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COHESION IN ALLOYS - FUNDAMENTALS OF A SEMI-EMPIRICAL MODEL 
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A semi-empirical model of alloy cohesion involving two material constants for each element is introduced by means of 
the physical ideas underlying the scheme. The resulting expressions for the heat of formation of binary alloys are presented 
and their applicability in various extreme situations is discussed. The model is shown to reproduce a vast amount of experi- 
mental information on the sign of heats of formation. Detailed comparison with experiment for particular classes of alloys 
will be presented in the sequels to this paper. 

1. Introduction 

1.1. Types o f  cohesion 

In simple treatments o f  binding in crystals, one 
attempts to classify solids according to the type of  
interaction holding them together. In some cases, e.g. 
molecular crystals or ionic compounds, the classifica- 
tion is relatively straightforward and easy to apply. The 
fact that a variety o f  electronegativity scales has been 
introduced to assess the relative importance of  ionic 
binding shows that the delineation o f  this type from 
metallic and covalent binding is not easy. In fact, a 
similar ambiguity exists in the classification of  metals 
and semiconductors, where the terms 'covalent' and 
'metallic' are often applied to compounds in a rather 
suggestive way, without giving much insight into the 
origin of  the cohesive energy. 

In molecular crystals, which include the solid noble 
gases, one describes cohesion in terms o f  the Van der 
Waals - London interaction between molecules. The 
interaction being due to the mutually induced dipole 
moments o f  the two molecules, the cohesive energy 
depends quadratically on the molecular polarizability. 
There is no need for an overlap between the charge 
densities of  the interacting molecules for this attrac- 

tive force to be effective. In fact, the overlap provides 
the repulsive force that keeps the solid from collapsing. 
In the case of  solid noble gases, we Fred a simple rela- 
tion between the fairly small electron density between 
atoms and the cohesive energy at T = 0 per unit molar 
surface area (fig. 1). This correlation implies that 
there is a proportionality between negative and posi- 
tive contributions to the total energy at the equili- 
brium interatomic distance. 

In ionic crystals, the cohesive energy can be 
accounted for by electrostatic interactions between 
distinct, oppositely charged ions o f  well-deFined sizes 
and charges. In the case o f  fully ionic substances, i.e., 
compounds containing ions o f  integral charge units, 
the calculation o f  the binding energy is a relatively 
simple matter. However, fully ionic compounds repre- 
sent a limiting case, never actually realized in nature. 
Even in the textbook examples o f  ionic crystals 
(alkali halides, oxydes o f  metals with very low electro- 
negativity) there must be some overlap between the 
oppositely charged ions which generates the necessary 
repulsive forces. Thus, one always deals with inter- 
mediate, partially ionic cases, where the electron 
density between ions is appreciable, and there is an 
ambiguity in the decomposition o f  the electronic 
charge distribution into positive and negative ions. 
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Fig. 1. Illustration of the approximate linear relationship 
between the cohesive energy per unit molar surface A/~vap/ 
Vm /3 (heat of vaporization at T = 0, corrected for zero-point 
motion [1 ] ), of the noble gases and the averaged electron 
density, nws, at the boundary of the Wigner-Seitz cell. The 
values for nws have been obtained by summation of the 
electron densities of the free atoms [2] situated at the lattice 
positions at T = 0. 

Metallic binding is said to be due to the delocaliza- 
tion of electrons, which leads to a lowering of their 
kinetic energy. More precisely, if one considers a single 
atomic orbital on each atom, superpositions of such 
states will constitute a band, comprising energies 
lower and higher than the atomic level. In metal for- 
mation there is a preferential occupation of those 
states that have lowered their energies. These are 
indeed the states with the lowest kinetic energy, having 
a vanishing slope of the wave function half-way be- 
tween two atoms, in contrast to the highest states in 
the band, whose wave functions have maximum slope 
and zero value half-way between two atoms. The 
former states can be also termed bonding states, as 
opposed to the latter, antibonding states, since they 
deposit a maximum amount of  negative charge 
between the positive ions. Apart from band broaden- 
ing, energy is gained in metal formation through the 
admixture of  higher atomic orbitals, which further 
lowers the energy of occupied states. As mutual dipole 
induction in the theory of Van der Waals-London 
interactions is also described by means of the admix- 
ture of higher, unoccupied states, this contribution 

to metallic binding is seen to be related to the binding 
mechanism in molecular crystals. 

Covalent crystals are described in terms of bond 
charges resulting from the preferential occupation of 
bonding states, which we introduced above in connec- 
tion with metallic binding. The distinction between 
metallic and covalent binding is sometimes rather arti- 
ficial. If  one insists on classifying silicon as a covalent 
crystal, one is implying that the cohesive energies in 
solid and liquid (metallic) silicon are of different 
origin. However, the energy lowering achieved by 
arranging Si atoms on the tetrahedral diamond lattice 
is of the order of the heat of fusion, which is only a 
small fraction of the cohesive energy. This suggests 
that, as far as cohesive properties are concerned, 
crystals of Si, Ge or grey Sn should be considered as 
metallic crystals in which the shape of the constant- 
energy surfaces and the number of  electrons per atom 
are such that exactly one Jones zone is filled. It is 
then not surprising that such a strong deviation from 
a spherical Fermi surface is accompanied by a direc- 
tional type of electron density distribution in real 
space. Naturally, the exact filling of the Jones zone 
cannot be considered an accident. The diamond struc- 
ture with its two atoms per unit cell is favoured 
because of the possibility of separating bonding and 
antibonding states by an energy gap, and f'dling them 
up to the gap. However, such considerations are 
common in metal physics as well. They are involved, 
for instance, in the explanation of the Hume-Rothery 
rule, which establishes a correlation between the 
occurrence of ordered structures and particular values 
of the electron to atom ratio. 

The above discussion is meant to make clear the 
inadequacy of the customary classification of  solids, 
even for simple substances. When it comes to under- 
standing alloys and intermetaUic compounds, the situ- 
ation becomes even more complicated. Adopting the 
principle that structure dependent energy contribu- 
tions are due to covalent bonding, and recognizing 
that (as we hope to convincingly show in this and 
subsequent papers) the most important factor stabil- 
izing an intermetallic compound of two transition 
metals with respect to its pure solid constituents is 
ionicity, one is forced to realize that discussions of 
alloy stability must take place on the ill-defined no 
man's land between three "pure" types of binding. 

One can think of two ways out of  this impasse, and 
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in both cases the first step is to discard the traditional 
classification. Then, either a new set of phenomeno- 
logical concepts has to be introduced, or, more ambi- 
tiously, an exact theory has to be formulated and 
applied to various systems. Recent self-consistent 
energy-band and total-energy calculations [3] using 
the density functional formalism [4] have shown the 
feasibility of the latter approach. However, to perform 
such calculations for a large number of systems is not 
a practical proposal at the moment. Nor would one 
gain much insight from the resulting energies and 
charge distributions. To derive trends and regularities 
from these, one would again be faced with the prob- 
lem that there is no unique way of decomposition. 
Therefore, we have undertaken the less ambitious 
approach of describing the heat of  formation of alloys 
and intermetallic compounds in a new framework of 
concepts and empirical quantities. In the next subsec- 
tion this framework will be sketched. Before formula- 
ting the problem of  alloy formation in this framework, 
we will point out some analogies with a phenomeno- 
logical treatment of the Van der Waals-London inter- 
actions. At the end of this section we discuss the 
relation of our scheme to earlier treatments of alloy 
formation. 

1.2. The macroscopic atom picture 

Admittedly, the remark made in the preceding 
section to the effect that the Van der Waals-London 
interaction and metallic binding have some common 
features was not very useful for the purpose of prac- 
tical calculations. Surely, if one starts from isolated 
atoms, any energy lowering upon solidification can be 
described as a consequence of hybridization of states, 
but this observation does not make the problem of 
metallic cohesion as simple as that of  the Van der 
Waals-London interactions. What makes the latter 
tractable is the fact that the admixture of  higher 
states is so slight that perturbation theory is applicable. 
That this cannot be the case in metals can be simply 
deduced from the fact that here cohesive energies are 
more than an order of magnitude larger than for noble 
gas solids whereas the excited states of the free atoms 
lie lower. The fundamental nature of  the difficulties 
in understanding metallic cohesion can be appreciated 
by considering that cohesive energies of  metals are 
comparable to the corresponding typical atomic exci- 

tation energies, and amount to a substantial fraction 
of the ionization energies. 

In problems of alloy stability, however, we are 
dealing only with formation energies, that is, differ- 
ences between the cohesive energies of alloys and 
their constituents in the metallic state. What makes it 
difficult to make use of the fact that such energies are 
an order of magnitude smaller than cohesive energies, 
is that there is no obvious way to choose as reference 
systems, instead of free atoms, atoms as they are when 
imbedded in a metal. Our basic assumption will be 
that this can be done, and that many of the consider- 
ations that apply to the situation when two macroscopi 
pieces of metal are brought into contact remain valid 
for suitably defined "atoms in the metallic state". 

In this "macroscopic atom picture", there is little 
difference between the interface energy between two 
blocks of  metal and the heat of formation (heat of  
mixing) of  intermetallic liquid alloys. Energy consider- 
ations are made in terms of contact interactions that 
take place at the interface between dissimilar atoms. 
This picture suggests a fundamental relationship be- 
tween the surface energy of a solid or liquid and its 
heat of  vaporization, which is also born out by the 
empirical data (fig. 2). 

A new parameter of central importance in the des- 
cription of interface phenomena on an atomic scale is 
the electron density parameter, nws. This is defined as 
the electron density at the boundary of the Wigner- 
Seitz cell (or more precisely, its average over the cell 
boundary) as derived for the pure elements in the 
metallic state. An alloy or intermetallic compound is 
thought to be built up of atomic cells, the electron 
density being kept unchanged as the cell is removed 
from the metal. When dissimilar cells are brought in 
contact in the alloy, there will be discontinuities in the 
electron density. Elimination of such discontinuities 
requires energy, hence a positive contribution to inter- 
face energies and heats of mixing or formation, deter- 
mined by Anws, can be expected. Since for metallic 
alloys or metal-metal  interfaces it is but one contri- 
bution to the total formation energy, this energy is 
experimentally not accessible. However, it has been 
calculated theoretically by determining the total 
energies of  the constituent metals in a constrained 
state having a suitably chosen atomic volume. More 
precisely, Alonso and Girifalco [8] have shown that 
these atomic volumes are uniquely determined by the 
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Fig. 2. Illustrations of the linear relationship between the heat of vaporization per unit molar surface, AHvap/Vm2/3, and the 
surface energy',/. 
(a) for solid metals at T = 0. Open circles correspond to non-transition metals, filled circles to transition metals. The divalent 
metals Be, Mg, Zn, Cd and Hg have been omitted. They are exceptional because of the unusual stability of the free atom s 2 outer 
electron configuration which is lost upon formation of the solid metal. This extra stability amounts to about 100-150 k J/mole, 
which should be added to the experimental heats of vaporization of the divalent metals to make them comparable to the heats of 
vaporization of the other metals (see ref. 5 for further details). Data on3"s 0 have been taken from ref. 6, see table I. The propor- 
tionality constant between 3"0 and At~vaP/v2m/3 equals 2 X 10 -9. 
(b) for Van der Waals liquids at their melting temperature [7] (3, 0 is not available). The proportionality constant equals 1.6 X 10 -g 

requirement that their concentration-weighted aver- 
age give the volume per a tom in the alloy and that  nws 
be the same for the two metals. The elastic energy cal- 
culated by Alonso and Girifalco agrees in approximate 
magnitude with the positive term introduced in the 
macroscopic atom approach. Recently, Williams et al. 
[9] have criticized the interpretat ion of  the density 
mismatch energy in terms of  elastic energies on the 
ground of  first-principles band structure and total  
energy calculations. The existence of  the density- 
mismatch term is born out  by  these calculations, but  
the results suggest that it corresponds to changes in 
the relative contributions of  s, p, and d states to the 
total  charge density, rather than to elastic energies. In 
a transition metal, an increase in nws can be realized 
by  increasing the s-type and reducing the d-type 
cont r ibu t ion .  

The empirical evidence for the existence of  an 
electron-density mismatch term is not  limited to alloy 
formation energies. Fig. 3 shows that there is an 
approximate linear relation between the surface 

energy of  a metal and nws. The relevance o f  the elec- 
tron density parameter to metallic cohesion is born 
out by fig. 4, which shows a linear relation, implied 
by figs. 2 and 3, between the heat o f  vaporization per 
unit atomic surface and nws. The similarity between 
figs. 1 and 4 is somewhat misleading: the slopes o f  the 
two straight-line fits are different by  a factor o f  four. 
However, the analogy is sufficiently encouraging to 
study the problem of  miscibility o f  Van der Waals 
liquids in the hope o f  learning something about alloy- 
ing behaviour o f  metals. 

1.3. Hildebrand's solubility parameter 

The interaction energy between two non-polar 
molecules is proport ional  to the polarizabili ty,  P, o f  
both  molecules. Therefore, the cohesive energy o f  the 
condensed phase is proport ional  to p2,  and so is 3,0, 
the surface energy at T = 0. Applying the argument 
to macroscopic bodies, it is easily shown that  the 
adhesive energy between two layers o f  Van der Waals 
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Fig. 3. The approximate linear relationship between the surface energy at T = 0, "rs 0, and the interatomic electron density, nws , for 
non-transition metals (open circles) and transition metals (filled circles). For the non-transition metals the values for nws have been 
obtained by summation of the electron densities of the free atoms [2]. For the transition metals the nws values were derived from 
bulk modulus data [10]. The deviations from linearity have some systematics, which have been explained in ref. 6. 
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Fig. 4. The linear relation, implied by figs. 2 and 3, between 
the heat of vaporization per unit atomic surface, AHsWP/V2m/3, 
and the electron density, nws , for non-transition metals. In 
this figure the divalent metals with their unusually low beat of 
vaporization have been omitted. 

substances A and B in contact  is propor t ional  to PAPB , 
equals --2(3,0) 1/2 (3,0) 1/2 per uni t  surface area. and 

The interface energy be tween  two non-mix ing  Van der 
Waals l iquids is then  

3'AOB = 3'0 A + 3'B 0 -- z't 'A )  ~ z'~0"d/2 t tB  -11̂ '0"~1/2 

= [(~,,I.)~/2 _ (3'~)~/2] 2. (I) 

The same result should apply to interfaces be tween  
Van der Waals solids, provided there is perfect  match- 
ing, that  is, no  positive energy con t r ibu t ion  due to 
elastic deformations.  

If  we apply this result to "interfaces" on  an atomic 
scale, and make use of  the linear relat ionship be tween  
3'0 and the heat  o f  vaporizat ion per un i t  molar  surface 
(cf. fig. 2), we find the entha lpy  of  solut ion of, say, 
l iquid B in liquid A as 

Sol = V 2/3 fiz~r_/~,ap, ~ 1/2 ~Anl~ap~l/2 12 
~ m a  13, v~/3 ! - t v-- - -~- /  j .(2) 
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This is very similar to Hildebrand's formula for the 
mutual heat of solution of non-electrolyte liquids [11 ] : 

AHI~mA VBL~,---~--A ! - \  VB , (3) 

where z3dt/vaP/V is the so-called solubility parameter. 
As was noted already by Hildebrand, considerations 
based on the macroscopic-atom picture lead to a 
slightly different definition of the solubility param- 
eter, involving the 2/3 power of the molar volume. 
However, for liquids of comparable molar values, the 
two definitions are equivalent, as far as the prediction 
of heats of  mixing is concerned. 

At this point, we should note that Hildebrand's 
solubility parameter has been found to be a quantity 
of great practical importance. Predictions regarding 
the miscibility or immiscibility of  Van der Waals 
liquids, based on the solubility parameter, are highly 
accurate. Enthalpies of  mixing can be calculated by 
attaching a simple factor f (c)  = c ~ .  c~ ,  accounting for 
the concentration dependence, to expression (3) (the 
cV's are volume concentrations). Equally satisfactory 
results can be obtained from eq. (2), if the multiplica- 
tive factor is chosen as f(c)  = c ~ .  c~, where c s stands 
for surface concentration. 

We are inclined to consider the solubility param- 
eters involving the molar surface area and the corres- 
ponding surface concentrations in mixtures to be the 
more fundamental set of parameters. The preference 
to use (z~-IvaP/v)l]2 in predictions of  heats of mixing 
prevails mainly for historical reasons. Yet, the alter- 
native treatment in terms of surface energies is not 
new. Langmuir [12] used this approach already sixty 
years ago in his description of heats of mixing in solu- 
tions of polar molecules. 

Eqs. (1) and (2) can be rewritten in terms of the 
discontinuity in the electron density at the contact sur- 
face between different substances. Using the linear 
relationship between zXHvaP/V2/3 and nws (fig. 1) we 
find 

AxH~S°l~a A = Q'V 213 [(nwAs) 112 -- (nBws)l/2] 2, (4) 

where Q' is a constant to be determined empirically. 

1.4. Heat effects on alloying 

It is clear that the results of the preceding section 
cannot be applied directly to alloys. The existence of 
stable alloys and intermetallic compounds indicates 
that eq. (4) does not give a full account of  alloy for- 
mation. Having found that nws is just as important a 
parameter in metal cohesion as in the binding and mix- 
ing of Van der Waals substances, we may expect that 
a density-mismatch term like (4) will appear in a 
general expression of alloy formation energies. Where- 
as for Van der Waals substances this positive term is 
the only one that shows up in the heat of  mixing of 
liquids, for metallic alloys there must be an additional, 
negative term. 

We can understand the physical background of the 
negative term, if we try to reconstruct the arguments 
leading to eq. (4) with metallic interfaces in mind. 
When two blocks of  different metals are brought in 
contact, the charge redistribution will not be limited 
to the inside of each block, but there will be a net 
charge transfer, governed by the difference in contact 
potential between the two metals. Charge will flow to 
places of lower potential energy, until the resulting 
dipole layer compensates the potential difference. 
Visualized on an atomic scale, this charge transfer 
corresponds to a negative, ionic contribution to the 
heat of formation. 

In order to describe ionicity in metals, we have 
introduced [10, 13-15] the parameter 4~*. In the 
true spirit of  the macroscopic atom picture, we should 
use ~b, the work function of the pure metallic elements, 
when discussing interfaces between dissimilar atoms. 
The asterisk in ~* will remind us that the work func- 
tion had to be readjusted, by amounts comparable to 
the experimental uncertainty of  q~ values, in order to 
arrive at a set of  parameters relevant to alloying 
behaviour (see table I). The form of the negative 
energy term involving ~b* reflects, however, its origin 
as a dipole-layer energy: 

d '  m t ~k z2d-/~ - - P  S(q~ A - ~b~) 2](nwls/3)a v, (5) 

where S is the contact surface area; P '  is a constant 
to be determined empirically, that contains the elec- 
tronic charge; the average value of nws 1/3 enters the 
expression as a measure of electrostatic screening 
length, which determines the width of the dipole layer. 
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Table Ia 

Metal * 1/3 v2/3 0 
~b nws 1/3) m ~ s  m 
(V) ((d.u.) (cm 2) ,._J/m 2) 
[10, 13-151 [10, 13-15] [61 

BVm 
(k J/mole) 
[26] 

Sc 3.25 1.27 6.1 1200 6.6 
Ti 3.65 1.47 4.8 2050 11 
V 4.25 1.64 4.1 2600 14 
Cr 4.65 1.73 3.7 2400 14 
Mn 4.45 1.61 3.8 1600 4.4 
Fe 4.93 1.77 3.7 2550 12 
Co 5.10 1.75 3.5 2550 13 
Ni 5.20 1.75 3.5 2450 12 
Y 3.20 1.21 7.3 1100 7.2 
Zr 3.40 1.39 5.8 1950 12 
Nb 4.00 1.62 4.9 2700 18 
Mo 4.65 1.77 4.4 2950 26 
Tc 5.30 1.81 4.2 3050 26 
Ru 5.40 1.83 4.1 3050 26 
Rh 5.40 1.76 4.1 2750 23 
Pd 5.45 1.67 4.3 2100 16 
La 3.05 1.09 8.0 900 5.5 
Hf 3.55 1.43 5.6 2200 15 
Ta 4.05 1.63 4.9 3050 22 
W 4.80 1.81 4.5 3300 31 
Re 5.40 1.86 4.3 3650 33 
Os 5.40 1.85 4.2 3500 35 
Ir 5.55 1.83 4.2 3100 25 
Pt 5.65 1.78 4.4 2550 18 
Th 3.30 1.28 7.3 a 
U 4.05 1.56 5.6 a 
Pu 3.80 1.44 5.2 a 
Cu 4.55 1.47 3.7 1850 9.3 
Ag 4.45 1.39 4.7 1250 10 
Au 5.15 1.57 4.7 1550 18 

aRoom temperature aUotrope. 

Combining eqs. (4) and (5), we can write for the 
heat of solution of metal B in metal A 

 r°B A = - e V 2 / 3  2/( w1/3)a  
+ ~,  112/3 Q~l/2h2 

B t w s ,  " ( 6 )  

For the relatively small differences in nws that occur 
between metals, one can combine the two terms of 
eq. (6) in the almost equivalent form 

1/'2/3 

(n-1/3) 
WS av 

which contains, in brackets, our key expression for the 
heat of formation of binary alloys. Like eq. (1), this 
relation is only expected to hold, if there is no signifi- 
cant elastic energy due to size mismatch. Presumably, 
such size mismatch terms do not arise in liquids, and 
eq. (7) should give good results for the enthalpies of 
solution of liquid metals. To obtain the enthalpy of 
mixing, the prefactor has to be replaced by another 
one, involving surface concentrations (see eq. (9) 
below). Another class of materials where elastic size 
mismatch terms are not expected to play an important 
role is constituted by intermetaUic compounds. If the 
negative, electronegativity term exceeds the positive 
one, such compounds will form at those concentration: 
at which a structure exists that can accommodate the 
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Metal ~* ~ 113 V2/3 0 
"ws m 3' s 

(V) ((d.u.) 1/3) (cm 2) (mJ/m 2) 
[10, 13-15] [10, 13-15] [6] 

BVm 
(k J/mole) 
I26] 

Li 2.85 0.98 5.5 530 1.5 
Na 2.70 0.82 8.3 260 1.6 
K 2.25 0.65 12.8 150 1.5 
Rb 2.10 0.60 14.6 120 1.8 
Cs 1.95 0.55 16.8 95 1.4 
Ca 2.55 0.91 8.8 490 4.0 
Sr 2.40 0.84 10.2 430 3.9 
Ba 2.32 0.81 11.3 370 3.9 
Be 4.20 1.60 2.9 (1900) 4.9 
Mg 3.45 1.17 5.8 790 5.0 
Zn 4.10 1.32 4.4 1020 5.5 
Cd 4.05 1.24 5.5 780 6.1 
Hg 4.20 1.24 5.8 610 4.0 
B 4.75 1.55 2.8 
A1 4.20 1.39 4.6 1200 7.2 
Ga 4.10 1.31 5.2 830 6.7 
In 3.90 1.17 6.3 690 6.4 
T1 3.90 1.12 6.6 610 6.2 
C 6.20 1.90 1.8 
Si 4.70 1.50 4.2 a 1290 a 11.9 
Ge 4.55 1.37 4.6 a 1030 a 10.5 
Sn 4.15 1.24 6.4 710 8.8 
Pb 4.10 1.15 6.9 610 7.9 
N 7.00 1.60 2.2 
As 4.80 1.44 5.2 a 1000 a 5.1 
Sb 4.40 1.26 6.6 a 680 a 7.0 
Bi 4.15 1.16 7.2 a 550 a 6.7 

aFor Si, Ge, As, Sb and Bi we have introduced hypothetical metallic allotropes corresponding to the properties of these elements 
in metallic systems. 

consti tuent atoms without  generating an elastic mis- 
match energy. 

A consequence of  the simple structure o f  eq. (7) is 
that ,  provided Q and P are truly constant for arbitrary 
choices o f  metals A and B, the sign of  the heat of  
alloy formation is simply determined by  the ratio 
Aq~*/Anlw/s3: for (A~*/Anl/3)  2 > Q/Pthe  heat o f  
formation is negative, i f  the opposite inequali ty holds, 
it is positive. The reliability of  eq. (7) in predicting the 
sign of  the heat o f  mixing o f  liquid alloys is demon- 
strated in fig. 5 for liquid binary systems involving 
two non-transition metals. Each symbol in the I A~* I 
vs I ~n~s31 diagram corresponds to a binary system; a 
negative sign meaning A/r-/mix < --2.5 k J /mole of  
alloys o f  the equiatomic composit ion,  and, similarly, 
a positive sign corresponding to z3d-/mix > +2.5 k J/mole. 

It is seen that ,  with the ~* and n 1/3 values listed in 
table I, eq. (7)gives a good approximation to AHmix: 
omitt ing systems with I AH mix [ < 2.5 kJ /mole ,  we 
get an almost perfect separation between + and - 
signs by  drawing a straight line in the A¢*, An 1/3 

map. Fig. 6 shows that  although relaxing the restric- 
t ion I z~-/mix [ > 2.5 kJ/mole  spoils the almost perfect 
separation, the sign o f  the heat of  mixing is quite 
accurately predicted even if  the total  energy effect is 
small. In fig. 7, similar information is compiled for 
liquid alloys o f  transition or noble metals in combina- 
t ion with transition, noble,  alkali, or alkaline-earth 
metals (the common feature o f  these groups is that 
there is very little p-character in the wave functions of  
their conduction electrons). It is important  to note 
that  the slope of  the straight line separating + from - 
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Fig. 5. Demonst ra t ion  o f  the  reliability o f  eq. (7) in predicting 
the sign o f  the heat  o f  mixing o f  liquid alloys no t  containing 
transition or noble metals.  Each symbol  corresponds to. one 
binary system. The meanings o f  the signs are: - :  AH mnx 
< - 2 . 5  k.J/mole o f  a toms  of  the  equiatomic composi t ion;  
+: AH m~x > +2.5 kJ /mole  of  a toms  o f  the equia tomic  com- 
position, or the  liquid sys tem has a central miscibility gap, or 
the  solubility o f  at least one o f  the  metals  is very small at 
temperatures above 1000 K. 

signs in fig. 7 is the same as in figs. 5 and 6. The same 
is true for the slope of the straight line in fig. 8, where 
comparable information is represented for solid alloys 
of a transition metal and a transition, noble, alkali or 
alkaline-earth metal (the criteria for assigning + or - 
signs are somewhat different here, see figure caption). 

From the data represented in figs. 5 -8 ,  we can con- 
elude that, with a judicious choice of the parameters 
4" and nws, eq. (7) can be made into a powerful rela- 
tion capable of predicting the sign of  heats of alloy 
formation. Quite surprisingly, the ratio Q/P of the pro- 
portionality constants is found to be the same for 
widely different classes of alloy systems. Thus, relation 
(7) has turned out to be more universal than we had 
any right to expect on the basis of the way we had 
arrived at it. 

IV] 

0,5 
An~s [{d,u.)'v3 ] 

Fig. 6. Illustration of  the  validity of  eq. (7) for the  same type 
of  liquid alloys as in fig. 5 (alloys no t  containing transit ion or 
noble metals)  bu t  now for those alloys for which  [AHi has 
been measured to be smaller than  2.5 kJ /mole  o f  a toms o f  the 
equia tomic  composit ion.  (3 - 2 . 5  < AH < 0 kJ /mole;  • 0 < AH 
< 2.5 kJ/mole.  

Having separated the factor ev2/3/(nwl/3)av m 
eq. (7) we can also discuss the enthalpy of formation 
of alloys and compounds at the equiatomic composi- 
tion. For this case the prefactor will involve some 
average of V 2/3, instead of the value appropriate to 
the solute B. Provided the value of  this prefactor is as 
universal as the ratio Q/P, in a A~*, An1/3 diagram 
the loci of equal heat of formation should be repre- 
sented by hyperbolae. Figs. 9a and b illustrate the 
graphical determination of heats of formation based 
on this observation. If one limits the discussion to 
metals with predominant s and d character in their 
conduction-electron states, the heats of formation can 
be estimated with an accuracy of about 30%. This may 
not seem a very impressive agreement, but it should 
be pointed out that the diagram gives the correct 
answer for a number of cases that have puzzled metal- 
lurgists for a long time. By shifting the separating 
lines in fig. 9a from the point corresponding to Fe 
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Fig. 7. Demonst ra t ion  o f  the  validity o f  eq. (7) for liquid 
alloys o f  transit ion or noble metals in combinat ion with tran- 
sition, noble, alkali or alkaline-earth metals  (all these groups 
of metals  have very little p-character in their conduct ion elec- 
tion wave functions).  The slope of  the straight line that  
separates the  + and - signs is the same as in figs. 5 and 6. The 
meanings of  the signs are the same as in fig. 5. 

along the broken line containing the points appro- 
priate the rare-earth series, we can demonstrate that 
in the Fe-La  system there should be no stable com- 
pounds, whereas the heavier rare-earth elements can 
be expected to form compounds with Fe. Such 
drastic differences in the chemical behaviour of  
various rare-earth elements are also observed in combin 
ation with Pu, Mn and Re, and appear to contradict 
the chemical similarity of  rare earths. It is gratifying 
to observe that in the representation of fig. 9a all of 
the partner elements in these exceptional systems lie 
close to the demarcation line appropriate to La, allow- 
ing a natural explanation of the change of  sign in AH 
as one moves along the rare-earth series. Other puzzling 
dissimilarities between seemingly similar systems 
include- the combinations of  Ni with the divalent 
metals Ca, Sr, and Ba. The diagram correctly reflects 
the experimental observation that there are stable 

compounds in the Ca-Ni and Sr-Ni systems, which 
are absent in Ba-Ni. The differences in the alloying 
behaviour of Ag and Au in combination with V, Cr, 
Nb, Ta, U, Cu and K are also reflected in the position 
of the two noble metals in the ~b*, nlw/s 3 map. Here 
we have ourselves restricted to alloys of  transition 
metals and other metals having no p electrons. Other 
alloy systems (i.e. transition metals with polyvalent 
non-transition metals) will be discussed in section 2 
below. 

1.5. Earlier, related treatments o f  the heat of  alloying 

In the preceding sections we have repeatedly 
shown how insights gained in the study of  Van der 
Waals substances can be used in a discussion of alloy 
formation. This approach is by no means new, althougt 
it may seem rather unorthodox, in view of the sharp 
distinction often made in textbooks between the 
various types of  solids. In fact, Hildebrand and Scott 
[11 ] have already tried to apply the solubility par- 
ameter to mixtures of  liquid metals. They found that 
liquid immiscibility could be quite reliably predicted 
for binary systems where no intermetallic compounds 
OCCUr. 

As a negative term was dearly needed in the forma- 
tion energy in order to understand the occurrence of 
compounds, Mort [16] has attempted to combine the 
positive Hildebrand term with a negative contribution 
involving the Pauling electronegativities of  the consti- 
tuent elements. Pauling [17] had found that the heat 
of formation of ionic compounds was quite accurately 
given by 

AH = -96M(X A - XB) 2 (in kJ/mole), (8) 

where X A and X B are the electronegativities of the 
compounds, and M is the number of  shared electron 
pairs. The concept of  shared electrons is not applied 
readily to metals, but Mort worked out a rather elab- 
orate way of determining M for binary alloys, and 
showed that the expression (8), together with the pos- 
itive term involving the Hildebrand solubility param- 
eter in the form (zSJ-/vap/1/') 1/2 , enabled a fairly reliable 
prediction of the occurrence of immiscibility in binary 
liquid metal systems. 

The Mott-Pauling term is very similar to our first 
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Fig. 8. Demonstration of the validity of  eq. (7) for solid binary alloys consisting of a transition metal and a transition, noble,  alkali 
or alkaline earth metal. 
(a) - In the binary system one or more compounds exist, which are stable at low temperatures (indicating that &H is negative); 
+ There are no compounds  in the system and both solid solubilities are smaller than 10 at.% (indicating that &H is positive). 
(b) o There are no compounds or ordered phases in the system, but at least one of  the solubilities in the solid state is larger than 
10%. It can be postulated that AH will not differ much from zero. This figure does indeed show that open circles mainly occur in 
the neighbourhood of  the origin, which in the quadratic eq. (7) means that AH is small; • As for the open circles, but now the 
solubility drops to low values at low temperatures or there is only  incomplete miscibility in the solid state, although both metals 
have the same crystal structure. The quantity &H is expected to have a small but positive value. 

term in eq. (7), since @* and X are approximately 
linearly related. This is illustrated in fig. 10, where all 
@* values listed in table I are plotted against the cor- 
responding X values taken from the scale of Pauling. 

Burylev and co-workers (see e.g. [18]) have used 
the Mott-Hildebrand approach to characterize the 
interaction parameters between different atoms in 
more complicated systems, for instance ternary alloys. 
Using such parameters, they have predicted with some 
sucess in which columns of the periodic table one finds 
the metals forming stable compounds with rare-earth 
metals, and which are the metals showing immiscib- 
ility with rare-earths. On the same basis, semiquanti- 
tative estimates of heats of mixing of  various alloys 
were made by Sryvalin et al. [19].  

A modification of the Hildebrand-Mott scheme 
has been recently introduced by Kumar [20]. The 
new feature in Kumar's scheme is the use of the heat 
of fusion, instead of the heat of vaporization, in the 
definition of the solubility parameter. Since the heat 
of fusion is also approximately linearly correlated 
with nws, it is not surprising that Kumar's solubility 
parameter is also useful in rationalizing immiscibility 
in metallic liquids. However, the accuracy of predic- 
tions based on either form of the solubility parameter 
is inferior to the ones based on relation (7) and illus- 
trated in figs. 5 -8 .  
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This diagram can be used in combination with fig. 9b to estimate the heats of formation of binary alloys with the element posi- 
tioned at the origin of the diagram. 
(b) Graphical representation of the alloying behaviour described by eq. (7). The lines drawn separate metals that have a negative 
heat of alloying with Fe from metals that have a positive heat of alloying with Fe. The signs of the heats of alloying of binary alloy: 
based on other metals than Fe can be obtained from this figure by shifting the lines in a parallel way until they pass through the 
desired metal. The diagram in fig. 9(a) can be used to estimate the heats of formation quantitatively by superposing a transparency 
of fig. 9(a) upon fig. 9(b). The slopes of the straight lines separating the + and - signs is the same asthe slope of the lines in figs. 5-t 

2. Numerical evaluation of AH 

2.1. The concentration dependence 

For the prediction of the sign of AH relation (7) is 
sufficient: for the sign of AH it makes no difference 
whether we consider the dilute limit (heats of solution) 
or concentrated alloys (heats of formation). However, 
as we want to evaluate heats of formation numeric- 
ally, we have to specify the concentration dependence. 

For arbitrary concentrations relation (7) can be 
rewritten as 

2f(C)(CA V2/3 + C B V 2/3) 

(nAs) -1/3 + (nBs) -1/3 

1/3 2 X [-P(A~b*) 2 + a (Anws)  ] .  (9) 

In section 1.2 it has been set forth that the energy 
effect that accompanies alloying arises primarily from 
the change in boundary conditions when an atomic 
cell is transferred from the pure metal to the alloy. 
This implies that the total area of the contact surface 

between dissimilar atoms is the relevant quantity.  
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Therefore it is useful to introduce the concept of sur- 
face concentration. For two metals A and B, in an 
alloy with atomic concentrations c A and c a and molar 
volumes V A and V B the surface concentrations c~ and 
c~ are defined by 

C A =C A V2/31(CA I/2/3 + C B V2/3), (lO) 

c~ = C B VB2/3 /(C A V2A /3 + C B V2/3). 

For regular liquid or solid solutions the concentra- 
tion function f(cSA, ca) is given by 

f(CSA,C~)= C~CB s (11) 

If the atoms of the constituent metals have equal sizes, 
the surface concentration, c s, and the atomic concen- 
tration, c, are identical. For the case of atoms of differ- 
ent size the introduction off(c~,, ca) leads to a AH 
function which is non-symmetric with respect to the 
equiatomic composition. AH obtains its extreme value 
at a concentration which is somewhat shifted from 
the equiatomic composition to an atomic composition 
which is richer in the smaller atoms. 

For ordered compounds the area of  contact between 
dissimilar atoms will be larger than the statistical 
value. For this case an approximation for the concen- 

tration function was obtained empirically [21] by 
collecting experimental data for binary systems for 
which experimental information about AH is available 
for a number of ordered compounds and in which 
size differences are small (Co-A1, Ni-A1, Cd-Mg, 
Cu-Zn and Pd-A1). The simplest analytical function, 
that is symmetrical in c~ and c a and that describes 
this experimental information is 

S S - -  S S 
f(CA,Cfi)ordere d - CAC B [1 + 8(c~ca) 2] , (12) 

It must be stressed that this expression has no further 
physical significance than that it approximates the 
concentration dependence of the heat of  formation 
of ordered compounds. 

The two concentration functions given in eqs. (11) 
and (12) are compared in fig. 11. For convenience we 
assumed the two types of  metal atoms to have equal 
sizes. In the dilute cases, i.e. for compositions AB n or 
AnB with n >> 1, the two concentration functions 
coincide. This is in accordance with a contact inter- 
action picture in which only the degree to which a 
given atom is surrounded by dissimilar neighbours 
matters. In the dilute limit, both in disordered and 
ordered phases the minority-component atoms are 
entirely surrounded by dissimilar atoms, and hence the 
two curves coincide. The common slope at c = 0 gives 
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tion of ordered compounds in the systems T h - C o  (triangles) 
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the calculated heats of formation of the T h - C o  and Th-Ni  
systems. 

Fig. 11. The average concentration dependence of the heat of 
formation of a series of intermediate phases in a binary system. 
The figure applies to metals of equal volumes. If volumes are 
different it can still be used if c A is replaced by the surface 
concentration c~. Curve (a) is the concentration dependence 
for regular solutions (eq. (11)). Triangle (c) represents the 
other extreme (each atom completely surrounded by dissimilar 
neighbours). Curve (b) is a curve for ordered compounds which 
has been obtained empirically [21 ] and is represented by 
eq. (12). 

the value for the heat of solution. The relative differ- 
ence of the two concentration functions at c = 0.5 is 
in agreement with experimental information on the 
heat of ordering of alloys of equiatomic composition 
that have an ordering temperature in the solid range: 
as an average, the heat of ordering corresponds to 
about one third of  the heat of formation of the 
ordered alloy. 

In fig. 12 is shown how the introduction of the 
surface concentration opens the possibility to describe 
the asymetric enthalpy of formation curves. As 
examples we chose the binary systems Th-Co and 
Th-Ni, which consist of atoms of widely different 
size (see table I). 

It should be pointed out that a non-symmetrical 
concentration dependence of AH can also occur for 
liquids and that it can as well occur if AH is positive. 
This is illustrated in fig. 13 where we have plotted the 
heat of mixing of liquid A1-Pb alloys. 

2100 

T 1400 S 

[K] 

T 700 

"-(AI) 

0 I 
0 025 

(pb) ~" 
r 

015 0.75 10 

AH 
kJ 

x / / 
8 / 

i x 

I 
/ 

x 

I 
/ 

I 

025 05 
Cpb 

x\ 
\ 
x\ 

\ 

\ 
\ 
"x 
\ 

0 ~5 10 

Fig. 13. The phase diagram for the system AI-Pb and the heat 
of mixing at 1200 K. The dashed curve represents the calcu- 
lated values. The experimental data have been taken from 
ref. 23. 



A. R. M/edema et al./.4 semi-empirical model for cohesion in alloys 15 

2.2. Volume effects 

In the calculations of AHwe have used values for 
V 2/3 which were derived from volume data for the 
pure solid elements at room temperature. For the 
elements Si, Ge, Sb and Bi a correction has been 
applied to account for the fact that as pure elements 
they crystallize in open structures, having molar vol- 
umes somewhat larger than they will have in metallic 
alloys. Obviously, this has to do with their semi- 
conducting, semi-metallic character that generally is 
associated with a volume expansion upon solidification. 

In the calculation of the heat of  mixing of liquid 
alloys Boom et al. [15] have used the values for V 2/3, 
~* and nlw/3, as derived for the solid metals. That this 
approximation is correct can be seen as follows. The 
numerator in eq. (9) is proportional to V 2/3, the de- 
nominator is proportional to nw]/3. If a metal expands, 
i.e. if V m increases, the nws decreases and nws-1/3 
increases, so that the overall effect is zero in first 
approximation. The effect is small as long as 

V m dnw s 
nws dV m ~ 2 ,  (13) 

which is particularly the case for transition metals 
[24]. 

At this point we note that eq. (9) may lead to 
large volume contractions in the special case that we 
are concerned with alloys with a large, negative heat 
of  formation in which the majority metal is an easily 
compressible one. Examples of  such alloys are AuLi 3, 
SbCs 3 and PbCa 3. Here the first metal A (Au, Sb, Pb) 
is completely surrounded by B (Li, Cs or Ca). In these 
cases the numerator of  eq. (9) is proportional to V 2t3 
and independent of VB 213 (to see this, we assume regu- 
lar-solution behaviour, substitute eqs. (11) and (10) 
into (9), and make use of  the fact that A is the min- 
ority metal, that is, c A ,~ CB). The bulk modulus and 
nws being strongly correlated [10], the easily compres- 
sible partner B will have to lower nws, and the denom- 
inator of  eq. (9) will be dominated by (nBws) -1/3. 
Thus, if AHis negative, a contraction of metal B 
lowers the total energy. From eq. (7) or (9) the vol- 
ume contraction of metal B can be estimated to be 

~ VBI VB = ( 2 / 3 )  aI-I.mtlcB V~, B, (14) 

where AHin t is the integral heat of  formation per mole 
alloy atoms, and B B the bulk modulus of  metal B. In 
accordance with this expression, the largest effects are 
observed in alloys where a low-valence metal is the 
majority component [25]. For such metals the prod- 
uct B V  m is found to be very small (see table I). 

Other, quite generally occurring volume effects 
(indirectly related to a negative AH) are connected 
with the (A~b*) 2 term. When a dipole layer is gener- 
ated at the contact surface between two metals, charge 
is transferred from the metal where electrons have a 
high chemical potential to the metal with the lower 
potential. If the two metals also have different elec- 
tron densities then the charge transfer is accompanied 
by a volume effect 

AVm cc Az/[(nAs) -1 _ (nBws) -1 ] = Adp*/A(nw]). 

(15) 

Quite generally the metal with the higher ¢* value also 
has the higher value for nws, so that a volume concen- 
tration will be the result. The proportionality constant 
in eq. (15) will depend on the composition and on the 
degree to which in a compound of a given composi- 
tion the one kind of atom is surrounded by the other 
kind, which is determined by the crystal structure. If 
other volume effects are absent one would expect the 
proportionality constant in eq. (15)to increase regu- 
larly in the sequence AB, AB2, AB 3 . To illustrate the 
validity ofeq.  (15) we show in fig. 14 the experimen- 
tally observed volume contractions for compounds of 
two transition metals with the results of eq. (15). 
Also, the slope of the straight line drawn increases 
regularly in the sequence AB, AB 2, AB 3. We must 
note that the fair agreement in fig. 14 is partly due to 
the fact that we have considered only one structure 
and not one composition, so that structure dependent 
volume effects have been excluded. 

The observed volume contractions are the net 
effect of two effects of  opposite sign: in the charge 
transfer picture one type of atoms contracts while the 
other expands. Hence individual changes in atomic 
volume can become quite large which may affect the 
value of the concentration function f(cS). In earlier 
papers [ 13-15] we have presented an approximate, 
simple to handle, relationship to t'md the values for 
the individual values of  V2m/3 including the charge 
transfer: 
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Fig. 14. Volume contraction in intermetallic compounds of 
two transition metals with the Cu3Au, Cu2Mg and CsC1 struc- 
tures. The observed volume contractions (derived from the 
data in ref, 27) correlate well with those expected to result 
from charge transfer effects. 

VA 213 (in alloy) = V 213 (pure A) 

X {1 + a fB A (¢.~ - ¢ ~ ) } ,  (16) 

where fB A is a measure of  the degree to which A atoms 
are surrounded by B atoms and "a"  is a constant, 
derived from experimental volume contractions in 
compounds (a = 0.14 for the alkali metals, a = 0.10 for 
the divalent metals, a = 0.07 for trivalent metals and 
Cu, Ag, Au and a = 0.04 for all other metals). For 
statistical liquid or solid solutions o f  equal size atoms 
fB A = c B. In the past we have used this result for un- 
equal atomic sizes and ordered alloys, too, which is a 

crude approximation. Although in practice the differ- 
ence is not large we prefer in this paper the more 
correct expressions 

fA  = CB S for solutions 
and (16a) 

f A = c S  {1 +8(eAScBS)} for ordered alloys. 

Only for alloys with large values of  ¢~ - q~ is the 
correction of  significance. 

2.3. Predictions for All  

2. 3.1. Alloys o f  two transition metals 
In the numerical evaluation of  AH we need values 

for the proportionality constants P and Q in eq. (9). 
From figs. 5 - 8  it follows that both for liquid alloys 
and solid compounds o f  two transition metals the 
value for Q/P (which can be obtained from the slope 
of  the straight lines in the figures) equals 9.4 V2/ 
(d.u.)2/3. 

A value for P can be found by comparison of  the 
available experimental data (which are numerous since 
for instance the 30 transition and noble metals of  
table Ia present (30 X 29)/2 binary alloy systems) with 
relationship (9). We do not repeat the comparison here 
but refer to the original papers [14, 15]. Expressing in 
relation (9) ¢* in volts, nws in the density units of  
table I, V m in cm 3 and enthalpies in kJ/mole, we have 
for alloys of  two transition metals (both solid and 
liquid) P = 14.1. 

A representative selection o f  heats of  solution of  
transition-transition metal and transition-noble metal 
systems calculated with this P value have been collec- 
ted in table II. The heat o f  formation of  an ordered 
compound of  equiatomic composition can be directly 
obtained by multiplication of  the average o f  the two 
heat of  solution values by 0.375 (see fig. 11). 

Large positive heat o f  solution values exceeding 
100 kJ/mole, which are connected with a limited 
solid solubility, occur for instance for Ag in Cr, Fe or 
W and for the rare-earth metals and Y in W. A value 
of  100 k J/mole for the heat of  solution at for instance 
100 K leads via c = exp ( -  zSd-Is°l/kT) to a solubility o f  
10 -5  , which gives an impression of  the strength o f  the 
repulsive interactions that can occur in some transition 
metal combinations. 

A way to get some feeling for the magnitude o f  
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Table II 
Heats of solution for (liquid) binary alloys of two transition metals (k J/mole solute) 

17 

Solvent 

Ti V Cr Mn Fe Co Ni Cu Y Ru Pd Ag W Pt Au 

Ti - -9  -38 -46 -82 -140 -170 -78 +40 -191 -283 
V -8  - -8  -3  -29 -58 -75 +16 +54 -94 -131 
Cr -32 -8  - +8 -6  -18 -27 +52 +35 -42 -52 
Mn -39 -3  +9 - +1 -21 -33 +14 -5 -40 -82 
Fe -70 -28 -6  +1 - -2  -6  +60 -4  -17 -16 
Co -115 -53 -17 -20 -2  - -1 +35 -67 -3  -5 
Ni -140 -69 -26 -32 -6  -1 - +26 -97 +2 -0  
Cu -67 +15 +52 +14 +58 +35 +25 - -91 +40 -33 
Y +58 +85 +58 -8  -6  -112 -161 -148 - -157 -377 
Ru -187 -104 -50 -46 -20 -3  +2 +49 -113 - +24 
Pd -293 -152 -65 -101 -19 -7  - 0  -43 -287 +25 - 
Ag -60 +57 +108 +46 +116 +80 +66 +5 -121 +92 -25 
W -26 -3  +4 +28 - 0  -6  -14 +107 +81 -40 -26 
Pt -337 -200 -111 -129 -59 -33 -22 -32 -291 -4  +8 
Au -247 -89 -1  -54 +38 +34 +34 -29 -274 +65 +0 

-55 -25 -313 -210 
+48 -3  -167 -69 
+85 +3 -86 -1 
+37 +23 -101 -40 
+94 -0  -47 +28 
+63 -5 -25 +25 
+52 -11 -17 +25 

+4 +86 -24 -20 
-154 +110 -365 -316 

+88 -39 -4  +57 
-25 -26 +8 +0 

- + 1 6 1  - 1  -18 
+156 - -79 +44 

-1 -83 - +17 
-20 +49 +18 - 

negative AH-values is to calculate the temperature 
rise which would occur in an adiabatic reaction. The 
AHS°l-values for Pd, Pt, or similar metals with metals 
like Sc and Ti are as large as - 3 0 0  k J/mole which 
means that the heat of formation for an equiatomic 
compound amounts to - 1 1 5  kJ/mole. Such a heat 
effect produces in an adiabatic reaction a temperature 
rise of 115 × 103/3R = 4600 K. 

There is a wealth of experimental information on 

the very stable compounds of two transition metals. 
Brewer and Wengert [28] explain the high stability 
of transition metal alloys in terms of the Engel -  
Brewer theory in which stability is related to the 
number of  electron pairs contributing to the bonding 
between dissimilar atoms. High stability is expected if 
a metal with some completely vacant 4d- or 5d- 
orbitals is combined with a metal with an almost com- 
pletely filled 4d- or 5d-shell. The starting point from 
the Engel-Brewer model is quite different from that 
of the macroscopic atom model and it seems to be 
impracticable to establish a relationship between 
both models. 

2. 3. 2. Alloys o f  two non-transition metals 
In section 1.4 we have shown that there is no 

difference in the sign analysis of the .heat of forma- 

tion of liquid alloys of two non-transition metals 
(figs. 5 and 6) and of liquid alloys of two transition 
metals (fig. 7) i.e. the value of Q/P is identical for 
these two types of alloys. 

On the other hand, collecting the available experi- 
mental data on heats of solution and heats of mixing, 
Boom et al. [15] have found that for non-transition 
metal alloys P has a 30% smaller value than for trans- 
ition metal alloys. Since the ratio Q/P is identical for 
the two types of alloys, the Q values are also expected 

to differ by 30%. 
This difference between the Q values for transition 

and non-transition metals is also reflected in fig. 15, 
taken from ref. 6, which demonstrates that there 
exists an approximate linear relationship between 
~[O/n and (nws/fi)3/5, where ~ represents the average 

S WS 

electron density in the atomic cell. As shown in fig. 15 
for non-transition metal alloys, the proportionality 

0 3/5 constant between 7s/nws and (nws/~) , which is a 
measure for Q (ref. 6), is indeed 30% smaller than for 
transition metal alloys. 

A representative selection of heats of solution for 
combinations of two non-transition metals has been 
collected in table III. The variation in AH values is 
large; the values tend to be more positive than those 
in table II for transition metals. 
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In our  previous papers solid alloys o f  t w o  non-  

t ransi t ion metals  were no t  considered for the fol lowing 

reasons. In the contac t  in teract ion mode l  structure 

dependen t  energy cont r ibut ions  are no t  taken  into 

considerat ion.  Only an empir ical ly obta ined  structure 

independent  concen t ra t ion  funct ion  (sect ion 2.1 .) 

accounts  for the effect  tha t  in ordered compounds  the 

area o f  contac t  be tween  dissimilar a toms will be 

larger than the statistical value. Effects o f  the op t imal  

filling o f  Brillouin zones in k-space, giving rise to some 

energ3~ lowering for the phases tha t  eventual ly  are the 

stable ones in a given binary system are neglected.  

Apparent ly  this is permi t ted  for t ransi t ion metals,  as 

is proved by  the comple te ly  equivalent  mode l  descrip- 

t ion for solid and liquid alloys. In o ther  words  the 
s t ructure-dependent  cont r ibu t ion  to the cohesive 

energy o f  a solid t ransi t ion meta l  al loy is not  much  

dif ferent  f rom the average o f  s t ruc ture-dependent  

contr ibut ions  to the cohesive energies o f  the  consti- 

tuent  pure metals. Since the heats  o f  fusion o f  the 

t ransi t ion metals  are no t  very large, this is no t  very 

surprising. I f  we consider the en t ropy  o f  fusion rather  

than the entha lpy  o f  fusion it is no t  far f rom a con- 

stant value o f  9.5 J K -1 mole  -1 , for all t ransi t ion 

metals (see fig. 16). 

For  non-transi t ion e lements  one must  distinguish 

be tween  semiconductors  and semimetals  on the one 

hand and ordinary  metals  on the other .  For  the maj- 

or i ty  o f  the non-transi t ion metals  the heat  o f  fusion 

is small, wi th  z~Sf ~ 10 J K -1 mole  -1 . The elements  

Si, Ge, Sb and Bi are except ions  f rom this general 

rule. 

The deviating s t ruc ture-dependent  energy o f  semi- 

conductors  has two  consequences.  In the  first place 

the heat  o f  fo rmat ion  o f  alloys or  compounds  con- 

taining Si, Ge (and Sb) will be less exo the rmic  (less 

Table III 
Heats of solution for (liquid) binary alloys of two non-transition metals (k J/mole solute) 

Solvent 

Li Na Cs Be Mg Zn A1 In Si Ge Sn Pb Sb Bi 

Li - +12 +43 +104 - 1  - 2 6  -13  -41  -46  -75  -56  -67  -85  -71  
Na +17 - +8 +265 +45 +28 +58 -21 +24 - 3 9  -31 -64  -72  -69  
Cs +103 +13 - +536 +145 +93 +153 -19  +82 -40  -35  -116 -115 -125 
Be +77 +135 +166 - +53 +33 +19 +71 - 7  +17 +53 +80 +45 +77 
Mg -1  +38 +73 +92 - -15  - 8  -14  -39  -58  -31 -28  -57  -33  
Zn -28  +21 +42 +49 -13  - +2 +10 - 3  -11 +3 +16 - 3  +14 
AI -15  +45 +71 +30 -7  +2 - +23 - 9  - 8  +14 +33 +8 +31 
In -59  -20  -11  +148 -17  +14 +31 - +32 - 4  -1  - 3  - 1 4  - 5  
Si -51  +18 +37 -11  - 3 4  - 4  - 9  +23 - +9 +21 +48 +28 +47 
Ge -88  -32  -19  +28 - 5 4  -12  - 8  - 3  +10 - - 0  +16 +6 +16 
Sn -83  -32  -21 +117 -38  +5 +19 -1  +30 - 0  - +6 - 5  +5 
Pb -106 - 7 0  -74  +187 -37  +25 +49 - 3  +75 +23 +6 - +2 - 0  
Sb -138 - 8 0  -75  +105 - 7 4  - 5  +11 -15  +43 +8 - 5  +2 - +3 
Bi -120  -80  -84  +189 -45  +23 +48 - 6  +78 +24 +6 - 0  +3 - 
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Fig. 16. The approximate linear relationship between the heat 
of fusion, 6Hf, and the temperature of fusion, Tf, for metals 
(data from ref. 23). The straight line drawn corresponds to an 
entropy of fusion of 9.5 J K -1 mole -1. The black dots repre- 
sent transition metals, the open circles non-transition metals. 
The semi-conducting and semi-metallic elements deviate 
seriously from the general trend. 

negative), since in general the energy gain due to the 
optimal filling o f  the Brillouin zones will be larger in 
the pure elements than in the alloys. On the basis o f  
estimates o f  the structure-dependent energies the heat 
o f  formation of  alloys Containing Si, Ge, must be 
increased by an amount  o f  34 and 25 kJ/mole,  res- 
pectively. For  Sb and Bi the correction has not  been 
applied. It is small and part ly included in the value of  

R,  see section 2.3.3. Secondly, i f  a semiconducting 
compound is formed from two ordinary metals there 
can be an additional negative contr ibut ion to the heat 
o f  formation. This effect is for instance manifest in 

Mg2Sn. 
The presence of  structure dependent  energy contri- 

butions in alloys of  two non-transition metals is illus- 
trated in figs. 17 and 18. In both figures the dashed 
line is the same as the one found in figs. 5 - 8  for the 
liquid and solid systems considered there. In fig. 18 
solid non-transition metal alloys are analysed that con- 
tain at least one alkali metal; in fig. 17 one finds the 
remaining solid binary combinations of  two non- 
transition metals. 

One will notice in fig. 17 that there are a lot o f  
plus signs in the region where only negative signs are 
expected and also some minus signs in the positive 
region. These "exceptions" are listed in table IV. The 
result is quite reassuring. In all cases where the heat 
o f  formation does not  have the expected negative sign, 
either Si or  Ge is involved, which explains the devia- 
ting behaviour. For at least three of  the five systems 
which are negative in the positive region semiconduc- 
ting behaviour with a large gap is likely: Be3Sb 2 in the 
B e - S b  system, A1Sb in the A1-Sb system and SiAs 2 
in the S i - A s  system. 

In fig. 18 we have drawn a second straight line, 
which properly separates plus and minus signs. The 
systems in between the two lines are considered in 
detail  in table IV. Again, there is reason to qualify 
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Fig. 18. The sign of the heat of formation of binary solid 
alloys of two non-transition metals of which at least one is an 
alkali metal. For the meaning of the symbols we refer to the 
caption to fig. 8. The solid line separates the plus and minus 
signs; the dashed line is that of figs. 5-8 and 17. 

them as exceptional. There is a group of systems in 
which there is only one compounds with a very large 
coordination number. Here K - Z n  is a representative: 
the only compound is KZnl3 while for the liquid the 

heat of mixing appears to be large and positive (fig. 19). 
A fairly small, structure dependent, energy term must 
be responsible for the existence of the single com- 
pound at low potassium contribution. Similar systems 
are other alkali metals with Zn and also with Cd. 

In the systems N a - K  and Na-Cs,  too, there is only 
one compound and one may also ascribe the existence 
of Na2K and Na2Cs to a (small) structure dependent 
energy term, reflecting the increase in coordination 
number in a Laves phase. For liquid N a - K  and N a -  
Cs the enthalpy of mixing has the positive sign; in the 
solid zk/-/is lowered by about 1 kJ/mole, which is suf- 
ficient to make it negative. 

For the remaining systems of table IV (alkali 
metals with Ga or Si) we suggest Brillouin zone effects 
to play a role. An indication for this is found in the 
phase diagrams [29, 30].  While (fig. 19) the compound 
KGa 4 and K5Ga 8 are fairly stable, there is immisci- 
bility for liquid K - G a  alloys. Also, the experimental 
value of the entropy of fusion of NasGa 8 has been 
reported as 19 J/K, which is nearer to the value for 
Sb than to that for an ordinary metal. 

As a matter of fact, the compounds of table IV are 
not the only ones in which structural energies add to 
the stability. For the compounds of table IV there is 

Table IV 
The exceptions in figs. 17 and 18. Solid binary combinations of two non-transition metals, that do not exhibit the sign of ~H as 
predicted by eq. (9). The phase diagram information is from refs. 29-31 

- in the + region + in the - region - in the + region Compounds observed 
fig. 17 fig. 17 fig. 18 

Be-Sb 
A1-Sb 
Be-Mg 
Si-As 

Be-Si 
Be-Ge 
Zn-Ge 
Cd-Ge 
A1-Si 
AI-Ge 
Ga-Si 
Ga-Ge 
In-Si 
In-Ge 

K-Zn KZn 13 only 
K-Cd KCd13 only 
Rb-Zn RbZnl3 only 
Rb-Cd RbCd 13 only 
Cs-Cd CsCd 13 only 
Na- Zn NaZn 13 only 
Na-K Na2K only 
Na -Cs Na 2 Cs only 
Na-Ga NaGa 4 ; NasGa 8 
K-Ga KGa 4 ; KsGa 8 
Rb-Ga RbGa 4 ; RbsGa 8 
Cs-Ga CsGa 4 ; CssGa 8 
Na-Si NaSi ; NaSi 2 
K-Si KSi ; KSi 2 
Rb-Si RbSi ; RbSi 6 
Cs-Si CsSi ; CsSi 8 
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Fig. 19. Phase diagrams of two of the systems listed in table IV 
that form exceptions to the simple two-term description of 
the heat of formation. From the phase diagrams it is under- 
standable why these systems are exceptional (see text). 

a change in the sign of AH; if the numerical value is 
only lowered the system is not noted to be an excep- 
tional one. Some indication how large Brillouin zone 
effects can be, and to which extent they can be pre- 
dicted, is given in fig. 20. Here we have plotted for 
three types of semiconductors all having 8 electrons 
per formula unit  (i.e. GaSb-type, Mg2Sn-type and 
Na3Sb-type ) the observed energy gap, AEg, in the 
electronic density of  states curve versus the apparent 
additional part of  the heat of formation. The gap is 
the one observed at room temperature; the structure 
dependent part of the heat of formation is obtained 
by comparing the value calculated from relation (9) 
with the experimentally observed one. The experi- 
mental uncertainty is large in both z~tEg and z~t/ex p - 
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Fig. 20. The correlation between the structure dependent 
part of the heat of formation of intermetallic compounds of 
two non-transition metals and the semiconducting energy gap. 
Experimental data on AH are from ref. 23, data on AE_ from 
refs. 32-34. The negative intercept of the extrapolated~line 
with the AEg axis is presumably due to the fact that optically 
one detects the smallest possible gap, whereas for the binding 
energy the average gap is relevant. 
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sition metal and one of the metals A1, Ga, In, TI, Sn, Pb, As, 
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2fflcalc. However, one tends to conclude from fig. 20 
that (1) structure dependent energy terms to a good 
approximation can be treated as additive to the 
"metallic" terms, (2) large structure dependent energy 
terms are accompanied by semiconducting electronic 
properties. 

2. 3.3. Alloys o f  transition metals with non-transition 
metals 

From the analysis of the sign of the heat of  forma- 
tion of solid alloys of  transition metals with non- 
transition metals, similar to that of figs. 5 -8 ,  it was 
found that relations (7) or (9) with only two energy 
terms were not sufficient. If  a transition metal is 
alloyed with a non-transition metal having p-electrons, 
there is a large negative contribution to the heat of 
formation that does not depend much on which tran- 
sition metal is alloyed with which p-metal partner. The 
idea becomes clear from fig. 21. The figure gives the 
sign of the heat of  formation for alloys of  an arbi- 
trary transition metal combined with one of the poly- 
valent non-transition metals. It is possible to separate 
regions of positive and negative signs by a demarcation 
region. However, this demarcation region has a hyper- 
bolic shape, very different from the straight line we 
had before. The sign of  AH apparently can be approx- 
imately described by an expression of the form 

A / / ~  - P(A~b*) 2 + Q(£~vtl]3) 2 - R. (17) 

The hyperbolae drawn give a value for both Q/P 
and RIP. That for Q/P is the same as found before for 
alloys for which R = 0. 

A more detailed analysis, as shown in fig. 22 demon- 
strates a systematic (weak) dependence of the value 
of R on the valence of the polyvalent non-transition 
metal. The larger the number of  p-electrons, the 
larger R. A survey of the appropriate values of  R for 
various combinations of metals is given in fig. 23. 

Boom et al. [15] have shown that also for liquid 
metals the R term is present, albeit reduced by a fac- 
tor of  0.73 (average value). The fact that R is present 
in the liquid as well as in the solid proves that it is a 
term different from the Brillouin zone filling type 
effects discussed above. It can be treated as a third 
contact interaction energy contribution. If  a metal 
atom with d-type wave functions has a metal atom 
offering p-type wave functions as its nearest neighbour, 

the result is an energy lowering. If ascribed to a type 
of d - p  electron hybridisation effect, the gradual 
change of the R-values with number of p-electrons is 
to be expected. Also the fact (fig. 23) that R is small 
but significant for Cu, Ag and Au at the right hand 
side of a transition metal series and for alkaline-earths 
and rare-earths metals on the left hand side is the 
behaviour one expects. Even the difference between 
Cu and Au at the one hand and Ag on the other (whicl: 
came out as a result of  the analysis of  a large number 
of experimental numerical data) is quite easy to 
accept in view of the much lower energy of the d 
states in Ag. 

In the predictions of AH values for the present 
group of alloys we use the full expression 

AH = 2P f(cS) (cA V213 + cB VB2/3) 

(nAs) -1/3 + (nBws) -1/3 

X [ -  (A~b*) 2 + ~-,---wsQ(Anl/3~2, R ] .  (18) 

A representative selection of values of  the heat of 
solution of transition metals in liquid non-transition 
metals is given in table Va. Since for solid and liquid 
alloys the R-values differ there is no direct connection 
between heats of  solution and the heat of  formation 
of ordered compounds. We therefore add table Vb, 
giving AH for AB compounds. Note that due to the 
difference in the R value there now can be a change in 
the sign of Aftt upon going from the liquid to the 
solid state. A well-known example here is the system 
Fe-Sn,  in which there is liquid immiscibility over a 
wide range of concentrations but there are several 
stable intermetallic compounds. 

Alloys of  transition metals with Si, Ge, C, N and B 
can be treated like the other alloys of  transition 
metals with polyvalent non-transition metals. The 
only difference is that for C, Si and Ge there is an 
additional positive contribution to account for the 
enthalpy difference between these elements in the 
diamond structure and a more conventional metallic 
structure. For Si and Ge this positive contribution is 
34 and 25 kJ per mole Si and Ge, respectively. For 
carbides the corresponding transformation energy 
equals 100 kJ per mole. 
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Fig. 22. Determination of the value of the constant R in relation (17) for alloys in which a transition metal is combined with a 
non-transition metal with p-electrons. Systems for which AH is negative are separated from those for which AH is positive by a 
hyperbola. For all four groups the same value of Q/P applies, that of figs. 5-8.  It can be seen that R increases with the number of 
valence electrons of the p-metal. 

Also nitrides o f  transit ion metals can be treated as 
metallic alloys. There is an addit ional positive term 
that  represents the enthalpy difference between mol- 
ecular N 2 (at room temperature)  and the imaginary 
metallic form of  nitrogen. This term was found to be 
240 kJ/g-at N [14] ,  [35].  I t  is interesting to note 
that such a value implies that  metallic nitrogen will be 

quite stable relative to free nitrogen atoms. 
An extensive comparison o f  predictions and experi- 

mental data on AH of  transition metal silicides, ger- 
manides, carbides, nitrides and borides has been made 
elsewhere [14, 35] .  The agreement observed is quite 
encouraging. 
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TRANSITION METALS NON-TRANSITION METALS 
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0.4 

Sr 
04 

Bo 
0.4 

Sc Ti 
07 1.0 

Y Zr 
07 10 

La Hf 
07 1.0 

V 
1.0 

Nb 
1.0 

To 
1.0 

Cr Mn Fe Co Ni Cu 
10 1.0 1.0 10 1.0 03 

No Tc Ru Rh Pd Ag 
1.0 1.0 1.0 1.0 1.0 0.15 

W Re Os Ir  Pt Au 
10 10 10 10 10 03 

Li Be B C N 
0 0.t, 1.9 21 2.3 

No Mg AI Si 
0 0.h 1.9 21 

K Zn Ga Ge As 
0 1.4 1.9 21 2.3 

Rb Cd In Sn Sb 
0 1 z. 19 21 23 

Cs Hg TI Pb Bi 
0 lZ. 19 21 23 

PHASE 
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073 

Fig. 23. The value of the parameter R in relations (17) and (18) (or in fact RIP in units V 2) for alloys of transition metals with 
polyvalent non-transition metals is obtained by multiplying 3 numbers: One out of the block of transition metals, one out of the 
block of non-transition metals and one for solid or liquid phase. As an example for solid compounds of Cr and Sn the value of 
RIP = 2.1 V2; for liquid alloys of A1 and Ag RIP equals (0.73) (1.9) (0.15) = 0.21 V 2. For all alloy systems Q/P equals 9.4 V2/ 
(d.u.) 2/3. The values for P, used in calculating numerical values for AH are P = 14.1, 10.6 and 12.3 (~* in volt, nws hi density units, 
V m in cm 3, enthalpies in kJ/mole) for alloys of two transition metals, two non-transition metals and a transition metal with a 
non-transition metal, respectively. As far as the value of P is concerned, alkaline-earth metals are non-transition metals. 

Table Va 
The heat of solution of liquid transition metals in a number of liquid non-transition metals (kJ/mole solute) 

Solute 

Y Ti V Cr Fe Co Ni Mo Pd Cu Ag Au 

Li +37 +116 +140 +126 +96 +30 +3 +193 -165 - 3 8  -74  -168  
Na +108 +199 +230 +218 +196 +125 +100 +307 - 5 0  +30 - 1  - 5 3  
Mg -27  +40 +82 +81 +61 +10 - 1 2  +133 -153 -29  -47 -131 
Zn -151 -82  - 6  +18 +14 -19  - 3 4  +49 -140  - 2 0  -19  -75  
A1 -181 -135 -61 -36  -41 -68  -81 - 2 0  -187 - 3 2  - 2 2  -95  
Ga -179 -109 -29  - 2  - 6  - 3 8  -53  +25 -164 -25  -22  - 8 0  
In -147 - 4 6  +40 +66 +63 +21 +5 +113 -112 +0 - 4  -41  
T1 -138  - 2 2  +71 +99 +99 +56 +41 +155 - 7 2  +19 +14 - 6  
Sn -203 -100  - 3  +32 +34 +1 - 1 2  +69 -118 - 8  - 8  - 3 8  
Pb -184 - 5 8  +48 +86 +92 +53 +40 +138 -62  +18 +15 +8 
Sb -264 -143 -25  +23 +33 +6 - 4  +57 -95  - 7  - 8  : 1 4  
Bi -205 -77  +33 +73 +80 +43 +31 +122 -26  +15 +12 +6 

Table Vb 
The heat of formation of equiatomic compounds of a transition metal and a non-transition metal (kJ/mole atoms) 

Y Ti V Cr Fe Co Ni Mo Pd Cu Ag Au 

Li +II +44 +55 +50 +38 +12 +1 +71 -58 -15 -26 -53 
Na +41 +88 +104 +100 +89 +57 +46 +135 -21 +14 -0 -22 
Mg -12 +13 +31 +32 +23 +I -8 +50 -63 -13 -19 -49 
Zn -54 -42 -13 -3 -5 -18 -23 +6 -59 -11 -8 -28 
AI -68  -67 - 4 0  - 3 0  -32  -42  -48  - 2 4  - 8 4  -17 - 1 0  -37 
Ga -73  - 6 0  - 2 8  -16  -18  -31 -37 - 7  -79  -15 -11 -34  
In -67  - 3 6  +2 +14 +13 -5  -12  +31 -63  - 4  - 4  -21 
T1 -65  -26  +16 +30 +30 +11 +4 +50 -47  +4 +3 - 8  
Sn -91 -62  -19  - 3  - 2  -16  -22  +10 -69  - 8  - 6  -21 
Pb - 8 6  -44  +4 +22 +25 +8 +2 +41 - 4 6  +4 +4 - 3  
Sb -119 -83  -31 - 9  - 4  -16  -20  +3 -63  - 8  - 6  -13  
Bi - 9 8  -55  - 5  +15 +18 +2 - 4  +33 -52  +1 +2 - 4  
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3. Concluding remarks 

In the present paper, it has been demonstrated that 
heats of  formation can be calculated in a straight- 
forward way, using the macroscopic atom model, for 
liquid alloys in general and for solid compounds con- 
raining a transition metal. For a third group of alloys, 
solid alloys of  two non-transitional metals, the predic- 
tive power of  the model is limited: only if one knows 
that an alloy is truly metallic can one give a reason- 
ably accurate estimate of  its heat of formation, other- 
wise the applicability of the model is limited to liquids. 
In this concluding section, we wish to comment on a 
few points relevant to the relation between liquid and 
solid alloys: size-mismatch energies in solid solutions, 
ordering tendencies in concentrated liquid alloys, 
coordination-number effects, and structural energies. 

Thus far, we have avoided the discussion of solid 
solutions. There is an essential difference between 
solid and liquid solutions. In solid solutions, where 
atoms of different sizes have to occupy equivalent 
lattice positions, an additional positive contribution 
to the alloying energy arises, due to the elastic defor- 
mations necessary to accommodate the size mismatch. 
In liquids and solid compounds there is no such 
energy. 

The size mismatch energy is the basis of  the well- 
known Hume-Rothery rule for the occurrence of  
solid solutions in a binary system. The rule says that 
in order to have appreciable solid solubility, the atomic 
radii of  the two constituents must not differ by more 
than 15%. 

The size-mismatch energy can be estimated from 
the elastic constants and the relative size difference of 
the two metals, using Eshelby's elastic continuum 
theory [36]. Assuming, for simplicity, that Poisson's 
ratio is 0.3 for all metals, we can approximate 
Eshelby's resuh (for not too different metals) as 

AHsize = 1.25 B----V m 52 CAC B . (19) 

Here, B V  m is the average value of the product of  bulk 
modulus and molar volume, and 5 is the relative size 
difference defined as 

= 2 (VII3 _ ,:I/3"wrr:I/3,,B )/~,'A + VBl/3) • (20) 

From the values o f B V  m collected in table I, one can 

see that the size-mismatch energy becomes of the 
order of  magnitude of the other terms considered here 
only for size differences exceeding 15%. 

In the literature [37], a size-mismatch term has 
been introduced in the discussion of liquid alloys, 
where we feel an electron-density term is more appro- 
priate. Such confusion can easily arise, because, due to 
the correlation between nws and V_, in alloys for 
which the density mismatch, nlw/s 3,'is large, there is 
a large difference in the size of atoms too. However, 
it can be demonstrated with reference to exceptions 
that the two descriptions are not equivalent, and the 
distinctive feature of  liquid alloys with large positive 
heats of  mixing is a difference in nws. This is convin- 
cingly illustrated by the large positive AHmi x of alloys 
like Cu-Fe,  Ag-Rh, Ag-Ru,  etc., where there is no 
difference in the molar volumes of the constituents, 
but a large difference in the corresponding nws values 
(see table I). 

In their recent analysis of  heats of  mixing of liquid 
alloys, Boom et al. [15] noticed that if the predicted 
value for the integral heat of  mixing at the equiatomic 
composition gets below - 2 0  k J/mole, the experimen- 
tal values tend to be clearly more negative than the 
predicted ones. Such a difference did not occur in the 
corresponding heats of solution. The reason for this 
discrepancy is short-range ordering in the liquid alloy 
that will take place if AH < - R T .  The energy of the 
alloy can be lowered by an amount corresponding to 
the difference in f (c  s) for ordered and disordered 
compositions. 

We have indicated, as a special type of energy con- 
tribution related to crystal structure, the coordina- 
tion-number effects, being responsible for the stability 
of compounds like KZnl3. Comparable compositions 
exist among transition metal compounds as well (e.g., 
YBel3, LaZnll ,  U2Znl71 etc.). Comparing experi- 
mental and calculated AH values for this type of com- 
pounds [14], we can estimate the order of  magnitude 
of the coordination-number energies. Generally, they 
are of  the order of - 5  kJ/mole; only for compounds 
of Be this value is exceeded substantially. In atomic 
terms, a coordination-number energy can be under- 
stood by considering the shape of the atomic Wigner- 
Seitz cells. In a cell model the energy of a metal atom 
in first approximation depends only on the cell vol- 
ume. In second order, however, the shape of the cell 
enters, the energy being the lower, the more the 
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Wigner-Seitz cell approaches a sphere. As a high co- 
ordination number means a more spherical Wigner- 
Seitz cell, this is seen as the source of the coordination- 
number energy. 

In alloys of transition metals, structure-dependent 
energy terms do not significantly contribute to the heat 
of formation of the stable phases in a binary system. 
As explained before, this implies that the energy low- 
ering achieved by giving the phase the crystal structure 
it has got, is about the weighted average of the heats 
of fusion of the two constituent metals. One must 
realize that this cancellation of  structure-dependent 
terms holds for the phases that exist in equilibrium; 
nothing is said about the many other metastable 
phases one might think of. Evidently, for other phases 
than the equilibrium one, (phases for which the rel- 
ative sizes of the two atoms are not suitable, a b.c.c. 
metal in an f.c.c, intermediate phase, etc.), there is a 
deviation from the calculated AH values in the positive 
direction. 

Some insight is gained in this complicated matter 
by studying the relation between the average number 
of stable intermediate phases in a binary system and 
the (calculated) extreme values of the integral heat of 
formation. A histogram that summarizes phase diagram 
information on binary alloys of two transition metals 
is reproduced in fig. 24. If the heat of formation at 
the equiatomic composition is large and negative, AH 
< -75  kJ/mole, the average number of intermediate 
phases is 5. With less negative AH, the number decreases, 
and at the other extreme, for - 4  > AH> - 1 0  kJ/mole, 
there is only one intermediate phase. The histogram 
can be used to construct a schematic diagram of the 
average enthalpy differences, on a realistic scale, 
found between the first, most favoured crystal 
structure-composition combinations, and a number of 
additional, next-preferred ones. 

The situation sketched in fig. 25 represents the 
experimental information on the average number of 
intermediate phases existing in a given A/-/ interval. 
The picture implies that there is a limited number of 
competing structure-composition combinations within 
an enthalpy difference of 5 kJ/mole from the most 
favourable phase. There will be a lot of them at 
energy differences between 5 and 10 kJ/mole, and 
there can be many more at energies around 10 kJ/ 
mole above the most stable phase. This order of mag- 
nitude of the structure-dependent energy contributions 

+5>AH>O 

0>.4H>~-4 

-Z,. > A H >  -10 

-10 >.. AH > -20 

-20 >t AH > -40  

-Z,O ~ AH> -75 

-75 > AH 

0 I 2 3 4 

Fig. 24. The relation between the number of stable inter- 
mediate phases in a binary system and the value of the 
enthalpy of formation at the 50/50 composition. The histo- 
gram summarizes the experimental phase diagram information 
for combinations of two transition metals. 

is very reasonable, being a fraction of  the heat of 
fusion of transition metals, which range between 15 
and 35 kJ/mole (see fig. 16). 

Before we discuss the accuracy of our formation- 
enthalpy estimates, a few remarks have to be made 
concerning the different forms of the density- 
mismatch term. In section 1.4 we have introduced this 
term in the form of relation (4): AH ~ fan  1/3"~2 How- 

x . ~ ' - W S  / • 

ever, in further calculations and in the determination 
of the ratio Q/P from the analysis of the sign of AH, th, 
form of relation (7), 

AHso 1 ... 2V2/3 (Anw s1/3)2 /L-ws, r~A ~-t/3 + (n~s)-l/3] 

has been used. For small differences of nws, the ex- 
pressions are equivalent; they will differ by a factor 
4/9. One may ask to what extent differences in nws 
are still small for realistic alloy systems. The question 
is answered in fig. 26: at differences in .1/3 "ws as large 
as a factor of two, the two relations are still equiva- 
lent. Checking table I, one will find that among tran- 
sition metals the largest difference in nl/3 s that occurs 
amounts to a factor 1.7 (Re-La). The only difficulties 
we may encounter are with alloys of the low melting 
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Fig. 26. The positive term in the heat of formation is used in 
the form (zxnl/3)2(n-A1/3 +nB 1/3) whereas in section 1.3 we 
have derived it as (~nlw/s2) 2. It is shown there that for dif- 
ference in n~s 3 up to a factor 2, the difference between the 
two forms can be neglected. 
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Fig. 25. An imaginary set of intermediate phases that repro- 
duces the phase diagram information of fig. 24 at T = 0. If the 
extreme value of AH = 0 the most favourable combination of 
composition and crystal structure (here phase 4) is just stable. 
If zkH for the 50/50 composition equals -37 kJ/mole there 
are three stable phases 2, 4 and 5. For AH < --75 kJ/mole 
five phases become stable, keeping the energy differences of 
the phases the same relative to the curve that represents the 
structure independent contributions to z~H. The only phase 
that is not stable here is phase 1 ; of this type there may be 
many more that have been omitted. The drawing is schematic 
and arbitrary. Still, it serves to indicate the order of magni- 
tude of the energy differences among the more favourable 
crystal structures in the average case. It is an artifact of the 
presentation that for the curve with AHs0/S 0 = --75 kJ/mole 
the stable phases tend to have heats of formation values above 
that of the dashed curve representing relation (9). In practice 
the empirical constant P will have got a somewhat smaller 
value, so that the dashed curve does not deviate systematically 
from the drawn one. 

point alkali metals, Cs, Rb, and K with the high melt- 
ing point transition metals. However, these do not 
have to be considered proper alloy systems: the pre- 
dicted heats of formation are positive and extremely 
large (350 kJ/mole for the heat of  solution of  W in 
Cs). 

It is not possible to assess in general terms the 
accuracy of the predicted AH values as given in tables 

II, III and V and in more complete form in subsequent 
papers. The accuracy will depend on the type of sys- 
tem (order of magnitude of  ZkH, region of  the periodic 
table, etc.) one is considering. For some metals (e.g. 
Hg) the results are systematically less satisfactory 
than for others. If one is interested in a predicted 
value for a system for which there is no experimental 
information, much can be learnt about the accuracy 
from a comparison of prediction and experiment for 
somewhat related systems. Such a comparison requires 
an as complete as possible collection of experimental 
data on heats of formation and a simultaneous consider 
ation of all kinds of  interfacial energy effects. 

To provide such a survey is the purpose of the 
present series of articles. 

In the next paper in the series, liquid and solid 
alloys of Sc, Ti and V will be discussed, and all avail- 
able relevant experimental information on these sys- 
tems will be summarized. The series will be continued 
with the other 3d metals, and as more and more 
materials are covered, the accuracy of our method will 
be easily judged. A wide range of  problems, including 
such seemingly unrelated phenomena as surface segre- 
gation, the stability of hydrides, intermetallic mol- 
ecules, heats of adsorption, and the surface tension of 
liquid alloys, will be touched upon in connection with 
materials for which these are relevant, either from the 
practical or the fundamental point of  view (see also 
ref. 38). The interplay of practical and fundamental 
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considerat ions will characterize the whole series in 

that  our  pr imary purpose is to provide pract ical ly use- 

ful data, but ,  being aware o f  the l imited nature  o f  this 

approach,  we permanent ly  seek connec t ions  wi th  altern- 

ative and more  fundamenta l  t reatments .  
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