for the 
spin independent perturbing potential. 

2. The interaction Hamiltonian depends on electronic spin. The second cause 
can lead to spin flip transitions even if the electron wave function is a pure spin 
function (which is the case for the InSb structure in parabolic approximation 
suitable for very small E values). The calculation of the above-mentioned matrix 
elements gives the following results: 

pute the matrix elements (9 1 J’I xi 19, 1 x>, (9 - -k 1 ,x’I xi 19- ,J>, and 
--k ;ik 2 

a a 
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where 
S$ = SE & i s % ,  
I ;  = J exp [i(k - k') r ]  I ( r )  (Afk'Afk - BFVBkk) d3r, 

1; = J exp [ i (k  - k') r ]  I ( r )  B&Afkd3r, 
v: = J exp [ i (k  - k ' ) r ]  V ( r )  @&Akk + BSblBkk) - d3r . 

If a - - J exp [i(k - k') r ]  I ( r )  A$ktB*k d3r, 

In  (12) we use the notation 

The spin flip matrix element is equal to 

i- &(x'I 8; 1%)) + v2(x'Ix> exp [--i(k - k') &I}, I (14) 
where 

2' = J exp [ i (k  - k') r ]  I ( r )  (A1C,pB-k - BTk,A-k) d3r ,  I (15) I 
Kl = J exp [i(k - k') r ]  I ( r )  A$KA-k d3r , 
K2 = J exp [i(k - k') r ]  I@) B:kfB-k dar , 
v2 = I exp [i(k - k') r ]  V ( r )  (AiC+gBFk + BSpA-k)  d3r. 

Having calculated the transition matrix elements one can obtain the transition 
probabilities according to 

(16) 
2n Wz, k, x+&, k', x') = -86(& a -Ed I(cp,;,x'J Xi Ipy~x)l~. 

We shall take an average value of these probabilities over all possible initial 
states, x, of magnetic impurities : 

- 
27 w,P(i,, k, x + i;, k', x') = P(iz, k -+ j ; ,  k', x') , 

wx =nw; 

(17) 
x 

where 

12 

and 

The inverse relaxation time is to be calculated according to 
1 1  -=-z 2 2 P ( j Z , k - t j i , k ' , x ' )  (l-cos6), 
zk 2 k' x' jSJ; 

6 is the angle between k and k'. 
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We shall proceed now to the calculation of integrals (12) and (15). If, as we 
expect, V ( r )  and I ( r )  are a short-range functions (their range being the measure 
of magnetic impurity localization), rapidly decreasing for r larger than the 
unit cell dimensions, one can put exp [ - i (k  - k') r ]  equal to  unity within the 
region of non-vanishing V ( r ) ,  I ( r ) .  The group theoretical consideration yields 
that the only non-vanishing matrix elements are (compare [7]) 

1 C = (Sl I ( r )  IS) = I S* ( r )  I ( r )  X(r) d 3 r ,  
QO 

D = (Sl V ( r )  IS) G 1 S*(r )  V ( r ) S ( r )  d3r, I 
Qo } 

C' = (XI Z(r)  I*) , 
D' = (XI J'(r) IX}  

and equivalent e.g. (YI V 1 Y). Then i t  is possible to  express (12) and (15) in 
the form 

V: = D[a2 + (c2 + b2) cos 8x1 , 
1; = C[a2 + (c2 - b2) cos 6 y ]  , 

b 
I &  = 

131 = & Cy bc-sin 8 e'fi9, 

CyF ( b  + c (2) sin 6 e*$q , 

1 

vi2 
1 
2 

= - - Cyb2 e-i9 sin 6 , 

Kl = C(a2 + c2y cos 8) , 
K2 = 0 ,  

where x = 0'10 and y = C'lC. 
From (lci), (17), and (20) we obtain 

1 1 
2 - L ) x +  - (1  - L)' x2 -+ 

- L )  y + -?/2 1 (1 - L)2]+ 18 

1 1 4 21 +--(s+S-),vC2 L 2 -  -L(1 - L )  y + - y2(1 - L)Z .+ 
4 1 9  54 
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for the HgTe-type band structure and 
1 1 dk 2 -= - - iVk ' -  0 2  (1 - L)' - -L(1 - L )  x + 
Tk 7Ch dE{ [ 3 

1 
4 - (S+S-),, c2 [(I - L)2 - I 4 21 

9 
- - L ( l -  L )  y + say' (1 - L)' - 

(23') 
1 
9 

for the InSb-type band structure. 
In  (23), (23') N denotes the concentration of magnetic impurities (it was 

obtained by means of averaging over possible R, - R, distances), <. . -),, deno- 
tes the thermal average value specified by (18), (19), and L = E / ( E ,  + 2E). 
The short-range potentials V ( r )  and I ( r )  can be approximated by contact inter- 
actions in the form 

V ( r )  = VoS(r) and I ( r )  = I o S ( r ) .  

- - (S,),, DC xyL2 

This approximation corresponds to x = y = 0. 
Then (23) and (23') simplify to 

The other, often used, form of short-range potential is the "square-well" form, i.e. 

c; - otherwise. 
V ,  I = const in the unit cell, V ( r ) ,  I(?) = 

This approximation corresponds to x = y = 1. 
The k-dependent electron mobility can be calculated now according to the 

formula ,uk = etL/rn*, rn* being the energy dependent effective mass. It is 
worth noting that the energy dependence of ,uk is exactly the same as in the 
case of acoustic phonon scattering, i.e. it can be expressed in the form 

where E" and ,ao can be easily deduced from (23) and (23'). 

4. The Numerical Estimations 
I n  order to estimate the numerical values of the mobility calculated in Sec- 

tion 3, one has t o  compute first the thermal averages (Si)a", (S+S-),,, (LS'~),,. 
We did that for Mn impurities, i.e. for 8 = + [8]. In the absence of external 
magnetic field, (Sz)av = 0, as we are treating the problem in the paramagnetic 
region. The non-vanishing average values are almost independent of T and H 
in the first HIT region. The masses, energy gap, and other material constants 
of InSb and HgTe were used in the calculation (see Table 1). The value of C 
was chosen to be 0.4 x 10-22  eVcm3 [9, 101, and the value of D was chosen 
to be 2.5 x eVcm3 [ll] .  
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Table 1 

-9.6 X lo-‘ - 
InSb HgTe 1 0.025me I 0.303 -4.2 x 10-4 ~ 0.027 

0.0145me 

The calculation took into account the dependence of E, on manganese concen- 
tration [12] (see Table 1). The calculations were carried out for two cases: 
x = y = 1, i.e. for delta-like and square-well forms of I ( r )  and V(r ) .  

The resulting mobility proved to  be only slightly dependent on the actual x 
and y values. I n  case of InSb-type band structure the mobilities for x = y = 0 
are slightly smaller than for x = y = 1. Quite an  opposite situation occurs in 
case of inverted band structure: mobility for x = y = 0 is slightly larger than 
for x = y = 1. This can be understood if we have in mind that  the HgTe elec- 
tron wave function consists mainly of a p-like part which is not “felt” by 
&like perturbation. So the probability of scattering is greater (mobility is 
smaller) in the case of the smeared out potential. The same arguments help to  
understand qualitatively the difference between x = y = 0 and x = y = 1 
cases in the InSb-type structure. The calculations were performed in the regime 
of strong degeneracy. As an example we present the results of these calculations 
in case of InSb-type with 5% Mn (see Fig. 1) with &like potential. For compari- 
son the mobility curve resulting from ionized impurities, acoustic and optical 
phonon scattering taken from [l] is plotted also. Fig. 1 shows that the mobility 
is, even for the highest concentrations of Mn ions considered here, always 
greater by a factor of at least two than the mobility corresponding to acoustic 
phonon + optical phonon + charged centre scattering mechanisms. Therefore, 
the magnetic impuritiy scattering up to  5% Mn is of small importance when 
one has in mind its contribution to electronic mobility. This mechanism can, 
however, affect strongly other transport phenomena, e.g. Hall effect [ 10, 131. 
Because of the strong electron energy dependence of relaxation time (similar 
to  that for acoustic phonon scattering), the magnetic impurity scattering may 
influence strongly the thermoelectric power a t  low temperatures. 

Since <~!3,”>,~, <X+X->,, do not depend significantly on the external magnetic 
field in the first HIT region, one can expect a very weak magnetoresistance due 
to this terms. However, when a magnetic field is applied <AS& does not vanish 

Fig. 1. Mobility of a hypothetical semiconductor 
with InSb-band structure parameters, containing 
5% of Mn at T = 300 K. The broken curve re- 
presents the mobility resulting from other scatter- 

ing mechanisms taken from [I] 
‘\> 
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and its strong magnetic field dependence may cause a significant magneto- 
resistance via the crossed CD term in (23) and (23'). These problems will be 
treated in papers to follow. 
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