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Single-wall carbon nanotubes (SWCNTs) have been combined with indium tin oxide (ITO) to improve the output power of
GaN-based light emitting diodes (LEDs). LEDs fabricated with the SWCNT/ITO contacts give a forward voltage of 3.61 V at 350
mA, which is slightly higher than that of LEDs with ITO-only contacts. The SWCNT/ITO and ITO-only contacts produce
transmittance values of 91.5 and 94.4% at 460 nm, respectively. However, LEDs with SWCNTs show a higher output power by
60% at 20 mA compared to those without SWCNTs. Photoemission microscope analyses show that the well-dispersed SWCNT

bundle efficiently serves as a current spreader.
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To realize high brightness GaN-based light emitting diodes
(LEDs), the achievement of a high external quantum efficiency is
indispensable. In conventional top-emission LEDs, the electrical
property of p-type ohmic contacts affects the light output perfor-
mance. Metal-based p-type ohmic contacts have been shown to pro-
duce low contact resistance. However, these metal-based schemes
are semitransparent and, as a result, suffer from loss of light trans-
mittance. To achieve a high optical transmittance, various transpar-
ent conducting oxides, such as indium tin oxide (ITO)- and ZnO-
based oxides, have been investi{grated.l’2 For example, ITO contacts
on  p-type Iny;GagoN (10 nm)/p-type GaN  (p-GaN)  and
Inj ;5GaygsN (10 nm)/p-GaN became ohmic with specific contact
resistivities of 4.5 X 1072 and 3.2 X 10 Q cm? when annealed at
500 and 550°C, respectively.‘%’4 ITO combined with thin interlayers
of indium (10 nm), Cu-doped indium oxide (3 nm), Sn—Ag alloy (6
nm), Ag (1 nm), Ni (10 nm), and Au nanoparticlesl’s'9 resulted in
specific contact resistances in the range of ~1 X 107 to ~4
X 107* Q cm? when annealed at 500-630°C for 1-10 min in air.
In addition, ZnO:Ga ' contacts yielded ohmic behaviors with a
typical specific contact resistance of 2.1 X 1073 Q cm? and gave a
transmittance of ~80% in the near UV and visible wavelength
ranges even without annealing treatment. LEDs fabricated with the
as-deposited ZnO:Ga p-contacts exhibited a light output nearly
twice that of LEDs with oxidized Ni/Au contacts.'® Indium oxide—
doped ZnO (IZO) contacts exhibited transmittance values of 84—
92% in the range of 400—-600 nm and a specific contact resistance of
3.4 X 107 Q cm? on p-GaN (3 X 10'7 cm™3) when annealed at
600°C for 5 min in a N, ambient. ' The output power of LEDs with
the IZO ohmic contacts was improved by 34% at an input power of
83 mW compared to that of LEDs with Ni/Au contacts. ZnO com-
bined with a Ni interlayer (5 nm) gave a specific contact resistance
of ~1 X 107 Q cm? and a light transmittance of ~76% in the
range 400-550 nm when annealed at 450 and 550°C for 2 min in
air.

Single-wall carbon nanotubes (SWCNTSs) have a superior electri-
cal conductivitY as well as good optical transparency
characteristics.'>"3 Thus, SWCNTSs have been used as a transparent
conductor for various devices, e.g., field effect transistors'*" and
organic LEDs.'® In addition, homogeneous (mixed metallic and
semiconducting) SWCNT films were applied as p-type ohmic con-
tacts to GaN/InGaN quantum-well LEDs."” The 100 nm thick
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SWCNT film contacts produced a specific contact resistance of
1.1 X 1072 Q cm? upon annealing at 700°C for 60 s in N, gas
ambient, which was somewhat better than that of Nj-annealed
Ni/Au contacts. However, the SWCNT film gave a low transmit-
tance of ~60% at a wavelength of 434 nm. In this work, we also
introduced SWCNTs at the interface between ITO p-contact and
p-GaN to improve current spreading and, consequently, to enhance
the output power performance of GaN-based LEDs. Among the vari-
ous techniques for forming SWCNTs on substrates, such as drop-
drying from solvent, airbrushing, Langmuir-Blodgett deposition,
and filtering with a membrane, we used the most convenient, a
simple dip coating technique, which enables SWCNTs to be also
deposited on photoresist patterned LED structured samples. To ef-
fectively spread the current, individually dispersed SWCNTs (form-
ing networks but not films) were employed, which could be con-
trolled by dipping and rinsing processes.

InGaN/GaN multiple quantum-well LED structures (~460 nm
in peak wavelength) were grown on c-face sapphire substrates by
metallorganic chemical vapor deposition. The LED structure con-
sisted of a 0.05 wm thick strained GaN layer, a 0.15 pm thick
p-type GaN:Mg (n, = 5 X 10'® cm™) layer, a 0.1 wm thick active
layer, a 1.5 wm thick n-type GaN:Si (ng =3 X 10'® cm™) layer,
and a 2.0 pm thick undoped GaN layer on the sapphire substrate.
Before the fabrication of LEDs, the surfaces of the LED structure
samples were ultrasonically degreased with acetone, methanol,
deionized (DI) water, and a mixture of sulfuric acid (H,SO,4) and
hydrogen peroxide (H,0,) for 5 min in each step to remove organic
contaminants. The LEDs (1050 X 1050 wm) were fabricated using
photolithography patterning and inductive coupled plasma reactive
ion etching. Before undergoing SWCNT deposition, the samples
were treated with a diluted HCI solution, rinsed in DI water, and
then blown dry with N,. The SWCNTSs grown via arc discharge were
dispersed in dichlorobenzene (CgH4Cl,, Sigma-Aldrich, 99%)
through ultrasonication for 20 min at a dilute concentration of 0.5
mg/mL. The GaN samples defined by the standard photolithography
technique were dipped in the SWCNT dispersed solution for 3 min
and then rinsed in pure dichlorobenzene for 1 min. These processes
were repeated three times to attach suitable amounts of SWCNTs on
p-GaN, which were finally blown dry with N, gas (this process gave
reproducible results at all times). ITO (220 nm thick) layers were
sequentially deposited onto the samples with/without SWCNTs by
radio-frequency magnetron sputtering. After the lift-off process, all
the samples were rapid-thermal annealed at 600°C for 40 s in air. To
characterize the SWCNT morphology on p-GaN, a field-emission-
scanning electron microscope (Hitachi S-4300) was used. Current—
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Figure 1. An SEM image of SWCNTs formed on p-GaN samples by a
simple dipping in a SWCNT-suspended solution.

voltage (I-V) data were measured at room temperature using a high
current source-measuring unit (Keithley 238). The light output
power was measured by a Newport dual channel power meter.
Transmittance measurements were carried out using a UV/visible
spectrophotometer (Shimadzu, UV-1800). The current-spreading
features of LEDs with/without SWCNTs were characterized through
a photoemission microscope (MoDooTek, PHEMOS-1000).

Figure 1 shows a scanning electron microscopy (SEM) image of
SWCNTs formed on p-GaN samples by a simple dipping in a
SWCNT-suspended solution. There are randomly distributed
SWCNTs forming networks. The density of the SWCNTs was mea-
sured to be of the order of 10° cm™2. Considering their thickness,
they consist of SWCNTs and a SWCNT bundle (30-80 nm diam-
eter), indicating that they have a mixture of semiconducting and
metallic characteristics. Furthermore, the existence of excessively
bundled SWCNTs (or films) between ITO and p-GaN caused the
ITO electrode to peel off during heat-treatment (not shown). This
implies that the optimization of the dipping process for forming
SWCNT networks (having a density of ~10° cm™) is essential for
use as an electrode in GaN-based LEDs. The density could be con-
trolled by monitoring the dipping and rinsing process.

Figure 2 exhibits the light transmittance of ITO-only and
SWCNT/ITO layers on p-GaN samples, which were annealed at
600°C for 40 s in air. The SWCNT/ITO contacts give a little bit
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Figure 2. (Color online) The light transmittance of ITO-only and SWCNT/
ITO layers on p-GaN samples, which were annealed at 600°C for 40 s in air.
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Figure 3. (Color online) The forward I-V characteristics of blue (460 nm)
LEDs (1050 X 1050 wm) fabricated with ITO-only and SWCNT/ITO con-
tacts, which were heat-treated at 600°C for 40 s in air.

lower transmittance compared to the ITO-only contact across the
whole wavelength region of 360-500 nm. For example, the trans-
mittance at 460 nm was measured to be 91.4 and 94.4% for the
SWCNT/ITO and ITO only contacts, respectively. Individually dis-
persed SWCNTs without bundled SWCNTs gave almost the same
transmittance as that of ITO-only contacts (not shown). This indi-
cates that the presence of the bundled SWCNTSs plays a major role in
absorbing visible light. So, the optimization of the dipping and rep-
etition process for obtaining proper networks is important for the
improvement of the output performance of LEDs.

Figure 3 shows the forward /-V characteristics of blue (460 nm)
LEDs (1050 X 1050 pm) fabricated with ITO-only and SWCNT/
ITO contacts, which were heat-treated at 600°C for 40 s in air. The
LEDs fabricated with the SWCNT/ITO contacts give a forward-bias
voltage of 3.61 V at an injection current of 350 mA, which is a bit
higher than that (3.44 V) of the LEDs made with ITO-only contacts.
The increase in the forward-bias voltage of the LEDs with SWCNTs
may be explained in terms of the presence of SWCNTSs in contact
with p-GaN. The SWCNT/ITO contacts produce inhomogeneous in-
terfaces having two different contacts on p-GaN, i.e., SWCNT/p-
GaN and ITO/p-GaN. Since CNTs have a smaller work function (4.7
eV) than that of ITO (4.8-5.0 eV),"** the SWCNTs could contrib-
ute to an increase in the surface barrier height, leading to an increase
in the contact resistivity.

Figure 4 shows the current-light-output-power behaviors of the
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Figure 4. (Color online) The current-light-output-power behaviors of the
LEDs fabricated with the ITO-only and SWCNT/ITO contact layers, which
were annealed at 600°C for 40 s in air.
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Figure 5. (Color online) The light-emitting patterns (under a forward bias of
4 pA) of the LEDs fabricated with the (a) ITO-only and (b) SWCNT/ITO
contact layers, which were annealed at 600°C for 40 s in air.

LEDs fabricated with the ITO-only and SWCNT/ITO contact layers,
which were annealed at 600°C for 40 s in air. It is evident that the
LEDs with the SWCNT/ITO contacts produce a much higher output
power compared to the LEDs with the ITO-only contacts. For ex-
ample, the use of the SWCNT/ITO contacts results in the improve-
ment of the light output power at 20 mA by 60% compared to that of
the LEDs without the SWCNTSs. This is inconsistent with the com-
bined results of the light transmittance and the forward-bias voltage
(Fig. 2 and 3, respectively). The discrepancy can be attributed to the
fact that the SWCNT bundle having metallic electrical characteris-
tics serves as an effective current spreader, conveying an electric
charge from the ITO electrode to p—GaN,13 as described below.

To compare the current-spreading phenomena in the LEDs
(1050 X 1050 pm) fabricated with/without the SWCNTS, the emit-
ted patterns of chips under a forward bias of 4 WA were character-
ized by a photoemission microscope. Figure 5 shows the light-
emitting patterns of the LEDs fabricated with the ITO-only and
SWCNT/ITO contact layers, which were annealed at 600°C for 40 s
in air. For the LEDs with the ITO only contacts (Fig. 5a), the pho-
toemission is nonuniform and localized. In other words, the light
emission is crowded near the p-probe. As shown in Fig. 5b, how-
ever, the LEDs with the SWCNT/ITO contacts exhibit a uniform
light emission across the whole chip area. This indicates that the
SWCNTs incorporated into the ITO contacts play a critical role in
spreading the injected current and serve as an efficient current
spreader, leading to a much higher light output power.

To summarize, we investigated the effect of SWCNTs on the
electrical and optical characteristics of high power GaN-based LEDs
fabricated with ITO (~220 nm) contact layers. The presence of the
SWCNTs at the ITO/p-GaN interface insignificantly degraded the
light transmittance, whereas the LEDs made using the SWCNTs

resulted in a bit higher forward-bias voltage compared to the LEDs
without the SWCNTs. Despite the somewhat inferior properties,
however, the LEDs with the SWCNT/ITO contacts produced a much
higher output power by ~60% at 20 mA compared to those with the
ITO-only contacts. This indicates that the use of the SWCNTs could
represent an effective process for fabricating high performance
GaN-based LEDs.
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