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COHESION IN ALLOYS — FUNDAMENTALS OF A SEMI-EMPIRICAL MODEL
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A semiempirical model of alloy cohesion involving two material constants for each element is introduced by means of
the physical ideas underlying the scheme. The resulting expressions for the heat of formation of binary alloys are presented
and their applicability in various extreme situations is discussed. The model is shown to reproduce a vast amount of experi-
mental information on the sign of heats of formation. Detailed comparison with experiment for particular classes of alloys

will be presented in the sequels to this paper.

1. Introduction
1.1. Types of cohesion

In simple treatments of binding in crystals, one
attempts to classify solids according to the type of
interaction holding them together. In some cases, e.g.
molecular crystals or ionic compounds, the classifica-
tion is relatively straightforward and easy to apply. The
fact that a variety of electronegativity scales has been
introduced to assess the relative importance of ionic
binding shows that the delineation of this type from
metallic and covalent binding is not easy. In fact, a
similar ambiguity exists in the classification of metals
and semiconductors, where the terms ‘covalent’ and
‘metallic’ are often applied to compounds in a rather
suggestive way, without giving much insight into the
origin of the cohesive energy.

In molecular crystals, which include the solid noble
gases, one describes cohesion in terms of the Van der
Waals — London interaction between molecules. The
interaction being due to the mutually induced dipole
moments of the two molecules, the cohesive energy
depends quadratically on the molecular polarizability.
There is no need for an overlap between the charge
densities of the interacting molecules for this attrac-

tive force to be effective. In fact, the overlap provides
the repulsive force that keeps the solid from collapsing.
In the case of solid noble gases, we find a simple rela-
tion between the fairly small electron density between
atoms and the cohesive energy at 7 = O per unit molar
surface area (fig. 1). This correlation implies that

there is a proportionality between negative and posi-
tive contributions to the total energy at the equili-
brium interatomic distance.

In ionic crystals, the cohesive energy can be
accounted for by electrostatic interactions between
distinct, oppositely charged ions of well-defined sizes
and charges. In the case of fully ionic substances, i.e.,
compounds containing ions of integral charge units,
the calculation of the binding energy is a relatively
simple matter. However, fully ionic compounds repre-
sent a limiting case, never actually realized in nature.
Even in the textbook examples of ionic crystals
(alkali halides, oxydes of metals with very low electro-
negativity) there must be some overlap between the
oppositely charged ions which generates the necessary
repulsive forces. Thus, one always deals with inter-
mediate, partially ionic cases, where the electron
density between ions is appreciable, and there is an
ambiguity in the decomposition of the electronic
charge distribution into positive and negative ions.
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Fig. 1. Illustration of the approximate linear relationship
between the cohesive energy per unit molar surface AH,"*P/
Vn?/ 3 (heat of vaporization at T = 0, corrected for zero-point
motion [1]), of the noble gases and the averaged electron
density, n,,, at the boundary of the Wigner—Seitz cell. The
values for n_, . have been obtained by summation of the
electron densities of the free atoms [2] situated at the lattice
positions at T= 0.

Metallic binding is said to be due to the delocaliza-
tion of electrons, which leads to a lowering of their
kinetic energy. More precisely, if one considers a single
atomic orbital on each atom, superpositions of such
states will constitute a band, comprising energies
lower and higher than the atomic level. In metal for-
mation there is a preferential occupation of those
states that have lowered their energies. These are
indeed the states with the lowest kinetic energy, having
a vanishing slope of the wave function half-way be-
tween two atoms, in contrast to the highest states in
the band, whose wave functions have maximum slope
and zero value half-way between two atoms. The
former states can be also termed bonding states, as
opposed to the latter, antibonding states, since they
deposit a maximum amount of negative charge
between the positive ions. Apart from band broaden-
ing, energy is gained in metal formation through the
admixture of higher atomic orbitals, which further
lowers the energy of occupied states. As mutual dipole
induction in the theory of Van der Waals—London
interactions is also described by means of the admix-
ture of higher, unoccupied states, this contribution

to metallic binding is seen to be related to the binding
mechanism in molecular crystals.

Covalent crystals are described in terms of bond
charges resulting from the preferential occupation of
bonding states, which we introduced above in connec-
tion with metallic binding. The distinction between
metallic and covalent binding is sometimes rather arti-
ficial. If one insists on classifying silicon as a covalent
crystal, one is implying that the cohesive energies in
solid and liquid (metallic) silicon are of different
origin. However, the energy lowering achieved by
arranging Si atoms on the tetrahedral diamond lattice
is of the order of the heat of fusion, which is only a
small fraction of the cohesive energy. This suggests
that, as far as cohesive properties are concerned,
crystals of Si, Ge or grey Sn should be considered as
metallic crystals in which the shape of the constant-
energy surfaces and the number of electrons per atom
are such that exactly one Jones zone is filled. It is
then not surprising that such a strong deviation from
a spherical Fermi surface is accompanied by a direc-
tional type of electron density distribution in real
space. Naturally, the exact filling of the Jones zone
cannot be considered an accident. The diamond struc-
ture with its two atoms per unit cell is favoured
because of the possibility of separating bonding and
antibonding states by an energy gap, and filling them
up to the gap. However, such considerations are
common in metal physics as well. They are involved,
for instance, in the explanation of the Hume—Rothery
rule, which establishes a correlation between the
occurrence of ordered structures and particular values
of the electron to atom ratio.

The above discussion is meant to make clear the
inadequacy of the customary classification of solids,
even for simple substances. When it comes to under-
standing alloys and intermetallic compounds, the situ-
ation becomes even more complicated. Adopting the
principle that structure dependent energy contribu-
tions are due to covalent bonding, and recognizing
that (as we hope to convincingly show in this and
subsequent papers) the most important factor stabil-
izing an intermetallic compound of two transition
metals with respect to its pure solid constituents is
ionicity, one is forced to realize that discussions of
alloy stability must take place on the ill-defined no
man’s land between three “pure” types of binding.

One can think of two ways out of this impasse, and
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in both cases the first step is to discard the traditional
classification. Then, either a new set of phenomeno-
logical concepts has to be introduced, or, more ambi-
tiously, an exact theory has to be formulated and
applied to various systems. Recent self-consistent
energy-band and total-energy calculations [3] using
the density functional formalism [4] have shown the
feasibility of the latter approach. However, to perform
such calculations for a large number of systems is not
a practical proposal at the moment. Nor would one
gain much insight from the resulting energies and
charge distributions. To derive trends and regularities
from these, one would again be faced with the prob-
lem that there is no unique way of decomposition.
Therefore, we have undertaken the less ambitious
approach of describing the heat of formation of alloys
and intermetallic compounds in a new framework of
concepts and empirical quantities. In the next subsec-
tion this framework will be sketched. Before formula-
ting the problem of alloy formation in this framework,
we will point out some analogies with a phenomeno-
logical treatment of the Van der Waals—London inter-
actions. At the end of this section we discuss the
relation of our scheme to earlier treatments of alloy
formation.

1.2. The macroscopic atom picture

Admittedly, the remark made in the preceding
section to the effect that the Van der Waals—London
interaction and metallic binding have some common
features was not very useful for the purpose of prac-
tical calculations. Surely, if one starts from isolated
atoms, any energy lowering upon solidification can be
described as a consequence of hybridization of states,
but this observation does not make the problem of
metallic cohesion as simple as that of the Van der
Waals—London interactions. What makes the latter
tractable is the fact that the admixture of higher

states is so slight that perturbation theory is applicable.

That this cannot be the case in metals can be simply
deduced from the fact that here cohesive energies are
more than an order of magnitude larger than for noble
gas solids whereas the excited states of the free atoms
lie lower. The fundamental nature of the difficulties
in understanding metallic cohesion can be appreciated
by considering that cohesive energies of metals are
comparable to the corresponding typical atomic exci-

tation energies, and amount to a substantial fraction
of the ionization energies.

In problems of alloy stability, however, we are
dealing only with formation energies, that is, differ-
ences between the cohesive energies of alloys and
their constituents in the metallic state. What makes it
difficult to make use of the fact that such energies are
an order of magnitude smaller than cohesive energies,
is that there is no obvious way to choose as reference
systems, instead of free atoms, atoms as they are when
imbedded in a metal. Our basic assumption will be
that this can be done, and that many of the consider-
ations that apply to the situation when two macroscopi
pieces of metal are brought into contact remain valid
for suitably defined “atoms in the metallic state”.

In this “macroscopic atom picture”, there is little
difference between the interface energy between two
blocks of metal and the heat of formation (heat of
mixing) of intermetallic liquid alloys. Energy consider-
ations are made in terms of contact interactions that
take place at the interface between dissimilar atoms.
This picture suggests a fundamental relationship be-
tween the surface energy of a solid or liquid and its
heat of vaporization, which is also bom out by the
empirical data (fig. 2).

A new parameter of central importance in the des-
cription of interface phenomena on an atomic scale is
the electron density parameter, . This is defined as
the electron density at the boundary of the Wigner—
Seitz cell (or more precisely, its average over the cell
boundary) as derived for the pure elements in the
metallic state. An alloy or intermetallic compound is
thought to be built up of atomic cells, the electron
density being kept unchanged as the cell is removed
from the metal. When dissimilar cells are brought in
contact in the alloy, there will be discontinuities in the
electron density. Elimination of such discontinuities
requires energy, hence a positive contribution to inter-
face energies and heats of mixing or formation, deter-
mined by An,, can be expected. Since for metallic
alloys or metal—metal interfaces it is but one contri-
bution to the total formation energy, this energy is
experimentally not accessible. However, it has been
calculated theoretically by determining the total
energies of the constituent metals in a constrained
state having a suitably chosen atomic volume. More
precisely, Alonso and Girifalco [8] have shown that
these atomic volumes are uniquely determined by the
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Fig. 2. Ilustrations of the linear relationship between the heat of vaporization per unit molar surface, AHY2P/ V:.l/ 3 and the

surface energy<y.

(a) for solid metals at T = 0. Open circles correspond to non-transition metals, filled circles to transition metals. The divalent
metals Be, Mg, Zn, Cd and Hg have been omitted. They are exceptional because of the unusual stability of the free atom s2 outer
electron configuration which is lost upon formation of the solid metal. This extra stability amounts to about 100—150 kJ/mole,
which should be added to the experimental heats of vaporization of the d1va1ent metals to make them comparable to the heats of
vaporization of the other metals (see ref S for further details). Data on 7s have been taken from ref. 6, see table I. The propor-

tionality constant between 70 and Aig / V2

3 equals 2 X 10 =9,

(b) for Van der Waals llqulds at their meltmg temperature [7] (75 is not available). The proportionality constant equals 1.6 X 1079

requirement that their concentration-weighted aver-
age give the volume per atom in the alloy and that n,
be the same for the two metals. The elastic energy cal-
culated by Alonso and Girifalco agrees in approximate
magnitude with the positive term introduced in the
macroscopic atom approach. Recently, Williams et al.
[9] have criticized the interpretation of the density
mismatch energy in terms of elastic energies on the
ground of first-principles band structure and total
energy calculations. The existence of the density-
mismatch term is born out by these calculations, but
the results suggest that it corresponds to changes in
the relative contributions of s, p, and d states to the
total charge density, rather than to elastic energies. In
a transition metal, an increase in n,,¢ can be realized
by increasing the s-type and reducing the d-type
contribution.

The empirical evidence for the existence of an
electron-density mismatch term is not limited to alloy
formation energies. Fig. 3 shows that there is an
approximate linear relation between the surface

energy of a metal and n,,,. The relevance of the elec-
tron density parameter to metallic cohesion is born
out by fig. 4, which shows a linear relation, implied
by figs. 2 and 3, between the heat of vaporization per
unit atomic surface and n,,,. The similarity between
figs. 1 and 4 is somewhat misleading: the slopes of the
two straight-line fits are different by a factor of four.
However, the analogy is sufficiently encouraging to
study the problem of miscibility of Van der Waals
liquids in the hope of learning something about alloy-
ing behaviour of metals.

1.3. Hildebrand’s solubility parameter

The interaction energy between two non-polar
molecules is proportional to the polarizability, P, of
both molecules. Therefore, the cohes1ve energy of the
condensed phase is proportional to P? ,and so is 'y ,
the surface energy at 7'=0. Applying the argument
to macroscopic bodies, it is easily shown that the
adhesive energy between two layers of Van der Waals
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non-transition metals (open circles) and transition metals (filled circles). For the non-transition metals the values for n,,s have been

obtained by summation of the electron densities of the free atoms [2]. For the transition metals the n

ws values were derived from

bulk modulus data [10]. The deviations from linearity have some systematics, which have been explained in ref. 6.
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Fig. 4. The linear relation, implied by figs. 2 and 3, between

the heat of vaporization per unit atomic surface, AH:ap/ Vr2n/ 3,

and the electron density, Nyss for non-transition metals. In
this figure the divalent metals with their unusually low heat of
vaporization have been omitted.

substances A and B in contact is proportional to PPy,
and equals —2(72)1/ 2 (73)1/ 2 per unit surface area.
The interface energy between two non-mixing Van der
Waals liquids is then

138 =13 +78 - 26D (2

= [V - (1212

The same result should apply to interfaces between
Van der Waals solids, provided there is perfect match-
ing, that is, no positive energy contribution due to
elastic deformations.

If we apply this result to “interfaces™ on an atomic
scale, and make use of the linear relationship between
'yO and the heat of vaporization per unit molar surface
(cf. fig. 2), we find the enthalpy of solution of, say,
liquid B in liquid A as

AHXaP 1/2 AHgap 1/2 52
() - G3F)

(1)

ol _ 1203
AHY A =VH

.(2)
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This is very similar to Hildebrand’s formula for the

mutual heat of solution of non-electrolyte liquids [11]:

AH YD 1/2 AP 1/242
wga-n(5) - (50) ] e

Bina= "B\ 7 ©))
where AHY?P/V is the so-called solubility parameter.
As was noted already by Hildebrand, considerations
based on the macroscopic-atom picture lead to a
slightly different definition of the solubility param-
eter, involving the 2/3 power of the molar volume.
However, for liquids of comparable molar values, the
two definitions are equivalent, as far as the prediction
of heats of mixing is concerned.

At this point, we should note that Hildebrand’s
solubility parameter has been found to be a quantity
of great practical importance. Predictions regarding
the miscibility or immiscibility of Van der Waals
liquids, based on the solubility parameter, are highly
accurate. Enthalpies of mixing can be calculated by
attaching a simple factor f(c) = ¢} - ¢} , accounting for
the concentration dependence, to expression (3) (the
¢"s are volume concentrations). Equally satisfactory
results can be obtained from eq. (2), if the multiplica-
tive factor is chosen as f(c) = ¢ - ¢}, where ¢® stands
for surface concentration.

We are inclined to consider the solubility param-
eters involving the molar surface area and the corres-
ponding surface concentrations in mixtures to be the
more fundamental set of parameters. The preference
to use (AHY?P/ V)12 in predictions of heats of mixing
prevails mainly for historical reasons. Yet, the alter-
native treatment in terms of surface energies is not
new. Langmuir [12] used this approach already sixty
years ago in his description of heats of mixing in solu-
tions of polar molecules.

Egs. (1) and (2) can be rewritten in terms of the
discontinuity in the electron density at the contact sur-
face between different substances. Using the linear
relationship between AHY?P/V?3 and n (fig. 1) we
find

AHPL o = QVER ()2 — (nBY212, @

where Q' is a constant to be determined empirically.

1.4. Heat effects on alloying

It is clear that the results of the preceding section
cannot be applied directly to alloys. The existence of
stable alloys and intermetallic compounds indicates
that eq. (4) does not give a full account of alloy for-
mation. Having found that n is just as important a
parameter in metal cohesion as in the binding and mix-
ing of Van der Waals substances, we may expect that
a density-mismatch term like (4) will appear in a
general expression of alloy formation energies. Where-
as for Van der Waals substances this positive term is
the only one that shows up in the heat of mixing of
liquids, for metallic alloys there must be an additional,
negative term.

We can understand the physical background of the
negative term, if we try to reconstruct the arguments
leading to eq. (4) with metallic interfaces in mind.
When two blocks of different metals are brought in
contact, the charge redistribution will not be limited
to the inside of each block, but there will be a net
charge transfer, governed by the difference in contact
potential between the two metals. Charge will flow to
places of lower potential energy, until the resulting
dipole layer compensates the potential difference.
Visualized on an atomic scale, this charge transfer
corresponds to a negative, ionic contribution to the
heat of formation.

In order to describe ionicity in metals, we have
introduced [10, 13—15] the parameter ¢*. In the
true spirit of the macroscopic atom picture, we should
use ¢, the work function of the pure metallic elements,
when discussing interfaces between dissimilar atoms.
The asterisk in ¢* will remind us that the work func-
tion had to be readjusted, by amounts comparable to
the experimental uncertainty of ¢ values, in order to
arrive at a set of parameters relevant to alloying
behaviour (see table I). The form of the negative
energy term involving ¢" reflects, however, its origin
as a dipole-layer energy:

AH®D = _P'S(¢h — 68) 215D (5)

where S is the contact surface area; P' is a constant

to be determined empirically, that contains the elec-
tronic charge; the average value of n;iﬂ enters the
expression as a measure of electrostatic screening
length, which determines the width of the dipole layer.
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Table Ia
Metal ¢* ‘}v/: 3 Vl’?l/ Z g ) BV,
W) (du)?) (cm”) (mJ/m*) (kJ/mole)
[10,13-15]  [10,13-15] 161 [26]
Sc 3.25 1.27 6.1 1200 6.6
Ti 3.65 1.47 4.8 2050 11
v 4.25 1.64 4.1 2600 14
Cr 4.65 1.73 3.7 2400 14
Mn 4.45 1.61 3.8 1600 4.4
Fe 493 1.77 3.7 2550 12
Co 5.10 1.75 35 2550 13
Ni 5.20 1.75 3.5 2450 12
Y 3.20 1.21 7.3 1100 7.2
Zr 3.40 1.39 5.8 1950 12
Nb 4.00 1.62 49 2700 18
Mo 4.65 1.77 4.4 2950 26
Tc 5.30 1.81 4.2 3050 26
Ru 5.40 1.83 4.1 3050 26
Rh 5.40 1.76 4.1 2750 23
Pd 5.45 1.67 43 2100 16
La 3.05 1.09 8.0 900 5.5
Hf 3.55 1.43 5.6 2200 15
Ta 4.05 1.63 4.9 3050 22
w 4.80 1.81 4.5 3300 31
Re 5.40 1.86 4.3 3650 33
Os 5.40 1.85 4.2 3500 35
Ir 5.55 1.83 4.2 3100 25
Pt 5.65 1.78 4.4 2550 18
Th 3.30 1.28 7.32
u 4.05 1.56 5.62
Pu 3.80 1.44 5.22
Cu 4.55 1.47 3.7 1850 9.3
Ag 4.45 1.39 47 1250 10
Au 5.15 1.57 4.7 1550 18
3Room temperature allotrope.
Combining eqgs. (4) and (5), we can write for the which contains, in brackets, our key expression for the
heat of solution of metal B in metal A heat of formation of binary alloys. Like eq. (1), this
| 23 ¢ An® 21013 relation is only expected to hold, if there is no signifi-
AHR A=~ P B2 (8¢7) “[(nyd>)ay cant elastic energy due to size mismatch. Presumably,
' U203 An1/2Y2 such size mismatch terms do not arise in liquids, and
HOVET (Anyg)” ©) eq. (7) should give good results for the enthalpies of
For the relatively small differences in n, that occur solution of liquid metals. To obtain the enthalpy of
between metals, one can combine the two terms of mixing, the prefactor has to be replaced by another
eq. (6) in the almost equivalent form one, involving surface concentrations (see eq. (9)

below). Another class of materials where elastic size
AHOL L = p VBZ/ 3 mismatch terms are not expected to play an important
Bin A (,,;‘,15/3)av role is constituted by intermetallic compounds. If the
negative, electronegativity term exceeds the positive
*2 .0 Y32 one, such compounds will form at those concentration:
— +=
X ‘ (49°) P (Anys) } ’ @ at which a structure exists that can accommodate the
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Table Ib
Metal o* nﬂss n2,/3 g m
) ((du)3) (cm?) (mI/m?)  (J/mole)
[10,13-15]  [10, 13-15] 16] [26]
Li 2.85 0.98 5.5 530 1.5
Na 2.70 0.82 8.3 260 1.6
K 2.25 0.65 12.8 150 1.5
Rb 2.10 0.60 14.6 120 1.8
Cs 1.95 0.55 16.8 95 1.4
Ca 2.55 0.91 8.8 490 4.0
Sr 2.40 0.84 10.2 430 3.9
Ba 2.32 0.81 11.3 370 3.9
Be 4.20 1.60 2.9 (1900) 4.9
Mg 3.45 1.17 5.8 790 5.0
Zn 4.10 1.32 44 1020 5.5
cd 4.05 1.24 5.5 780 6.1
He 4.20 1.24 5.8 610 4.0
B 4.75 1.55 2.8
Al 4.20 1.39 46 1200 72
Ga 4.10 1.31 5.2 830 6.7
In 3.90 1.17 6.3 690 6.4
TI 3.90 1.12 6.6 610 6.2
c 6.20 1.90 1.8
Si 4.70 1.50 428 12902 11.9
Ge 4.55 1.37 4.6% 10302 10.5
Sn 4.15 1.24 6.4 710 8.8
Pb 4.10 115 6.9 610 7.9
N 7.00 1.60 2.2
As 4.80 1.44 5.28 10002 5.1
Sb 4.40 1.26 6.6 6802 7.0
Bi 4.15 1.16 7.2 5508 6.7

8For Si, Ge, As, Sb and Bi we have introduced hypothetical metallic allotropes corresponding to the properties of these elements

in metallic systems.

constituent atoms without generating an elastic mis-
match energy.

A consequence of the simple structure of eq. (7) is
that, provided Q and P are truly constant for arbitrary
choices of metals A and B, the sign of the heat of
alloy formation is simply determined by the ratio
Ag* [Andl3: for (A¢"/And3)2 > Q/P the heat of
formation is negative, if the opposite inequality holds,
it is positive. The reliability of eq. (7) in predicting the
sign of the heat of mixing of liquid alloys is demon-
strated in fig. S for liquid binary systems involving
two non-transition metals. Each symbol in the IA¢* |
vs IAn&,/gl diagram corresponds to a binary system; a
negative sign meaning AH™* < —2.5 kJ/mole of
alloys of the equiatomic composition, and, similarly,
a positive sign corresponding to AH™X > 425 kJ /mole.

It is seen that, with the ¢" and nl/3 values listed in
table I, eq. (7) gives a good approximation to AH™MX;
omitting systems with | AH™X | < 2.5 kJ/mole, we
get an almost perfect separation between + and —
signs by drawing a straight line in the A¢*, An}vlg
map. Fig. 6 shows that although relaxing the restric-
tion | AH™™ | > 2.5 kJ/mole spoils the almost perfect
separation, the sign of the heat of mixing is quite
accurately predicted even if the total energy effect is
small. In fig. 7, similar information is compiled for
liquid alloys of transition or noble metals in combina-
tion with transition, noble, alkali, or alkaline-earth
metals (the common feature of these groups is that
there is very little p-character in the wave functions of
their conduction electrons). It is important to note
that the slope of the straight line separating + from —
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Fig. 5. Demonstration of the reliability of eq. (7) in predicting
the sign of the heat of mixing of liquid alloys not containing
transition or noble metals. Each symbol corresponds to one
binary system. The meanings of the signs are: —: AF™X

< —2.5 kJ/mole of atoms of the equiatomic composition;

+: AH™™X > 425 kI /mole of atoms of the equiatomic com-
position, or the liquid system has a central miscibility gap, or
the solubility of at least one of the metals is very small at
temperatures above 1000 K.

signs in fig. 7 is the same as in figs. 5 and 6. The same
is true for the slope of the straight line in fig. 8, where
comparable information is represented for solid alloys
of a transition metal and a transition, noble, alkali or
alkaline-earth metal (the criteria for assigning + or —
signs are somewhat different here, see figure caption).

From the data represented in figs. 5—8, we can con-
clude that, with a judicious choice of the parameters
¢* and n,,, eq. (7) can be made into a powerful rela-
tion capable of predicting the sign of heats of alloy
formation. Quite surprisingly, the ratio Q/P of the pro-
portionality constants is found to be the same for
widely different classes of alloy systems. Thus, relation
(7) has turned out to be more universal than we had
any right to expect on the basis of the way we had
arrived at it.

ao"
v

cu':;"""o‘.s"'

An% (ldu)’s) —

Fig. 6. Illustration of the validity of eq. (7) for the same type
of liquid alloys as in fig. 5 (alloys not containing transition or
noble metals) but now for those alloys for which |AH | has
been measured to be smaller than 2.5 kJ/mole of atoms of the
equiatomic composition. © —-2.5 < AH < 0 kJ/mole; ®0 < AH
< 2.5kJ/mole.

Having separated the factor PV23/(n 1/3),, m
eq. (7) we can also discuss the enthalpy of formation
of alloys and compounds at the equiatomic composi-
tion. For this case the prefactor will involve some
average of & 3, instead of the value appropriate to
the solute B. Provided the value of this prefactor is as
universal as the ratio Q/P, in a A¢*, Anvlv/s3 diagram
the loci of equal heat of formation should be repre-
sented by hyperbolae. Figs. 9a and b illustrate the
graphical determination of heats of formation based
on this observation. If one limits the discussion to
metals with predominant s and d character in their
conduction-electron states, the heats of formation can
be estimated with an accuracy of about 30%. This may
not seem a very impressive agreement, but it should
be pointed out that the diagram gives the correct
answer for a number of cases that have puzzled metal-
lurgists for a long time. By shifting the separating
lines in fig. 9a from the point corresponding to Fe
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Fig. 7. Demonstration of the validity of eq. (7) for liquid
alloys of transition or noble metals in combination with tran-
sition, noble, alkali or alkaline-earth metals (all these groups
of metals have very little p-character in their conduction elec-
tion wave functions). The slope of the straight line that
separates the + and — signs is the same as in figs. 5 and 6. The
meanings of the signs are the same as in fig. 5.

along the broken line containing the points appro-
priate the rare-earth series, we can demonstrate that
in the Fe—La system there should be no stable com-
pounds, whereas the heavier rare-earth elements can
be expected to form compounds with Fe. Such
drastic differences in the chemical behaviour of
various rare-earth elements are also observed in combin
ation with Pu, Mn and Re, and appear to contradict
the chemical similarity of rare earths. It is gratifying
to observe that in the representation of fig. 9a all of
the partner elements in these exceptional systems lie
close to the demarcation line appropriate to La, allow-
ing a natural explanation of the change of sign in AH
as one moves along the rare-earth series. Other puzzling
dissimilarities between seemingly similar systems
include the combinations of Ni with the divalent
metals Ca, Sr, and Ba. The diagram correctly reflects
the experimental observation that there are stable

compounds in the Ca—Ni and Sr—Ni systems, which
are absent in Ba—Ni. The differences in the alloying
behaviour of Ag and Au in combination with V, Cr,
Nb, Ta, U, Cu and K are also reflected in the position
of the two noble metals in the ¢", n‘l,v/g map. Here
we have ourselves restricted to alloys of transition
metals and other metals having no p electrons. Other
alloy systems (i.e. transition metals with polyvalent
non-transition metals) will be discussed in section 2
below.

1.5. Earlier, related treatments of the heat of alloying

In the preceding sections we have repeatedly
shown how insights gained in the study of Van der
Waals substances can be used in a discussion of alloy
formation. This approach is by no means new, althougt
it may seem rather unorthodox, in view of the sharp
distinction often made in textbooks between the
various types of solids. In fact, Hildebrand and Scott
[11] have already tried to apply the solubility par-
ameter to mixtures of liquid metals. They found that
liquid immiscibility could be quite reliably predicted
for binary systems where no intermetallic compounds
occur.

As a negative term was clearly needed in the forma-
tion energy in order to understand the occurrence of
compounds, Mott [16] has attempted to combine the
positive Hildebrand term with a negative contribution
involving the Pauling electronegativities of the consti-
tuent elements. Pauling [17] had found that the heat
of formation of ionic compounds was quite accurately
given by

AH = —96M(X, — Xg)? (inkJ/mole), (8)

where X, and Xp are the electronegativities of the
compounds, and M is the number of shared electron
pairs. The concept of shared electrons is not applied
readily to metals, but Mott worked out a rather elab-
orate way of determining M for binary alloys, and
showed that the expression (8), together with the pos-
itive term involving the Hildebrand solubility param-
eter in the form (AHvap/ V)1/2, enabled a fairly reliable
prediction of the occurrence of immiscibility in binary
liquid metal systems. '
The Mott—Pauling term is very similar to our first
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Fig. 8. Demonstration of the validity of eq. (7) for solid binary alloys consisting of a transition metal and a transition, noble, alkali

or alkaline earth metal.

(a) — In the binary system one or more compounds exist, which are stable at low temperatures (indicating that AH is negative);
+ There are no compounds in the system and both solid solubilities are smaller than 10 at.% (indicating that AH is positive).

(b) © There are no compounds or ordered phases in the system, but at least one of the solubilities in the solid state is larger than
10%. It can be postulated that AH will not differ much from zero. This figure does indeed show that open circles mainly occur in
the neighbourhood of the origin, which in the quadratic eq. (7) means that AH is small; ® As for the open circles, but now the
solubility drops to low values at low temperatures or there is only incomplete miscibility in the solid state, although both metals
have the same crystal structure. The quantity AH is expected to have a small but positive value.

term in eq. (7), since ¢" and X are approximately
linearly related. This is illustrated in fig. 10, where all
¢* values listed in table I are plotted against the cor-
responding X values taken from the scale of Pauling.

Burylev and co-workers (see e.g. [18]) have used
the Mott—Hildebrand approach to characterize the
interaction parameters between different atoms in
more complicated systems, for instance ternary alloys.
Using such parameters, they have predicted with some
sucess in which columns of the periodic table one finds
the metals forming stable compounds with rare-earth
metals, and which are the metals showing immiscib-
ility with rare-earths. On the same basis, semiquanti-
tative estimates of heats of mixing of various alloys
were made by Sryvalin et al. [19].

A modification of the Hildebrand—Mott scheme
has been recently introduced by Kumar [20] . The
new feature in Kumar’s scheme is the use of the heat
of fusion, instead of the heat of vaporization, in the
definition of the solubility parameter. Since the heat
of fusion is also approximately linearly correlated
with n,, it is not surprising that Kumar’s solubility
parameter is also useful in rationalizing immiscibility
in metallic liquids. However, the accuracy of predic-
tions based on either form of the solubility parameter
is inferior to the ones based on relation (7) and illus-
trated in figs. 5—8.
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Fig. 9. (a) The values of AH (in kJ/mole) for an ordered solid alloy at the equiatomic composition as a function of A¢* and Anvljs?’
This diagram can be used in combination with fig. 9b to estimate the heats of formation of binary alloys with the element posi-
tioned at the origin of the diagram.

(b) Graphical representation of the alloying behaviour described by eq. (7). The lines drawn separate metals that have a negative
heat of alloying with Fe from metals that have a positive heat of alloying with Fe. The signs of the heats of alloying of binary alloy
based on other metals than Fe can be obtained from this figure by shifting the lines in a parallel way until they pass through the
desired metal. The diagram in fig. 9(a) can be used to estimate the heats of formation quantitatively by superposing a transparency
of fig. 9(a) upon fig. 9(b). The slopes of the straight lines separating the + and — signs is the same as the slope of the lines:in figs. 5!

2. Numerical evaluation of AH _2f(e) (cp VAR + ¢ Vg3
()™ + (1P

2.1. The concentration dependence

2 1/3y2
For the prediction of the sign of AH relation (7) is X [-P(A¢")* + Q(A"W/S 1 ®)
sufficient: for the sign of AH it makes no difference
whether we consider the dilute limit (heats of solution)  In section 1.2 it has been set forth that the energy

or concentrated alloys (heats of formation). However, effect that accompanies alloying arises primarily from

as we want to evaluate heats of formation numeric- the change in boundary conditions when an atomic

ally, we have to specify the concentration dependence. cell is transferred from the pure metal to the alioy.
For arbitrary concentrations relation (7) can be This implies that the total area of the contact surface

rewritten as between dissimilar atoms is the relevant quantity.
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Fig. 10. Tllustration of the approximate linear relationship between ¢* and Xpauling [17].

Therefore it is useful to introduce the concept of sur-
face concentration. For two metals A and B, in an
alloy with atomic concentrations ¢, and ¢z and molar
volumes V), and V5 the surface concentrations c} and
oy, are defined by

ch = ca V2P l(ea V3 + ey V),

(10)
CSB = CB VB2/3/(CA VA2/3 +CB I/B2/3).

For regular liquid or solid solutions the concentra-
tion function f{(c} , ¢f}) is given by
flci. cg) =cich - an
If the atoms of the constituent metals have equal sizes,
the surface concentration, ¢%, and the atomic concen-
tration, ¢, are identical. For the case of atoms of differ-
ent size the introduction of f(c} , cf) leads to a AH
function which is non-symmetric with respect to the
equiatomic composition. AH obtains its extreme value
at a concentration which is somewhat shifted from
the equiatomic composition to an atomic composition
which is richer in the smaller atoms.

For ordered compounds the area of contact between
dissimilar atoms will be larger than the statistical
value. For this case an approximation for the concen-

tration function was obtained empirically [21] by
collecting experimental data for binary systems for
which experimental information about AH is available
for a number of ordered compounds and in which
size differences are small (Co—Al, Ni—Al, Cd—Mg,
Cu—Zn and Pd—Al). The simplest analytical function,
that is symmetrical in ¢} and cg and that describes
this experimental information is

Feho Bordera = cheh [1+8(cAe})’], (12)
It must be stressed that this expression has no further
physical significance than that it approximates the
concentration dependence of the heat of formation

of ordered compounds.

The two concentration functions given in egs. (11)
and (12) are compared in fig. 11. For convenience we
assumed the two types of metal atoms to have equal
sizes. In the dilute cases, i.¢. for compositions AB,, or
A,,B with n > 1, the two concentration functions
coincide. This is in accordance with a contact inter-
action picture in which only the degree to which a
given atom is surrounded by dissimilar neighbours
matters. In the dilute limit, both in disordered and
ordered phases the minority-component atoms are
entirely surrounded by dissimilar atoms, and hence the
two curves coincide. The common slope at ¢ = 0 gives
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Fig. 11. The average concentration dependence of the heat of
formation of a series of intermediate phases in a binary system.
The figure applies to metals of equal volumes. If volumes are
different it can still be used if c, is replaced by the surface
concentration CZ. Curve (a) is the concentration dependence
for regular solutions (eq. (11)). Triangle (c) represents the
other extreme (each atom completely surrounded by dissimilar
neighbours). Curve (b) is a curve for ordered compounds which
has been obtained empirically [21] and is represented by

eq. (12).

the value for the heat of solution. The relative differ-
ence of the two concentration functions at ¢ = 0.5 is
in agreement with experimental information on the
heat of ordering of alloys of equiatomic composition
that have an ordering temperature in the solid range:
as an average, the heat of ordering corresponds to
about one third of the heat of formation of the
ordered alloy.

In fig. 12 is shown how the introduction of the
surface concentration opens the possibility to describe
the asymetric enthalpy of formation curves. As
examples we chose the binary systems Th—Co and
Th—Ni, which consist of atoms of widely different
size (see table I).

It should be pointed out that a non-symmetrical
concentration dependence of AH can also occur for
liquids and that it can as well occur if AH is positive.
This is illustrated in fig. 13 where we have plotted the
heat of mixing of liquid Al-Pb alloys.
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Fig. 12. The concentration dependence of the heat of forma-
tion of ordered compounds in the systems Th—Co (triangles)
and Th—Ni (circles) [22]. The dashed curve is the average of
the calculated heats of formation of the Th—Co and Th—Ni
systems.
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Fig. 13. The phase diagram for the system Al-Pb and the heat
of mixing at 1200 K. The dashed curve represents the calcu-
lated values. The experimental data have been taken from

ref. 23.
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2.2, Volume effects

In the calculations of AH we have used values for
Vn%/ 3 which were derived from volume data for the
pure solid elements at room temperature. For the
elements Si, Ge, Sb and Bi a correction has been
applied to account for the fact that as pure elements
they crystallize in open structures, having molar vol-
umes somewhat larger than they will have in metallic
alloys. Obviously, this has to do with their semi-
conducting, semi-metallic character that generally is

associated with a volume expansion upon solidification.

In the calculation of the heat of mixing of llqu1d
alloys Boom et al. [15] have used the values for V; /
¢" and nw/s , as derived for the solid metals. That thlS
approximation is correct can be seen as follows. The
numerator in eq. (9) is proportional to V2/ 3 , the de-
nominator is proportional to n1y
i.e. if ¥}, increases, the n, decreases and n,,
increases, so that the overall effect is zero in ﬁrst
approximation. The effect is small as long as

Vm dn,
ws 4Vm

~2, 13)

which is particularly the case for transition metals
[24].

At this point we note that eq. (9) may lead to
large volume contractions in the special case that we
are concerned with alloys with a large, negative heat
of formation in which the majority metal is an easily
compressible one. Examples of such alloys are AuLis,
SbCs3 and PbCaj. Here the first metal A (Au, Sb, Pb)
is completely surrounded by B (Li, Cs or Ca). In these
cases the numerator of eq (9) is proportional to Vy 2/3
and independent of VB (to see this, we assume regu-
lar-solution behaviour, substitute egs. (11) and (10)
into (9), and make use of the fact that A is the min-
ority metal, that is, ¢, <€ cg). The bulk modulus and

ws being strongly correlated [10], the easily compres-

51b1e partner B will have to lower n,,, and the denom-
inator of eq. (9) will be dominated by (nws)‘ 13
Thus, if AH is negative, a contraction of metal B
lowers the total energy. From eq. (7) or (9) the vol-
ume contraction of metal B can be estimated to be

AVy/ Vg = (2/3) AHy, /epVaBy, (14)

.Ifa metal expands,

where AH;, is the integral heat of formation per mole
alloy atoms, and By the bulk modulus of metal B. In
accordance with this expression, the largest effects are
observed in alloys where a low-valence metal is the
majority component [25]. For such metals the prod-
uct BV, is found to be very small (see table I).

Other, quite generally occurring volume effects
(indirectly related to a negative AH) are connected
with the (Ap* ) term. When a dipole layer is gener-
ated at the contact surface between two metals, charge
is transferred from the metal where electrons have a
high chemical potential to the metal with the lower
potential. If the two metals also have different elec-
tron densities then the charge transfer is accompanied
by a volume effect
AV, « Azf[(n

N

— (B = A¢T/AGTD).
(15)

Quite generally the metal with the higher ¢* value also
has the higher value for n,, so that a volume concen-
tration will be the result. The proportionality constant
in eq. (15) will depend on the composition and on the
degree to which in a compound of a given composi-
tion the one kind of atom is surrounded by the other
kind, which is determined by the crystal structure. If
other volume effects are absent one would expect the
proportionality constant in eq. (15) to increase regu-
larly in the sequence AB, AB,, AB3. To illustrate the
validity of eq. (15) we show in fig. 14 the experimen-
tally observed volume contractions for compounds of
two transition metals with the results of eq. (15).
Also, the slope of the straight line drawn increases
regularly in the sequence AB, AB,, AB3. We must
note that the fair agreement in fig. 14 is partly due to
the fact that we have considered only one structure
and not one composition, so that structure dependent
volume effects have been excluded.

The observed volume contractions are the net
effect of two effects of opposite sign: in the charge
transfer picture one type of atoms contracts while the
other expands. Hence individual changes in atomic
volume can become quite large which may affect the
value of the concentration function f(c®). In earlier
papers [13—15] we have presented an approximate,
simple to handle, relationship to find the values for
the individual values of Vn%/ 3 including the charge
transfer:
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Fig. 14. Volume contraction in intermetallic compounds of
two transition metals with the CugAu, CuyMg and CsCl struc-
tures. The observed volume contractions (derived from the
data in ref, 27) correlate well with those expected to result
from charge transfer effects.

VAZ/ 3 (in alloy) = V,E/ 3 (pure A)
X {1 +afg @x —op)} (16)

where f‘g is a measure of the degree to which A atoms
are surrounded by B atoms and “2” is a constant,
derived from experimental volume contractions in
compounds (¢ = 0.14 for the alkali metals, @ = 0.10 for
the divalent metals, 2 = 0.07 for trivalent metals and
Cu, Ag, Au and a = 0.04 for all other metals). For
statistical liquid or solid solutions of equal size atoms
fﬁ‘ = cg. In the past we have used this result for un-
equal atomic sizes and ordered alloys, too, which is a

crude approximation. Although in practice the differ-
ence is not large we prefer in this paper the more
correct expressions

B= cg for solutions
and (16a)
fb=c§ {1+8(c3ch)} forordered alloys.

Only for alloys with large values of ¢K — ¢p is the
correction of significance.

2.3. Predictions for AH

2.3.1. Alloys of two transition metals

In the numerical evaluation of AH we need values
for the proportionality constants P and Q in eq. (9).
From figs. 58 it follows that both for liquid alloys
and solid compounds of two transition metals the
value for Q/P (which can be obtained from the slope
of the straight lines in the figures) equals 9.4 V2
(d.u.)?3.

A value for P can be found by comparison of the
available experimental data (which are numerous since
for instance the 30 transition and noble metals of
table Ia present (30 X 29)/2 binary alloy systems) with
relationship (9). We do not repeat the comparison here
but refer to the original papers [14, 15]. Expressing in
relation (9) ¢* in volts, 7, in the density units of
table I, ¥, in cm3 and enthalpies in kJ/mole, we have
for alloys of two transition metals (both solid and
liquid) P =14.1.

A representative selection of heats of solution of
transition—transition metal and transition-noble metal
systems calculated with this P value have been collec-
ted in table II. The heat of formation of an ordered
compound of equiatomic composition can be directly
obtained by multiplication of the average of the two
heat of solution values by 0.375 (see fig. 11).

Large positive heat of solution values exceeding
100 kJ/mole, which are connected with a limited
solid solubility, occur for instance for Ag in Cr, Fe or
W and for the rare-earth metals and Y in W. A value
of 100 kJ/mole for the heat of solution at for instance
100 K leads via ¢ = exp (— AH®YKT) to a solubility of
103, which gives an impression of the strength of the
repulsive interactions that can occur in some transition
metal combinations.

A way to get some feeling for the magnitude of
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Table 11
Heats of solution for (liquid) binary alloys of two transition metals (kJ/mole solute) -
Solvent
Ti \' Cr Mn Fe Co Ni Cu Y Ru Pd Ag w Pt Au

Ti - -9 ~38 —-46 -82 -140 -170 -78 +40 -191 -283 55 =25 =313 -210
\'% -8 - -8 -3 -29 -58 -75 +16 +54 -94 131 +48 -3 -167 -69
Cr -32 -8 - +8 -6 -18 27 +52 +35 -42 =52 +85 +3 -86 -1
Mn -39 -3 +9 — +1 21 -33 +14 -5 —-40 -82 +37 +23 -101 -40
Fe -70 -28 -6 +1 - -2 -6 +60 -4 -17 -16 +94 -0 47 +28
Co -115 =53 -17 -20 -2 - -1 +35 —-67 -3 -5 +63 -5 -25 +25
Ni -140 —69 -26 -32 -6 -1 — +26 -97 +2 -0 +52 11 -17 +25
Cu —67 +15 +52 +14 +58 +35 +25 - -91 +40 -33 +4 +86 -24 20
Y +58 +85 +58 -8 -6 -—112 -161 -148 — =157 -377 -154 +110 -365 -316
Ru 187 -104 -50 —46 -20 -3 +2 +49 113 - +24 +88 -39 -4 +57
Pd -293 -152 ~-65 -101 -19 -7 -0 -43 -287 +25 - =25 26 +8 +0
Ag —60 +57 +108 +46 +116 +80 +66 +5 —-121 +92 25 —  +161 -1 -18
w -26 -3 +4 +28 -0 -6 —14 +107 +81 40 -26 +156 - -79 +44
Pt -337 -200 -111 -129 -59 -33 -22 -32 291 —4 +8 -1 -83 — +17
Au 247 -89 -1 —54 +38 +34 +34 -29 274 +65 +0 20 +49 +18 -

negative AH-values is to calculate the temperature
rise which would occur in an adiabatic reaction. The
AH*Lvalues for Pd, Pt, or similar metals with metals
like Sc and Ti are as large as —300 kJ/mole which
means that the heat of formation for an equiatomic
compound amounts to —115 kJ/mole. Such a heat
effect produces in an adiabatic reaction a temperature
rise of 115 X 10%/3R = 4600 K.

There is a wedlth of experimental information on
the very stable compounds of two transition metals.
Brewer and Wengert [28] explain the high stability
of transition metal alloys in terms of the Engel—
Brewer theory in which stability is related to the
number of electron pairs contributing to the bonding
between dissimilar atoms. High stability is expected if
a metal with some completely vacant 4d- or 5d-
orbitals is combined with a metal with an almost com-
pletely filled 4d- or 5d-shell. The starting point from
the Engel—Brewer model is quite different from that
of the macroscopic atom model and it seems to be
impracticable to establish a relationship between
both models.

2.3.2. Alloys of two non-transition metals
In section 1.4 we have shown that there is no
difference in the sign analysis of the heat of forma-

tion of liquid alloys of two non-transition metals
(figs. 5 and 6) and of liquid alloys of two transition
metals (fig. 7) i.e. the value of Q/P is identical for
these two types of alloys.

On the other hand, collecting the available experi-
mental data on heats of solution and heats of mixing,
Boom et al. [15] have found that for non-transition
metal alloys P has a 30% smaller value than for trans-
ition metal alloys. Since the ratio Q/P is identical for
the two types of alloys, the Q values are also expected
to differ by 30%.

This difference between the Q values for transition
and non-transition metals is also reflected in fig. 15,
taken from ref. 6, which demonstrates that there
exists an approximate linear relationship between
7?/nwS and (nws/r'z)3/5, where 7 represents the average
electron density in the atomic cell. As shown in fig. 15
for non-transition metal alloys, the pro;)ortionality
constant between 72/"ws and (nws/ﬁ)3 S which is a
measure for Q (ref. 6), is indeed 30% smaller than for
transition metal alloys. ’

A representative selection of heats of solution for
combinations of two non-transition metals has been
collected in table III. The variation in A values is
large; the values tend to be more positive than those
in table 11 for transition metals.
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Fig. 15. The approximate linear relationships between 73 /nwS
and (nws/r‘z) 3/5 for transition metals (filled circles) and non-
transition metals (open circles). Here 7 equals the average
electron density.

In our previous papers solid alloys of two non-
transition metals were not considered for the following
reasons. In the contact interaction model structure
dependent energy contributions are not taken into
consideration. Only an empirically obtained structure
independent concentration function (section 2.1.)
accounts for the effect that in ordered compounds the
area of contact between dissimilar atoms will be

larger than the statistical value. Effects of the optimal
filling of Brillouin zones in k-space, giving rise to some
energy lowering for the phases that eventually are the
stable ones in a given binary system are neglected.
Apparently this is permitted for transition metals, as
is proved by the completely equivalent model descrip-
tion for solid and liquid alloys. In other words the
structure-dependent contribution to the cohesive
energy of a solid transition metal alloy is not much
different from the average of structure-dependent
contributions to the cohesive energies of the consti-
tuent pure metals. Since the heats of fusion of the
transition metals are not very large, this is not very
surprising. If we consider the entropy of fusion rather
than the enthalpy of fusion it is not far from a con-
stant value of 9.5 J K™ mole™!, for all transition
metals (see fig. 16).

For non-transition elements one must distinguish
between semiconductors and semimetals on the one
hand and ordinary metals on the other. For the maj-
ority of the non-transition metals the heat of fusion
is small, with AS; =10 J K™l mole™1. The elements
Si, Ge, Sb and Bi are exceptions from this general
rule.

The deviating structure-dependent energy of semi-
conductors has two consequences. In the first place
the heat of formation of alloys or compounds con-
taining Si, Ge (and Sb) will be less exothermic (less

Table III
Heats of solution for (liquid) binary alloys of two non-transition metals (kJ/mole solute)
Solvent
Li Na Cs Be Mg Zn Al In Si Ge Sn Pb Sb Bi

Li - +12 +43 +104 -1 -26 -13 -41 -46 -75 -56 —67 -85 71
Na +17 - +8 +265 +45 +28 +58 -21 +24 -39 -31 ~64 72 -69
Cs +103 +13 - +536 +145 +93 +153  -19 +82 —-40 -35 -116 —-115 -125
Be +77 +135 +166 — +53 +33 +19 +71 -7 +17 +53 +80 +45 +77
Mg -1 +38 +73 +92 - -15 -8 -14 -39 58 -31 -28 -57 -33
Zn ~28 +21 +42 +49 -13 - +2 +10 -3 -11 +3 +16 -3 +14
Al -15 +45 +71 +30 -7 +2 - +23 -9 -8 +14 +33 +8 +31
In ~59 -20 —11 +148 -17 +14 +31 - +32 -4 -1 -3 -14 -5
Si -51 +18 +37 -11 -34 -4 -9 +23 - +9 +21 +48 +28 +47
Ge —-88 -32 -19 +28 -54 12 -8 -3 +10 — -0 +16 +6 +16
Sn ~83 -32 =21 +117 -38 +5 +19 -1 +30 -0 - +6 -5 +5
Pb -106 -70 -74 +187 -37 +25 +49 -3 +75 +23 +6 — +2 -0
Sb -138 -80 -75 +105 -74 -5 +11 15 +43 +8 -5 +2 — +3
Bi -120 —80 -84 +189 -45 +23 +48 -6 +78 +24 +6 -0 +3 -
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Fig. 16. The approximate linear relationship between the heat
of fusion, AHg, and the temperature of fusion, Ty, for metals
(data from ref. 23). The straight line drawn corresponds to an
entropy of fusion of 9.57J K~! mole~1. The black dots repre-
sent transition metals, the open circles non-transition metals,
The semi-conducting and semi-metallic elements deviate
seriously from the general trend.

negative), since in general the energy gain due to the
optimal filling of the Brillouin zones will be larger in
the pure elements than in the alloys. On the basis of
estimates of the structure-dependent energies the heat
of formation of alloys containing Si, Ge, must be
increased by an amount of 34 and 25 kJ/mole, res-
pectively. For Sb and Bi the correction has not been
applied. It is small and partly included in the value of

R, see section 2.3.3. Secondly, if a semiconducting
compound is formed from two ordinary metals there
can be an additional negative contribution to the heat
of formation. This effect is for instance manifest in
Mg, Sn.

The presence of structure dependent energy contri-
butions in alloys of two non-transition metals is illus-
trated in figs. 17 and 18. In both figures the dashed
line is the same as the one found in figs. 5—8 for the
liquid and solid systems considered there. In fig. 18
solid non-transition metal alloys are analysed that con-
tain at least one alkali metal; in fig. 17 one finds the
remaining solid binary combinations of two non-
transition metals.

One will notice in fig. 17 that there are a lot of
plus signs in the region where only negative signs are
expected and also some minus signs in the positive
region. These “exceptions” are listed in table IV. The
result is quite reassuring. In all cases where the heat
of formation does not have the expected negative sign,
either Si or Ge is involved, which explains the devia-
ting behaviour. For at least three of the five systems
which are negative in the positive region semiconduc-
ting behaviour with a large gap is likely: Be3Sb, in the
Be—Sb system, AlSb in the Al—Sb system and SiAs,
in the Si—As system.

In fig. 18 we have drawn a second straight line,
which properly separates plus and minus signs. The
systems in between the two lines are considered in
detail in table IV. Again, there is reason to qualify
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Fig. 17. The sign of the heat of formation of binary solid alloys of two non-transition metals excluding alkali metals. For the meani
of the symbols we refer to the caption to fig. 8. The slope of the dashed line is the same as in figs. 5—8.
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Fig. 18. The sign of the heat of formation of binary solid
alloys of two non-transition metals of which at least one is an
alkali metal. For the meaning of the symbols we refer to the
caption to fig. 8. The solid line separates the plus and minus
signs; the dashed line is that of figs. 5—8 and 17.

them as exceptional. There is a group of systems in

which there is only one compounds with a very large
coordination number. Here K—Zn is a representative:
the only compound is KZn 3 while for the liquid the

Table IV

heat of mixing appears to be large and positive (fig. 19).
A fairly small, structure dependent, energy term must
be responsible for the existence of the single com-
pound at low potassium contribution. Similar systems
are other alkali metals with Zn and also with Cd.

In the systems Na—K and Na—Cs, too, there is only
one compound and one may also ascribe the existence
of Na,K and Na,Cs to a (small) structure dependent
energy term, reflecting the increase in coordination
number in a Laves phase. For liquid Na—K and Na—
Cs the enthalpy of mixing has the positive sign; in the
solid AH is lowered by about 1 kJ/mole, which is suf-
ficient to make it negative.

For the remaining systems of table IV (alkali
metals with Ga or Si) we suggest Brillouin zone effects
to play a role. An indication for this is found in the
phase diagrams [29, 30] . While (fig. 19) the compound
KGa, and K Gag are fairly stable, there is immisci-
bility for liquid K—Ga alloys. Also, the experimental
value of the entropy of fusion of NasGag has been
reported as 19 J/K, which is nearer to the value for
Sb than to that for an ordinary metal.

As a matter of fact, the compounds of table IV are
not the only ones in which structural energies add to
the stability. For the compounds of table IV there is

The exceptions in figs. 17 and 18. Solid binary combinations of two non-transition metals, that do not exhibit the sign of AH as
predicted by eq. (9). The phase diagram information is from refs. 29-31

— in the + region + in the -~ region

— in the + region Compounds observed

fig. 17 fig. 17 fig. 18
Be—-Sb Be-Si K—Zn KZngy only
Al-8b Be—Ge K-Cd KCd3 only
Be—Mg In—-Ge Rb-Zn RbZn;; only
Si—-As Cd-Ge Rb-Cd RbCd 3 only
Al-Si Cs—Cd CsCd 3 only
Al-Ge Na—Zn NaZnj only
Ga-Si Na-K NasK only
Ga—Ge Na—-Cs Na,Cs only
In-8i Na—-Ga NaGaya ; NagGag
In—Ge K-Ga KGag ; KgGag
Rb—Ga RbGag ; RbgGag
Cs—Ga CsGag ; CssGag
Na-Si NaSi ; NaSis
K-Si KSi i KSiy
Rb-Si RbSi ;  RbSig
Cs—Si CsSi i CsSig
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Fig. 19. Phase diagrams of two of the systems listed in table IV

that form exceptions to the simple two-term description of
the heat of formation. From the phase diagrams it is under-
standable why these systems are exceptional (see text).

a change in the sign of AH, if the numerical value is
only lowered the system is not noted to be an excep-
tional one. Some indication how large Brillouin zone
effects can be, and to which extent they can be pre-
dicted, is given in fig. 20. Here we have plotted for
three types of semiconductors all having 8 electrons
per formula unit (i.e. GaSb-type, Mg, Sn-type and
Na3 Sb-type) the observed energy gap, AE' g in the
electronic density of states curve versus the apparent
additional part of the heat of formation. The gap is
the one observed at room temperature; the structure
dependent part of the heat of formation is obtained
by comparing the value calculated from relation (9)
with the experimentally observed one. The experi-

mental uncertainty is large in both AE, and AH,, —
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Fig. 20. The correlation between the structure dependent
part of the heat of formation of intermetallic compounds of
two non-transition metals and the semiconducting energy gap.
Experimental data on AH are from ref. 23, data on AE, from
refs. 32—34. The negative intercept of the extrapolatedg line
with the AEg axis is presumably due to the fact that optically
one detects the smallest possible gap, whereas for the binding
energy the average gap is relevant.
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Fig. 21. Analysis of the sign of AH for solid alloys of a tran-
sition metal and one of the metals Al, Ga, In, Ti, Sn, Pb, As,
Sb and Bi.
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AH .. However, one tends to conciude from fig. 20
that (1) structure dependent energy terms to a good
approximation can be treated as additive to the
“metallic” terms, (2) large structure dependent energy
terms are accompanied by semiconducting electronic
properties.

2.3.3. Alloys of transition metals with non-transition
metals

From the analysis of the sign of the heat of forma-
tion of solid alloys of transition metals with non-
transition metals, similar to that of figs. 5—8, it was
found that relations (7) or (9) with only two energy
terms were not sufficient. If a transition metal is
alloyed with a non-transition metal having p-electrons,
there is a large negative contribution to the heat of
formation that does not depend much on which tran-
sition metal is alloyed with which p-metal partner. The
idea becomes clear from fig. 21. The figure gives the
sign of the heat of formation for alloys of an arbi-
trary transition metal combined with one of the poly-
valent non-transition metals. It is possible to separate
regions of positive and negative signs by a demarcation
region. However, this demarcation region has a hyper-
bolic shape, very different from the straight line we
had before. The sign of AH apparently can be approx-
imately described by an expression of the form

AH ~ - P(Ag*) +Q(anlf3)2 — R a7

The hyperbolae drawn give a value for both Q/P
and R/P. That for Q/P is the same as found before for
alloys for which R = 0.

A more detailed analysis, as shown in fig. 22 demon-
strates a systematic (weak) dependence of the value
of R on the valence of the polyvalent non-transition
metal. The larger the number of p-electrons, the
larger R. A survey of the appropriate values of R for
various combinations of metals is given in fig. 23.

Boom et al. {15] have shown that also for liquid
metals the R term is present, albeit reduced by a fac-
tor of 0.73 (average value). The fact that R is present
in the liquid as well as in the solid proves that it is a
term different from the Brillouin zone filling type
effects discussed above. It can be treated as a third
contact interaction energy contribution. If a metal
atom with d-type wave functions has a metal atom
offering p-type wave functions as its nearest neighbour,

the result is an energy lowering. If ascribed to a type
of d—p electron hybridisation effect, the gradual
change of the R-values with number of p-electrons is
to be expected. Also the fact (fig. 23) that R is small
but significant for Cu, Ag and Au at the right hand
side of a transition metal series and for alkaline-earths
and rare-earths metals on the left hand side is the
behaviour one expects. Even the difference between
Cu and Au at the one hand and Ag on the other (whick
came out as a result of the analysis of a large number
of experimental numerical data) is quite easy to
accept in view of the much lower energy of the d
states in Ag.

In the predictions of AH values for the present
group of alloys we use the full expression

Ay = 2BI€) ea V3 +cp Vid3)
(g™ + ()72

X [— (a6")? +Z(anif3y —f.‘?]. (18)

A representative selection of values of the heat of
solution of transition metals in liquid non-transition
metals is given in table Va. Since for solid and liquid
alloys the R-values differ there is no direct connection
between heats of solution and the heat of formation
of ordered compounds. We therefore add table Vb,
giving AH for AB compounds. Note that due to the
difference in the R value there now can be a change in
the sign of AH upon going from the liquid to the
solid state. A well-known example here is the system
Fe—Sn, in which there is liquid immiscibility over a
wide range of concentrations but there are several
stable intermetallic compounds.

Alloys of transition metals with Si, Ge, C, N and B
can be treated like the other alloys of transition
metals with polyvalent non-transition metals. The
only difference is that for C, Si and Ge there is an
additional positive contribution to account for the
enthalpy difference between these elements in the
diamond structure and a more conventional metallic
structure. For Si and Ge this positive contribution is
34 and 25 kJ per mole Si and Ge, respectively. For
carbides the corresponding transformation energy
equals 100 kJ per mole.



A. R. Miedema et al. /A semi-empirical model for cohesion in alloys 23

20 ,
Al,Ga,In,TI
RE
Ao
(v]
o - - .
05| - o
% 52 0
-
T 15}
Ag*® ) )
vl i
1wl ) )
os} _
0 L - L
0 07 0 02 0% 06

LY p——
e

Fig. 22. Determination of the value of the constant R in relation (17) for alloys in which a transition metal is combined with a
non-transition metal with p-electrons. Systems for which AH is negative are separated from those for which AH is positive by a
hyperbola. For all four groups the same value of Q/P applies, that of figs. 5—8. It can be seen that R increases with the number of

valence electrons of the p-metal.

Also nitrides of transition metals can be treated as
metallic alloys. There is an additional positive term
that represents the enthalpy difference between mol-
ecular N, (at room temperature) and the imaginary
metallic form of nitrogen. This term was found to be
240 kJ/g-at N [14], [35] . It is interesting to note
that such a value implies that metallic nitrogen will be

quite stable relative to free nitrogen atoms,

An extensive comparison of predictions and experi-
mental data on AH of transition metal silicides, ger-
manides, carbides, nitrides and borides has been made
elsewhere [14, 35]. The agreement observed is quite
encouraging.
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Fig. 23. The value of the parameter R in relations (17) and (18) (or in fact R/P in units V2) for alloys of transition metals with
polyvalent non-transition metals is obtained by multiplying 3 numbers: One out of the block of transition metals, one out of the
block of non-transition metals and one for solid or liquid phase. As an example for solid compounds of Cr and 8n the value of

R/P = 2.1 VZ; for liquid alloys of Al and Ag R/P equals (0.73) (1.9) (0.15) = 0.21 V2. For all alloy systems Q/P equals 9.4 V2/
(d.u.)2/3. The values for P, used in calculating numerical values for AH are P = 14.1, 10.6 and 12.3 (¢* in volt, Ny in density units,
Vi in cm3, enthalpies in kJ/mole) for alloys of two transition metals, two non-transition metals and a transition metal with a
non-transition metal, respectively. As far as the value of P is concerned, alkaline-earth metals are non-transition metals.

Table Va
The heat of solution of liquid transition metals in a number of liquid non-transition metals (kJ/mole solute)

Solute

Y Ti \'% Cr Fe Co Ni Mo Pd Cu Ag Au
Li +37  +116 +140 +126 +96 +30 +3 +193 -165 -38 -74 -168
Na +108 +199 +230 +218 +196 +125 +100 +307 —-50 +30 -1 -53
Mg 27 +40 +82 +81 +61 +10 -12  +133 -153 -29 47 131
Zn -151 -82 -6 +18 +14 -19 -34 +49 140 -20 -19 -75
Al —181 -135 -61 -36 —41 —68 -81 -20 -187 -32 -22 -95
Ga -179 -109 -29 -2 -6 -38 -53 +25 164 -25 -22 -80
In —-147 —-46 +40 +66 +63 +21 +5  +113 112 +0 —4 —-41
Tl -138 -22 +71 +99 +99 +56 +41  +155 -72  +19 +14 -6
Sn -203 -100 -3 +32 +34 +1 -12 +69 118 -8 -8 -38
Pb -184 -58 +48 +86 +92 +53 +40 +138 —-62 +18 +15 +8
Sb —-264 143 -25 +23 +33 +6 —4 +57 —95 -7 -8 —-14
Bi -205 =77 +33 +73 +80 +43 +31  +122 ~26 +15 +12 +6

Table Vb
The heat of formation of equiatomic compounds of a transition metal and a non-transition metal (kJ/mole atoms)

Y Ti \' Cr Fe Co Ni Mo Pd Cu Ag Au
Li +11 +44 +55 +50 +38 +12 +1 +71 58 -15 -26 -53
Na +41 +88 +104 +100 +89 +57 +46 +135 21 +14 -0 =22
Mg -12  +13 +31  +32 +23 +1 -8 +50 —63 -13  —-19 -49
Zn —~54 _-42 -13 -3 -5 —-18 -23 +6 59 -11 -8 28
Al -68 —67 -40 -30 -32 —42 ~-48 -24 -84 -17  -10 -37
Ga -73  —60 —28 -—16 -18 -31 -37 -7 -719 -15 11 -34
In -67 -36 +2  +14 +13 -5 -12 +31 —63 -4 -4 21
Tl —-65 -26 +16 +30 +30 +11 +4 +50 —47 +4 +3 -8
Sn -91 -62 -19 -3 -2 —16 -22 +10 69 -8 -6 -21
Pb —-86 44 +4 422 +25 +8 +2 +41 46 +4 +4 -3
Sb -119 83 -31 -9 -4 -16 =20 +3 -63 -8 -6 13

Bi ~-98 55 -5 +15 +18 +2 -4 +33 52 +1 +2 -4
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3. Concluding remarks

In the present paper, it has been demonstrated that
heats of formation can be calculated in a straight-
forward way, using the macroscopic atom model, for
liquid alloys in general and for solid compounds con-
taining a transition metal. For a third group of alloys,
solid alloys of two non-transitional metals, the predic-
tive power of the model is limited: only if one knows
that an alloy is truly metallic can one give a reason-
ably accurate estimate of its heat of formation, other-
wise the applicability of the model is limited to liquids.
In this concluding section, we wish to comment on a
few points relevant to the relation between liquid and
solid alloys: size-mismatch energies in solid solutions,
ordering tendencies in concentrated liquid alloys,
coordination-number effects, and structural energies.

Thus far, we have avoided the discussion of solid
solutions. There is an essential difference between
solid and liquid solutions. In solid solutions, where
atoms of different sizes have to occupy equivalent
lattice positions, an additional positive contribution
to the alloying energy arises, due to the elastic defor-
mations necessary to accommodate the size mismatch.
In liquids and solid compounds there is no such
energy.

The size mismatch energy is the basis of the well-
known Hume—Rothery rule for the occurrence of
solid solutions in a binary system. The rule says that
in order to have appreciable solid solubility, the atomic
radii of the two constituents must not differ by more
than 15%.

The size-mismatch energy can be estimated from
the elastic constants and the relative size difference of
the two metals, using Eshelby’s elastic continuum
theory [36]. Assuming, for simplicity, that Poisson’s
ratio is 0.3 for all metals, we can approximate
Eshelby’s result (for not too different metals) as
AHg,, = 1.25BV,, 8% cpcp. (19)
Here, Wm is the average value of the product of bulk
modulus and molar volume, and § is the relative size
difference defined as

5 =2 (Vi — PP + i3, (20)

From the values of BV, collected in table I, one can

see that the size-mismatch energy becomes of the
order of magnitude of the other terms considered here
only for size differences exceeding 15%.

In the literature [37], a size-mismatch term has
been introduced in the discussion of liquid alloys,
where we feel an electron-density term is more appro-
priate. Such confusion can easily arise, because, due to
the correlation between ny, and ¥, in alloys for
which the density mismatch, nvlv/g, is large, there is
a large difference in the size of atoms too. However,
it can be demonstrated with reference to exceptions
that the two descriptions are not equivalent, and the
distinctive feature of liquid alloys with large positive
heats of mixing is a difference in n,,¢. This is convin-
cingly illustrated by the large positive AH;, of alloys
like Cu—Fe, Ag—Rh, Ag—Ru, etc., where there is no
difference in the molar volumes of the constituents,
but a large difference in the corresponding n,,¢ values
(see table I).

In their recent analysis of heats of mixing of liquid
alloys, Boom et al. [15] noticed that if the predicted
value for the integral heat of mixing at the equiatomic
composition gets below —20 kJ/mole, the experimen-
tal values tend to be clearly more negative than the
predicted ones. Such a difference did not occur in the
corresponding heats of solution. The reason for this
discrepancy is short-range ordering in the liquid alloy
that will take place if AH < —RT. The energy of the
alloy can be lowered by an amount corresponding to
the difference in f(c®) for ordered and disordered
compositions.

We have indicated, as a special type of energy con-
tribution related to crystal structure, the coordina-
tion-number effects, being responsible for the stability
of compounds like KZn 3. Comparable compositions
exist among transition metal compounds as well (e.g.,
YBe,3, LaZn;, UyZn 5, etc.). Comparing experi-
mental and calculated AH values for this type of com-
pounds [14], we can estimate the order of magnitude
of the coordination-number energies. Generally, they
are of the order of —5 kJ/mole; only for compounds
of Be this value is exceeded substantially. In atomic
terms, a coordination-number energy can be under-
stood by considering the shape of the atomic Wigner—
Seitz cells. In a cell model the energy of a metal atom
in first approximation depends only on the cell vol-
ume. In second order, however, the shape of the cell
enters, the energy being the lower, the more the
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Wigner—Seitz cell approaches a sphere. As a high co-
ordination number means a more spherical Wigner—
Seitz cell, this is seen as the source of the coordination-
number energy.

In alloys of transition metals, structure-dependent
energy terms do not significantly contribute to the heat
of formation of the stable phases in a binary system.
As explained before, this implies that the energy low-
ering achieved by giving the phase the crystal structure
it has got, is about the weighted average of the heats
of fusion of the two constituent metals. One must
realize that this cancellation of structure-dependent
terms holds for the phases that exist in equilibrium;
nothing is said about the many other metastable
phases one might think of. Evidently, for other phases
than the equilibrium one, (phases for which the rel-
ative sizes of the two atoms are not suitable, a b.c.c.
metal in an f.c.c. intermediate phase, etc.), there is a
deviation from the calculated AH values in the positive
direction.

Some insight is gained in this complicated matter
by studying the relation between the average number
of stable intermediate phases in a binary system and
the (calculated) extreme values of the integral heat of
formation. A histogram that summarizes phase diagram
information on binary alloys of two transition metals
is reproduced in fig. 24. If the heat of formation at
the equiatomic composition is large and negative, AH
< —75 kJ/mole, the average number of intermediate
phases is 5. With less negative AH, the number decreases,
and at the other extreme, for —4 > AH > —10 kJ/mole,
there is only one intermediate phase. The histogram
can be used to construct a schematic diagram of the
average enthalpy differences, on a realistic scale,
found between the first, most favoured crystal
structure-composition combinations, and a number of
additional, next-preferred ones.

The situation sketched in fig. 25 represents the
experimental information on the average number of
intermediate phases existing in a given AH interval.
The picture implies that there is a limited number of
competing structure-composition combinations within
an enthalpy difference of 5 kJ/mole from the most
favourable phase. There will be a lot of them at
energy differences between 5 and 10 kJ/mole, and
there can be many more at energies around 10 kJ/
mole above the most stable phase. This order of mag-
nitude of the structure-dependent energy contributions
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Fig. 24. The relation between the number of stable inter-
mediate phases in a binary system and the value of the
enthalpy of formation at the 50/50 composition. The histo-
gram summarizes the experimental phase diagram information
for combinations of two transition metals.

is very reasonable, being a fraction of the heat of
fusion of transition metals, which range between 15
and 35 kJ/mole (see fig. 16).

Before we discuss the accuracy of our formation-
enthalpy estimates, a few remarks have to be made
concerning the different forms of the density-
mismatch term. In section 1.4 we have introduced this
term in the form of relation (4): AH ~ (An}”/S)z. How-
ever, in further calculations and in the determination
of the ratio Q/P from the analysis of the sign of AH, th
form of relation (7),

AH,

Lot ~ 2057 (gl G 1P 4 (ng ) 1Y,
has been used. For small differences of n,,,, the ex-
pressions are equivalent; they will differ by a factor
4/9. One may ask to what extent differences in n ¢
are still small for realistic alloy systems. The question
is answered in fig. 26: at differences in nlf3 as large
WS
as a factor of two, the two relations are still equiva-
lent. Checking table I, one will find that among tran-
sition metals the largest difference in n‘l,v/g that occurs
amounts to a factor 1.7 (Re—La). The only difficulties
we may encounter are with alloys of the low melting
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Fig. 25. An imaginary set of intermediate phases that repro-
duces the phase diagram information of fig. 24 at 7= 0. If the
extreme value of AH = 0 the most favourable combination of
composition and crystal structure (here phase 4) is just stable.
If AH for the 50/50 composition equals —37 kJ/mole there
are three stable phases 2, 4 and 5. For AH < —75 kJ/mole
five phases become stable, keeping the energy differences of
the phases the same relative to the curve that represents the
structure independent contributions to AH. The only phase
that is not stable here is phase 1; of this type there may be
many mote that have been omitted. The drawing is schematic
and arbitrary. Still, it serves to indicate the order of magni-
tude of the energy differences among the more favourable
crystal structures in the average case. It is an artifact of the
presentation that for the curve with AH50/50 = -75 kJ/mole
the stable phases tend to have heats of formation values above
that of the dashed curve representing relation (9). In practice
the empirical constant P will have got a somewhat smaller
value, so that the dashed curve does not deviate systematically
from the drawn one.

point alkali metals, Cs, Rb, and K with the high melt-
ing point transition metals. However, these do not
have to be considered proper alloy systems: the pre-
dicted heats of formation are positive and extremely
large (350 kJ/mole for the heat of solution of W in
Cs).

It is not possible to assess in general terms the
accuracy of the predicted AH values as given in tables
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Fig. 26. The positive term in the heat of formation is used in
the form (Anl/3)2(n,—\l/3 + n§1/3) whereas in section 1.3 we
have derived it as (An‘l,vs)z. It is shown there that for dif-
ference in n‘{[g up to a factor 2, the difference between the
two forms can be neglected.

IL, IIT and V and in more complete form in subsequent
papers. The accuracy will depend on the type of sys-
tem (order of magnitude of AH, region of the periodic
table, etc.) one is considering. For some metals (e.g.
Hg) the results are systematically less satisfactory

than for others. If one is interested in a predicted
value for a system for which there is no experimental
information, much can be learnt about the accuracy
from a comparison of prediction and experiment for
somewhat related systems. Such a comparison requires
an as complete as possible collection of experimental
data on heats of formation and a simultaneous consider
ation of all kinds of interfacial energy effects.

To provide such a survey is the purpose of the
present series of articles.

In the next paper in the series, liquid and solid
alloys of Sc, Ti and V will be discussed, and all avail-
able relevant experimental information on these sys-
tems will be summarized. The series will be continued
with the other 3d metals, and as more and more
materials are covered, the accuracy of our method will
be easily judged. A wide range of problems, including
such seemingly unrelated phenomena as surface segre-
gation, the stability of hydrides, intermetallic mol-
ecules, heats of adsorption, and the surface tension of
liquid alloys, will be touched upon in connection with
materials for which these are relevant, either from the
practical or the fundamental point of view (see also
ref. 38). The interplay of practical and fundamental
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considerations will characterize the whole series in
that our primary purpose is to provide practically use-
ful data, but, being aware of the limited nature of this

approach, we permanently seek connections with altern-

ative and more fundamental treatments.
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