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Studies of Polaron Motion 

Part I. The Molecular-Crystal Model 

T. HOLSTEIN 

Westinghouse Research Laboratories, 
Pittsburg, Pennsylvania 

In this paper is described a model for polaron motion which incorporates, in 
simplified form, the principal physical features of the problem. The (crystal- 
line) medium, within which a single excess electron (or hole) is contained, is 
taken to be a one-dimensional molecular crystal, consisting of diatomic molec- 
ular sites; each site possesses a single vibrational degree of freedom, repre- 
sented by the deviation, x,, , of its internuclear separation from equilibrium. 

The motion of the electron in this medium is treated by a tight-binding ap- 
proach, in which the wave function is represented as a superposition of local 
“molecular” functions, +(r - na, G). In line with the xn dependence of the 
4’s, it is also assumed that the “local” electronic energy, E, , (which, in the 
conventional tight-binding theory, has one and the same value for all sites) 
depends (linearly) on xn . This dependence gives rise to electron-lattice inter- 
action; alternatively, it may be regarded as removing the electronic transla- 
tional degeneracy, characteristic of the undistorted crystal, and thereby pro- 
viding the possibility for electron trapping. 

On the basis of the above-described model, the eeroth order adiabatic treat- 
ment of the polaron problem is developed. For values of the parameters such 
that the linear dimension of the polaron is large compared to a lattice spacing 
(“large” polaron), an exact solution is obtained; the correspondence between 
it and Pekar’s zeroth-order solution is established. The conditions under 
which the size of the polaron becomes comparable to a lattice spacing (“small” 
polaron) are discussed. Finally, by way of exhibiting the relationship of the 
molecular-crystal concept to the real situation, a description is given of an 
alternate molecular-crystal model which, in the case of the large polaron, is 
completely equivalent to the continuum-polarization model of conventional 
polaron theory. 

This note presents a description of a one-dimensional molecular-crystal model 
which will form the basis for a number of studies of the polaron problem, to be 
reported subsequently.’ It is felt that the model, although physically different 

1 As exemplified by the following paper (to be referred to hereafter as II), these studies 
will be focussed primarily on the case of the “small” polaron, whose linear dimensions are 
of the order of a lattice-spacing. 
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from the cases encountered in practice, corresponds conceptually to them in 
sufficient degree, so as to merit investigation. 

Let us first recall the principal features of the real polaron problem. The 
physical situation is that of a slow electron (or hole) in an insulating crystal. 
The Hamiltonian of the system may be regarded as a sum of three terms, H, , 
HL , and Hint. H, , the electronic component, consists of the kinetic energy of 
the electron and the effective one-electron periodic potential. HL , the lattice 
component, is the sum of the kinetic energy of the lattice particles and the lattice 
potential energy; the latter is taken as a known (invariably quadratic) function 
of the particle displacements from their equilibrium positions. Finally, Hint , the 
electron-lattice interaction, is a function of the electron coordinate and the lat- 
tice displacements; the latter dependence is usually assumed to be linear. 

In the standard theory of the motion of slow electrons in insulating crystals, 
Hint is treated as a small perturbation, giving rise to electronic transitions (scat- 
tering) in which lattice-vibration quanta are simultaneously absorbed or emitted. 
The basic problem of polaron theory is that Hint is often too large to be treated 
as a perturbation, but must be considered in zeroth order. Probably the most 
important physical concept of the theory is that of “self-trapping” of the elec- 
tron. Qualitatively, this may be understood as follows. 

Let us imagine that an electron is momentarily fixed at some point of the crys- 
tal. As a result of electron-lattice interaction, the surrounding lattice particles 
will be displaced to new equilibrium positions; according to general mechanical 
principles, the “induced” displacements will be such as to provide a potential 
“well” for the electron. If the well is sufficiently deep, the elecrton will occupy 
a bound state, unable to move unless accompanied by the well, that is to say, 
by the induced lattice-deformation. The unit consisting of the electron, together 
with its induced lattice deformation, is called the ‘Lpo1aron.“2 

With these preliminaries out of the way, the molecular-crystal model may now 
be described. In the absence of the electron, the system is taken to be a linear 
chain of N identical diatomic molecules, whose orientations and centers of gravity 
are fixed, but whose internuclear separations are allowed to vary. The “lattice- 
vibrations” thus consist of the vibrations of the individual internuclear separa- 
tions. For the time being, the latter will be assumed, in the absence of the elec- 
tron, to be uncoupled. If, in addition, the potential energy curve of an individual 
molecule be assumed parabolic, the lattice Hamiltonian reads 

2 The term owes its origin to the circumstance that the problem was first considered for 
the case of polar crystals, in which the interaction of the electron with the optical polariza- 
tion modes is especially strong. However, in principle, the self-trapping phenomenon is 
not limited to polar crystals, but may apply to any medium in which Hint is sufficiently 
strong, relative to H, and HL . 
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where xn is the deviation of a typical internuclear separation from its equilibrium 
value, p, = (n/i)e/&r, is the associated canonical momentum, M the relative 
mass, and wo the harmonic vibration frequency.3 

The motion of a single electron (or hole) in the above - described one- 
dimensional molecular-crystal medium will here be formulated in terms of the 
tight-binding approximation. The details of this formulation are presented in 
Appendix I; the principal features are as follows. The state of the system is 
expressed as a linear superposition 

5% XI , . . . , 4 = C ~,(a, . - - , x&(r - na, x,), (2) 

of “molecular” electron wave functions, +(r - na, z%), each localized about a 
particular (nth) molecular site (a is a unit lattice vector) and depending upon 
the internuclear coordinate, xn , of that site. The coefficients of the superposition, 
&(X1 ) x2 ) * - * ) xN), are each functions of all the internuclear coordinates, x1 , 
x2 , * * * , XN . The equations which they obey are obtained from the time-de- 
pendent, SchrGdinger equation of the system by a standard “projection” pro- 
cedure. With approximations appropriate to the tight-binding case (smallness 
of overlap and nonorthogonality integrals) and to the large mass ratio of elec- 
trons and nuclei, they take the form (see I-16) 

where the sum on the right-hand side goes over the two neighbors of a given nth 
site. The quantities E(x,), W,(xl , *. . , xN)) and J(x, , x& are defined by 
appendix equations (I-3)) (I-14)) and (I-15)) respectively. Physically, E(x,) is 
the electron energy of an isolated “molecular-ion,” i.e., of the system of the 
electron and an isolated molecule; in conformance with standard concepts of 
molecular theory, it is to be regarded as a function of the internuclear displace- 
ment coordinate of the molecule. W,( x1 , . . . , zN) represents the perturbation on 
E(x,) due to the presence of the other molecules. Finally, the J(x, , ~~~1) are 
overlap integrals, depending on the 4’s of typical neighbor sites n, n f 1, and 
are hence functions of the internuclear coordinates xn and ~~~1 of these sites. 

Let us at this point note that, if the internuclear coordinates are all “frozen” 

3 In some studies (e.g., II), coupling terms of the form 
N Hc = 34 Mw2 2,,c1 xv, x,+1, 

will be introduced into (1). It may be remarked here that the neglect of coupling is a sim- 
plification of a type comparable to that often employed in treatments of polaron theory, 
in which the actual optical frequency spectrum of a polar crystal is replaced by a single 
frequenc,y (Einstein model). 
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at one and the same value, say x, the system becomes equivalent to the conven- 
tional atomic tight-binding case, in which the localized states, +(r - na, x) 
form a degenerate set. Then, by virtue of the translational symmetry of the 
system, the stationary solutions of (3) take the standard form 

(k) ikn 
a, =e , (4) 

with eigenvalues 

Ek = E(x) + W + (N/~)AG%J,~x~ - 2J cos k, (5) 

[where W = W(x, x, ...) and where J(x,, xnfl) is set equal to a negative con- 
stant, -J, in recognition of the fact that the potential, U(r - na, x,), which 
enters into the overlap integral, (I-15), is intrinsically negative], and group 
velocities 

J7K=idC!~ -Z$!sinE. (6) 

The system thus exhibits typical band character; in particular, at the band 
extrema (k = 0, x), the motion may be described in terms of an effective mass 

-1 
= Mi2/2Ja2. 

In proceeding further, it is desirable to introduce a number of simplifications 
into (3). These are: 

(a) The neglect of the energies, W,(q , . . * , xN). 
(b) The neglect of the x-dependence of the J(z, , x& ; this simplification 

means that the J(x, , ~~~1) are all to be taken equal to a single constant, -J. 
(c) The x-dependence of E(x,) is taken to be linear, i.e., 

E(x,) = -Ax, (8) 

(the sign being chosen negative, and the additive energy constant being set 
equal to zero, both in the interests of notational convenience). 

The physical significance of (a) is that, when the electron is localized on a 
given molecular site, the perturbation of its expectation-energy due to the poten- 
tials of other molecules is assumed small-an assumption which is appropriate 
to the tight-binding case. Its employment has the effect of restricting the x-de- 
pendence of the expectation-energy of a localized electron to a single coordinate, 
x,-that of the occupied site. This restriction appears to be a special feature of 
the molecular-crystal model; in particular, it does not apply to the real situa- 
tion, in which the energy of a localized electron depends upon lattice displace- 
ments at a number of more or less neighboring sites. However, at the present 
time, it is not at all established whether this difference is significant, as far as 
physical results are concerned. In fact, the point of view of the present studies is 
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that such questions will best be answered by a systematic consideration of various 
hypothetical cases, starting with the simplest. In the spirit of this approach, 
W,(Zl , -** , xX) will be neglected, as a suitable first step. 

Similarly, the procedure of taking the J’s equal to a constant may be inappli- 
cable in some cases. In principle, the J’s do depend on the Z’S mainly via the 
local wave functions, 4(r - na, z,); however, as will be seen, e.g., in II, the 
primary physical property of the J’s is their order of magnitude relative to 
other energies. Hence, at least in the initial phases of the program, their x-de- 
pendence will be neglected. Finally, with regard to assumption (c), it may be 
pointed out that the term E(x,) plays the role of electron-lattice interaction; its 
approximation by (8) leads to a linear dependence of this interaction of the 
lattice-vibration coordinates, a feature which is characteristic of all treatments 
of the problem (known to the present author). 

With the simplifications discussed above-namely, the neglect of the W’s, the 
equating of the J’s to a constant ( -J), and the use of (1.13), the equations of 
“motion,” (1.3) reduce to 

(9) 
+ J(a,+l + a& = 0. 

Equation (9) will form the basis for a number of studies of the polaron prob- 
lem (the first of which is presented in II). These studies will be focussed pri- 
marily on the case of the ‘(small” polaron, the linear dimensions of which are of 
the order of a lattice spacing. For introductory purposes, it will be convenient at 
this time to discuss the alternate case of the “large” polaron. In this case, the 
linear dimensions of the polaron are sufficiently large compared to a lattice spac- 
ing so that the “wave function,” an(xl , . . . , z,) may be taken to a be a con- 
tinuoue8, differentiable function of a continuous position variable, with, e.g., 

2 

The present discussion will be concerned with the adiabatic theory of the large 
polaron as developed by Pekar (1) . Specifically, it will be found that the “molec- 
ular-crystal” analog of the Pekar-type adiabatic solution (see Ref. 1, Chapter 
II)-i.e., that solution which, with neglect of the vibrational kinetic energy, 
minimizes the sum of electronic and vibrational potential energies-may be ob- 
tained exactly in closed form. 

The starting-point is the system of equations 

E(xI, . .. , xN)an(xl, -a* , xN) = ($az Mu,,~x,~ - As,)a,(xl, . . . , xN) 
m 

(11) 
- JCL-I + an-d, 
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which, subject to the neglect of the vibrational kinetic energy operator, 

-g+$> 

is the stationary equivalent of (9). Here, the energy eigenvalue, E( x1 , . . . , xN), 
is a parametric function of the vibration coordinates, z1 , * . . , XN ; one seeks 
those values, z$), . . . , x?), for which E(s) * + * , x#) is a minimum. 

Upon multiplying (11) by a,* and summing over n, one obtains 

E(Q) * * - , XN) = x c Mw2xm2 - C Ax, I a, I2 
m 12 

+ C J(a,-1 + a,+&* 
(12) 

n 

where use has been made of the normalizing condition 

F I a, I2 = 1. (13) 

Upon differentiating (12) with respect to a given vibrational coordinate, x, 
[account being taken of (13) by the introduction of a Lagrange multiplier, X] 
and rearranging the summations in the J-proportional terms, one obtains 

+ T ‘g [--Axa, - J(a,-1 + a,+d + hl (14) 
P 

+ F ‘zp [-Axa,* - J(ag-1 + a:+,> + Xa,*l 

(plus “boundary” terms, proportional to products of the a,% at n = 0 and 
n = N, which, as verified below, may be assumed to vanish). One now substi- 
tutes (11) and its complex conjugates into the first and second square brackets 
of (14)) respectively, obtaining for the last two terms of (14) the expression. 

Ebl , - - - , 
xN)-iC~wPZ,a+X 

m 

which is obviously zero because of (13). Equation (14) then reduces to 

(15) 

Upon setting the right-hand side of (15) equal to zero for all p, one obtains for 
the x(O) the relations P 

(16) 
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where c$ is that solution of (11) which corresponds to x,, = z?‘. Upon substi- 
tuting (16) into (ll), and introducing the quantity 

--r = E(xl , -. - , xN) - M c &Lo2x,?* + 2J (17) m 

one obtains 

(& I a, I2 - e) a, + J(G+I + an-1 - 24 = 0, 

where the superscript, “(O),” h as b een dropped with the understanding that 
a, will henceforth denote that solution of (11) for which E(Q) * * * , xN) is a 
minimum. 

At this point it is desirable to make use of the “continuum” approximation, 
(10) (the applicability of which, as discussed above, characterizes the case of 
the large polaron). The introduction of (10) into (18) yields 

( & 1 a, I2 - e) a, + J ‘2 = 0. 

Upon multiplying (19) and its complex conjugate with da,*/& and &X,/&L, 
respectively, and adding, one obtains 

(20) 

where Cl is a constant to be determined presently. 
In proceeding further, it is expedient to write a, in the form 

a, = b, eien (21) 

where b, and /3,, are real (and 6, positive, as well). Introducing (21) into (19), 
and equating real and imaginary parts to zero, one finds for the imaginary part 

2 d&l dbn I d2Pn - 0 b 
dn dn n dn2 ’ 

a first integration of which yields 

dg bn2 = c2 

where C2 is another constant, which will now be shown to vanish. 
Introducing (21) and (22) into (20)) one has 

A2 2Mwo2 b,z4 - E b,2 -I- J [(!!>‘+$] = Cl. 

(22) 

(23) 

At this point, let us impose the condition that b, differs from zero only in a limited 
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region of the specimen, so that as 1 n 1 -+ co, b, --+ 0 and db,/dn -+ 0. It is then 
immediately seen that, in order for this condition to be obeyed, it is necessary 
that both CZ and C1 vanish. One thus arrives at the result that Pn is equal to a 
constant (which may for convenience be set equal to zero, so that b, = a,) and 
(23) reduces to 

A2 4 
- %I 
2Mwo2 

’ = 0. 

Introducing the notations 

A2 (y2 = ~ 
2Mwo2J 3 

y2 = t/J, 

one may write (24) in the form 

da, - = fa,(y2 - a2un2y2. 
dn 

The integration of (27) is straightforward, the result being 

a, = 2 sech[r(n - no)] 

(24) 

(25) 

(26) 

(27) 

(28) 

where no is a constant of integration, indicative of the fact that the centroid of 
the polaron may be located at an arbitrary point in the specimen. 

The application to (28) of the normalizing condition, which in the continuum 
approximation, reads 

s an2 dn = 1, 

yields the relation 

A2 
Y = a2 = 4Mwo2J 

so that 

an = (kJ>‘i’ sech[(kJ) (n - d] 

and 

E = i-J (A2/‘Mu~2)2. 

(29) 

(30) 

(31) 

Inserting (31) and (16) into (17), one has for the total energy (exclusive, of 
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course, of the vibrational kinetic energy) 

It should at this point be noted that (20) has an alternate solution, namely, 
the one which was excluded by the requirement [stated in the paragraph subse- 
quent t,o (23)] that a, + 0 as 1 n / + cc) . If this condition be withdrawn, (20) 
is also solved by 

a, = N-“’ eikn (33) 

with 

e = -Jk2 (34) 
(plus the term (l/N) ( A2/Mut) w ic is to be discarded, since it is of order h h 
N-l). Inserting (34) into (17), and continuing to discard terms of order N-l, 
one has 

E(z’f’, - * - ) &‘) E E(B) = -2J f Jh? (35) 

where the superscript, (B), is used in recognition of the fact that (33) is an un- 
bounded, “band-type,” solution of the form discussed earlier [see Eq. (4) and 
subsequent]. 

The minimum energy for the band-type solution is attained when k = 0, and 
is 

Ez!, = -2J. (36) 

Comparing (36) with (32), we observe that the energy of the bound state is 
lower than that of the free state by an amount 

E, = kJ (A2/Mcd2. (37) 

E, may be considered to be the zeroth order binding energy of the large polaron, 
i.e., the binding energy obtained in the approximation in which the vibrational 
kinetic energies are neglected.4 

4 For formal purposes, it is convenient to consider the vibrational mass, M, as a variable 
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With the aid of (30), explicit formulas may be obtained for a number of 
physical properties of the large polaron state. 

(a) The equilibrium vibrational displacement, zr), given by (17) and (30), 
is 

(0) = -~ GZ 
A A2 Sech2 

Mwo2 ~Mw,,~J 
(38) 

(b) The potential-well, within which the electron is trapped, is described by 
the expression 

V(n) = g-& , a, l2 = (A2/M~,2)2 sech2 A2 

8J 
4Moo2J (n - no)]. (39) 

Its maximum value, achieved at the polaron centroid, no, is 

V 
(A’/Mw:)’ 

ma* = 
8J 

which is twice the “electronic binding-energy,” E, as given by (31), and six times 
the net binding energy of the polaron, as given by (37).6 

(c) The linear dimension, L, , of the large polaron, as may be seen from (30), 
(38), or (39), is of the order 

(41) 

where a is the lattice spacing. It is in particular to be observed that the condi- 
tion for the existence of the large polaron, for which L, >> a, is 

2J >> A2/2Mw:, (42) 

i.e., the electronic “bandwidth,” 2J, is to be large compared to A2/2Mwo2. 
The physical significance of the quantity, A2/2Mw?, may be understood by 

considering briefly the case of the small polaron, for which the opposite condition 

2J << A2/2Mw: (43) 

parameter. If, in this “thought-variability,” the “restoring-force constant,” Mw$, be kept 
fixed, so that the uo a M-1’2, E, g ives the polaron binding energy in the limit of M + m . 
It is then apparent that in the further development of the adiabatic theory, higher-order 
corrections to E, occur in increasing powers of l/M. 

5 It may be remarked in passing that the difference between l and E, is the energy re- 
quired to “polarize” the lattice, i.e., it is the work done against the restoring forces, Mw&, , 
in displacing each x,, from zero to 5 “. (‘) Comparison of (31) and (37) demonstrates that two 
thirds of the gain in electron-lattice interaction energy (as given by E) has to be returned 
to the lattice in the form of vibrational potential energy, leaving a net binding energy, 
E, 7 (X)E. This numerological feature is also characteristic of Pekar’s solution (see Ref. 
1, Chapter II). 
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holds. In this case (18) is to be solved by a perturbation expansion in powers of 
J. To the first order in J, the self-consistent solutions are found to be 

(44) 

with 

E = A2/Mwo2 - 2J 

E’“‘(xl, a**, xiv) = -A2/2Mao2 
(45) 

and no an arbitrary site. Since the minimum energy of the band-type solution is 
still given by (36)) the polaron binding energy is 

E, = A2/2Mt.o,2 - 2J. (46) 

From (46) it is seen that the quantity A2/2Mut is the maximum binding energy 
of the polaron, attained in the limit of an infinitely narrow electronic band width 
(J = 0). Both from (41) and (44), it is clear that the ratio of this maximum 
binding energy to the electronic bandwidth determines the size of the polaron. 

MOLECULAR-CRYSTAL POLARIZATION (MCP) MODEL 

It is finally of interest to discuss an alternate molecular-crystal model-to be 
designated as the “Molecular-Crystal Polarization (MCP) Model”-which is 
closely related to the standard continuum-polarization model, but in addition 
takes explicit account of the discreteness of crystal structure. 

The host crystal of the MCP model is the three-dimensional analog of the one- 
dimensional molecular-crystal described at the beginning of this paper. The lat- 
tice vibrations consist, as before, of the internuclear vibrations, x, , of the in- 
dividual diatomic molecules; the only difference is that the site-index, g, is now 
a three-dimensional lattice-site vector.6 

The interaction term of the MCP model is taken to have the form 

Hint = -A C Xo’/I g - g’ I2 (47) 
0’ 

where the sum goes over g’ # g. This basically long-range interaction, which 
replaces the short-range interaction 

Hint = --AX, = -A C 6,,lX,l (48) n’ 

of the previously discussed one-dimensional model, in effect, invests the displace- 
ments, x, , with a dipolar character; in line with this property, the interaction 

6 When appearing as subscripts, lattice-site vectors, g, g’, etc., will be denoted by light- 
face i-Oman letters. 
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is seen to depend on the inverse square of the distance between the electron site, 
g, and the “dipole” site, g’. 

The principal difference between (47) and a real electron-dipole interaction is 
that (47) is a scalar interaction involving a scalar dipole moment, Z, , in place 
of the vector-dipole moment of the real interaction. However, as will be seen 
below, this feature does not invalidate the correspondence of the MCP model 
with the standard continuum-polarization model. 

Finally, it is necessary to generalize the overlap term of (9) so as to apply to 
the three-dimensional case. The most obvious such generalization is the replace- 
ment of J(u,+~ + a,.-& by 

where the relative site-vector, h, goes over nearest neighbors. 
Introducing these modifications into Eq. (9), one has 

(49) 

In order to exhibit the relationship of (49) to the continuum-polarization 
model, it is desirable to express the vibration coordinates in terms of normal 
modes.’ 

x, sin(k.g + 7r/4). 

Introducing (50) into (49), one obtains, after some algebra 

[in& - F(-&$ + ~Mu~p~) + &y2A si4k.g + n/4)] (51) 

*a,[**- qtc ---I + J&z,+~(... qk . ..) = 0 
0 

where, with f a relative site-vector, 

Ah = A 7 cos(k.f)/f2 (52) 

7 For the sake of straightforwardness of enumeration, the sample will be assumed to 
have the shape of a cube, each side of which has a length equal to (2G + 1) lattice spacings 
(with G integral), so that ii = (2G + 1)3. The permissible values of the Cartesian compo- 
nents of k are, then, k; = 2a4(2G + I), where -G S K S G. With these specifications, the 
transformation given by (50) is orthogonal and hence immediately applicable to (49). It 
may be remarked here that the particular choice of transformation coefficients, sin (k. g + 
r/4), is the same as that employed by Pekar and Buimistrov (2). 



STUDIES OF POLARON MOTION 337 

use having been made of the fact that, for the simple monomolecular cubic crystal 
under consideration, lattice sums involving odd functions of f vanish. 

It will now be noted that, in the continuum approximation (in which k is to 
be restricted to magnitudes small compared to those of reciprocal lattice vectors), 
the sum in (52) may be approximated by an integral, i.e., 

Furthermore, in the spirit of the continuum approximation, one may introduce 
the three-dimensional analog of the expansion (lo), i.e., 

(54) 

which, when substituted into the last term of (51)) yields JVg2as . The continuum 
approximation to (51) is thus 

+ F (z$) qk (;)l” sin(k.g + r/4)] (55) 

X a,( - * . qk . . . ) + JV,‘a, = 0. 

In order to bring (55) into a more standard form, it is desirable to introduce 
dimensionless oscillator coordinates 

in terms of which (55) becomes 

where 

H= --&,“+~f$’ 
) 

+ c CkQk ($y’ sin(k.g -I- */4) (58) 

with 

and 

m* = fi2/2J (59) 
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(60) 

Comparison with the continuum-polarization Hamiltonian (given, e.g., in Ref. 
6) demonstrates a complete equivalence, provided that the interaction constant, 
A, hitherto unspecified, be set equal to8 

A = Muzpe2 1’2 

( > 7r3a 
(61) 

where /3 = l/e, - l/~(e~ and E representing the high-frequency and static di- 
electric constants, respectively). 

The above-established identity of the MCP and continuum-polarization 
models demonstrates that, in the degree of approximation commonly employed 
in polaron theory-i.e., in the continuum approximation-systems of different 
crystallographic constitution may nevertheless be equivalent. This equivalence, 
of course, gets lost when the theory is applied to problems in which distances 
comparable to lattice spacings are important, as is the situation for the small 
polaron. In the case of a real ionic crystal, it then becomes necessary to consider 
the coupling of the electron, not only to the longitudinal optical modes, as is 
done in the continuum-polarization model, but also to the two transverse op- 
tical and three acoustical branches. Hence, any small-polaron treatment in which 
the electron is assumed to interact with but a single branch of vibration modes, 
will necessarily be based on a model, which, like the MCP-model, differs phys- 
ically from the real case. However, as stated earlier, the basic point of view of 
this and the following paper is that the general features of the small-polaron 
problem are sufficiently independent of the details of the physical system, so 
that the methods developed for treating the simplified models should eventually 
be applicable to the real situation. 

APPENDIX I 

The motion of the electron (or hole) in the one-dimensional molecular-crystal 
medium, described in the text, will here be formulated in terms of the tight-bind- 
ing approximation. In analogy with the corresponding treatment for atomic sites, 
one assumes that the one-electron potential may be written as a sum of “molecu- 
lar” potentials, viz., 

where a is the (one-dimensional) unit lattice vector and where the molecular 

* The occurrence in (61) of the lattice spacing, a, arises from the circumstance that, in 
the present work, k is expressed in units of l/a, whereas the wave-vector, K, of Footnote 7 
is given in cgs. 
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potential, U(r, x,) is assumed to be sufficiently short-range so that, e.g., 

U(a, x,) << U(0, 2,). U-2) 

The basic electron wave functions, cp(r - na, xn), appropriate to the tight-bind- 
ing approximation, are obtained as solutions of the equation 

L 
- z v2 + U(r - na,x,) 1 4(r - na,xn) = E(x,)$(r - na,x,J (I-3) 

with eigenvalues E(x,), which all depend upon the local internuclear displace- 
ment coordinate in the same way. The total wave function of the system is then 
represented as a superposition 

J/(r, 21, . . . , x,) = C 4x1, . . - , x&h(r, x4. (1-4) n 

Equations for the a,(xl , * * * , x,) are obtained by substitution of (I-4) into the 
Schrodinger equation of the system9 

ifi!!!!! = 
at - &L V2 + 2 U(r - na,xn) 

?%=I 

+ 8 (- & g2 + f J&x:)] # (1-5) 

followed by multiplication on the left with &*(r, x,) and integration over the 
electron coordinate, r. This procedure gives 

= 
=U 4*(r - na, x,)U(r - pa, x&(r - ma, x,) dV 2 1 

(I-6) 

*a?nh ) * * - , x,> - & F /4*h - na, xc> 

. 2 &Qr - ma,xA da, 
z + Gn 

fkn m 

T,, = 1 +*(r - na, x,)+(r - ma, x~) dV 
U-V 

= Ln + smn - 

9 Hint is implicitly contained in (I-5) by virtue of the x,, dependence of the U’s. 
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The S,, are the well-known nonorthogonality integrals which will here be as- 
sumed to differ from zero only for nearest neighbors and to be small compared 
to unity; also, with normalized (p’s, one has S,, = 0. 

It is now expedient to multiply (I-6) by the matrix ?,m , which is the inverse 
of Tm , as defined by the relation 

c fk&m = Ln (I-8) 
P 

and as given to first order in the S,, by the expression 

is,, = 6,, - s,, + . ’ . . 

One then obtains in place of (I-6) 

(I-9) 

Y = CT [s nz +*(r - Za,zL)U(r - pa,x&(r - ma,sh) dV 
z,m 1 

P#m (I-10) 

*a?nh, * - * , %I> - 2&f z Ed 1 +*(r - la, a> 

2 Wr - ma,x,) da, a”+(r - ma, xm) . 
dX?Tl z-+ ax2 

a,,, dV. 
m m 1 

The rather complicated expressions on the right-hand side of (I-IO) may be 
simplified by the introduction of assumptions appropriate to the case of tight- 
binding. The principal assumption is that of the smallness of overlap integrals 
i.e., integrals involving electron wave functions localized at different sites. These 
integrals are of two types: nonorthogonality integrals, as given by the S,, , and 
those terms on the right-hand side of (I-10) for which 1 # VZ. In line with the 
above assumption, all terms containing products of more than one such overlap 
integral will henceforth be discarded. 

When the terms of (I-10) involving the U’s are subjected to this procedure, 
they reduce to the expression 

=CS 
+*(r - m, x,> Uh - pa, x&(r - m,xm) dV 

m 1 ~,(a, - -. , 2,) 
Pfm 

- C fL [/ 4*(r - ma, xAU(r - pa, x,Mr - m, xm:m) dV 1 (I-11) 

PZ 

-am(xl, . * * ) xp>. 

At this stage we may employ a second assumption, also appropriate to the case 
of tight-binding, which involves the local character of the molecular potential 
U( r - pa, x,) . Specifically, it will be assumed that those terms in (I-l 1) which 
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contain products of wave functions and potentials localized at different sites are 
an order of magnitude smaller than terms for which two (or more) such factors 
refer to the same site. It then follows that the first member of (I-11) may be 
approximated by 

=[I 
@*(r -Ina, x,) U(r - na, x,)+(r - ma, 2,) dV 1 a,(~~, . . . , 2,) 

m#n 

. + [ 1 
(I-12) 

1 dr - na,x,) 1’ ( C U(r - pa, x,1) dV 1 ~~(21, f-v ,x,1 
P#n 

(i.e., one of the two summation indices gets suppressed), and that the second 
member of (I-11) may be dropped.” 

Applying a comparable simplification to the terms of (I-IO) which contain 
derivatives of the cp’s with respect to the internuclear coordinates, one obtains 

f-i2 -~ 
2M [s 4*(r - na, 2,) a24(r - na, x,) 

ax,2 1 GL(Jh, * * * ) x,> 
(I-13) 

a, dV 1 
- & C s,, [ / +*(r - ma, xm) a”‘(r ixma’ ‘,) N] a, 

m ??12 

in which use has been made of the fact that, since +(r - na, x,) is nondegenerate, 
and hence, real, the integral J 4*(r - na) (a/ax,)4(r - na) dV vanishes. 

Equation (I-13) is listed here primarily for reference purposes. In line with 
the standard procedure in which terms involving derivatives of electronic func- 
tions with respect to nuclear coordinates are considered to be small (they repre- 
sent, in essence, the effect of the nuclear kinetic energy on the localized electron 
wave functions), and also in view of the fact that the molecular-crystal model, 
itself, constitutes a simplified abstraction of the real problem, (I-13) will herewith 
be discarded. 

With these approximations, the right-hand side of (I-10) reduces to (I-12). 
Introducing the notations 

W,(Xl, . * * , 2,) = s I dr - na, x,1 I’[C U(r - pa, x,)] dv, 
P#n 

J(x, , &G,) = / +*(r - na, 2,) U(r - na, x,)+(r - ma, z,) dV (I-15) 

10 In particular, it is smaller than the second sum of (I-12) by a factor of the order of a 
nonorthogonality integral, S,, . 
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and assuming J(x, , x,) appreciable only for nearest neighbors, one may write 
(I-10) in the form 

RECEIVED : May 11, 1959 

REFERENCES 

1. See, for example, S. I. PEKAR, “Untersuchungen Uber die Electronentheorie der Kri- 
stalle.” Akademie-Verlag, Berlin, 1954. 

2. S. I. PEKAR AND V. M. BUIMISTROV, J. Tech. Phys. U.S.S.R. a,2478 (1957) (Soviet Phys- 
ics translation). 


