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ABSTRACT

If the distance between atoms in a- crystalhne lattice is increased, an energy
gap appears, which in a divalent: ma.tenal will separate occupled from
unoccupled states of an electron.” In & non- crystalline substance, a minimum
is expected in the densmy of states (a ° pseudogap )- An approximate
theoretical estimate is given of the depth of the minimum at which the one-
electron states become localized so that {cg(0)> vanishes ; this turns out to
be such that N(E,)/N (Eg)ree is about 3. Theresult depends rather sensitively
on the parametors used ; the value deduced from the experiments of Hensel
and Franck (1966, 1968) on the resistivity of mercury at high temperatures
gives for this ratio a value of . It is shown also that the localized states at the
extremities of a valence or conduction band are of negligible importance if the
wave functions are s-like on the atoms or ions, but may be of importance if
they are not. A dlscusswn is given.of the electrical behaviour of chalcogenide
glasses, amorphous germammn and of some liquid semiconductors based on
these ideas. R . . s

81 INTRODUCTION

Ir the dlstance a between atoms in & orystalhne array is mmeased the
overlap between the first and second energy bands for an electron decreases
and eventually a gap appears between them. An array of divalent atoms,
normally metallic, then behaves as a semicondictor or insulator, the two
bands being the ‘ valence’ and  conduction’ bands. -This is a result of the
Bloch~Wilson model - of non-interacting electrons and is not a direct
consequence of the correlation:energy e?/ry,. This paper discusses what
happens to the band gap when the arrangemerit of the atormis is non.- “erystal-
line. Except where otherwise stated, the discussion -is-in"terms of the
Hartree—Fock model of non-interacting electrons. = A .comparison is made
with' the ‘results ‘of Franck and Hensel (1966) and Hensel -and Franck
(1966 1968) on liquid mercury ‘at high temperatures; and & discussion: is
given of conduction in chalcogemde glaSbes amorphous germamum and
some liquid semiconductors.

~The present author (1966, 1967) has suggested tha.t the densn:y of states
s likely to behave in the following way for large values of @ : :

" (a) For disordered structures the gap will be replaced by a pseudogap
or minimum in the density of states N(E) as illustrated in fig. 1. . Agapmay
be retained if a limitation is set on the fluctuations of the interatomic
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Density of states for liquid divalent metals at low densities, showing the
“ pseudogap ’ under the following conditions : (a) Conduction is metallic.
(b) Conduction is by hopping. (c¢) Conduction involves excitation of
electrons from the valence to the-conduction band ; excited electrons
and holes may move by hopping. :

distance: but in a liquid—or indeed in a crystalline solid—thermal
fluctuations of density are bound to lead to a few states within the gap
for an electron interacting with the ions in their instantaneous positions.
A fortiori there can be no true gap when centres are distributed at random.

(b) States with energies E in the pseudogap may be localized in the
sense of paper I of thisseries (Mott 1968 a); by this ismeant that {o5(0))=0
at T =0, where the notation is that of paper I. In the author’s earlier
papers (1966, 1967) the factor g= N(Eg)|N;poolBip) was defined, and it was
conjectured that for g <4 the mean free path would become comparable
with the electron wavelength and that for smaller values of g localization
must occur. ~In this expression N(E)q,., denotes the free-electron density
of states (2m/f2)¥24/E[4x2, where m is the effective mass at the bottom of
the band.

The first aim of this paper is to find a value for g at which ‘localization’
sets in, starting from a criterion proposed by Anderson (1958). Using a
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number of assumptions, a similar value is obtained, namely 1/g~3. The
approximations made in our calculation are however crude and’ the
experiments of Franck, to be discussed in §3, suggest that 1/g~5 is the
correct value. This would mean that for a divalent amorphous or liquid
matal the lowest possible conductivity that is not thermally activated,
since the mean free path L cannot be less than the interatomic distance a, is:

Se®ag?/127%, g2~004, . . . . . . . (1)

where S is the free-electron Fermi surace area which is equal to 47%2, where
k=27(3N/47)13, and N is the number of atoms per unit volume. For
mercuryt this is 2600 g2~ 100 ohm~— ecm~1, and varies little from metal to
metal. Forlower values of o, conductivity is either by thermally activated
hopping from one localized state to another (a process similar to impurity
conduction), or by excitation across an energy gap (or a pseudogap in which
the density of states is too low for tunnelling from one localized state to
another to occur). In either case an activation energy is required and o
should tend to zero as 7— 0 (assuming the position of the atoms remains
unchanged).

Other results of this paper are:

(@) In a band at the bottom of which the wave function is s-like on all
atoms (e.g. the conduction bands of liquid argon or of NaCl), localized
states only occur as a consequence of large fluctuations of density and are
probably of negligible importance in liquids. This is why electrons injected
into the conduction band of liquid argon do not show a thermally activated
mobility (for references see Lekner 1967). For an impurity band, on the
other hand, where unlike a liquid the distances between centres are distri-
buted at random, localized states can be important, both due to large
fluctuations in the interatomic distance and (as in Anderson’s model) to
random fields.

() When however the wave functions are p- or d-like at an extremity of
a band, localization at the top of a valence band or bottom of a conduction
band can occur without large fluctuations of density but as a consequence
only of the absence of long-range order as suggested by Banyai (1964).
This kind of localization occursén the band, and is additional to any strongly
localized states in a tail of the N(E) curve due to big fluctuation in the
coordination number, density or composition.

In the light of these results, a discassion is given of conduetion in chalco-
genide glasses and amorphous germanium.

§ 2. LOCALIZATION FOR A DISORDERED ARRAY OF ATOMS IN 5 STATES

In principle localization ({o(0)) =0) can occur for a given energy E for
the following reasons :

(@) A random potential at each atom (Anderson 1958).

+ The conductivity of liquid mercury at the melting point is
11 000 ochm~! em -1,

P.M. 31
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function on ‘ach atom is s-hke The - present author (1967) has suggested
that in the tail to the band‘due fo largé: thermal fluctuations of density
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should: eccur throughout the: band When TR

«(R'—R)>In30.
Putting in numerical values we ses that this gives:
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Thus the one-electron states for an electron in sodium vapour may be
localized if N—1/3 is of the order of six times the atomic radius 1/a. The
metal-insulator transition due to the term e2/r;, will oceur for rather smaller
values of R’ : the condition found valid for semiconductors is:

NB gy ~0-25,

with Gg=1/a. So in our view localization due to e*/r;, will always
take place before localization due to disorder, as the interatomic distance is
increased. In the presence of compensation, of course, localization due to
e2[ry, (the Mott transition) does not occur: but compensation wiil always
introduce random fields (as in {a) above), which increase the tendency to
localization.

§ 3. LOCALIZATION IN A P-BAND OR PSEUDOGAP

This section puts forward the view that if the wave functions on the
atoms are p- (or d-) like, localization can occur due to the absence of long-
distance order without larger fluctuations in the interatomic distance
than are usual in a liquid. For the energies in a pseudogap the present
author (1967) has pointed out that the mean free paths are of order @ when
g=1: they canrot get any shorter and so it is likely that localized states
occur when g <. To obtain a rather better estimate of the value of g for
which localization occurs, we seek to divide the atoms into strongly
interacting pairs as in Lifshitz’s work. We think in terms of a tight-
binding approximation. We take a given eigenstate of the system, and
assume that, for energies near to that at which localization occurs, the
orientation of the p-wave functions varies in a random way from atom to
atom. Thus, for a given eigenstate, we can divide the atoms into pairs such
that interaction between the two atoms of a pairis as strong as the choice of
neighbours allows. Infig. 2 (&), where the nodes’of p functions on adjacent
atoms are illustrated, the interaction will be strongest when 0, =6,=0, so
that pairs must be chosen such that 8;, 0, are as small as possible. Ifina
pseudogap the wave function is s-like on some atoms, p-like on others, the
interaction will be a maximum in the case illustrated in fig. 2(b). Thus
near the bottom of a p-band, we argue that, for the eigenstate under
consideration, B = [ J* Hid3z will be negative for all pairs except a small
proportion of pairs for which 6 is particularly small, so that  will vary
exponentially with distance except near these pairs.  The wave-function,
therefore, will have peaks at these pairs as in figs. 6 and 7 of Mott (1968 a).
The Anderson criterion shoul:! determine whether or not each characteristic
sclution of the Schrodinger dies away exponentially from one “of these
peaks, giving localization.

We denote by J the overlap integral between two p- wave-functions
oriented as in fig. 2 (a) with 8, 6, zero, and assume for the orientation with
0, =0,= 1= that the integral -is negligible. For a simple cubic crystal the p
bandwidth would thus be 2J and the same will be assumed for the non-
crystallinestate. The density of states per atom will thus have the average

312



840 - N. ¥. Mott on
~ Fig. 2

(a)
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(b)

Nodes in wave-funetions on two atoms in a non-crystalline material.

value 1/2J. As arough approximation we take this formula for N(Eg)see .
in the neighbourhood of the pseudogap. The factor g we take equal to the
proportion. of pairs on which the integral ¥ is positive, so that a localized
state or a peak in the wave-function can.form there.

Now if we took these g/a? ‘ molecules’ and gave them all the same energy
and arranged them on a lattice, they would form a band of width 2J’
which we shall have to calculate. But actually they do not have the same
energy : the fluctuation between their energies is the same as it would be if
they were spread over an energy range 2J/g. Thus the Anderson criterion
says that locahzatlon should occur if

Jlg> ~5J".
We have next to estimate J'. Suppose the wave-function of an electron

on one of these pairs falls offasexp (—yr). Then the half band width, which
is J when g ~ 1, should be when g is small: :

J'=J exp (—ya[g*®)[exp (- ya),

where a is the interatomic distance., Thus locahzatlon occurs when
' 1

exp (—yafg'?) exp (—ya)=1g.
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The next problem is to find' a rough estimate for y. In a crystal the
wave-function falls off as exp (—yz) as an electron penetrates from outside
. into a forbidden energy gap. According to Sommerfeld and Bethe (1933, .
see Mott 1966, p. 995): :

y =, | V| kg /(B [2m),

- where V is the potential. ‘We are interested in the situation where the
electron gas is nearly anon-metal, and suppose that y will be about the same
as in the solid when thisisso.. To obtain a rough estimate, put the band gap
2¢k|V | ky equal to the energy at the zone boundary (B*k,?/2m): then

y=%k;
But for a simple cubic lattice :
_ k,=mla,
50 that ya=3}w. We thus obtain:

exp{—{n(g7F-1)}=1y,
which gives approximately : ‘
1/g~3-5.

Evidently this is a very rough approximation: but it leads to the con-
clusion that the author’s (Mott 1967) former estimate g =4 was rather too
large. Although any error in the estimate of y makes little difference to g,
little reliance can be put on our numerical value. The experiments
described in the next section suggest that 1/g~5 is the value at which
localization starts. '

~ §4. APPLICATION TO MERCURY

In the work of Franck and Hensel (1966) and Hensel and Franck (1966,
1968) (fig. 3) the conductivity of mercury is observed to drop continuously
by a factor 102 from about 10% to 1020hm— cm™" as the density falls to half
its normal value. -As the density decreases still further the drop in con-
ductivity becomes much more rapid. The drop to 102ohm~'em~* can be

“accounted for by : :

(@) a drop in the mean free path L from 74 for normal liquid mercury
to some quantity near the interatomic distance, 24 ;

(b) a drop of g% from unity?t for normal liquid mercury to the value for

_ localization. = The experiments suggest therefore that ¢2=1/30, g=1/5-5
. at the density at which localization starts.

For smaller densities g will have lower values and states at the Fermi
energy must be localized and conduction will be by thermally activated
hopping. Probably a comparatively small further expansion will produce
a situation where the mobility for electrons having the Fermi energy is low

+ The present evidence suggests that g differs little from unity for liquid
_mercury at normal pressures. -



andthemam gurrent is carri dby exmtededectron

conventional infrinsic semiconducto . i
uy, tl i3 energy must tend £ 1 —

mdeﬁmtely they were able to measure actlvatlon

by measuring (do/dT)y.

- Conduetivity: of mereniry; as cof3
(Hensel and Franck 1968)

Banyal (1964) ‘an
at the extremltles of a conduc’tié




Conduction in Nowserystalline Materials - 843

I . always:produee sich fluctuatiotis:in’a
liquid and indeed in a crystalline solid. Apart from these, any * frozenxirid
fluctuations in density would not necessarily Produce any localized states.

(b) I£#hie wave-functions ateps or Slike, the argument of § 3 leads us to
suppose that localization can 6ccur in a'diSordéred system for energles near
the extremities of the band. We shall not, ab b an e te of the
Gy s wiiith 166atiZaton Gocuts: Shall however use.t ]
last section to obtain the density rérmty of & band.
Figure 2 shows the nodes.of twop functions.on a given pair of atoms. The
energy will be a minimum “when the nodes are asin’ (@) with 8,
Theenergy.of the paiv whien.6y; 8;donbtvanishds: oﬁthe f THY:

1 EE Aé@ 2 29, 2)
The number of such states with 0 in the I;ange 0, to 9 +d8, and with 0, in

the range df, is proportlonal 1£0%: ) {z
sin 8, sin 0, A d05

From these. -equations it follows that: N(&): varies. Tinearly with 1B at the
extremity of a band and the model gives no tail to N(E).

pringiple thermal, ﬁuqtu@thns il

§6 MOBILITY IN 'VARIOUS ‘RANGES or ENERGY

.- We next ¢ summarize, the-behaviour, of fhe\momhty wito-be-expectediin
va ‘s*ranges ofe energy in any situation near an energy E, which sepa,ra;te&
localized and non-localized ,sta,t
(@) Supposea pseudogap oxists it which o is neghglble so that the carriers
in the range of energy:wheré current: flows: are, non- dégenerate; and’ £he
conductivity can be ertten denotmg the Fermi distribution function by

Where W is the hoppmg energy and v, a phonon frequency {1018 ges- ).
The factor eva?[kT ~0-5 cm?{vsec;., Nete ,, that the approximation
v~108gec is valid only if W> k@De and ig not valid for 1myur1ty
conduction at low temperatures (cf. Millé and Abrahams 1960).°° ¢ is Ve
number depending on the overlapbetween Wa,ve-functlons and contains
the factor exp (=
she overlp is ¢

(
f <aE(®)> Em " ;
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Near , the phase of  will change in a random way from atom to atom, so
that

. 0 2
[ 5" s |
integrated over a volumé Q for which the wave-functions are normalized
becomes, apart from a numerical factor :
[(Q[a?)12(a3/Q)a1 P =a/Q.

The first two terms come from adding the contributions from each atom each
with random sign, the last from 0/0x. Thus: :

2me?h® o

. .
(om)~v——m @@}y . . ... @)

If we write 8f/0E = (1/kT)f (in the non -degenerate range), we see that

_ 2weh® a N(E)
o m? Q kT

I N(E)is written 1/E a2, where E, is a spread of energy levels and Q is unit
volume :

_ p= e lm2 Eyad kT,
Writing %2/ma2 ~ B, and v, = E /R this comes into the form :
' ' . : ,u-ea2v'el/kT. e, (4)

A similar formula has been obtained by M. L.. Cohen using a Green function
method, and was presented at the Gordon Conference (August 1968).
The mobility is (say) 100 times greater than for thermally activated
hopping, because v /vpn~100, and is of order 100 cm?/vsec. This
surprisingly high mobility can be compared with the conventional formula
for long mean free path L :

w=eL|~/(3mT),
and becomes identical with it when
' L ~Fjmy,

v being the thermal velocity. Unless the density of states is low, we do not
expect values of u lower than this in the non -hopping range.

(b) We considernow the low -temperature case when thereisno energy gap
- and the conductivity depends on the behaviour of electrons with energies
near K. In'the case of non -localization, the above formulae give:

2me?hda

7= [ m2 {N(E)}z:,E:EF
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This-can be transformed to the form corresponding to (1) by writing as
before : : ‘
. N(E)=g|Ea?=gm/[k?a,
so that
o=g%2[ha.
If 1/a? corresponds to the number of electrons per unit volume, the mobility
is (for g~1):
ea?/Bem?fvem, . . . . . . . . (5

which is conmderably less - (~0-5cm?2/v ecm) than for non-degenerate
‘electrons.

In the case of thermally activated hopping we estlmate the conduct1v1ty
as follows. Following Miller and Abrahams (1960) we note that only
electrons with energies ~ k7T below Ey have a significant probability of
hopping. The conductivity is thus of the form:

o=N(By) kT (fatvyy /KT exp (- W[KT). . . . (6)

The factor kT goes out and, apart from the factor ¢ already discussed, there
is a drop of ~ 100 in the factor outside the exponential in ¢ as E decreases
through the value E,. However, near B, ¢ may be large and we do not
think any dlscontmmtyﬁ_ in ¢ is to be expected for a non-zero value of 7'.

In the author’s earlier works it has been pointed out (Mott 1968 a) that
W must tend to zero at low temperatiures and (Mott 1968 b) that for o a
behaviour like exp ( — const/74) should occur. This-argument will now be -
developed in greater detail. The assumption will be made that the Fermi
energy lies in the hopping region, that &7 is small compared with the band-
width and with Ey and that the states are strongly localized («R> 1).

We need to consider electrons with energies a few multiples of £7' from
the Fermi energy only, of which there are per unit volume say N(Eq)kT :
those with lower energy will on the average require a larger activation
energy for each hop. If the electron jumps a distance less than R, then
the number of states in therange dE is :

(4nR3[3) N(E)dE,
so that the average spacing between energies is:
W =3/4wR3N(E).
This will be the hoppmg energy The jump frequency is thus:
vop 0Xp { — 2aR — W[ET}. '
ThlS Wﬂl be a maximum for a value of R such that
20=(9/4m)| R N(E) kT

If this gives a value of R less than the average distance Ry, between centres, -
then the activation energy is:

AE =3/{4nRy? N(E)}
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. NP Mottt loms wob

and issindependent of Tt This is:similir 4 the pesult obtained By Miller
and Abrahams for impurity conduction: but for low T, if R> By, wesée
that the jump frequency and hence the gonductivity-behaves like :

Inosd.- BIT™.

We:shall-shiow: datter that: thereonductivity f‘cﬁ‘.zambrph?iii?s@g”eﬁﬁaﬁi" i i
observed to behave in this way Ty

SEET TR

vt §T HALL CORFRICTENTS
. 1.1. Non-degenerate Gas

" (@) Energies so high that L >%/mw, in. vhich::the
applicable. v is here the thermal velocity of an electron.
“b) A range in which L < Bijmiv, 1;1Wh caseamean free path cannot be
defified-but-the: mobilityis: expected” to' be* of ; 00 ¢m? ;

détivation 6f a'positive sign. which depen
near the top of a band, cannot apply'in th

egenerate Gas -« s

3% F’,h--:s%aﬁer (~05 cm/sec).
no theoretical treatment exists for the Hall effect

LN £

TR O

Mol —towe g
§ 8. APPLICATION TO GLASSES AND AMORPHOUS GErMANIUM

The discussion in the pi’é\;‘idus séotions’ sugge%tsthefollomﬁgmodel
In materials which are intrinsic’ sémiconductors like the chalcogenide
glasses, valence and conduction bands will exist,

\ , b, with
1 od states at the bottom, shown éh'a,ded‘i:nﬁ fig 4,1

+ Holstein; private.communication,
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'or as,, Ji:gpurlty cqnductmn( 11 3
generallﬁrhsupposed that there are-more States in the tail below the con-
duction band than above the valence band, so that the Fermi energy Ey
lies nearer the valence than the econduction band and these materials are

nonsequently p-type :

‘Fig. 4

N(E)

Suggested density pi; "g@ates in ¢halcogenide glass. . Locahzed 8 a’ees 4ré shaded.
7 he states in the tails are: also localized. tates between P and Q are

charged Er issthe, Ferml energy

; .
As emphasmed by Stuke (1966 1969) ohalcogemde glasses and other
amdrphous materlwls show values*of the conduct1v1ty of the formt: Coa

:same as for the crystal( ~ 108 ohm—l—cm—r : Both these are shown partlcu-
_Larly by Male’s (1967) results (ﬁg.y )"' Tlus suggests that the holes’ carrying
the lcurrent are at energies near A in ﬁg 5 (non-localized), where the
hlgh predlcted moblhty (~ 50 cm?/v sec) and the fini d_ex_lsgtﬂy‘ ‘of

states may well givera 3 valueiof o, similar to that for the
On the other Kand; Male’s (1 967) values of the Hall coeiﬁclent are negatlve,
independent. of I

(ﬁg 5) "As already stated negatlve Hall coefﬁmen’os are usual in p-type
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non-crystalline materials-and we believe that a correct theory would

predict this.

log o (! cm-1)

log o (A~ em-1)

The small values of the Hall mobility are unexplained.

Fig. 5
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Hall mobility and conductivity of chalcogenide glasses

(Male 1967).

We turn now to amorphous germanium. We first emphasize that the
low conductivity of amorphous germanium and the fact that doping does
not appeas to be possible are probably because all the electrons in (say)

- phosphorous are likely to be taken up bybonds. We envisage a phosphorous

atom as normally surrounded by five electrons as in fig. 6. Centres which
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can act as acceptors or donors are likely to be structural and normaily to
involve the host atom (fig. 7b).

Grigorovici, Croitoru, Dévényi and Teleman (1664) have distinguished
three temperaturc ranges in the conductivity of amorphous germanium
and thisisstrongly confirmed by the measurements of the piezoresistance by
Grigorovici and Dévényi (1968) (fig. 7). We follow Grigorovici in supposing
that fairly well-defined acceptors exist, perhaps ‘dangling bonds’ as in
fig. 6 (b), and that in the lowest range of temperature, conductivity is by
‘impurity conduction’, the electron moving by thermally activated
hopping between centres with a concentration of say 10" em=2 and ~0-2ev
above the valence band (fig. 8). Some compensation would fill a few of these
acoeptors, giving negative thermopower at low temperatures (comparc
Mott 1967). If this is a correct explanation, we should expect a plot of
Ino against 1/T%* at low temperatures to give a straighc line. Figure 9
shows the results of Walley and Jonscher (1968) plotted in this wayt.

Fig. 6
Ge
Ge
P
G, 5, dangling bond
Ge
(a) (b)

(a) Conjectural position of phosphorous atom in amorphous germanium.
{0) Structural defect in Ge.

In the ‘extrinsic’ range we suppose that holes are excited into the range
between B and £, where localization is weak or non-existent, the mobility
qui‘ge high, but the Hall effect negative as observed by Clark (1967).

We may speculate on the nature of the acceptors. 1In fig. 7(b) a single
electron is unpaired. The states of such an electron are split by spin—orbit
coupling and it is possible that the infra-red absorption observed by Tauc,
Grigorovici and Vancu (1966) is due to these centres.

Germanium seems to differ from the chalcogenide glasses in having an
acceptor of fairly well-defined energy, so that the Fermi level is nowhere

T I am indebted to Dr. Walley for providing me with this curve. Clark’s
(1967) results can be plotted in a similar way (Mott 1969).
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Piezoresistance of amorphous Ge (Grigoroviei and Deveny1 1968)
(a) Longltudmal and (b) transverse relative cha,nge in resistivity.

Fig. 8§
sg(E| R s e we sy

" strong,
Jlocalisation ..

Suggested densﬂ;y of states m:axﬁorphous Ge Locahzed states are’ shaded
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near the centre of the band. Perhaps this is because in the chalcogenide
glasses the fluctuations of composition set up random fields which broaden
the levels due to any structural defect.

The thermoelectric power of amorphous germanium is negative at low
temperatures, then positive and negative again at high temperatures (see
Mott 1967, fig. 16). This gives additional evidence for the existence of
three conduction processes. We note that for germaniuin, unlike the
chalcogenide glasses, the material has negative thermopower in the intrinsic
range, suggesting that the mobility is higher in the conduction band.

Fig. 9

11

R (D

1010

BEER |
RN |

105 L i I |

o5y 075 025 027 025 029 03 031 032 a3 03 035 0%
1 _1
T4 (degk™™)

Resistance of amorphous germanium film plotted as In R versus 1/7%/4, The plot
is from curve A of fig. 6 of Walley and Jonscher (1968).

§9. LiQuip AND AMORPHOUS SEMI-METALS
Tor such materials we suppose that a pseudogap.exists and that states
may be weakly localized near the centre of the gap (fig. 1 (b)) and that the
properties of electrons with energies £ such that E ~ Ey determine the
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conductivity. ~We' take as an example the case of liquid " Te-T1 “alloys
investigated by ‘Cutler and Mallon (1966), Enderby and Walsh (1266) and
Donally and Cutler (1969). For liquid tellirium o~ 500 chm~* cm~1 and
for'so high & value our analysis suggests that the Ferinj level is not in the
range of energies in which states are localized, and 9~0-2. At compositions
near TeTly, o drops to ~1000hm—2em-1, and’ do/dT (which is positive)
increases : at this composition the material is on the borderline of the
hoppingrange. The Hall mobilities of order 0-3-0-5cm?/vsec. (Donally
and Cutler 1969)are about what we expect for the drift mobility in the range
(b)of§7.2.  Wenote that the Hall effect is negaiive for this p -type material :
Allgaier has pointed out to the author that in many liquid semiconductors
p-type thermopower is associated with negative Hall effect, and the
experimental evidence suggests that either a very short mean free path
or thermally activated hoppingleadsin general toa negative Hall coefficient,
even for the motion of holes.
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