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Studies of Polaron Motion

Part I. The Molecular-Crystal Model

T. HoLsTEIN

Westinghouse Research Laboratories,
Pitisburg, Pennsylvania

In this paper is described a model for polaron motion which incorporates, in
simplified form, the principal physical features of the problem. The (crystal-
line) medium, within which a single excess electron (or hole) is contained, is
taken to be a one-dimensional molecular crystal, consisting of diatomic molec-
ular sites; each site possesses a single vibrational degree of freedom, repre-
sented by the deviation, z, , of its internuclear separation from equilibrium.
The motion of the electron in this medium is treated by a tight-binding ap-
proach, in which the wave function is represented as a superposition of local
“molecular’’ funetions, ¢(r — na, z.). In line with the z, dependence of the
¢’s, it is also assumed that the ‘““local’’ electronic energy, E. , (which, in the
conventional tight-binding theory, has one and the same value for all sites)
depends (linearly) on «. . This dependence gives rise to electron-lattice inter-
action; alternatively, it may be regarded as removing the electronic transla-
tional degeneracy, characteristic of the undistorted crystal, and thereby pro-
viding the possibility for electron trapping.

On the basis of the above-described model, the zeroth order adiabatic treat-
ment of the polaron problem is developed. For values of the parameters such
that the linear dimension of the polaron is large compared to a lattice spacing
(“large’’ polaron), an exact solution is obtained; the correspondence between
it and Pekar’s zeroth-order solution is established. The conditions under
which the size of the polaron becomes comparable to a lattice spacing (“‘small”’
polaron) are discussed. Finally, by way of exhibiting the relationship of the
molecular-crystal concept to the real situation, a description is given of an
alternate molecular-crystal model which, in the case of the large polaron, is
completely equivalent to the continuum-polarization model of conventional
polaron theory.

This note presents a description of a one-dimensional molecular-crystal model
which will form the basis for a number of studies of the polaron problem, to be
reported subsequently.' It is felt that the model, although physically different

1 As exemplified by the following paper (to be referred to hereafter as 1I), these studies
will be focussed primarily on the case of the ‘‘small”’ polaron, whose linear dimensions are
of the order of a lattice-spacing.
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from the cases encountered in practice, corresponds conceptually to them in
sufficient degree, so as to merit investigation,

Let us first recall the principal features of the real polaron problem. The
physical situation is that of a slow electron (or hole) in an insulating crystal.
The Hamiltonian of the system may be regarded as a sum of three terms, H,,
H,, and H;,.. H,, the electronic component, consists of the kinetic energy of
the electron and the effective one-electron periodic potential. H , the lattice
component, is the sum of the kinetic energy of the lattice particles and the lattice
potential energy; the latter is taken as a known (invariably quadratic) function
of the particle displacements from their equilibrium positions. Finally, Hj,. , the
electron-lattice interaction, is a function of the electron coordinate and the lat-
tice displacements; the latter dependence is usually assumed to be linear.

In the standard theory of the motion of slow electrons in insulating crystals,
H s is treated as a small perturbation, giving rise to electronic transitions (scat-
tering) in which lattice-vibration quanta are simultaneously absorbed or emitted.
The basic problem of polaron theory is that Hiy: is often too large to be treated
as a perturbation, but must be considered in zeroth order. Probably the most
important physical concept of the theory is that of “self-trapping” of the elec-
tron. Qualitatively, this may be understood as follows.

Let us imagine that an electron is momentarily fixed at some point of the crys-
tal. As a result of electron-lattice interaction, the surrounding lattice particles
will be displaced to new equilibrium positions; according to general mechanical
principles, the “induced” displacements will be such as to provide a potential
‘“well” for the electron. If the well is sufficiently deep, the elecrton will ocecupy
a bound state, unable to move unless accompanied by the well, that is to say,
by the induced lattice-deformation. The unit consisting of the electron, together
with its induced lattice deformation, is called the “polaron.”

With these preliminaries out of the way, the molecular-crystal model may now
be described. In the absence of the electron, the system is taken to be a linear
chain of N identical diatomic molecules, whose orientations and centers of gravity
are fixed, but whose internuclear separations are allowed to vary. The “lattice-
vibrations” thus consist of the vibrations of the individual internuclear separa-
tions. For the time being, the latter will be assumed, in the absence of the elec-
tron, to be uncoupled. If, in addition, the potential energy curve of an individual
molecule be assumed parabolic, the lattice Hamiltonian reads

o= L3 i+ LS aratn? (1)
L 2Mn=1pn 2"=1 0 Yn

2 The term owes its origin to the circumstance that the problem was first considered for
the case of polar crystals, in which the interaction of the electron with the optical polariza-
tion modes 18 especially strong. However, in principle, the self-trapping phenomenon is
not limited to polar erystals, but may apply to any medium in which H;y, is sufficiently
strong, relative to H, and Hy, .
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where 2, is the deviation of a typical internuclear separation from its equilibrium
value, p, = (%/9)3d/dz. is the associated canonical momentum, M the relative
mass, and w the harmonic vibration frequency.’

The motion of a single electron (or hole) in the above-described one-
dimensional molecular-crystal medium will here be formulated in terms of the
tight-binding approximation. The details of this formulation are presented in
Appendix I; the principal features are as follows. The state of the system is
expressed as a linear superposition

t//(l', Tr, "y xn) = Zaﬂ(xl, T xn)d’(r — na, xn)7 (2)

of “molecular” electron wave functions, ¢(r — na, x,), each localized about a
particular (nth) molecular site (a is a unit lattice vector) and depending upon
the internuclear coordinate, x, , of that site. The coefficients of the superposition,
a,(xy, x2, -+, Zx), are each functions of all the internuclear coordinates, z, ,
x2, -+, zx . The equations which they obey are obtained from the time-de-
pendent Schrédinger equation of the system by a standard “projection” pro-
cedure. With approximations appropriate to the tight-binding case (smallness
of overlap and nonorthogonality integrals) and to the large mass ratio of elec-
trons and nuclei, they take the form (see I-16)

. 0 A 1 2 2
[lﬁ&"“z< +§Mw0xm>_E(xn) _W(xly"'yxn):l (3)

m - 27"4 6xm2
X an(xl > T xn) = (Z) J(xn ’ xn:kl)an:tl(xl y "ty xﬂ)’
+

where the sum on the right-hand side goes over the two neighbors of a given nth
site. The quantities E(x,), W.(x1, ---, zx), and J(Z,, Tnya) are defined by
appendix equations (I-3), (I-14), and (I-15), respectively. Physically, E(z,) is
the electron energy of an isolated ‘“molecular-ion,” i.e., of the system of the
electron and an isolated molecule; in conformance with standard concepts of
molecular theory, it is to be regarded as a function of the internuclear displace-
ment coordinate of the molecule. W,(xy, - - - , 2x) represents the perturbation on
E(x,) due to the presence of the other molecules. Finally, the J(x, , Zn11) are
overlap integrals, depending on the ¢’s of typical neighbor sites n, n & 1, and
are hence functions of the internuclear coordinates x, and .,y of these sites.
Let us at this point note that, if the internuclear coordinates are all “frozen”

3 In some studies (e.g., II), coupling terms of the form
Hc = }é Mw12 21:1;=1 Zn xn+l,

will be introduced into (1). It may be remarked here that the neglect of coupling is a sim-
plification of a type comparable to that often employed in treatments of polaron theory,
in which the actual optical frequency spectrum of a polar crystal is replaced by a single
frequency (Einstein model).
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at one and the same value, say z, the system becomes equivalent to the conven-
tional atomic tight-binding case, in which the localized states, ¢(r — na, )
form a degenerate set. Then, by virtue of the translational symmetry of the
system, the stationary solutions of (3) take the standard form

ad = ™", (4)

with eigenvalues
E, = E(z) + W + (N/2)Mw2’ — 2J cos F, (5)
[where W = W{(x, z, ---) and where J(x., T.11) is set equal to a negative con-

stant, —J, in recognition of the fact that the potential, U(r — na, z,), which
enters into the overlap integral, (I-15), is intrinsically negative], and group
velocities
_adE,  2Ja .
Ve =iap = T 7 Sn k. (8)
The system thus exhibits typical band character; in particular, at the band
extrema (k = 0, 7), the motion may be described in terms of an effective mass

-1
m* = <% %v—I:) = +#/2]d" (7)

In proceeding further, it is desirable to introduce a number of simplifications
into (3). These are:

(a) The neglect of the energies, W,(2y, -« , ax).

(b) The neglect of the z-dependence of the J(x., T.y1); this simplification
means that the J (&, , Z.y1) are all to be taken equal to a single eonstant, —.J.

(¢) The z-dependence of E(z.) is taken to be linear, i.e.,

(the sign being chosen negative, and the additive energy constant being set
equal to zero, both in the interests of notational convenience).

The physical significance of (a) is that, when the electron is localized on a
given molecular site, the perturbation of its expectation-energy due to the poten-
tials of other molecules is assumed small—an assumption which is appropriate
to the tight-binding case. Its employment has the effect of restricting the z-de-
pendence of the expectation-energy of a localized electron to a single coordinate,
x,—that of the occupied site. This restriction appears to be a special feature of
the molecular-crystal model; in particular, it does not apply to the real situa-
tion, in which the energy of a localized electron depends upon lattice displace-
ments at a number of more or less neighboring sites. However, at the present
time, it is not at all established whether this difference is significant, as far as
physical results are concerned. In fact, the point of view of the present studies is
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that such questions will best be answered by a systematic consideration of various
hypothetical cases, starting with the simplest. In the spirit of this approach,
Wa(y, - -+, xy) will be neglected, as a suitable first step.

Similarly, the procedure of taking the J’s equal to a constant may be inappli-
cable in some cases. In principle, the J’s do depend on the z’s mainly via the
local wave functions, ¢(r — na, x,); however, as will be seen, e.g., in II, the
primary physical property of the J’s is their order of magnitude relative to
other energies. Hence, at least in the initial phases of the program, their z-de-
pendence will be neglected. Finally, with regard to assumption (c), it may be
pointed out that the term E(x,) plays the role of electron-lattice interaction; its
approximation by (8) leads to a linear dependence of this interaction of the
lattice-vibration coordinates, a feature which is characteristic of all treatments
of the problem (known to the present author).

With the simplifications discussed above—namely, the neglect of the W’s, the
equating of the J’s to a constant (—J), and the use of (1.13), the equations of
“motion,” (1.3) reduce to

[zﬁé—Z( o + = Mwox )—{—Am]a(wl s Tp)
ot ‘m 2M dz,? " I (9)

+ J(an+1 + an—l) = 0.

Equation (9) will form the basis for a number of studies of the polaron prob-
lem (the first of which is presented in II). These studies will be focussed pri-
marily on the case of the “small”” polaron, the linear dimensions of which are of
the order of a lattice spacing. For introductory purposes, it will be convenient at
this time to discuss the alternate case of the “large” polaron. In this case, the
linear dimensions of the polaron are sufficiently large compared to a lattice spac-
ing so that the “wave function,” a,(x1, ---, ,) may be taken to a be a con-
tinuous, differentiable function of a continuous position variable, with, e.g.,

da, | 1d%,

an+1=an+—+§an2'

(10)

The present discussion will be concerned with the adiabatic theory of the large
polaron as developed by Pekar (7). Specifically, it will be found that the “molec-
ular-crystal” analog of the Pekar-type adiabatic solution (see Ref. 1, Chapter
II)—i.e., that solution which, with neglect of the vibrational kinetic energy,
minimizes the sum of electronic and vibrational potential energies—may be ob-
tained exactly in closed form.

The starting-point is the system of equations

E(xly ] xN)a"(xla e :xN) = (}éZngxﬂf - Axn)an(xla e 7xN)

(11)
- J(an—l + an——l),
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which, subject to the neglect of the vibrational kinetic energy operator,

# &
T AM 4 o’
is the stationary equivalent of (9). Here, the energy eigenvalue, E(x;, - -+ , Ty),
is a parametric function of the vibration coordinates, z;, --- , zy ; one seeks
those values, 23, - - - , 2", for which E(z;, - -+ , zy) is a minimum.

Upon multiplying (11) by a,* and summing over n, one obtains
E(xli ot 7xN) = % ZMwOmeZ - ZAxnlanl2

+ Z J(an—l + an+1)an* (12)

where use has been made of the normalizing condition

;mn P =1. (13)

Upon differentiating (12) with respect to a given vibrational coordinate, x,
[account being taken of (13) by the introduction of a Lagrange multiplier, A]
and rearranging the summations in the J-proportional terms, one obtains

6-E'(xl s *

. ’x
9z, ) Mw'z, — A a,

*
+ Y "’;‘; [~ AZaty — TG + 1) + Aaa]  (14)

da,
+ Z az. [-Az.a,* — J(aj—l + aﬁ+1) + Aa.*|
n D
(plus “boundary” terms, proportional to products of the a,’s at n» = 0 and
n = N, which, as verified below, may be assumed to vanish). One now substi-
tutes (11) and its complex conjugates into the first and second square brackets
of (14), respectively, obtaining for the last two terms of (14) the expression.

*
I:E(:cl, cee Ty) — %Zngxmz + A:] E(anaa" + a,.*g—zi‘>,
m y4

n 63:1,

which is obviously zero because of (13). Equation (14) then reduces to

B, s _ proty, — Ala, P (15)
0x,
Upon setting the right-hand side of (15) equal to zero for all p, one obtains for
the ¥ the relations
0 _Al ay’ |°
? Mox?

(16)
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where a(o) is that solution of (11) which corresponds to z, = z. Upon substi-
tuting (16) into (11), and introducing the quantity

—e=Em, - ,an) — Y% 2 Mwiz®" + 2J (17)
ohe obtains
A2
(M sla, [P - e) tn + J (i1 + Gn1 — 20,) =0, (18)
where the superscript, “(0),” has been dropped with the understanding that
a, will henceforth denote that solution of (11) for which E(xy, ++-, zx) is a
minimum.

At this point it is desirable to make use of the ‘“continuum’ approximation,
(10) (the applicability of which, as discussed above, characterizes the case of
the large polaron). The introduction of (10) into (18) yields

2
(MA2|anI >an+Jaan—0- (19}

Upon multiplying (19) and its complex conjugate with da,*/dn and da,/dn,
respectively, and adding, one obtains

A? da, da,*

mlan|4_€|anl+e] an—Cl (20)

where C is a constant to be determined presently.
In proceeding further, it is expedient to write a, in the form

an = b, e (21)

where b, and 8, are real (and b, positive, as well). Introducing (21) into (19),
and equating real and imaginary parts to zero, one finds for the imaginary part

2
dn d

a first integration of which yields

dﬁn 2 _
J’)? bn = C2 (23)

where C; is another constant, which will now be shown to vanish.
Introducing (21) and (22) into (20), one has

2
b w8 18]

At this point, let us impose the condition that b, differs from zero only in a limited
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region of the specimen, so that as | n | — «, b, — 0 and db,/dn — 0. It is then
immediately seen that, in order for this condition to be obeyed, it is necessary
that both C; and Cy vanish. One thus arrives at the result that 8, is equal to a
constant (which may for convenience be set equal to zero, so that b, = a,) and
(23) reduces to

A2 4 2 dan : —
man — €Q, + J (—17[ = 0. (24)
Introducing the notations
A2
2 = ——
* T IMuwtT’ (25)
Y = e/J, (26)
one may write (24) in the form
day, _ 2 2 2y1/2
T = Ealy — a'a)" (27)
The integration of (27) is straightforward, the result being
U = g sechly(n — n,)] (28)

where no is a constant of integration, indicative of the fact that the centroid of
the polaron may be located at an arbitrary point in the specimen.

The application to (28) of the normalizing condition, which in the continuum
approximation, reads

f a,. dn = 1,
yields the relation
AZ
2 p—
V=92 = reid (29)
50 that
A2 1/2 ( AZ ) :I
an - (W) Sech[ m (n - n(]) (30)
and
1
€ = 1—6:7 (Az/Mwoz)z. (31)

Inserting (31) and (16) into (17), one has for the total energy (exclusive, of
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course, of the vibrational kinetic energy)

1
E(x{o), ey, xls,vo)) = E(O) = —2J - m (AZ/MO-’OZ)2

1 A2 2
+ é Mw02 (Mw02> f an4 dn
B 1 A2 2 1 A2 2
=¥ i (M—wo2> HE7v, (M_w)

1 A2 2
= =2/ — —|-—].
48] (Mwoz)
It should at this point be noted that (20) has an alternate solution, namely,
the one which was excluded by the requirement [stated in the paragraph subse-

quent to (23)] that a, — 0 as [n| — «. If this condition be withdrawn, (20)
is also solved by

(32)

a, = N—1/2 eikn (33)
with
e = —JkK (34)
(plus the term (1/N)(A*/Mwy’) which is to be discarded, since it is of order
N7). Inserting (34) into (17), and continuing to discard terms of order N7,
one has
E@D, - 2®) = E® = —2J + JK (35)

where the superscript, (B), is used in recognition of the fact that (33) is an un-
bounded, “band-type,” solution of the form discussed earlier [see Eq. (4) and
subsequent].

The minimum energy for the band-type solution is attained when k& = 0, and

1s
EE&) = —2J. (36)

Comparing (36) with (32), we observe that the energy of the bound state is
lower than that of the free state by an amount

1
Ep = m (AZ/MOJ(]Z)Z. (37)

E, may be considered to be the zeroth order binding energy of the large polaron,
i.e., the binding energy obtained in the approximation in which the vibrational
kinetic energies are neglected.*

4 For formal purposes, it is convenient to consider the vibrational mass, M, as a variable
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With the aid of (30), explicit formulas may be obtained for a number of
physical properties of the large polaron state.

(a) The equilibrium vibrational displacement, z, given by (17) and (30),
is

T Mo 8Maw?J AM worJ

(b) The potential-well, within which the electron is trapped, is described by
the expression

Vin) = 4 |a, | = Msechzlz A* (n — no):l. (39)

2 2
20 = 4 4 sechz[—A— (n — ng):l. (38)

M w02 8J 4M wo2J
Its maximum value, achieved at the polaron centroid, no , is
(4 M)’
Vmax - _“SJ—" (40)

which is twice the “electronic binding-energy,” ¢, as given by (31), and six times
the net binding energy of the polaron, as given by (37).5

(¢) The linear dimension, L, , of the large polaron, as may be seen from (30),
(38), or (39), is of the order

4J
where a is the lattice spacing. It is in particular to be observed that the condi-
tion for the existence of the large polaron, for which L, >> a, is

2J > A'/2Mwy, (42)

i.e., the electronic “bandwidth,” 2J, is to be large compared to A?/2M .
The physical significance of the quantity, 4°/2M wy, may be understood by
considering briefly the case of the small polaron, for which the opposite condition

2J K A*/2Mw (43)

parameter. If, in this “thought-variability,” the “‘restoring-force constant,” Mw?, be kept
fixed, so that the wo < M~1/2, B, gives the polaron binding energy in the limit of M — «.
It is then apparent that in the further development of the adiabatic theory, higher-order
corrections to E, oceur in increasing powers of 1/M.

5 It may be remarked in passing that the difference between e and E, is the energy re-
quired to ““polarize’’ the lattice, i.e., it is the work done against the restoring forces, Mwe’z. ,
in displacing each x, from zero to zD. Comparison of (31) and (37) demonstrates that two
thirds of the gain in electron-lattice interaction energy (as given by e) has to be returned
to the lattice in the form of vibrational potential energy, leaving & net binding energy,
E, = (}4)e. This numerological feature is also characteristic of Pekar’s solution (see Ref.
1, Chapter II).
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holds. In this case (18) is to be solved by a perturbation expansion in powers of
J. To the first order in J, the self-consistent solutions are found to be

J

a, = 5n,n0 + m

[5n~l.nn + 6n+1,ng] (44)

with
€ = 14.2/1‘4'(»02 - 2J

45
E(O)(Clil, Ty, .’EN) = —A2/2Mw02 ( )

and mp an arbitrary site. Since the minimum energy of the band-type solution is
still given by (36), the polaron binding energy is

E, = A*/2Mw’ — 2J. (46)

From (46) it is seen that the quantity 4°/2Mwy’ is the maximum binding energy
of the polaron, attained in the limit of an infinitely narrow electronic band width
(J = 0). Both from (41) and (44), it is clear that the ratio of this maximum
binding energy to the electronic bandwidth determines the size of the polaron.

MOLECULAR-CRYSTAL POLARIZATION (MCP) MODEL

It is finally of interest to discuss an alternate molecular-crystal model—to be
designated as the “Molecular-Crystal Polarization (MCP) Model”—which is
closely related to the standard continuum-polarization model, but in addition
takes explicit account of the discreteness of crystal structure.

The host crystal of the MCP model is the three-dimensional analog of the one-
dimensional molecular-crystal described at the beginning of this paper. The lat-
tice vibrations consist, as before, of the internuclear vibrations, z,, of the in-
dividual diatomic molecules; the only difference is that the site-index, g, is now
a three-dimensional lattice-site vector.®

The interaction term of the MCP model is taken to have the form

Huw = —4 ;%'/l g—¢gl (47)

where the sum goes over g’ # g. This basically long-range interaction, which
replaces the short-range interaction

Hing = —AZy = —A 2 dpnrTur (48)
of the previously discussed one-dimensional model, in effect, invests the displace-
ments, x, , with a dipolar character; in line with this property, the interaction

6 When appearing as subscripts, lattice-site vectors, g, g’, etc., will be denoted by light-
face roman letters.
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is seen to depend on the inverse square of the distance between the electron site,
g, and the “dipole” site, g'.

The principal difference between (47) and a real electron-dipole interaction is
that (47) is a scalar interaction involving a scalar dipole moment, x, , in place
of the vector-dipole moment of the real interaction. However, as will be seen
below, this feature does not invalidate the correspondence of the MCP model
with the standard continuum-polarization model.

Finally, it is necessary to generalize the overlap term of (9) so as to apply to
the three-dimensional case. The most obvious such generalization is the replace-
ment of J(a,1 + a._1) by

J Zh: Agin

where the relative site-vector, h, goes over nearest neighbors.
Introducing these modifications into Eq. (9), one has

. a ﬁ2 62 ! 2]
I:mb—t ;( 50 oz -+ 5 Mwoxg)+Azg:xg,/|g g | (19)
'ag(w}i} "',.’Ezv) +tha0+h(wly "':ZN) = 0
In order to exhibit the relationship of (49) to the continuum-polarization

model, it is desirable to express the vibration coordinates in terms of normal
7
modes.

1/2 N
gy = (%) a; z, sin(k-g + w/4). (50)

Introducing (50) into (49), one obtains, after some algebra

.9 "9 2\ . .
[ﬁi 5~ ;( 50 39 + = Mwo ax ) + (N) Ay sin(k-g + 7!'/4)] (51)
gl qe -] +J2ag+h(... G +) =0

where, with f a relative site-vector,

Ay = A Zf} cos(k-f)/f* (52)

7 For the sake of straightforwardness of enumeration, the sample will be assumed to
have the shape of a cube, each side of which has a length equal to (2G + 1) lattice spacings
(with G integral), so that N = (2G + 1)3. The permissible values of the cartesian compo-
nents of k are, then, ks = 2rx;/(2G + 1), where —G < « < G. With these specifications, the
transformation given by (50) is orthogonal and hence immediately applicable to (49). It
may be remarked here that the particular choice of transformation coefficients, sin (k-g +
w/4), is the same as that employed by Pekar and Buimistrov (2).
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use having been made of the fact that, for the simple monomolecular cubic erystal
under consideration, lattice sums involving odd functions of £ vanish.

It will now be noted that, in the continuum approximation (in which k is to
be restricted to magnitudes small compared to those of reciprocal lattice vectors),
the sum in (52) may be approximated by an integral, i.e.,

A=A f cosk-£ ja¢ — ontA /. (53)

Furthermore, in the spirit of the continuum approximation, one may introduce
the three-dimensional analog of the expansion (10), i.e.,

ag+h—ag+2h T3 Z J»J (54)

which, when substituted into the last term of (51), ylelds Jv,a, . The continuum
approximation to (51) is thus

L8 i o
["‘52_‘;( SMagE T3 M‘””’“)
1/2
R ] @

X ag(+-vqp ) + JVSa, = 0.

In order to bring (55) into a more standard form, it is desirable to introduce
dimensionless oscillator coordinates

1/2
Q= (]-—l%ﬂ)> qr (56)
in terms of which (55) becomes
. 0
') —6%’ = Ha, (57)
where
M= g+ D5 (- i +0)
9 \12 (58)
-+ E CrQr (N) sin(k-g + 7"/4)
with
* = fit/2J (59)

and
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2 1/2
0, = — 24 (ﬁ) i (60)

k

Comparison with the continuum-polarization Hamiltonian (given, e.g., in Ref.
6) demonstrates a complete equivalence, provided that the interaction constant,
A, hitherto unspecified, be set equal to®

2, 2\ 1/2
A= (Mw0ﬁ6> (61)

m3a

where 8 = 1/e — 1/¢(es and e representing the high-frequency and static di-
electric constants, respectively).

The above-established identity of the MCP and continuum-polarization
models demonstrates that, in the degree of approximation commonly employed
in polaron theory—i.e., in the continuum approximation—systems of different
crystallographic constitution may nevertheless be equivalent. This equivalence,
of course, gets lost when the theory is applied to problems in which distances
comparable to lattice spacings are important, as is the situation for the small
polaron. In the case of a real ionic erystal, it then becomes necessary to consider
the coupling of the electron, not only to the longitudinal optical modes, as is
done in the continuum-polarization model, but also to the two transverse op-
tical and three acoustical branches. Hence, any small-polaron treatment in which
the electron is assumed to interact with but a single branch of vibration modes,
will necessarily be based on a model, which, like the MCP-model, differs phys-
ically from the real case. However, as stated earlier, the basic point of view of
this and the following paper is that the general features of the small-polaron
problem are sufficiently independent of the details of the physical system, so
that the methods developed for treating the simplified models should eventually
be applicable to the real situation.

APPENDIX I

The motion of the electron (or hole) in the one-dimensional molecular-crystal
medium, described in the text, will here be formulated in terms of the tight-bind-
ing approximation. In analogy with the corresponding treatment for atomic sites,
one assumes that the one-electron potential may be written as a sum of “molecu-
lar” potentials, viz.,

V(r, @, -, &) = 2 U(r — na, ) (I-1)

where a is the (one-dimensional) unit lattice vector and where the molecular

8 The occurrence in (61) of the lattice spacing, a, arises from the circumstance that, in
the present work, k is expressed in units of 1/a, whereas the wave-vector, «, of Footnote 7
is given in cgs.
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potential, U(r, z,) is assumed to be sufficiently short-range so that, e.g.,
Ula, z,) < U(0, z,). (I-2)

The basic eleetron wave functions, ¢(r — na, x,), appropriate to the tight-bind-
ing approximation, are obtained as solutions of the equation

[— 2% V! 4+ U(r — na, x,,)] ¢(r — na,z,) = E(z,)¢(r —na,z,) (I-3)

with eigenvalues E(«,), which all depend upon the local internuclear displace-
ment coordinate in the same way. The total wave function of the system is then
represented as a superposition

1//(1', Ty, © xn) = Z an(xl y T, xn)¢n(r7 xn)- (1'4)

Equations for the a,(x1, - -+, 2,) are obtained by substitution of (I-4) into the
Schrodinger equation of the system’

2 n
ih — W _ l:—— 1 VP4 > Ulr — nagz,)
n=1

ot 2m
2 62
+;( 53 Fu2 -+ = Mwox,.)]w

followed by multiplication on the left with ¢,*(r, x.) and integration over the
electron coordinate, r. This procedure gives

o B9
anm&—z 2M64—Mm% — E(zn) {an(z1, -+, 7p)

r

(1-5)

=3 l:f o*(r — na, z,)U(r — pa, z,)¢(r — ma, T,) dV]
pFm (1—6)
2
On(T1, 0, Tp) — 2—ﬁM ;fqb*(r — na, T,)
3o(r — ma, 2m) 90m ’¢(r — ma, xm):|
[2 e + an S ™ A— dV

where

Tom = | ¢*(r — na,z,)¢(r — ma, z,) dV
/ (17)

61"” + Snm .

$ Hiy is implicitly contained in (I-5) by virtue of the z. dependence of the U’s.
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The S.. are the well-known nonorthogonality integrals which will here be as-
sumed to differ from zero only for nearest neighbors and to be small compared
to unity; also, with normalized ¢’s, one has S,, = 0.

It is now expedient to multiply (I-6) by the matrix T,n , which is the inverse
of T , as defined by the relation

4

E Tinpm = Onm (1-8)
P
and as given to first order in the S,, by the expression
Tnm = anm - Snm + Tt . (I-g)
One then obtains in place of (1-6)

[:zfi-a——z:(——ﬁi & +—1Mw2x2>—-E’(x):|a(x e Tp)
a4 oM gz 270 SO It A

= ZZ T.. [f ¢*(r — la,2,)U(r — pa,z,)o(r — ma, z,) dV:I

e (1-10)
# =
-a,,.(xl, ey, Ilip) - QZ—M Z'Zm Tnl f ¢*(r - la,xl)
0¢(r — ma, x,) 0y , O°d(r — ma, ) :|
[2 B T e T e

The rather complicated expressions on the right-hand side of (I-10) may be
simplified by the introduction of assumptions appropriate to the case of tight-
binding. The principal assumption is that of the smallness of overlap integrals
i.e., integrals involving electron wave functions localized at different sites. These
integrals are of two types: nonorthogonality integrals, as given by the S, , and
those terms on the right-hand side of (I-10) for which ! # m. In line with the
above assumption, all terms containing products of more than one such overlap
integral will henceforth be discarded.

When the terms of (I-10) involving the U’s are subjected to this procedure,
they reduce to the expression

> U ¢*(r — na,z,)U(r — pa, z,)$(r — ma,z,) dV] (1, -+, 2p)
pH#m

— 22 Sum I:f ¢*(r — ma, z,,)U(r — pa, z,)d(r — ma, z,,) dV:l (I-11)

pFEm
'am(xl y .. ’xp)A

At this stage we may employ a second assumption, also appropriate to the case
of tight-binding, which involves the local character of the molecular potential
U(r — pa, ,). Specifically, it will be assumed that those terms in (I-11) which
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contain products of wave functions and potentials localized at different sites are
an order of magnitude smaller than terms for which two (or more) such factors
refer to the same site. It then follows that the first member of (I-11) may be
approximated by

|:f ¢*(r —na,2,)U(r — na, z,)¢(r — ma, z,) dVJ (21, -+, 2p)
m#En

[ [0 = ma) (3 UG = b)) ¥ Jantar, o2
pH#n

(i.e., one of the two summation indices gets suppressed), and that the second
member of (I-11) may be dropped.’

Applying a comparable simplification to the terms of (I-10) which contain
derivatives of the ¢’s with respect to the internuclear coordinates, one obtains

_2 [f &*(r — na, z,) ‘i’l(l___"a’_x")] an(z1, -+, 22)

0x,2

(1-12)

* _

2
, [2 39 (r —ma, Tn) 90w | O'¢(r — ma, zn) a,,,] v

L, 0T, AL,

(I-13)

e N 8’¢(r — ma, z,,) :|
— W;S"m[fd) (r — ma, x,) _de Um

in which use has been made of the fact that, since ¢(r — na, x,.) is nondegenerate,
and hence, real, the integral [ ¢*(r — na)(9/02,)¢(r — na) dV vanishes.

Equation (I-13) is listed here primarily for reference purposes. In line with
the standard procedure in which terms involving derivatives of electronic fune-
tions with respect to nuclear coordinates are considered to be small (they repre-
sent, in essence, the effect of the nuclear kinetic energy on the localized electron
wave functions), and also in view of the fact that the molecular-crystal model,
itself, constitutes a simplified abstraction of the real problem, (I-13) will herewith
be discarded.

With these approximations, the right-hand side of (I-10) reduces to (I-12).
Introducing the notations

Walor, -+ y) = [ ot = na,2) [T Ul = paalav,  (@14)

J(x, , Tm) = fd»*(r — na, ,) U(r — na, z,)¢(r — ma,z,) dV (I-15)

10 Tn particular, it is smaller than the second sum of (I-12) by a factor of the order of a
nonorthogonality integral, Sum -
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and assuming J(z, , T») appreciable only for nearest neighbors, one may write
(I-10) in the form

., 0 hoo
lﬁ—-—‘z( 4+ = Mwoxp>_E(xn)—Wn(xli‘”7x")]
_ [ a 5 2M 9z, (1-16)

Xan(xl, "';xn) = EJ(xn)xn:tl)an:‘:l(xl) “',IE").
)
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