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Abstract-The group theory of weakly bound direct excitons is developed without explicit use of 
effective mass theory. For the usual case in which the direct band gap occurs at a point of high 
symmetry, direct exciton wave functions can be expanded in one-electron wave functions which have 
the symmetry of this point. The expansion is the &-space analogue to the expansion of a tightly 
bound exciton envelope wave function in real space. A quasi-cubic model of the valence band struc- 
ture for hexagonal ZnO, CdS and ZnS is developed. The model, in conjunction with the group 
theory of weakly bound excitons, explains on a semi-quantitative basis most of the observed exciton 
fine structure in ZnO and CdS. A theorem which aids in constructing higher order “Kubic Har- 
monics” (for any point group) is given in an appendix. 

I. INTRODUCTION 

IT has long been recognized that optical experi- 
ments near the fundamental absorption edge can 
be a useful tool for studying energy band para- 
mlfters in semiconductors and insulating crystals. 
Little use has been made of this tool in anisotropic 
crystals; indeed, very few detailed’measurements 
of the optical properties near the fundamental ab- 
sorption edge of anisotropic crystals have been 
made until recently. 

DRESSELHAUS(~) has pointed out that the shape of 
the fundamental absorption edge in polarized light 
can yield information about band symmetries in 
anisotropic crystals. From an experimental point 
of view, it has proved difficult to obtain informa- 
tion from the shape of the absorption edges in CdS 
and ZnO, two anisotropic crystals on which de- 
tailed optical measurements have recently been 
made. In these crystals the shape of the “funda- 
mental absorption edge” is a function of surface 
treatment.(s) Furthermore, the shape of the ab- 
sorption edge does not always agree with existing 
theory.@) In CdS and ZnO, however, line struc- 
ture which can be associated with direct (vertical) 
transitions is present in the absorption (or re- 
flection) edge spectrum.(4*5) The primary purpose 
of this paper is to lay the groundwork for analysis 
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of the information available from the exciton 
spectrum in anisotropic crystals, with particular 
emphasis on thewurtzite structure. T.he anisotropic 
semiconductors of greatest current interest are the 
II-VI compounds having this structure. We seek 
to understand as much of the exciton level struc- 
ture as possible from a symmetry point of view 
without actually computing exciton binding 
energies (far too little data is yet available to make 
detailed mass estimates). 

A brief review of direct exciton wave functions 
is given in Section II. In Section III, the group 
theory of exciton fine structure is developed. The 
formal theory of fine structure can be applied to all 
direct excitons, but has real usefulness only for re- 
latively weakly bound excitons. 

The theory of Section III is applied to the wurt- 
zite structure in Section V to determine the exciton 
fine-structure. It is shown that the observed ex- 
citon fine-structure and Zeeman effects are in 
agreement with the assumed valence and conduc- 
tion band structure. A quasi-cubic model of the 
wurtzite energy bands is developed in Section IV 
to aid in correlating observed exciton oscillator 
strengths with the observed exciton energies, and 
by this means to deduce band-structure informa- 
tion from the observed exciton energies. 
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II. SELECTION RULES AND EXCITON WAVE 
FUNCTIONS 

Direct excitons (i.e. those excitons having a 
wave vector near k = 0) can be grouped into two 
principal classes, according to the behavior of their 
optical matrix elements. If the matrix element of 
the operator 

Pk = 1 exp(ik - rn)pn 
n 

electrons 

between the crystal ground state and the exciton 
state k is finite for k --f 0, the excitons will be 
called “allowed”. If the matrix element of pk 
goes to zero for k --f 0, the excitons will be called 
“forbidden”. The allowed exciton transitions are 
the solid-state analogue of atomic dipole transi- 
tions; the forbidden exciton transitions are the 
analogue of atomic quadrupole and higher order 
transitions. For wavelengths in the optical region, 
forbidden transitions should have oscillator 
strengths about 10-4-10-5 times the oscillator 
strengths of allowed transitions. Forbidden transi- 
tions have been observed, but only after the fact. 
After the exciton level structure is known from the 
energies and strengths of allowed transitions, it has 
sometimes been possible to ascribe other weak lines 
in the spectrum to forbidden transitions. Because 
these forbidden transitions always occur in con- 
junction with the much more easily observed 
allowed excitons and can usually be separated from 
allowed excitons on the basis of oscillator strength, 
we will neglect the forbidden transitions and work 
in the limit k -+ 0. 

In order to discuss the details of exciton binding, 
it is necessary to make an assumption about the 
most important factors in exciton binding. For one 
extreme, the tight-binding case, the electron and 
hole kinetic energy is negligible, and the potential 
energy of electron-hole interaction is the dominant 
term in the Hamiltonian. In this case, the Wannier 
functions are logical basis functions, for they allow 
maximum localization of the electron and hole, and 
thus permit fullest utilization of the potential 
energy for binding. DEXTER, OVERHAUSER and 
KNOX and INCHAUSPE(@ have recently investigated 
the theory of such models for the alkali halides. It 
is perhaps simplest to discuss the extension of the 
transfer model used by OVERHAUSER. OVERHAUSER’S 
treatment is oversimplified in that he forced the 
electron and hole to be on nearest-neighbor atoms. 

His treatment could be extended to include the 
possibility of larger electron-hole separations but 
would rapidly become unwieldy. The reason for 
the difficulty is that one would be attempting to 
characterize a state having a large radius in real 
space (large compared to a lattice constant) by the 
symmetries of the nth neighbor lattice points in 
real space. On the other hand, this large radius in 
real space implies a small radius in k-space. This 
small radius indicates that in some sense it should 
be easier to characterize the exciton by the sym- 
metries of the bands from which it is made, rather 
than the symmetries of the nth neighbor Wannier 
functions. 

In the other extreme (weak binding) the exciton 
binding can be considered to be dominated by the 
electron and hole “kinetic energies”. The logical 
basis functions are the Bloch functions, which 
minimize this kinetic energy. In this case, states 
extending a finite distance in k-space must be used 
to represent a bound state. If the extent of the 
wave functions in k-space is not too large, the 
binding can be treated in the effective mass ap- 
proximation.(7) It seems desirable, however, to 
treat the group theory of the problem without ex- 
plicit use of the effective mass formalism in order 
to more easily investigate selection rules, polariza- 
tion effects and energy splittings in the presence of 
complex band structures. (The effective mass ap- 
proximation often has excess degeneracies not re- 
quired by group theory.) 

In Section III we construct a theory of exciton 
fine structure for weakly bound excitons. The 
theory is the analogue of the tight binding theory, 
with Bloch functions rather than Wannier func- 
tions as basis functions. 

III. GROUP THEORY OF EXCITON FINE STRUC- 
TURE FOR WEAKLY BOUND EXCITONS 

The wave function for an exciton can most easily 
be written in terms of an exciton creation operator 

# exciton. Let +zh be the operator which creates an 
electron in the Bloch state Ick > (nreviouslv un- 

\A 

occupied) and &,k be the operatorwhich annihilates 
an electron in the Bloch state [ vk > (previously 
occupied). The operator 

# exciton = 2 fcv(k)&&tik (1) 
k;v, C 

acting on the crystal ground state #Jo creates an 
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exciton having wave vector zero. Thef&k) are ex- 
pansion coefficients. It is implicitly assumed that 
the effects of “vacuum polarization” (the virtual 
excitation of electron-hole pairs by the exciton) 
can be adequately included as a modification of the 
electron-hole interaction. In the usual case, only 
one conduction band and one valence band con- 
tribute appreciably to the sum in relation (1). 

Equation (1) can be conveniently interpreted as 
an exciton wave function. If the operators +zk 
and &k are replaced by the Bloch wave functions 
z,&(re) and #&(rh) respectively, equation (1) 
defines an exciton wave function &xcitor,(re, rh) in 
ordinary (nonoperator) form. This form of the ex- 
citon wave function is useful because it explicitly 
displays the two particle nature of the wave func- 
tion. With this definition of the exciton wave func- 
tion, matrix elements of the total momentum oper- 
ator P (the matrix elements for optical transitions) 
between the crystal ground state and a one exciton 
state are given by 

It would be desimble to be able to characterize 
weak binding excitons by the symmetry of the 
electron and hole bands from which the exciton is 
made and the symmetry of the electron-hole orbit. 
There are two primary difficulties in attempting 
this. First, only the total symmetry of the exciton 
state, not the symmetries of the electron or hole 
components alone, is a good quantum number. 
(The analogous difficult arises in the states of 
many electron atoms where, for example, the total 
angular momentum is a good quantum number but 
the angular momentum of a particular electron is 
only an approximate quantum number.) Secondly, 
the important terms in the sum over k in equation 
(1) come from a region in k-space and the wave 
function symmetry at a general point in k-space is 
extremely low. 

The first difficulty is inevitable, and will be 
shown to lead to configuration mixing. The second 
difficulty can be overcome by choosing expansion 
functions which have the symmetries of a point in 
k-space of high s~metry. The direct band gap in 
most substances lies at a point in k-space of high 
symmetry, where both conduction and valence 

bands exhibit extrema. (That the presence of spin- 
orbit coupling can move the extrema a small 
distance away from the point of high symmetry is 
unimportant.) In those few crystals in which direct 
excitons are observed and the band structure is 
known,* the symmetry point of interest is the 
k = 0 symmetry point l?. We shall therefore 
assume that the electron and hole valleys are near 
k = 0. (The treatment we are about to perform 
could also be doneTat other s~rnet~ points, but 
with algebraic complications resulting in the case 
of several equivalent valleys due to the necessity of 
performing a multicenter expansion of the wave 
functions.) Indirect excitons are not considered. 

Let the irreducible representations of the group 
of the wave vector zero be denoted by {I’a}. The 
ground state of the entire crystal (if, as in ZnO 
and CdS, there is no spin degeneracy), is the iden- 
tity representation denoted by I’l. The state of the 
entire crystal with one k = 0 exciton present will 
belong to one of the irreducible representations 
(I’$). The wave functions of single electrons or 
holes in the crystal belong to representations of the 
double group; the exciton states representing an 
electron-hole pair belong to irreducible repre- 
sentations of the single group. 

Unfortunately even this simplest of group 
theoretic statements is not exactly true. For those 
excitons for which the dipole matrix element be- 
tween the crystal ground state and the exciton state 
vanishes, the above paragraph is correct. For those 
excitons for which this dipole matrix element is 
nonzero, long range coulomb effects produce 
energy differences between longitudinal and trans- 
verse excitons.(ss) This energy difference can be 
calculated from classical dielectric theory if the 
exciton oscillator strength and the dielectric con- 
stant due to all other causes at frequencies near the 
exciton frequency are known.(s) This long range 
effect can break up “group theoretic degeneracies” 
even along principal axes of a crystal. For an ex- 
citon wave vector k (infinitesimal) along principal 
directions there is no mixing of different irreduc- 
ible representations by this long range coulomb 
interaction. The relation of the optical effects of 
excitons and group theory in uniaxial crystals can 
thus be established in the following order. First, 
investigate the group theory of the exciton band 

* Germanium is perhaps the best example. 
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structure neglecting the long range coulomb 
effects. Secondly, insert the coulomb effects and 
calcuiate the energy shifts by perturbation theory, 
noting that the exciton symmetry remains un- 
altered. Finally, the optical properties for Iight 
traveling in a general direction in the crysta1 can be 
computed from the optical properties along prin- 
cipal directions. Group theory enters only the first 
step, where the effects of the long range coulomb 
interactions are neglected. 

We attack the main part of the problem by ex- 
panding the Bloch functions in the wave function 
(1) in terms of the wave functions of effective mass 
theory.(le) If 

then 

(2) 

In an expansion around k = 0, guk = 1 i-O(k), and 
gnk for V # ?a is O(K). If equation (2) and its equi- 
valent for the valence band are inserted in equation 
fl), a simple expansion of relation (1) in terms of 
wave functions at k = 0 results. An individual 
term referring to two specific bands in the exciton 
wave function would then have the form 

(3) 

The functions (uom] for fixed n (there may be 
several such functions i if band pt is degenerate at 
k = 0) transform among themselves under the 
symmetry operations of the crystal, If the exciton 
state is to belong to irreducible representation I’a, 
each term like expression (3) when summed over 
k occurring in the expansion must also belong to rd. 

So far no use has been made of the restriction to 
weakly bound excitons formed from bands at 
k = 0. We shall now proceed to expand around 
k = 0. The symmetry operations applied to terms 
such as (3) generate for a given k, .iV~D&?ss wave 
functions which transform among themselves, 
where DB and Dnt are the degeneracies at k = 0 of 
bands n and n’, and Nk is the number of wave 
vectors in the “star of k”. 

“Crystal Harmonics” analogous to “Kubic 
harmonic” can, of course, be defined for any 
lattice. Different “Crystal Harmonics” can be 

characterized physically as having different struc- 
tures of angular and radial nodes. The weak bind- 
ing exciton can also be regarded as having angular 
and radial nodes in its envelope wave function. It 
seems desirable then to sum certain terms of the 
form of expression (3) to obtain terms character- 
ized by an anguIar dependence. The terms of (3) 
should then be re-expressed as 

x L,,z, y(k) exp(ik * re) x 

k,m 

x exp( - it2 * m)llon3(r,)21~~,5,(rh) (4) 

where L,,a,fJk) is a “CrystaI Harmonic” beIong- 
ing to irreducible representation pit, and j andf are 
degeneracy indices. The index E is the order of the 
harmonic. (There is a problem concerning count- 
ing the number of states which is treated in the 
appendix. The transformation between the func- 
tions (3) and (4) is not unitary. The terms in (4) 
contain the terms (3) in a redundant fashion.) 
Lm,z,iIj(k) belongs to an irreducible representation 
I’, of the single group, The subscriptg” is needed 
in the event that I’, is more than one dimensional. 
Let I’* and I’,, be the irreducible representations 
corresponding to bands n and n’ at k = 0. It is now 
easy to show that the set of DJ&D,, wave func- 
tions described by expression (4) belong to the 
irreducible representations described by the pro- 
duct representation Pm x I’, x I’%). 

This relation is the dual of the tight binding 
case. For the tight binding case, r, and P,, for the 
bands at k = 0 will be replaced by the irreducible 
representation of the Wannier functions in bands 
n and 71’ (which also belong to rn and m,), and 
Pm will be replaced by an irreducible representa- 
tion of the nearest neighbor symmetry. 

There are essentially two different kinds of mix- 
ing which can go on to destroy nr as a good quan- 
tum number. First, even within the effective mass 
theory, it is necessary to include mixing with other 
bands in order to obtain the effective mass.(iO) 
This perturbation gives rise to a mixing in of other 
bands in an amount which is of the order of the 
effective mass “kinetic energy” of the electron and 
hole divided by a typical interband energy (e.g. the 
direct band gap). This mixing is small, and of 
primary importance in selection rules only when 
the k = 0 + k = 0 optical matrix element is 
small or zero for the bands from which the exciton 
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is chiefly made.” The second kind of mixing which Denote the orbitals for the six degenerate valence 
destroys m as a quantum number is due to degener- bands by (Pz, P,, Pz) x (a, /I) where tc and /3 are the 
ate energy bands. This kind of behavior also occurs spin-wave functions for spin parallel to z and spin 
in acceptor-state wave functions in germanium, antiparallel to z. The zero of energy for the system 
where the “orbital” part of the acceptor wave func- is taken as the valence band at k = 0. The band gap 
tion contains both S and D terms even in the will be denoted by E,. 
effective mass approximation.(i2) If a small amount of spin-orbit coupling is now 

We are not going to make use of the full formal- turned on (such that the spin-orbit energy 6 is 
ism for ZnO. Too little is known about the band small compared to E,), the only matrix elements of 
parameters to enable one to make energy level cal- importance will be those which mix the P-bands. 
culations. It will be shown, however, that rather The S-states will still be doubly degenerate (Scr and 
simple symmetry arguments based on the general SF); the P-states will now have a Hamiltonian 
ideas of this section will be sufficient to make rather matrix which can be written 

6 6 6 

3 i- 3 
-- 

3 

6 6 6 
-i- -i- 

3 3 3 

6 6 6 
-- i- +A 

3 3 3 

0 0 0 

0 0 0 

0 0 0 

0 0 0 P&c 

6 6 s 
3 -i- 3 3 PXP 

6 8 S 
i- 

3 3 
i- pII/3 

3 

6 6 
3 -i- 3 ;+APz% (5) 

detailed predictions about degeneracies and split- For the present, A should be set equal to zero. This 
tings in the ZnO exciton level structure. form can be obtained by transforming from the P3/3, 

Pl,g representation where Hspi,r-orbit is diagonal 
IV. A QUASI-CUBIC MODEL OF THE k = 0 BAND and the eigenvalues are respectively 0 and S. If a 

STFWCTURE FOR THE WURTZITE LATTICE small strain is applied to the crystal (the strain 
Consider a cubic crystal having P-like valence energy A < EB) in the z-direction, all states are un- 

bands and an S-like conduction band at k = 0. affected in lowest order. In second order, however, 

* ELLIOTT(~) has classified the direct excitons as 
“allowed” if this matrix element exists and “forbidden” 
if the matrix element vanishes. We have defined the 
terms somewhat differently, reserving the term “for- 
bidden” for those excitons (not considered by ELLIOTT) 
which do not interact with light of infinite wavelength. 
In ZnO, the weak spin-orbit coupling results in excitons 
which are so weakly “allowed” (in the Elliott notation) 
that they are considerably weaker than “forbidden” 
lines would be in the same material. There are in 

[continued in next column 

addition exciton-states for which ELLIOTT’S equations 
(3.6) (optical matrix element for “allowed” processes) 
and (3.14) (optical matrix element for “forbidden” 
excitons) contribute comparable amounts to the oscil- 
lator strength of a single exciton. Such an exciton can- 
not really be considered either “allowed” or “forbidden” 
in ELLIO&S notation. For these reasons we have aban- 
doned his use of these terms. The qualitative distinction 
made by ELLIOTT (caused from the present point of view 
by band mixing) is nevertheless of use in estimating the 
strengths of many exciton lines. 
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the state Pz suffers an energy shift different from 
that undergone by the equivalent states P, and 
P,. Let this difference in energy shifts be denoted 
by A. If A is much less than E,, we may neglect the 
wave function admixtures between the P-bands 
and other bands (percentage admixtures of order 
(A/Es)2 and simply add the term A to the energies 
of the Pz states. The total Hamiltonian matrix then 
becomes that of equation (5). The basis functions 
are still, to lowest order, the P-basis functions. It is 
important to note that there will be errors only of 
order A/Eg and S/Es in the optical matrix elements 
between the P-band and the S-like conduction 
band, and that the crystal Hamiltonian has the 
symmetry of a uniaxial crystal. The eigenstates of 
equation (5) are: 

A is of course zero.) In cubic crystals, it can be 
shown that the error in the model is only of order 
(S/E,). In the wurtzite structure, each atom re- 
tains in a general way the tetrahedral nearest 
neighbor environment present in the cubic crystal. 
If, as it seems reasonable to assume, the holes are 
concentrated chiefly on the sulfur atoms, the fact 
that the third neighbors are in a hexagonal con- 
figuration should not influence appreciably the 
spin-orbit interaction; i.e., the spin-orbit inter- 
action should remain roughly isotropic. The error 
in the quasi-cubic model spin-orbit interaction 
is then probably of order (AlEg). (There are 
also errors of order (6/E,) which occur in cubic 
crystals.) 

The effect of the deviation of the c/a ratio from 

States Energy E 

Same form of states as on line above. E3 = +J[(F)‘- )A] 

If the crystal has been squashed far enough along 
the z-axis, it is possible that the optical matrix ele- 
ments between Pz and Swill not be quite the same 
as the optical matrix elements between Pz and S. 

Let the optical matrix element (for light polar- 
ized in the x-direction) between the conduction 
band and the P, state be H. The matrix element 
(for light polarized parallel to the z-direction) be- 
tween the conduction band Pz state will be written 
(1+ E)H. (From previous arguments, E is small.) 
This then provides a model of a slightly uniaxial 
crystal. 

This model may represent a reasonable approxi- 
mation to the actual band-structure in hexagonal 
(or cubic) ZnO, CdS and ZnS. (In cubic crystals, 

(6) 

ideal (the distortion of the nearest. neighbor tetra- 
hedra) is taken into effect in a general way by the 
parameters A and c. The error which is most 
difficult to estimate arises from the fact that this 
zincblende structure has only one molecule per 
unit cell, while the wurtzite structure has two. 
Because the molecules in this wurtzite structure are 
crystallographically equivalent (but not translation- 
ally equivalent), it is possible to calculate wave 
functions for only one molecule to obtain band 
wave functions, if appropriate nonperiodic bound- 
ary conditions are used. The error made in the 
energies by distorting the boundary shape and 
boundary conditions on this cell to those appro- 
priate to the zincblende is the chief error in the 
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model. Clearly if the tight binding approximation 
were a reasonable starting point for energy band 
calculations in ZnO, CdS or ZnS, the quasi-cubic 
model should also be a reasonable approximation. 

It may be hoped that all errors do not add, and 
that the model represents a valid approximation to 
ZnO, CdS and ZnS. In the last analysis, the model 
stands or falls on the basis of its agreement with 
experiment. 

In CdS, where the energy bands are separated 
by reasonable distances compared to the exciton 
binding energies (and thus optical matrix elements 
could be determined unambiguously), excellent 
agreement was found between the predictions of 
the model and experimental fact.@) In brief review 
of Ref. (5), E (poorly determined experimentally) 
was found to be about l/7, a bit larger than ex- 
pected but small compared to 1. The matrix 
element H was, of course, determined from 
experiment. The three parameters E, H and (8/A) 
give correctly-by using the optical matrix ele- 
ments determined from the band wave functions 
(6)-allJive optical matrix elements within experi- 
mental error. The determination of (8/A) (which 
does not depend on the value of c) could be made 
within about 10 per cent. The ratio Ez/Es can be 
computed directly from @/A) and was found to 
agree within experimental error with the measured 
value. One prediction that would be of interest to 
check is the valence band splitting in cubic CdS. 
This valence band splitting should be 6 rather than 
Es or Es. 

The work of THOMAS($) has shown that the 
quasi-cubic model succeeds only qualitatively in 
predicting the properties of ZnO. The parameter E 
is zero within experimental accuracy. The chief 
failing is that the model predicts the existence of 
weak lines in the “wrong” mode of polarization 
having strengths about l/50 of the strong lines, 
whereas the observed ratio is about l/5000. There 
exists some difficulty in experimentally identifying 
the optical matrix elements referring to a given 
band (rather than to a given exciton) since the two 
highest valence bands are only split by about l/l0 
of the exciton binding energy, and exciton and 
configuration mixing is inevitable. The inter- 
pretation given to the experimental results may 
therefore be in error. Alternatively, the model may 
simply not be accurate enough in powers of (S/E#) 
and A/Eg to expect to be able to calculate such 

small matrix elements with any degree of preci- 
sion. 

Perhaps the most important single piece of 
evidence relating to the inadequacy of the model is 
the fact that 6 has the wrong sign (opposite to the 
usual free ion sign) in ZnO. This sign is a direct 
consequence of the experimental interpretation 
which paces the I‘g valence band below the JY7 

valence band from which it is split only by spin- 
orbit coupling. There are many possible reasons 
for the “observation” of an inverted multiplet in 
the bands of ZnO. If the valence band actually 
represents an inverted multiplet (which in the 
atomic case, can arise only from configuration 
interactions between different spatial one-electron 
wave functions) it is likely that the model (which 
allows for no configuration interactions between 
wave functions of different one-electron bands) is 
not adequate. 

The model could be made to agree with experi- 
ment by the ad hoc introduction of a nonisotropic 
spin-orbit interaction (and one additional para- 
meter to characterize this additional interaction). 
This elaboration has not been added, for the model 
in its present crude form seems to fulfill its pur- 
pose of providing a semiquantitative basis for 
correlating the observed properties of the valence 
band. 

V. APPLICATION TO ZnO 

The point group of ZnO is C&. The symmetry 
operations, irreducible representations, and char- 
acter table have recently been discussed by 
BIRMAN(~~) and CASELLA(~~). A copy of BIRNIAN'S 
character table is included for reference in Table 1. 
There are believed to be three P-like valence bands 
at k = 0, two belonging to l?7 and one belonging to 
I’s.(15) The existence of the three valence bands and 
the general character of the wave functions can be 
understood on the basis of the quasi-cubic model. 
The conduction band at k = 0 is believed to be 
S-like, and also belongs to I’7. 

For light traveling in a principal direction in the 
crystal, excitons belonging to I’s are observable for 
light polarized perpendicular to the c-axis, and 
excitons belonging to l?r are observable in light 
polarized parallel to the c-axis. All other exciton 
transitions are forbidden. 

Experimental evidence(s) supports the assump- 
tion that the electron is lighter than the hole and 
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Table 1, Character table for the double groups of the wave vector 0 in the wurtxite 
structure (after BIFLMAN). 

E 
I I 

z 2& 2ca 2& 2cs 22, I / 6alz 60~ 
--/ ~__~- ~-- 

r1 1 1 1 1 1 1 1 1 1 
--___~-~- -- 

IA? 1 1 1 1 1 1 1 -1 -1 
--~-_ ~___ 

r3 1 1 -1 1 1 -1 -1 1 -1 
-- --___ __~ 

r-4 1 1 -1 1 1 -1 -1 -1 1 
--~~-~~ 

rs 2 2 -2 -1 -1 / 1 1 -q-i- 
_____________ -___ 

rs 2 2 2 -1 -1 -1 -1 0 0 
--~~-~ -,- 

r7 2 -2 0 1 -1 d(3) -d(3) 0 0 
--___~~~__ ~~ 

rs 2 -2 0 1 -1 1/(3) 1/(3) 0 0 
----___ ~~,___ ___~ 

rg 2 -2 0 -2 2 0 0 / 0 I 0 

dominates the reduced mass. The off diagonal com- 
ponents of the effective mass tensor in this case 
arise only from spin-orbit interaction and can be 
regarded as small. The most likely estimate for the 
ground-state wave function would be that it is 
roughly hydrogenic, so that the spatial part of the 
wave function belongs to I’1 and is analogous to a 
1 S-state in hydrogen. In the lowest approxima- 
tion, applying the rules of Section III, there are 
three sets of four ground state excitons derived 
from the bands as shown in Table 2. Corresponding 

Table 2. The ground-state excitons in ZnO. The 
YOWS represent the dazerent valence bands 

Valence 
band 

r7 

rs 

I-7 

States analogous to the Oscillator 
hydrogenic S-state strength 

I3 (weak) fl 
rz 0 
r5 (strong) fi 

r5 (strong) f3 

rs 0 

I?I (strong) f4 
rz 0 
I?5 (weak) f5 

to these twelve states should be five optically 
observable lines, three observable for Elc and 
two for EIIc. To lowest order, the strengths of these 
lines are proportional to the k = 0 matrix elements 
for band-to-band transitions, and have been esti- 
mated by THOMAS(~) on the basis of the band 
model of Section IV. The lines listed as weak have 
oscillator strengths which vanish if the spin-orbit 
interaction is zero. 

In the absence of electron-hole spin interactions 
(which arise chiefly from the exclusion principle) 
and long range coulomb effects, all the exciton 
states would be four-fold (accidentally) degenerate, 
corresponding to the four orientations of electron 
and hole spin. We have found by a rather general 
argument three sets of four states, each set of which 
is expected to have approximately the same energy. 
This must continue to be true (neglecting the 
above two interactions) in spite of the various con- 
figuration interactions which can occur. 

For hydrogenic excitons, the spin-spin inter- 
action is expected to be very small because of the 
relatively large exciton radius. Experimentally, the 
l?l exciton belonging to the highest lying valence 
band has little oscillator strength, and should be 
little affected by the long-range Coulomb effects. 
The same statement should be true for the I’5 
exciton belonging to the lowest valence band. 
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The two lowest energy I’s excitons are separated 
in energy rather little compared to their experi- 
mental energy of binding, and have large oscillator 
strengths. The long-range coulomb interactions 
are then expected to mix and shift these two 
excitons. 

The optical matrix elements are much more 
sensitive to band mixing, and therefore more 
difficult to estimate. On the basis of the model of 
Section IV, and neglecting configuration mixing, it 
is expected that fs M f3 m $fa. The mixing of ex- 
citons 2 and 3 can easily upset fz SW f3, but fz+ 
f3 = f4 is still expected to be valid (and is true 

spatial symmetries for the envelope functions will 
be respectively rs, I’r and l?r. The optically observ- 
able excitons which should arise from these con- 
figurations are given in Table 3. The lines classi- 
fied as weak involve either the spin-orbit inter- 
action (which is very small) or band mixing (as in 
Section III) or both to produce their oscillator 
strength, and will be unobservable in reflection. 
The lines for which the intensity is given by a 
question mark are weak for the same reasons, but 
can be easily mixed with the corresponding 2 S 
(strong) states by deviations from the effective mass 
approximation and the nondiagonal part of the 

Table 3. The low lying optically observable excited states of 
excitons in ZnO. The column heading gives the analogous hydro- 

genie state; the rows represent the different valence bands 

Valence 
band 

1 2s j 2Po 

r7 

2Ts(accidentally 
degenerate)(?) 

JXweak) 

Ps(strong) 
Tl(weak) 

I?s(?) 
Wweak) 

r9 r5(?) 
r1h.d) 

T5(strong) T5(9 

r7 
2Ts(accidentally 

degenerate) (weak) 
Pl(9 

T5(weak) 

rr(strong) 

Is(weak) 

rl(?) 

within experimental error). The difficulty in 
estimating fi was briefly considered in Section IV. 

It is experimentally observed(s) that the lowest 
energy (weak) l?l (nondegenerate from the point of 
view of group theory) line exhibits what appears to 
be a linear Zeeman effect for a magnetic field 
applied along the hexagonal axis. Such a mag- 
netic field has symmetry Is, and mixes I’1 only 
with I’2 (or other I’1 states) to all orders. The linear 
Zeeman effect is expected from the previous 
theoretical argument, for we have shown that the 
energy difference between the lowest I?1 and rs 
states arises only from the very weak spin-spin 
forces between electrons and holes. 

The excited states observed in reflection are 
much more complicated. On the basis of a hydro- 
genie model the possible low lying excited states 
should be 2 P*l, 2 S and 2 PO. The (approximate) 

tensor mass. This mixing will certainly take place 
if the 2 P&r and 2 S (or 2 PO and 2 S) states lie close 
together. 

The observation of one strong line and one or 
two weak lines for each band is then easily under- 
stood on the basis of Section III. Since the effec- 
tive mass approximation should be a fair approxi- 
mation for these excited states, the experimental 
observations by THOMAS of multiplet n = 2 
levels indicates the presence of a small reduced 
mass anisotropy (the dielectric constant is very 
nearly isotropic) in ZnO at k = 0. This anisotropy 
must be small, for the accidental 2 S-2P degeneracy 
of the hydrogen atom is very nearly present in the 
excitons in ZnO. 

VI. CONCLUSION 

The group theory of weakly bound excitons was 
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developed in terms of the symmetries of electron 
and hole bands. Direct excitons belong to irreduc- 
ible representations of the single group of the point 
r (whether or not the optical band gap occurs at 
I’). The symmetries of weakly bound excitons can 
be found in two steps. On the basis of the effective 
mass approximation, the orbital symmetry which 
should correspond to a given energy level can be 
estimated. This orbital symmetry is not an exact 
quantum number. The exact exciton symmetries 
of excitons having approximately the effective mass 
energy can then be found by taking products of 
electron and hole symmetries with the orbital 
symmetry estimated in the effective mass approxi- 
mation. 

If sufficient further experiments can be per- 
formed on ZnO, it should be possible to com- 
pletely determine the k = 0 bands parameters from 
the optical absorption spectrum. The present work 
was performed because of the observed complexity 
of the exciton spectrum. Allowed excitons, for- 
bidden excitons, longitudinal excitons and ex- 
cited states of excitons have all been observed in 
ZnO. Both group theory and a band model seemed 
necessary to interpret the observed data. The com- 
bination of a simple band model with a know- 
ledge of the symmetry properties and accidental 
degeneracies of weakly bound exciton states has 
produced a qualitative (and in some respects 
quantitative) understanding of the exciton level 
structure in ZnO and CdS. This understanding is 
necessary in order to make use of the exciton states 
as a tool for the energy band structure in ZnO and 
CdS. 
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APPENDIX 

Let Yz,(e, 4) be a spherical harmonic, and S a proper 
rotation of three-dimensional space. Then the function 

J& = 3 &s(s-lR 4) exp(ikSr) 

transforms under rotations like Yzm. The sum is per- 
formed over all proper rotations S. The function fzm is 

Let Lm,r,&) be a crystal harmonic, and S be a sym- 
metry operation of the point group. The analogous 
theorem would be that the functions 

were also orthogonal as in the case of the continuous 
group. (If they were orthogonal, the transformation from 
the terms in equation (3) to those in equation (4) would 
be unitary.) This, however, can clearly not be true, since 
there are but a finite number of operations S and thus a 
finite number of equivalent functions I&, whereas there 
are an infinite number of functionsfm,r,i. For a general 
k there are exactly N possible independent functions 
fm,l,d, where N is the order of the group. The symmetry 
of the possible functionsfm,r,i can be deduced by noting 
that the set {&(sr)} is a basis for the regular representa- 
tion. Thus if Pr is an Mr dimensional representation of 
the point group exactly Ma sets (of Mi functions each) of 
functions of equation (A.l) will belong to M&. This is the 
basis of the counting difficulty in equation (4). Writing 
the sum over all crystal harmonics is redundant. 

The following theorem can then be proved. Let Ii be 
an Mi dimensional representation of a point group. Let 
I1 be the identity representation. For i # 1, there are 
exactly MS sets (of Aft functions) of crystal harmonics 
which are independent. All other crystal harmonics be- 
longing to I?( can be written as linear combinations of 
these IMe sets times crystal harmonic belonging to Il. 

As an example, the crystal harmonics for the wurtzite 
structure are given below. The simplest co-ordinate 
system to use is cylindrical co-ordinates r, z, Ip. The 
normalization factors have been omitted. 

rlf(~, X)X [l, &4+e-s66, &std+e-rsW, . ..J 

r2 

r3 

r4 

r5 

x [ez6ed - 6-6(ti, e12fQ - e-l2i$, ...I 

X [&ti + +ti, e9tti + e-9iti , . . . ] 

X [eS”ti- e-2(“, e9f#- e-916 , . . . ] 

&, e-526, e%b, e-1119, &21ti, . . . 
X 

c-29, f+S, e-7(+, elliQ, e-1364 , . . . 

For illustration of the theorem, we see that esQ and 
e+Q cannot be made up of linear combinations of har- 
monics belonging to I?1 and eQ and e-Q. On the other 
hand 

.67e$ = efb[&ti + e-6(4] _ ,-5r6 

The theorem can be used as an aid in constructing higher 
order crystal harmonics. Similarly, VON DER LAGE and 
BETHE’S Kubic Harmonic@) (ys)r and (ys)s can be 
written as linear combinations of [(y4)1 and (rs)r] and 
[(y4)a and (y&J, respectively. 

Perhaps the simplest way.to understand the redund- ___. 
orthogonal to fzrm’ for either m # m’ or 1 # Z’. ancy of expression (4) is in analogy with the full rotation 
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group. For the full rotation group, a genera1 function 
can be expanded 

f(r) =$Cmgdlrl) Y,?r@? #) 
2 

where gz,(lrl) is a rotationally invariant function. The 
sum goes over all 1 and all m. For a finite group, one may 
write 

where gm,r,@) is a function which is invariant under the 
symmetry operations of the finite group, and L,,z,$(r) 
are crystal harmonics. If the group has order N, it is 
necessary to keep only N terms in the sum. If these N 
terms are properly chosen, all other possible terms will 
be redundant. 
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