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The spectrum of the intra-and intersubband plasmon-polaritons of a quasi-one- 
dimensional quantum-well wire is investigated. The polarization tensor is treated 
in detail within the random-phase approximation. The dispersion curves of the 
collective excitations are calculated and presented in graphical form. 

A broad range of fundamental research and novel 
applications in many fields of semiconductor physics 
was initiated by the progress in crystal growth tech- 
niques of the last decade which made it possible to 
fabricate layered semiconductor heterostructures pre- 
cise in atomic-scale. These novel systems have unique 
physical properties which arise from the quasi-two- 
dimensional (Q2D) behaviour of the carriers. One of 
the challenging topics of current interest involves sys- 
tems of further reduced dimension&y, namely QlD 
quantum-well wires (QWW) and QOD quantum dots 
(QD). QlD and QOD systems have been prepared by 
starting from a Q2D system employing high-resolution 
nanometer lithographic techniques or by using novel 
growth techniques. The study of these low-dimensional 
quantum-confined systems has gained a great deal of 
attention in the past few years. 

The most prominent collective excitation of semi- 
conductor nanostructures is the plasmon. In a QWW 
the confinement potential acts in two spatial direc- 
tions and hence, caused by size-quantization the single- 
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particle and collective excitations of the quasi-one- 
dimensional electron gas (QlDEG) are splitted into 
intra- and intersubband excitations.‘-” These excita- 
tions are measured with far-infrared (FIR) spectrosco- 

PY ‘l-l3 and Raman-scattering.” 

The aim of this paper is to investigate the re- 
tardation effects on the dispersion relation of intra- 
and intersubbad plasmons in parabolic QWW’s. We 
study the QWW by a model in which the electrons 
are confined in a zero thickness z - y plane along 
the z-direction at z = 0. In the y-direction a 
parabolic quantum well is assumed. Following in the 
effective-mass approximation the one-electron envelope 
wave function [L(Y) and the corresponding subband 
energy EL are given by an one-dimensional effective 
Schrijdinger equation, where the electron is confined 
in an effective potential V,,,(y). This lateral effec- 
tive confinement potential is a sum of the bare initial 
potential VO(y), the Hartree-potential VH(Y) and the 
exchange-correlation potential V&y). In general it is 
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nesessary to distinguish two different cases for V,ff(y): 

(i) The first is realized in semiconductor nanostructures 

with electrostatic confinement. In this case the result- 

ing V,,,(y) is parabolic for small electron densities. (ii) 

The second case is realized in semiconductor nanostruc- 

tures with a bare initial ideal parabolic confinement po- 

tential Vo(y) = mR2y2/2. Electrons which arise from 

donor impurities located away from the quantum well, 

enter the well and screen this bare initial parabolic po- 

tential changing the shape of the resulting potential 

V,ff(y). Here we are concerned with case (i). 

The current-response of the QlDEG gives the dis- 

persion relation of the collective excitations includ- 

ing retardation effects, the intra- and intersubband 

plasmon-polaritons. Plasmon-polaritons are coupled 

collective excitations formed of the collective excita- 

tions of the solid and photons. The dispersion relation 

reads” 

detIGarSLL16L~Lz-~oD~~L1L’L(pZ,~)x~~’(Qz,W)l = 0 
(1) 

~L1L&L4(QZ, ) 
aS w are the matrix elements of the elec- 

trodynamic Green’s tensor of the inhomogeneous wave 

equation 

* Ck’Lz(Y)D,B(~lI,~,IW)CBLSLl(Y’) (2) 
where Zll = (I, y, 0) is the position vector in the I - y 

plane (cr,p = r,y,z) and 

CkL’(Y) = &z rlLL’(Y) +&v S,LL’(Y), (3) 

with 

TILLJ(Y) = SLYLY ami 

g,LL’(y) = [L(y)+$ - [L!(y)y. (4) 

The electrodynamic Green’s tensor of the inhomoge- 

neous wave equation is given by 

with 

(6) 

neglecting image effects. Further, ~45’ (q2, w) of Eq.(l) 

is the matrix polarisation tensor of the QlDEG defined 

by15 

Xf$(¶zP) = 
(7) 

= 

I 

P:;‘(W) if L = L’ 
and (Y=/~=x, 

P$‘(Q~,w) + P$YQ~,u) if L # L’ 
and o = P? 

P$‘(Q~,w) - J$,,(P~,w) if L # L’ 
and o # A 

0 else 

where 

ReP,L,L’(qZ,w) = _-C 
4rmqz { 

4n,(t;+k;J)+g * 
Z 

(8) 

k-+k; 
* In k-k: l--i> ’ 

RePipL’ ( qz , w ) = 

(9) 

with kh = kk f [F + $(w - &LO)] and kr, = 

kk’ f [!$ - ~(w - ftLL#)] . Outside of the single- 

particle continua, ReP&!‘(q,,u) = R~P~~‘(Q~,w) = 
ImP,LL’(q,,w) = ImP~rL’(q,,w) = 0 is valid. In 

Eqs.(2)-(10) m is electron effective mass and cd is static 

dielectric constant of the semiconductor containing the 

QlDEG, ks = [2m(EF - EL)/~~]‘/’ if EF > EL and 

zero for EF 5 EL. CI;~LL,I = (EL - ILI)/~- is the subband 

separation frequency and EF is the Fermi energy. 

Due to the spatial symmetry of the effective con- 

finement potential V,ff(y) the system of algebraic 

equations (1) splits into the dispersion relation of sym- 

metric intra- and intersubband plssmons and the dis- 

persion relation of antisymmetric intersubband plas 

mons. Here we are mainly interested in the investiga- 

tion of the retardation effects on the plasmons. Hence, 

to solve the complicated algebraic dispersion relation 
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we restrict ourself to the diagonal approximation and, 
further, we assume that only the lowest subband is oc- 
cupied. In the diagonal approximation the coupling 
between the different plasmon-polariton modes is ne- 
glected. 

For numerical work we have chosen a GaAs - 

Gal-,Al,As QWW with Ml = 2 meV: 6, = 12.87 
and m = 0.06624mc. 
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Fig.1 Dispersion relation of the intrasubband plasmon- 
polariton (heavy solid lines) where one subband 
is occupied (niDEG = 3.7 * 105cm-‘). The 
thin solid lines are the boundaries wi and ws of 
the single-particle intrasubband continuum. The 
dashed line is the light line a! = 0. 

Figure 1 shows the full RPA dispersion curve of 
the intrasubband plasmon-polariton. The thin solid 
lines in the w - Q= plane are the boundaries of the 
region where the single-particle intrasubband excita- 
tions exist. Notice that for such small wave vec- 
tors as plotted this region is very narrow. Inside of 
this region Imp::, ImPi; and Rep:: axe nonzero 
and, hence, the intrasubband plasmon-polaritons are 
Landau-damped. From Figure 1 it is seen that the 
intrasubbsnd plasmon-polariton starts for qz = 0 at 
w = 0. This is also true if one neglects the retardation. 
The corresponding collective excitation is the intrasub- 
band plasmon. Our result is that the retardation effect 
on the intrasubband plasmon is very small and, hence, 
the dispersion curves of the intrasubband plasmon and 
of the intrasubband plasmon-polariton are practically 

indistinguishable. The retardation effect causes the 
intrasubbsnd plasmon-polariton to approach the light 
line cr = (qq --E+J~/c~)~/~ = 0. Further, this dispersion 
curve is always located to the right of this light line in 
the w - Q= plane. For small wave vectors qz and small 
o the dispersion relation, Eq.(l), reads 

w = ~~lqzlkl In(&) 
* ln(aZn) - 1 

(11) 

with w, = [e21c~/(a2&o&,mZ~)]1/2 and ln = [h/(mn)]‘l” 
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Dispersion relation of the (1 - 0) intersubband 
plasmon-polariton (heavy solid line) and the 
corresponding unretarded intersubband plasmon 
(dotted line) where one subband is occupied 

( ~~DEG = 3.7*105cm-I). The thin solidlines are 
the boundaries ws and wh of the single-particle 
intersubband continuum. The dashed line is the 
light line a = 0. (b) shows the dispersion rela- 
tion of the intersubband plasmon-polariton and 
the corresponding intersubband plasmon near the 
resonance splitting. 
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is the effective width of the parabolic quantum well. 
For c + co Eq.(ll) results in the well-known long- 

wavelength approach of the dispersion relation of the 

QlD intrasubband plasmon. 

In Figure 2 the full RPA dispersion curve of the 

intersubband plasmon-polariton is plotted. The thin 

solid lines in the w - q2 plane are the boundaries of the 
single-particle intersubbaud continuum. It is seen that 

the dispersion curve is again always located to the right 
of the light line a = 0 in the w--q= plane. In this region 

the difference between the plasmon-polariton and the 
plasmon is very small but more pronounced than in the 
case of the intrasubband modes. The region where the 

intersubband plasmon crosses the light line (Y = 0 is 

plotted in Figure 2(b). It is seen that the retardation 

shifts the dispersion curve to lower frequencies. But 

this is valid only in the very near vicinity of the line 

(Y = 0. 

Using the diagonal approximation we have shown 

that all plasmons of a QlD QWW are influenced by 

retardation and, hence, are plasmon-polaritons. Fol- 
lowing, all dispersion curves are located to the right of 
the light line (Y = 0. Comparing the obtained results 
of the here used simple model with those using a more 

complete model to include the coupling between the 

modes, but neglecting retardation’, we can conclude: 

the retardation should influence the modes in the same 

manner, as if one consideres the coupling between the 

modes and the occupation of more than one subband. 

In general the retardation influences the autisymmetric 
modes more than the symmetric ones. 
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