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6 1. Introduction 

Propagation of light in a turbulent atmosphere or another random medium 
gives rise to a variety of fluctuation effects caused by the random inhomo- 
geneities in the medium. As a rule, these effects degrade the radiation by 
corrupting its coherence, broadening the beam, and decreasing the intensity. 

In the last two decades, a qualitatively new class of fluctuation effects has 
been observed, caused by the fine coherence effects that arise in a double 
passage of waves through the same inhomogeneities of the medium. These 
effects result in some ordering of the scattered radiation rather than its 
degradation. 

The manifestation of coherent effects in multiple scattering has been sug- 
gested by WATSON [ 19691 with reference to a private communication from 
Ruffine. The Ruffine-Watson coherence effects arise in the multiple scattering 
of a wave from a large number of discrete scatterers. We shall refer to this class 
of phenomena as (multipath) coherent effects. According to Watson and 
Ruffine, to any closed scattering path (Os, s2, . . . s,O in fig. 1. la)  connecting 
the source at point 0 with the receiver placed at the same point 0 there 
corresponds an opposite path Os, . . . s2s10, such that the fields in the direct 
path, uo,2 .. and reverse path, uOn .,, 210, are coherent for arbitrarily 
located scattering centers s , ,  s2, . . . , s,. When the source 0 and the receiver 0’ 
are separated (fig. l.lb), the fields uo,2 ,,, and uOn _,_ 210, are no longer 
identical and lose coherence for sufficiently distant 0 and 0‘. 

Watson treats points s,s2 . . . s, as centers of infinitesimal elements of the 
random medium, which are summarized in integrating over the entire volume 
of the medium. This line of reasoning has been continued by DE WOLF [ 19711, 
who applied it to the description of waves backscattered from small-scale 
inhomogeneities of a turbulent medium. Although this effect proved to be 
exceedingly weak in a turbulent medium, de Wolfs’ theory has served as a 
jumping-off place for considering a more realistic problem of backscattering 
from solids embedded in such media (BELENKII and MIRONOV [1972], 
VINOGRADOV, KRAVTSOV and TATARSKI~ [ 19731). 

This effect is observed as a higher intensity of a wave scattered strictly 
backwards in a turbulent medium rather than that of a wave backscattered in 
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68 ENHANCED BACKSCATTERING IN OPTICS 

Fig. 1 . 1 .  (a) When the locations of the transmitter and receiver coincide, the forward and reverse 
scattering paths are identical and the respective fields are coherent. (b) Separation of the trans- 
mitter and receiver breaks down the coherence between the paths Os,s, ... s,O’ and 

0 s ”  ... S,S,O’. 

a homogeneous medium. This was the first of a series of effects in which a 
random medium produced an enhanced rather than a degraded intensity. 

BARABANENKOV [1973, 19751 has interpreted the coherent paths in a 
medium with small-scale inhomogeneities by means of scattering diagrams. 
When the point of observation, 0’, is brought into the location 0 of the source, 
the contribution of cyclic diagrams becomes equal to that of ladder diagrams ; 
therefore, the intensity peak scattered backwards by a random inhomogeneous 
medium is about twice as large as the intensity of backscatter. Cyclic diagrams 
have proved to be a very useful interpretation tool that has been widely accepted 
for the analysis of enhancement in multiple scattering of waves. 

More recently, the effect of backscatter enhancement has been observed 
experimently by KUGA and ISHIMARU [ 19841, WOLF and MARET [ 19851, and 
some other workers. It has been reported under the name of weak localization, 
borrowed from the theory of electron scattering in metals. It is worth noting 
that in metals the weak-localization effect has a very small magnitude because 
of the strong Coulomb interaction of electrons. This effect is stronger for 
photons, which do not interact with one another, and it leads to a marked 
enhancement of backscattering. 

In one-dimensional, random-inhomogeneous media, coherent effects are of 
major importance for propagation of waves and lead to phenomena similar to 
the strong-localization regime of electrons in solids predicted by ANDERSON 
[ 19581. Specifically, GAZARYAN [ 19691 and other workers (see, e.g., 
KLYATSKIN [ 19751) have found that the transparency of a one-dimensional, 
randomly inhomogeneous slab falls off exponentially with thickness in much 
the same way as the wave function of electrons does under strong localization, 
whereas the phenomenological transport theory predicts a much weaker power 
law. 
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The effects of backscatter enhancement and weak localization head the list 
of phenomena in which coherent paths of the Watson-Ruffine type are essen- 
tial. In this survey we intend to describe multiple new manifestations of 
coherent effects in backscattering. These include the effects of long-distance 
correlations, the partial reversal of the phase front in a random medium, the 
magic cap effect, antispecular scattering by very rough random surfaces, and 
bsckscattering involving surface waves. 

This survey will replace our previous review papers (KRAVTSOV and 
SAICHEV [ 1982b, 19851) and a recent monograph by BANAKH and MIRONOV 
[ 19871 on lidar sounding of a turbulent atmosphere, which unfortunately have 
become obsolete and need to be updated. We hope that this publication will 
be useful not only for researchers in optics but also for workers in other fields 
of wave physics. We would like to use it to acquaint researchers in the West 
with relevant studies made in the Soviet Union and not known to our western 
colleagues. We became aware of the need for updated information on the 
subject during the Tallinn workshop in 1988, which was organized by V. I. 
Tatarskii and A. Ishirnaru. Personal contacts in this workshop stimulated us 
to prepare this review. 

8 2. Enhanced Backscatter from Solids Immersed in a Turbulent Medium 

2.1. ABSOLUTE EFFECT OF ENHANCED BACKSCATTER: A POINT 

TRANSMIM'ER A N D  A POINT SCATTERER IN A TURBULENT MEDIUM 

2.1.1. Pure effect of enhanced backscatter 

Consider monochromatic waves propagating in a medium with dielectric 
constant E = 1 + 1. Assume that the inhomogeneities are weak enough, i.e., 
] 5 I 4 1, statistically uniform and isotropic, and the characteristic scale I ,  of 
inhomogeneities is large compared with the wavelength I ,  i.e., 1, % 1. These 
conditions are typical of light waves propagating in a turbulent atmosphere. In 
such a medium, scattering occurs predominantly in the direction of propaga- 
tion. Therefore, a description of such waves may be based on a scalar 
approximation. 

An optical wave backscattered from solids immersed in a medium with 
large-scale inhomogeneities passes through the same inhomogeneities which it 
has passed through in the forward direction (fig. 2.1). The double passage of 
a wave through the same inhomogeneities gives rise to the effect of backscatter 
enhancement (BSE). This effect occurs in media whose inhomogeneities 
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Fig. 2.1. For a point ofobservation rplaced near the transmitter r,, the scattered radiation travels 
back through the same inhomogeneities through which the forward wave has passed. 

remain virtually unchanged during the wave travelling from the transmitter to 
the scatterer and back. The effect of time-dependent variations of the inhomo- 
geneities upon the field of the reflected wave will be discussed here; at the 
moment we shall assume that they are time-invariant, i.e., 5 = 5(r) .  In this 
case the Green function G ( r l ,  r2 )  describing the field of a scalar monochromatic 
wave obeys the path reciprocity theorem 

w,, r2) = G(r2, r1) * (2.1) 

This relationship is of principal significance in describing the BSE and other 
effects of double passage of waves. 

Let a point transmitter at point r = r, produce a primary field u ( r )  = G(r t ,  r). 
When this wave is incident on a point scatterer at point r,, it gives rise to the 
scattered field 

us (4 = f G  (rt ,  r s )  G ( rs ,  r )  , 

where f is the amplitude of scattering. Thus, from eq. (2. l), 

u,(r) = fG(rs9 r,)  G(r , ,  4 .  

Is(r) = aI(r,, r t ) I ( r s r  r ) ,  

At an arbitrary point r the intensity of the scattered field is 

(2.2) 

where a = 1 f I is the scattering cross section in vacuum, and I (rs ,  r )  is the 
intensity of a point source at ro observed at point r, 

I ( r , ,  r )  = IW,, dI2. 
We normalize the intensity I,(r)  to the intensity I,O(r) of the scattered wave 

in a homogeneous medium, 

= oIo(lrt - r s l ) I o ( l r -  r s l ) ,  
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where J ( r , ,  r )  = I ( r , ,  r)/Io( I r - r, I ) is the relative intensity of the wave emitted 
from the location of the scatterer. 

The effect of enhanced backscattering can be derived from elementary con- 
siderations. We note that from the conservation of full flux of energy for the 
average intensity of a wave emitted by a point isotropic source, it follows that 
( I @ , ,  r ) )  = M l r  - r,I), so that 

( J ( r , ,  4 )  = 1 . (2.4) 

From eq. ( 2 . 3 )  the average relative intensity of a backscattered wave observed 
at the location of the transmitter, r = rt, is 

(J,(rt)) = ( J 2 ( r , ,  rt)> . 

The mean square, i.e., (J’ (r , ,  rt)) ,  always exceeds the square of the mean, i.e., 
( J ( r s ,  rt))*, which is unity in view of eq. (2.4). Therefore, the backscatter 
enhancement factor Kbsc is always larger than unity, 

K b s c  = Wt)/CYrt) 

= (J&t)) = ( J 2 ( r s ,  rt)) > (W,, rt))2 = 1 . (2 .5)  

For a turbulent medium the BSE effect was first predicted by BELENKII and 
MIRONOV [ 19721 and VINOGRADOV, KRAVTSOV and TATARSKII [ 19731. A 
typical dependence of K upon the distance between the transmitter and 
scatterer in a turbulent medium is given in fig. 2.2 with three regions indicated 
for weak, strong, and saturated fluctuations of intensity. Mechanisms leading 
to these regions have been discussed by ISHIMARU [ 19781, RYTOV, KRAVTSOV 
and TATARSKII [ 1989a,b], YAKUSHKIN [ 19851, BANAKH and MIRONOV 
[ 19871, and MARTIN and FLATTE [ 19881. As L = I Y, - r,l tends to infinity, the 
enhancement factor asymptotically approaches K(co)  = 2, and in the region of 
focusing K can somewhat exceed this value. 

0 L=lr,-r,J 

Fig. 2.2. Dependence of the backscattering enhancement factor Kbsc = K(r t ,  rs)  on the distance 
between the transmitter and scatterer in a turbulent medium. (a) Region of weak fluctuations of 
intensity; (b) region of strong fluctuations caused by random focusings; (c) region of saturated 

fluctuations. 
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2.1.2. A phase screen 

Random inhomogeneities of a medium inducing the fluctuations in intensity 
should not necessarily fill all the path from source to scatterer. They may fill, 
e.g., a narrow layer in this path. The effect of this layer on a wave can be 
described by the phase-screen approximation (VINOGRADOV, KRAVTSOV and 
TATARSKII [ 19731). Fluctuations in the intensity of plane waves having passed 
through a random phase screen distorting the phase of a passing wave have 
been studied by SALPETER [1967], ALIMOV and ERUKHIMOV [1973], and 
SHISHOV [ 19741. A recalculation ofthese results for the case of spherical waves 
is straightforward (ISHIMARU [ 19781). If a point scatterer is in the focusing 
region of a wave passing through the screen, the enhancement factor is calcu- 
lated to be considerably above the asymptotic value K = 2 characteristic of a 
medium with three-dimensional inhomogeneities. A rough estimate for this case 
may be obtained as K z In o;, where o i  is the variance of the phase distortions 
caused by the screen. 

2.1.3. Spatial redistribution of the scattered intensity 

Enhancement of average backscatter intensity does not contradict the conser- 
vation laws because it is accompanied by the reduction of scattering sideways. 
In other words, a spatial redistribution of the average intensity takes place. 

Consider the average relative intensity ( J , ( r ) )  of a scattered wave at points 
r = r, + p of a sphere with radius L = 1 r, - r, I centered on a scatterer, as 
shown in fig. 2.3a. By definition, ( J , ( r ) )  represents the enhancement factor en 
route r, -+ r, -+ r = r, + p, so that on the sphere we have 

K(p, L )  = ( J , ( r ) )  

= ( J ( r , ,  r t )J ( r s ,  4 )  . (2.6) 

From the conservation of the full flux of energy of the scattered wave it 
follows that the average of (J,) = K over the sphere is 

(4nL2) -  $ K(p,  L )  ds = 1 . (2.7) 

For a wave scattered strictly in the backward direction, K ( 0 ,  L )  = Kbsc > 1; 
therefore, at some distance from the transmitter K - 1 must be negative. A 
typical plot of K (p,  L )  as a function of the angle 0 reckoned from the specular 
direction is shown in fig. 2.3b. 
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n 

b 

Fig. 2.3. (a) Placing a point of observation r on the sphere of radius L = I r,  - rs  1 ;  (b) profile of 
the enhancement factor K as a function of the angle 0. 

This redistribution of intensity of scattered radiation is no longer evident for 
p > pc, where pc x 8, L is the distance from source to detector at which the 
emitted and scattered waves actually propagate through different, statistically 
independent inhomogeneities of the medium. In fact, pc is the intensity trans- 
verse correlation radius of a wave that has travelled a distance from r, to r, in 
one direction. This can be readily verified by representing the “single-passage” 
relative intensity J in the form ( J )  + AJ = 1 + AJ, where A J  = J - ( J )  
represents fluctuations of the relative intensity. Now, the enhancement factor 
(2 .6)  can be written as 

K(p, L )  = 1 + B,,(p, L )  9 

B,,(p, L )  = <AJ(Y, ,  Yt) A J ( r , ,  rt + PI> 

(2.8) 

where 

is the correlation function of fluctuations AJ at the adjacent points r, and Y, + p 
for a single passage of a wave from Y, to Y,. 

Because of the small angular dimensions of the backscatter cone, the 
photodetector that will record the backscatter-enhancement effect should be of 
small angular dimensions. If the detector aperture is larger than pc, the intensity 
averaged over the aperture will be almost equal to the intensity that would be 
obtained in the absence of inhomogeneities. This averaging effect of the detector 
aperture has been noted by VINOGRADOV, KRAVTSOV and TATARSKII [ 19731. 
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2.1.4. Backscatter enhancement under weak fluctuations of intensity 

If the scatterer is in the region of weak fluctuations of the intensity of the 
emitted wave, Rytov's approximation may be used for analysis of back- 
scattering enhancement (see, e.g., TATARSKII [ 19671, ISHIMARU [ 19781, 
RYTOV, KRAVTSOV and TATARSKII [ 1989a,b]). In this approximation, 

where k = 2x/A is the wavenumber and @Je(x)  the spatial spectrum of per- 
mittivity fluctuations. 

In media with single-scale inhomogeneities the correlation of the intensity 
fluctuations breaks down at pc FZ OcL - 1,. Therefore, a redistribution of the 
average backscatter intensity occurs within a cone with half-included angle 
0, z 1JL. In a turbulent medium the correlation radius of level fluctuations is 
given by the Fresnel scale pf z (AL)'I2. Quantitative data on enhanced back- 
scattering under various illuminating conditions and for different scatterers 
may be found in the monograph by BANAKH and MIRONOV [ 19871. 

2. I .5.  Saturated fluctuations of intensity 

If we assume that the scatterer is in the region of saturated fluctuations of 
the intensity of an emitted wave, the field of a wave incident on the scatterer 
is the sum of a large number of statistically independent waves passing from 
transmitter to scatterer through different paths. In light of the central limit 
theorem, near the scatterer the field of the emitted wave will be asymptotically 
Gaussian (ZAVOROTNYI, KLYATSKIN and TATARSKII [ 19771, DASHEN 
[ 19791, YAKUSHKIN [ 19781). Its statistical properties are completely defined 
by the average ( G(rs ,  r ) )  = 0 and the coherence function r(p, L )  = 

( G(rs ,  r )  G*(r,, r , ) )  with r(0, L )  = ro(L). 
The principal physical characteristic of a wave in the saturation regime is the 

radius of coherence pc(L) of the spherical wave, which is defined by 
1 r(pc, L )  I / I o @ )  E l/e. A saturability condition of intensity fluctuations of a 
wave that has travelled a distance L (ZAVOROTNYI, KLYATSKIN and 
TATARSKII [ 19771) has the form 

y(L) = L/kp,2(L) P 1 , (2.10) 

which allows for a simple geometrical interpretation. The quantity y(L) is the 
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ratio of the characteristic side shift of rays (in the random inhomogeneous 
medium and in the homogeneous medium) 

.,(Q = ~ / k P , ( L )  (2.11) 

to the coherence radius pc(L). In agreement with eq. (2.10) the intensity 
fluctuations become saturated when the side shift of the rays exceeds pc. 

Applying the laws of Gaussian statistics to the complex amplitude of the 
emitted wave yields for the average in eq. (2.6) 

K(p, L )  = 1 + ! r 2 ( p ,  L )  ! /ML) .  (2.12) 

This expression suggests in particular that, in the saturation regime, 
K = K (0, L )  = 2. Backscatter enhancement can be observed in a small neigh- 
borhood of the transmitter confined by the radius &.). The Gaussian approxi- 
mation used in deriving eq. (2.12) fails to observe that for p 2 p&) enhance- 
ment gives way to reduction. However, there are reasons to believe that in the 
regime of saturated fluctuations of intensity the reduction is small, 
1 1 - K ( p ,  L )  < 1 is valid in the wide angular region pc < p < ap. Useful results 
on backscatter enhancement under the conditions of saturated fluctuations are 
given in the book by BANAKH and MIRONOV [ 19871. 

2.1.6. A lens interpretation of backscatter enhancement 

An easily tractable lens model of the backscatter-enhancement effect is based 
on representing a random medium as a collection of focusing and defocusing 
lenses, i.e., biconvex and biconcave lenses shown in fig. 2.4. Assume that the 
scatterer is a sphere of radius a. In the geometric optics approximation the 
scattering cross section of the sphere is cr = nu2. If the sphere is in the focus 
of a lens of radius R 4 a which is placed between the source and the sphere, 
the effective cross section of this system, ofoc = nR2, is many times the scatter- 
ing cross section of the sphere alone, afoc/a = (R/a)2 % 1. If the lens defocuses 
the incident radiation, then, assuming the same focal length as that for the 
biconvex lens, the effective scattering cross section will be only of 0; namely, 
~ J ~ ~ ~ ~ ~ / o  z (F/2F)’ = a. 

If we assume that the probability of encountering a focusing or defocusing 
element is the same, than for R/a 4 1 the mean effective cross section 

will exceed the “vacuum” value cr. Thus, the backscatter-enhancement effect 
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Fig. 2.4. Scattering by a sphere of radius n in a homogeneous medium (top), scattering after 
passing through a focusing lens (middle), and defocusing lens (bottom). 

may be treated as a result of a strong asymmetry in the action of the focusing 
and defocusing inhomogeneities. 

2.1.7. Backscatter-enhancement relying on multipath coherent efects 

The effect of backscattering enhancement allows an interpretation with the 
aid of multipath coherent effects of Watson-Ruffine that suggests a common 
cause for a wide variety of phenomena. 

Imagine an opaque screen with two widely spaced pinholes placed midway 
between the transmitter and scatterer, as shown in fig. 2.5. A wave arrives at 
the scatterer along two different paths, so that we can separate the Green 
function accordingly, i.e., 

Fig. 2.5. Coherent effects occur when radiation from a source arrives at a scatterer through a few 
paths. 
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Assume that random inhomogeneities in front of and behind the screen give rise 
to strong phase fluctuations so that the two waves incident on the scatterer are 
mutually incoherent; i.e., ( G I  G t )  = 0. 

The field of the scattered wave at the point of the transmitter is proportional 
to 

This field may also be represented as the sum of two waves reaching the 
transmitter through different pinholes 

us = U: + U: =.fGC, + fGG,  

Unlike the waves of GI  and G, incident upon the scatterer, the terms ti,’ and 
uf always contain identical (coherent) components, G,G, and GIG,,  corre- 
sponding to the scattered waves that have passed the same route, transmitter 
- hole 1 - and scatterer - hole 2, but in opposite directions. Because of the 
mutually coherent addends, the average intensity of the scattered wave at the 
transmitter is 

which exceeds by 21,, the average intensity corresponding to the wave 
intensities u,’ and u,’ added incoherently, viz., 

where 

I ~ ~ . , ,  = o (  1 ~ ~ 1 )  

I 1 2  = a(lG:I> (IG2’1). 

It is worth noting that ( I , )  inc& equals the average intensity of the scattered 
wave measured at a point r, at a distance from the transmitter where u,’ and 
uf are no longer coherent. 

We introduce a coefficient 

K = ( Is (r t ) ) / ( Is ) incoh (‘bsc)/(Isep) 

that characterizes the enhancement of a backscattered wave over the intensity 
at points far separated from the transmitter. If I,,,,, % I,,, then K z :. It 
should be evident that as the number of pinholes M in the screen increases, the 
enhancement factor grows as K z 2 - l/M and approaches two as M tends to 
infinity. 

In this imaginary experiment the effect of enhanced backscattering is caused 
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by the artificially provided multipath (two-path for the two-pinhole case) 
coherent effects of the Watson-Ruffine type. In other words the effect near the 
transmitter is caused by the interference of waves that have passed in opposite 
directions through the same random inhomogeneities of the medium. A similar 
process takes place in propagation of waves in a turbulent medium. However, 
unlike the preceding experiment with the screen, here the multipath propagation 
of a wave incident upon a scatterer occurs as a result of random walk and 
entanglement of rays in a turbulent medium. 

In what follows we picture a ray pattern of backscatter enhancement in a 
turbulent medium, which although rough, yields correct quantitative estimates 
of the effects of double passage. We begin with estimating the distance between 
two rays emanated from a source at an angle $. In a turbulent medium, at a 
distance x from the source, each of the rays experiences fluctuations of the angle 
of propagation in the order of 8 = l /kp , (x) .  If the rays pass through 
different random inhornogeneities, the distance between them will be 

JoL [ O O  + m dx = Po@) + cr,(L) 9 

where cr,(L) is given by eq. (2.1 1) and po(L) = 60 L is the distance between the 
rays in vacuum. The smallest angle O0 at which the rays may still be thought 
of independent random walks compares with the coherence angle 
&(L) = p,(L)/L. The dimensionless ratio of cr,(L) and po(L) w OcL = pc, 
denoted by y(L) in eq. (2. lo), characterizes the degree of random broadening 
of ray tubes in the turbulent medium. 

As long as y(L) < 1, the ray tubes emerge almost undistorted and the 
fluctuations of intensity 61 N y 2  caused by random compression and expansion 
of the ray tubes are s m d  and may be treated with Rytov’s approximation. At 
y 5 I, random focusing phenomena appear (random caustics) that are respon- 
sible for the strong fluctuations of the wave intensity (KRAVTSOV [ 19681). 

Further away from the transmitter, where y(L) B 1, rays are entangled in a 
random manner and many almost independent rays meet at every point, as 
shown in fig. 2.6; the number of such rays may be estimated as M w y 2  % 1. 
The stochastic interference of independent waves arriving through various rays 
now becomes the principal mechanism of intensity fluctuations, rather than the 
compression and expansion of ray tubes as is the case for y 4 1.  Accordingly, 
the field of a wave incident upon a scatterer may be represented as a sum of 
a large number M ,  of statistically independent components, namely, 

M 

W t ,  r s )  = 1 Gffl(rt9 rs). 
f f l =  1 
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Fig. 2.6. Multipath coherent effects in the range of saturated tluctuations in a turbulent medium. 

From the reciprocity theorem it follows that the scattered waves return to 
the transmitter through the same M rays (paths). The fields of all rays incident 
upon the source will be partially coherent, because to every pair of rays incident 
on the scatterer, say m and n in fig. 2.6, there correspond a pair of scattered 
waves propagating along these rays in an opposite direction. 

Multiple coherent scattering paths that occur in a turbulent medium result, 
as in the preceding experiment with a screen, in an enhancement of the average 
backscattered intensity, the enhancement factor K approaching two. When the 
point of observation is shifted a distance p 2 pc(L) from the transmitter- 
scatterer line, the coherence paths break down and the mutual coherence of 
waves scattered in various rays disappears. 

The coherence paths also break down when the observation point moves 
along the transmitter-scatterer line over a distance of the order of the longi- 
tudinal radius of coherence estimated as I,, x pC/& = kpf(L)  (VINOGRADOV 
[ 19741). The domain of observability of enhanced backscattering is illustrated 
in fig. 2.7. 

2.1.8. Experimental evidence 

GURVICH and KASHKAROV [ 19771 were the first to observe the “pure” effect 
of enhanced backscattering in optics. A point source of light was simulated by 
a laser beam focused with a lens system (fig. 2.8). The receiving aperture was 
a small opening in a blackened face of a prism, enabling the point of observation 
of the scattered field r to be brought to within 0.5 mm of the effective trans- 

I 

2Pll 4 I 

Fig. 2.7. Region of observation of enhanced backscattering is defined by the transverse ( p , )  and 
longitudinal (pil) radii of correlation of the spherical wave reflected by the scatterer. 
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14) 
T 

Fig. 2.8. Schematic diagram of a laboratory set-up for observation of backscatter enhancement 
(GURVICH and KASHKAROV [1977]). 1, Laser; 2, receiver prism; 3, photomultiplying tube; 

4, heater; 5 ,  fan; 6, turbulent air flow; 7, scatterer (spherical mirror). 

mitter, r,.  A fan and heater produced a turbulent flow of air. The scatterer was 
a sheet of paper or a 1 cm diameter spherical mirror with curvature radius 
a w 0.5 m. The Fresnel spot of radius f i  was larger than the coherence 
radius pc E 5 mm, so that the convex mirror actually played the role of a point 
scatterer. 

Figure 2.9 shows the experimental dependence of the enhancement factor K 
upon the distance p = I r, - r I from transmitter to receiver. Enhancement is of 
the order of 1.4 near the source with a gradual decrease at a distance of about 
3 mm, which is comparable with the coherence radius pc. 

Lj. 

r. 2 

1. I 

1.0 

I I I I I I 

P y  
Q 1 2 3 4  

Fig. 2.9. Enhancement factor K versus distance between the transmitter and receiver in a 
laboratory experiment. Experimental points are shown as open circles with bars representing 
standard deviation. The cross-hatched area corresponds to the values of K(p)  calculated through 

the measured values of B,,(p). 
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A field experiment was carried out in a 1300 m long route (KASHKAROV 
[ 19831). The source and receiver were the same as in the laboratory experiment. 
To increase the intensity of backscattered light, the scatterer was made as a set 
of 4000 spherical scatterers placed over 1 m2 of a screen. In addition to the 
average backscattered intensity, the correlation function of the field intensity 
B,, in the rectilinear path was measured. The plot of K ( p ,  L )  - 1 as a function 
of B,,(p) is represented in fig. 2.10. The experimental points lie fairly close to 
the bisector, in agreement with the theoretical predictions (see 5 2.1.3). 

The value of these experiments has been not only that they confirmed the 
theoretical predictions but also that they tested a new technique for monitoring 
turbulent media. Instead of a correlation function, this method measures the 
average backscattered intensity, which is much easier to do. Another practical 
advantage of the method is that the transmitter and detector can be placed in 
the immediate vicinity of one another rather than being separated by a con- 
siderable distance, as with the traditional monitoring techniques. 

Fig. 2.10. Enhancement K ( p )  - 1 plotted versus measured values of the intensity correlation 
coefficient Bhl(p)  for several experimental runs shows small deviations from the bisector (dashed 

line). 
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2.1.9. Enhancement of backscattered intensity juctuations: Residual 
correlation of the intensity 

An enhancement of the average intensity of a backscattered wave detected 
near the transmitter is accompanied by an enhancement of fluctuations of the 
intensity compared with the intensity scattered sideways (VINOGRADOV, 
KRAVTSOV and TATARSKII [ 19731, BELENKII and MIRONOV [ 19741 and 
BANAKH and MIRONOV [ 19871). The variance of the relative intensity fluc- 
tuations of a scattered wave is 

( ( A J ) 2 >  = ( J 3 r ) )  - ( J s ( r ) ) 2  

= ( J 2 ( r , ) J 2 ( r ) )  - ( J ( r t ) J ( r ) > 2 .  (2.13) 

Here we assume, as before, that the observation point r is at a distance 
p = Ir - rtl from the transmitter (see fig. 2.3). For the wave scattered strictly 
backwards the variance of the relative intensity fluctuations is 

((AJbsc)2> = (J4) - ( J 2 > ’ .  (2.14) 

It would be natural to compare this quantity with the variance of relative 
intensity fluctuations for a wave scattered sideways, i.e., at a distance p % pc, 
where it may be safely taken that the inhomogeneities encountered by the 
emitted and scattered waves were almost independent. The average terms in 
eq. (2.13) break down into the products of the means to give 

((A5sep)2) 3 ( J 2 ) ’  - 1 . 

We introduce the enhancement factor of intensity fluctuations as the ratio 
of intensity variances for waves scattered backwards and sideways, i.e., 

K A J  = ((AJbsc)2) / ((AJsep)2> 

= [ (54) - (J”>’]/[  ( 5 ’ ) Z  - 11. (2.15) 

If the fluctuations are weak, the averages in eq. (2.15) may be computed in 
Rytov’s approximation. In this approximation 5 = exp (2x) ,  where x is the level 
of amplitude obeying a Gaussian distribution with variance CT,’ = B,(O, L )  of 
eq. (2.9) and mean ( x )  = - CT,’. From the normal distribution of x it follows 
that 

(J“) = exp[2n(n - I)a,’], 

so that the enhancement factor of the fluctuations of backscattered intensity 
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exp(24o;) - exp(8o;) 
exp(8o;) - 1 

K A J  = > 2 .  

For the case of saturated fluctuations of intensity, it follows from the fact that 
the field of the forward wave is asymptotically Gaussian, that the probability 
density of the normalized intensity J(r)  asymptotically approaches the expo- 
nential law ( J >  0) 

W ( J )  = exp( - J ) .  

The moments of intensity are then ( J " )  = n ! ,  so that from eq. (2.15) we 
obtain 

K A j  = [4! - (2!)2]/[(2!)2 - 11 = 6.67 

Experimental studies into fluctuation effects have been reported by 
BELENKII, MAKAROV, MIRONOV and POKASOV [ 19781, PATRUSHEV, PETROV 
and POKASOV [ 19831, and KASHKAROV, NESTEROVA and SMIRNOV [ 19841. 
Specifically, KASHKAROV, NESTEROVA and SMIRNOV [ 19841 measured the 
intensity moments of the forward wave, ( J 2 )  and ( J4), and the variances of 
intensity fluctuations of a wave scattered backwards and sideways. Results of 
these experiments agree satisfactory with the theory outlined above. Detailed 
discussions of intensity fluctuations for scattered waves may be found in the 
monographs by MIRONOV [ 19811, BANAKH and MIRONOV [ 19871 and ZUEV, 
BANAKH and POKASOV [ 19881. 

One more effect is noteworthy for fluctuations of intensity of scattered waves, 
namely, the effect of a residual correlation of intensity for arbitrarily separated 
points of observation. According to eq. (2.3) the correlation function of the 
relative intensity of a scattered wave J, is given by 

where p,2 = r1,2 - r,. If the points of transmission and observation are suf- 
ficiently far from one another so that pl,2 B p,, then 

B,(Pl.,B P O L )  = ( J 2 >  ( J > 2  = ( J 2 )  . (2.16) 

This quantity exceeds unity, since ( J 2 )  = Kbsc > 1. If J, (r l )  and Js(r2)  were 
uncorrelated, then for B, we should obtain = ((J))4 = 1. The differ- 
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ence 

B , ( p , , ,  % pc, L )  - 1 = ( 5 , )  - 1 = Kbsc - 1 > 0 

is exactly the quantity that characterizes the residual correlation of the back- 
scattered intensity for distant points. This difference is caused by the fact that 
the wave incident upon the scatterer is amplitude modulated because of the 
fluctuations in between the transmitter and the scatterer. This modulation, 
identical for all points of observation, is responsible for the residual correlation 
effects, which was discussed first by BELENKII and MIRONOV [ 19741. 

2.1.10. Scattering from small inhomogeneities in a turbulent medium A 
hybrid approach 

An enhanced backscattering may be obtained not only for bodies embedded 
in a turbulent medium, but also for the small-scale component of the spectrum 
of inhomogeneities. DE WOLF [ 19711 has analyzed this problem on the basis 
of a selective summation of series in perturbation theory, and VINOGRADOV 
and KRAVTSOV [ 19731 have tackled it in the framework of a hybrid approach. 
In this approach the zeroth order approximation is the field that has been 
distorted already by large inhomogeneities and the effect of the small-scale 
component is taken into account with the aid of perturbation theory. This is 
essentially a statistical version of the distorted wave Born approximation 
(DWBA) method. 

The hybrid approach has advantages over the selective summation technique 
in that it leads to an objective faster and, what is more important, in a more 
consistent manner. Indeed, whereas de Wolf has taken small inhomogeneities 
into account twice (in the propagator and inhomogeneity spectrum), the hybrid 
approach handles small-scale and large-scale inhomogeneities independently. 

Let B,(p)  = ( Z ( r  + p )  E ( r ) )  be the correlation function and @&(x)  the 
spectrum of random and isotropic fluctuations of medium permittivity. Repre- 
sent the spectrum Q e ( x )  as a sum of two nonnegative components, i.e., 

@&) = @&> + @,(4 9 (2.17) 

then the correlation function B,(p) is 

B & b )  = B , ( d  + B,(P). (2.18) 

We think of v(r) as the large-scale component and p ( r )  as the small-scale 
component, the spectrum @&(x)  being divided by the boundary wavenumber 
x * ,  as shown in fig. 2.1 1. 
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Fig. 2.11. One version of dividing the spectrum of fluctuations of permittivity into small-scale 
( x  > x‘) and large-scale ( x  < x‘) components. 

Partitioning the fluctuations of E into two parts v and p, we observe that in 
view of eqs. (2.17) and (2.18) these parts are uncorrelated, i.e., B,, = 0. Now, 
we write the wave equation as 

AU + k2(1 t V ) U  = - k 2 p u ,  (2.19) 

and as a zeroth approximation we take the solution u,  caused by the passage 
of the wave through large inhomogeneities and satisfying 

A M ”  + k2(1 + V ) U ,  = 0 .  (2.20) 

The respective Green function will be G,.  
To a first approximation, from eq. (2.19) we obtain the once-scattered field 

(2.21) 

The average intensity of this field, I;’), can be calculated by carrying out 
independent averaging over v and p, namely 

?:)(r) = k4 B,(r’ - r ” )  J J  
x ( G , ( r ,  r ’ )  G,*(r, r ” )  u , ( r ’ )  u , ( r” )  d3r’ d3r” . 

Assume that the coherence radius p, of the fields u,  and G ,  is large compared 
with the correlation radius of the small-scale component l,, and that the fields 
u ,  and G ,  differ from the respective values in vacuum, u,,(r’) and 
G,(r, r ‘ )  = - exp(ik I r - r’ 1)/4n I r - r ’  1, by random factors whose squared 
moduli equal, respectively, J ( r ’ ,  r t )  and J(r ,  r ’ )  with r, being the emanation 
point of the primary wave. Then the mixed moment in the integrand for 7;’) 
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can be replaced with a simpler expression 

where Z,(R) is the primary field intensity at the point R = i ( r ’  + r”),  
q = k (ni - n,) = k [ ( R  - ro)/ I R - r, 1 - ( R  - r)/ I R - r I ] is the scattering vec- 
tor, and 

K ( p , R )  = (IJ(R,rt)12 IJ(RJ)I2) 

is the enhancement factor that we have already considered. Now, the intensity 
Zi’) may be represented as 

(2.22) 

which is close to the traditional formula of Born. Here, o;(q) = i n / ~ ~ @ ~ ( q )  is 
the small-scale part of Born’s scattering cross section per unit volume. 

According to eq. (2.22), the effective scattering cross section Ka,, differs from 
Born’s quantity ap by a factor K ,  which has a peak of enhancement toward the 
source (point rt) and is close to unity in all other directions. 

It is an easy matter to demonstrate (VINOGRADOV and KRAVTSOV [ 19731) 
that eq. (2.22) is invariant with respect to small variations of the boundary value 
x * ,  if the small-scale component p(r) does not cause a marked extinction over 
a distance L,  i.e., 

2apL  = Laps,,, = L a,,(q)dOQ 1. (2.23) 

This inequality is much weaker than the usual condition of applicability of 
Born’s approximation, i.e., 2ueL = 2 ( a ,  + ap)L Q 1, because the extinction 
coefficient for the large-scale component a, exceeds considerably that of the 
small-scale component ap. 

Thus the hybrid approach succeeds in not only revealing an enhanced 
backscattering, but also in considerably expanding the limits of applicability of 
Born’s approximation. For this purpose it suffices to replace the total scattering 
cross section a, with its small-scale part a,,. Moreover, the potentialities of this 
approach seem to be far from exhausted. 

s 
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2.1.1 1. Polarization egects 

Media with large-scale inhomogeneities (1, g A) propagate electromagnetic 
waves almost without changing their polarization. This follows from the esti- 
mates obtained by TATARSKII [ 19671 for “diffraction” depolarization (de- 
scribed by Rytov’s method or by the method of parabolic equation) and by 
KRAVTSOV [ 19701 for “geometric” depolarization caused by the rotation of 
field vectors due to torsion of rays. Both diffraction and geometric depolari- 
zatior, of a light wave are small, and therefore a consideration of light effects 
may be limited to a scalar approximation. 

2.2. EXTENDED TRANSMITTERS, SCATTERERS, AND RECEIVERS 

2.2.1. Wave description within the parabolic equation framework 

A wave propagating through a medium with large-scale random inhomo- 
geneities of permittivity suffers multiple scattering, which is predominantly 
directed forward in a narrow cone of angle B N All, 4 1. As a result of the 
multiple scattering, the wave propagates practically in the emanant direction. 
It is convenient to describe this wave with the aid of the parabolic equation 
philosophy (see, e.g., the book of RYTOV, KRAVTSOV and TATARSKII 
[1989a,b]. This philosophy also may be applied to the description of the 
propagation of waves scattered from a body embedded in a turbulent medium. 

Let a wave propagating along the x-axis have a complex amplitude uo (p)  in 
the plane of the transmitter, x = 0 ( p  represents the transverse coordinates). 
Then the complex amplitude of the wave in a cross plane passing on x is given 
by 

U ( P ?  x) = 1 uo(p’)g(p’, p, x) d2P’ . (2.24) 

The Green function g(p’, p, x) describing the field of a spherical wave 
emanated from point p’ ,  x = 0 satisfies the parabolic equation of quasi-optics 

ag 2ik - + A,g + k2 E(p’ ,  x)g = 0 ,  
ax 

where A I is a two-dimensional Laplacian in a plane orthogonal to the x-axis. 
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Let a scatterer with a local reflection factor f(p), recalculated for a plane 
x = L, be placed at point x = L. Using reversibility of light paths, the complex 
amplitude of the wave scattered backwards can be written (in the plane x = 0) 
as (GELFGAT [ 19761, SAICHEV [ 19781) 

us (PI  = u (P‘ 9 L )  f ( P ’  1 g(P7 P‘ 7 L )  d2P’ s 
= u O ( p ’ ~ f ( p ’ ’ ) g ( p ,  P ” ,  L ) g ( p ’ ,  P ” ,  L )  d2p‘ d’p” . (2.25) 

In the following description we need a theory of wave propagation without 
reflection in a random inhomogeneous medium. Valuable information about 
waves propagating in randomly inhomogeneous media may be obtained with 
the aid of moment functions. In the Markov approximation, these functions 
satisfy closed equations (see, e.g., ISHIMARU [ 19781, RYTOV, KRAVTSOV and 
TATARSKII [ 1989a,b], GURBATOV, MALAKHOV and SAICHEV [ 19911). The 
equations for the average field ( u  (p, x)) and for a coherence function have an 
exact solution. The average field of optical waves in a turbulent atmosphere is 
almost always zero. Therefore, we confine ourselves to the coherence function 
for the Green function g(p,, p, x), 

rg(Ro, P O ,  R, P, X) = ( g ( R o  + ;PO, R + $p* x)g*(R, - R - ;P* XI) 

(2.26) 

The effect of random inhomogeneities of the medium is taken into account 
by the function 

(2.27) 

which is equal to the mean squared random phase difference calculated in the 
geometric optics approximation along two straight rays. The initial distance 
between these rays (in the x = 0 plane) is p, ,  and the final distance, at z = x, 
is p .  If p is in the inertial interval, I, < p < Lo, then (ISHIMARU [ 19781) 

D ( p )  = 5.83C2p5/ ’ ,  (2.28) 

where C; is the structural characteristic of fluctuations of the refractive index 
of the turbulent medium. 
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If the coherence function (2.26) is known, it is not hard to compute the 
coherence function of the wave field u, 

m , p ,  x) = ( u ( R  + i p ,  x )  u*(R - $ p ,  x ) )  

= J f u,(R’ + $p’ )u ; (R’  - 

From this expression it follows that, in 
emanated from the origin ( p  = 0, x = 0) 

i p ’ )  TJR’,  p ’ ,  R, p, x )  dZR‘ d2p . 

(2.29) 

particular, for a spherical wave 

Let us determine the coherence radius pc ( x )  of a spherical wave as the value 
of p at which the modulus of coherence function reduces by a factor of lie to 
give d(0, pc, x)  = 2. If p, (x)  lies in the inertial interval, i.e., if (2 .28)  is valid, then 

(2.30) p,, sph (x) = 1.44 (k2 C,’X) - ’” , 
and the coherence function of the spherical wave takes the form 

(2.3 1) 

The following coherence function corresponds to a plane wave 
uo(p)  = uo = const. 

q h x )  = IoexP[ - $ d ( P , P 7  X I 1  I 1, = / u 0 l 2 .  (2.32) 

Accordingly, the coherence radius of the plane wave is 

p c . p , ( ~ )  = 0.8(k2C,”)-’’’ . 

An important physical characteristic of a random wave field is the radiant 
intensity 

2 ( R , 8 , x )  = (51s T(R,p,x)e- ik(e’p)d2 P .  (2.33) 

Substituting T(R, p ,  x )  from eq. (2.29), we obtain (VINOGRADOV, KOSTERIN, 
MEDOVIKOV and SAICHEV [ 19851) 

f ( R ,  8, x) = sf Y,(R’, 8’, x) W ( R  - R ’ ,  8 - 8’, x)d*R’ d28’ , (2.34) 
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where yo(R, 0, x) is the radiant intensity of a wave propagating in vacuum 
( Z  = 0), and the function 

x l e x p [ E  R ( p - p ’ ) - i k ( B . p ) - ~ d ( p ’ , p , x )  d2p’d2p 
X 1 

(2.35) 

may be given a simple geometrical interpretation; namely, it is the probability 
density of lateral shifts and angular deviations of rays propagating in a turbulent 
medium from the positions and directions of the respective rays in vacuum. 

Averaging eq. (2.27) over the angles 8 yields the average wave intensity 

(2.36) 

which is the intensity of the wave in vacuum, I o ( p ,  x), convoluted with the 
probability density of lateral shifts of rays in a turbulent medium 

If pc (x) lies in the inertial interval, then 

(2.38) 

where op(x) is the characteristic lateral shift of the rays of eq. (2.11) and 

(2.39) 

Let a ( x )  be the radius of a wave bundle propagating in vacuum as measured 
in the cross section at x. Equation (2.36) suggests that if the lateral shift of rays 
ap is much less than the beam radius, then (I@, x)) = I,,(p, x). Expressed 
differently, we can say that in this case random inhomogeneities do not affect 
the profile of the average beam intensity. Conversely, if up(x) $- u ( x ) ,  then 
( I @ ,  x)) = Pa W,(p, x); i.e., the average intensity follows the profile of the 



11, § 21 SOLIDS IMMERSED IN A TURBULENT MEDIUM 91 

probability density of lateral shifts of rays. (Here, P = I, d2p is the total 
energy flux of the beam.) 

Integrating eq. (2.34) with respect to R, we obtain the angular distribution 
of the average energy flux of the wave passing through the cross section at x 

(2.40) 

This expression includes the probability density of fluctuations of oncoming 
angles for rays in a turbulent medium; for I, < P ~ , ~ ~ ( X )  < Lo, it equals 

p(e ,  x) = po(e’ ,  X) w,(e - e’, x) do‘ . s 
where 

%(X> = 1/b%*&) (2.41) 

is the characteristic angular deviation of rays from their directions in vacuum. 
Useful results on backscatter enhancement of laser radiation have been 
reported by AKSENOV and MIRONOV [ 19791 and AKSENOV, BANAKH and 
MIRONOV [ 19841. 

2.2.2. Statistical description of backscattered waves in the region of 
saturated fluctuations of intensity 

The effects of double passage of scattered waves through the same inhomo- 
geneities of a medium are more clear cut in the case of saturated fluctuations 
of radiated intensity when the moment functions of random fields may be 
handled with the aid of Gaussian statistics. As an example, consider the 
coherence function of a backscattered wave in the plane of the transmitter. 
According to eq. (2.25), it is 

r,(RP) = ( u , ( R  + i P ) U W  - $PI) 

= 1 1 f ( p ’ ) f  * ( P ” )  ( U ( P ’ 9  + iP ,  P’? L )  

x u*(p”, L)g*(R - i p ,  p”,  L ) )  d2p’ d2p” . 

A general solution of the equation for the fourth-order moment function 
entering this expression is yet to be found. However, given that the condition 
of saturated fluctuations of emanant intensity, eq. (2. lo), is satisfied, the fields 
u and g can be deemed to be Gaussian with zero means and the last equality 
can be rewritten as 

r, (R,  P) = rl (R ,  P, L )  + r2w, P, Q (2.42) 
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where 

r , (R ,  P ,  L )  = J f ( R '  + f q ' )  f *(R' - f q ' )  

x ( u * ( p " ,  L ) g ( R  + f p ,  p ' ,  L ) )  d2p' d2p" , 

The first term on the right-hand side of eq. (2.42) describes the coherence 
function of a backscattered wave assuming that the random inhomogeneities 
encountered by the radiated and scattered waves are statistically independent, 
whereas T, takes into account the double passage of the wave through the same 
inhomogeneities. 

The function r, (R, p ,  L )  may be interpreted as the coherence of a wave that 
has passed, in a random inhomogeneous medium, a path of length 2L, bisected 
by a semitransparent screen (at x = L )  of transmittance fl(p). For an ideal 
mirror, when f , ( p )  = 1,  T I ( R , p ,  L )  = I'(R,p, 2L). In the case of a rough 
scatterer with small-scale inhomogeneities, we can assume 

( f , ( R  + f P ) f * ( R  - f P ) >  = FI(R)G(P).  (2.44) 

Taking a additional averaging over the ensemble of realizations of the rough 
screen in eqs. (2.43) and (2.44), we obtain 

T 1 ( R , p ,  L )  = F , ( R ' )  ( I ( R ' ,  L ) )  Tsph(R - R ' , p ,  L)d2R' . (2.45) s 
2.2.3. Effect of extended size of a reflector 

To be clear, we shall consider a specular reflector with the Gaussian reflec- 
tion factor 

f ( P )  = exp( - p2/a2) ' (2.46) 

In view of eq. (2.18), the average intensity of a reflected wave that has been 
emitted by a point source is 

( 4 ( P ) >  = <lu,'(p)l) 

= j f ( R  + : P ) f * ( R - f P )  

x ( g ( O , R  + f p , L ) g ( p , R  + i p J ) g * ( O , R  - $ p 3 L )  

x g*(p, R - i p ,  L ) )  d2R d2p. (2.47) 
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Making use of the small-angle approximation, we represent the random 
Green function in the form 

(2.48) 

where A (pa, p, x) is a function statistically uniform in both po and p introduced 
to take into account the effect of the random inhomogeneities of the medium. 

Substituting eqs. (2.48) and (2.46) into (2.47) yields 

X A*(O, R - fp,  L )  A*@, R - ;/I, L)) d2R d2p.  (2.49) 

Since A (pa, p, x) is statistically uniform, the preceding average depends only on 
p and p ,  i.e., ( A A A  *A *) = B,(p, p ,  L) .  In the circumstance, integration in 
(2.49) with respect to R gives 

( I , ( P ) )  = C Y O )  K(p3 L) 3 

where 

is the intensity of a wave reflected in a vacuum, f2 = ka2/L, and 

(2.50) 

is a coefficient describing backscatter enhancement and the redistribution of 
the average intensity of the reflected wave in the plane of the transmitter. The 
function 

indicates that the reflected wave is formed not by the whole mirror but, rather, 
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by an area with effective radius 

a,, = a [  1 + (kU2/L)*]  - 112 . (2.5 1 )  

Some properties ofE,(p, p ,  L )  are discussed below. It should be obvious that 
EA(p, 0, L )  = (J (p ,  L)J(O, L ) )  and the value of E,(O, 0, L )  equals the mean 
square of relative intensity of a spherical wave ( J 2 ( 0 ,  L ) )  at a distance L from 
the source. At higherp, the function E,(O, p ,  L )  tends to zero at a characteristic 
rate N pc (L ) .  Specifically, if the mirror is in the range of saturated fluctuations 
of intensity of an emanating wave, the laws of Gaussian statistics may be 
applied to the averages (2.47) and (2.49) to give 

In agreement with eq. (2.43), the backscatter enhancement factor is given by 

B,(o, p ,  L )  p ( p ,  L )  d2p . (2.52) 

Clearly, the absolute effect of enhanced backscatter will be realized in the 
reflection from a mirror if p (  p ,  L )  singles out the value of EA (0, 0, L )  corre- 
sponding to p = 0. This is feasible if the size of the bright spot on the mirror 
is smaller than the coherence radius, i.e., 

(2.53) 

Then the absolute enhancement factor will be given by the familiar expression 
of eq. (2.5), namely Kbsc = ( J 2 )  > 1. 

Condition (2.53) is not always valid. In the range of saturated fluctuations 
of intensity, the absolute effect of enhanced backscattering will be observed 
only for small (a < p,) and substantially large (a % a,) mirrors. Moreover, in 
the interval pc < a < op enhanced backscatter gives way to reduction of 
scattered intensity and K -= 1. The situation is illustrated in fig. 2.12 by a,,/pc 
and K plotted as functions of log(a/p,) for y = aJpC E 10. 

A reduction of the average backscattered intensity (compared with that in 
vacuum) in the interval pc < a < ap may be explained by analogy with eq. (2.36) 
as a reduction of the average intensity of the reflected wave due to random walk 
of the rays. Furthermore, it is easy to demonstrate that for any size of the mirror 
a relative effect of enhanced backscattering takes place, namely, 

Rbsc = K(O, L )  = s 
a,, 4 pc (L )  . 

K, (L)  = ( IS (O) ) / I l (O,  L )  > 1 (2.54) 

Here, I ,  (p,  L )  = T1(p, 0, L )  is the average intensity of the reflected wave calcu- 
lated under the assumption that random inhomogeneities of the medium 
encountered by the emanant and reflected waves are statistically independent. 
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Fig. 2.12 Transition from enhancement (Kbsc > 1 )  to attenuation (Kbrc c 1 )  for greater ratios of 
mirror radius a to coherence radius pc. 

For a spherical wave GOCHELASHVILI and SHISHOV [ 19811 have noted the 
existence of enhanced backscattering whatever the size of the scattering body. 
Enhanced backscatter from extended bodies is also discussed in the mono- 
graphs of MIRONOV [1981], BANAKH and MIRONOV [1987] and ZUEV, 
BANAKH and POKASOV [ 19881. Recently, AGROVSKII, BOGATOV, GURVICH, 
KIREEV and MYAKININ [ 19911 and BOGATOV, GURVICH, KASHKAROV and 
MYAKININ [ 19911 have carried out a more accurate theoretical and experimen- 
tal analysis and demonstrated that the backscatter coefficient K reduces when 
the size of the body is comparable with the coherence radius of the prime wave. 

Finally, mention should be made about the spatial redistribution of the 
average intensity of a wave reflected from an unlimited mirror. In this case, 
p( p ,  L )  = S(  p )  and from eq. (2.50) it follows that 

K(p,  L )  = B,(p, 0, L )  = ( J ( p ,  L)J(O, L ) )  . 

As in the case of the point scatterer defined by eq. (2.7), the quantity K ( p ,  L )  
repeats the profile of the correlation function of the relative intensity of the 
spherical wave at a distance L from the source. 

2.2.4. Eflect of long-distance correlations and partial reversal of the 
wa vefront 

The effect of enhanced backscattering can be realized if the aperture b of the 
source does not exceed pc(L). When b > pc, the enhancement effect gives way 
to the effect of long correlations (KRUPNIK and SAICHEV [ 19811, KRAVTSOV 
and SAICHEV [1982a,b]). With this effect, in addition to a narrow peak of 
radius -p , (L) ,  the coherence function of the reflected wave acquires in the 
plane of the transmitter x = 0 a low but wide pedestal corresponding to long 
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correlations. It is displayed in full measure when the intensity fluctuations of 
an emitted wave are saturated. In what follows we confine ourselves to the 
analysis of this situation. 

To be more specific we shall assume that the reflector is pointsize, i.e., 
,f(p) = 6(p) ,  and that a collimated wave pencil of radius b is radiated in the 
plane x = 0. The coherence function of the reflected wave is given by eq. (2.42), 
where 

(2.55) 

and the coherence-function component responsible for the effects of double 
passage is 

rZ(R P, L) = U * ( P , )  O ( f 2 ) .  (2.56) 

Here, 

u ( p )  = ( )’ 1 u0 ( p  - p )  exp [ - (:>”’ - ik ( p - p)] d2p , (2.57) 
2 n L  L 

and pI = R + $ p  and p2 = R - $ p  are the coordinates of points in the plane 
x = 0, in which the mutual coherence of the field of the reflected wave is 
determined. 

Suppose that the radius of the radiated beam is sufficiently large, b % p,, then 

U ( P )  = U O ( P )  Wp<p9 L) 9 

where W,(p, L) is given by eqs. (2.38) and (2.39). Thus, 

r2 = U o * ( P l )  U O ( P * )  Wp(PI3 L) W,(p2, L) * (2.58) 

Simple estimates obtained with the aid of eqs. (2.55), (2.58), and (2.36) 
indicate that forb 9 pc(L) we have r2(0, 0, L )  Q rl (0, 0, L )  and the backscatter 
enhancement effect is virtually indistinguishable. It is worth noting that the 
coherence function of the reflected wave considered as a function of distance 
between points of observation p = Ipl - p 2 )  consists of a narrow peak TI, 
decreasing with p at a rate pc (L), and a wide pedestal r,. A typical plot of r, 
as a function of p for R = 0 and b % pc(L,) is shown in fig. 2.13. 

We note that the component r2 of the coherence function is proportional to 
the product of the primary fields, 

r2 G ( P l )  U ( P 2 )  9 
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Fig. 2.13. Typical profile r, of the coherence of backscattered field as a function of the distance 
between observation points p = Ip, - pzJ. 

which may be treated as the complex conjugate function of coherence of the 
emitted wave. As a result, the effect of long correlations may be thought of as 
coming from a partial reversal of the wavefront of the reflected wave with 
respect to the prime wave (KRAVTSOV and SAICHEV [ 1982a,b, 19851). 

We interpret the mechanism of partial reversal by way of a simple example 
of a wave produced by two mutually coherent point sources at points rI and 
r,. Let such a wave be incident upon a scatterer at point rs in a random 
inhomogeneous medium. If cp, and cp2 are the phases of the emitted waves, the 
complex amplitude of the scattered wave at an arbitrary point r is 

u,(r) = [e'"' G ( r , ,  r , )  t eim G(r2 ,  r , ) ]  G(r s ,  r ) .  

If we assume that the point of observation coincides either with Y, or with 
r2,  two opposite paths occur in the random inhomogeneous medium, 
rl + r, + r, and r2 + r, r l .  The mutually coherent components of the 
scattered wave are 

By the reciprocity theorem we have G I ,  = G,, , cplz = q2, and I GI, I = I G,, 1 ,  
so that 

(rl)  = 1 GI, I ei(rp2 + "I2), 

(r,) = 1 GI,  1 ei("' + "I2)  . 

Denoting cp = cpl t (p2 t tp12 and rewriting cpl t qI2 = - (p2 + cp and 
cp2 t cpI2 = - cp, + cp, we note that the phases of the mutually coherent com- 
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ponents of the scattered wave are reversed with respect to the phases of the 
emitted waves accurate to within the additive phase cp, 

U , , ~ ~ ~ ( Y ~ )  = JG,,I e- iq l+iq ,  

~,.,,~(r~) = lG121 e - i m + i q .  

A similar semiquantitative explanation of the long correlation effect may be 
extended to the case of a collimated wide beam of radius b $ pc(L). Imagine 
that the aperture of the source is divided into partial beams of radius - pc. Let 
pm and p,, be the centers of mth and nth partial beams separated by a large 
distance [ 1 pm - p,, 1 $= pc(L)]. Since the phases propagating in the opposite 
coherent paths pm t-* rs -p,, are reversed, the coherence function of the 
scattered waves at points p, = pm and p2 = p,, is proportional to u8(pl )  u0(p2). 
A coherence path occurs, provided that the beams emanating from points pm 
and p,, can arrive at the scatterer as the result of a random walk in the random 
inhomogeneous medium. Therefore, the coherence function defined by 
eq. (2.58) is proportional also to the product of the probability densities of 
lateral shifts of the beams. In the field of the scattered wave long correlations 
occur when a(,!,) 9 pc(L); i.e., when conditions (2.10) and (2.11) of saturated 
fluctuations are satisfied, y = o,,/pc 9 1. 

2.2.5. Enhanced backscattering in the focal plane of a lens 

As has been pointed out for a wide beam with b 9 p,(L), no enhancement 
of backscattering is observed. However, a partial reversal of the wavefront in 
the field of the scattered wave gives rise to a highly coherent component that 
can be focused by a lens. This leads to another effect because of the partial 
reversal of the wavefront, namely, to an enhancement of the average intensity 
in the focal plane of the lens. 

Let the scattered wave be incident upon a lens placed in the x = 0 plane. The 
lens aperture coincides with that of the source and is described by the function 
uo(p). The field in the focal plane of the lens is given by 

For a plane-emitted wave [ b $= a,(,!,)], when the common enhancement 
effect is negligible, from eqs. (2.42), (2.55), and (2.58), it follows that the average 
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intensity of the field in the focal plane is proportional to 

where 

In the middle of the focal plane ( p  = 0) the average intensity of the scattered 
wave is twice the intensity in the homogeneous medium, { JF(0)) = 2 1 uo(0) 1 4 .  
This implies the absolute effect of backscatter enhancement with K F  = 2. 

The component JF1 (p)  corresponds to a wide pedestal with radius - bF/L, 
which is about the size of a spot produced by a spherical wave from a point 
scatterer in a homogeneous medium. The intensity J F 2 ( p )  forms a sharp peak 
corresponding to the quasi-plane (resulting from a reversal of the wavefront) 
component of the scattered wave with coherence radius a,(L). 

This enhancement effect in the focal plane may be treated as a common 
backscatter enhancement, if the primary field is assumed to be that of a point 
scatterer in the focal plane rather than the field of the plane-emitted wave. In 
turn, the ordinary backscatter enhancement, which was developed in the com- 
mon scheme of a point source, namely, random inhomogeneous medium, point 
scatter, may be explained as the effect of focusing the reversed component of 
the scattered wave near the source (KRUPNIK [ 19851). 

The reversed component of the scattered wave is present in any plane 
between the source and scatterer. Near the scatterer it has a random character 
and a small coherence radius of about pc (L) ,  similar to the wave incident upon 
the scatterer. Closer to the source the reversed component acquires a higher 
spatial coherence with simultaneous focusing on the source. 

Despite the random character of this component, it can be detected as 
follows. Let u(p,  x) be the complex amplitude of the prime wave at distance 
x = 4 L from both source and scatterer, and let u,(p, x) be the complex ampli- 
tude of the scattered wave in the plane with this coordinate. Recognizing that 
the reversed component of the scattered wave is proportional to u*(p, x), one 
may verify (KRUPNIK [ 19851) that in the presence of the reversed wave the 
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moment function 

( ~ , ( P I , ~ ) ~ ( P , , X ) ~ , * ( P , , X ) ~ * ( P 2 , X ) )  

= ( U ( P 1 ,  x) U ( P , ,  x) U*(P2? x) U*(P2, x)> 

- (I(PI3 x)> ((l(P2r x)> 

remains almost invariable when the points pI and p2 are separated. 
Thus, the enhancement of average backscattered intensity and the long 

correlation effect are two sides of the same coin, namely, the partial reversal 
of the wavefront of the scattered wave. 

Using the concept of partial reversal as a point of departure provides an 
insight into the nature of enhanced backscattering in the conditions where the 
sourcein an extended a n t e n n a ( Y ~ ~  [ 19831, KRAVTSOV and SAICHEV [ 19851). 
Suppose that uo(p) describes the distribution of current in an antenna in the 
transmitting mode. Then, in view of eq. (2.25) the scattered signal received by 
the antenna is proportional to 

Specifically, for a rough scatterer, eq. (2.44), we obtain 
P 

Let us compare this quantity with the intensity of an oncoming signal 
r 

(2.59) 

(2.60) 

which has been calculated on the assumption that the random inhomogeneities 
in forward and reverse paths are statistically independent. In a random inhomo- 
geneous medium ( 1 ' )  > ( I ) ' ,  therefore, the relative backscatter enhance- 
ment effect with K ,  = J J J ,  > 1 can be observed independently of antenna size. 
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If the radiated wave is such that the average intensity ( I ( p ,  L ) )  coincides with 
the intensity in the homogeneous medium Io(p, L), then we obtain an absolute 
enhancement effect. 

Assume that the antenna radiates a collimated beam of radius b. From 
eq. (2.36) it follows that ( I )  = I, for sufficiently small radii (b < p,) and 
sufficiently large (b  > op) radii. The first case corresponds to the ordinary 
backscatter enhancement for essentially a point source, and the second case 
corresponds to an absolute effect of enhanced backscattering in the middle of 
a focal plane of a large lens. 

In scattering from solids embedded in a turbulent medium the partial reversal 
of the wavefront also may be considered as an echo effect observed in various 
physical systems. 

2.2.6. Enhancement of radiant intensity 

The partial reversal of a backscattered wave also produces the effect of 
enhancement of radiant intensity allied to the effect of backscatter enhance- 
ment in the middle of a focal plane of the lens. Representing the radiant 
intensity of a backscattered wave in the plane of radiation x = 0 in the form 

(2.61) 

As an example, let us discuss the case of a plane wave u(p, 0) = 1 emitted in 
the plane x = 0, with the reflector being a phase screen, i.e., a statistically 
uniform rough surface which causes the phase of the reflected wave to be 
changed by a random quantity cp(p), i.e., a surface with f (p)  = exp[icp(p)]. 
Denoting the structural function of phase distortions ( [ q ( r  + s) - ( ~ ( p ) ] ~ ) ,  
introduced by the reflecting surface, by d,(s) we obtain 

We assume that d,(s) increases monotonically with s, whereas B,(s) falls off 
to zero at a characteristic rate pp 

After straightforward transformations exploiting the statistical homogeneity 
of the radiated wave u(p,  L )  with respect to p, the coherence function of the 
scattered wave can be rewritten (SAICHEV [ 19801) 

T, (P)  = B,(s) @(P. s, L )  d2s 9 (2.62) s 
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where 

@ ( p ,  s, L )  = ( g ( p  + p ,  s, L)g* (p ,  0, L )  u(s, L )  U * @ ,  L ) )  d2P * s 
From the orthogonality of the Green function in the parabolic equation 

formalism, i.e., s g(p, PI, x)g*(p, P2, x) d2P = W P ,  - Pz)  9 

it follows that 

@(O, s, L )  = ( l ( 0 ,  L ) )  b(s) = 6(s) . (2.63) 

By virtue of eq. (2.62) the average reflected intensity 

rs(o) = ( 4 ( P ) >  = B,(O) = 1 

coincides with the intensity of a plane wave reflected in a homogeneous 
medium from an ideal mirror off = 1. This implies that the ordinary enhance- 
ment effect is completely absent in the case under consideration. 

The situation is completely different for the radiant intensity of the reflected 
wave. Substituting eq. (2.55) into eq. (2.54) yields 

(2.64) 

is the moment function of plane waves propagating at an angle 0 to one 
another, 

The radiant intensity of a wave reflected strictly backwards is 

(2.66) 

The quantity 

B,(s, L )  = ( u Z ( s ,  L )  u*2(0,  L ) )  
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is the coherence function of the squared wave function incident upon a reflect- 
ing surface. This function varies in s at a rate of pc (L). If the reflecting surface 
is constituted by small-scale inhomogeneities, then pf 6 pc ( L )  and Bf(s) singles 
out in eq. (2.66) the value 

B,(O, L )  = (Z*(O, L ) )  = K > 1 , 

so that 
in a vacuum. 

eq. (2.66) it follows that 

(0) is Kbsc times the radiant intensity J;(O) of the wave backscattered 

For an arbitrary angle 8 and a small-scale reflector with pf 4 pc (L) ,  from 

where 

is the radiant intensity of the wave reflected in a vacuum. Its characteristic 
angular spread is 8, - l/kp,. 

The coefficient K ( 6 )  = ( I ( 0 ,  L )  Io(O, L ) )  with I&, L )  = 1 ui (p ,  L )  1 de- 
scribes the angular distribution of the radiant intensity resulting from the double 
passage of the wave through the same random inhomogeneities. From 
eq. (2.63) it follows that 

I / ( 6 ) d 2 8 =  r,(O) = &0)(6)d28, s 
in addition to the enhancement of the backscattered radiant intensity, the 
coefficient K ( 6 )  describes some reduction in the intensity ( K  < 1) of the back- 
scatter compared with y:(fl), as depicted in fig. 2 . 2 ~ .  

Finally, let us determine the radiant intensity of a reflected wave for the case 
of saturated fluctuations of the incident wave. Applying the laws of Gaussian 
statistics to the average in eq. (2.65) yields 

X(e)=$,(e ,L)+$,(e ,L) .  (2.67) 

The quantity 

$,(6, L )  = A(#) Wo(6 - 6', 2L) d28' s 
represents the radiant intensity of an initial plane wave that has passed in a 
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random inhomogeneous medium a distance 2L without reflections, subject to 
the condition that a phase screen is placed midway, thus introducing a phase 
distortion rp(p). The expression for yl also includes the probability density of 
oncoming angles W,(B, 2L), whose characteristic scale in 8 is a,(2L), as 
outlined in eq. (2.41). 

The second component of the radjant intensity, 

x exp [ - $d(s + BL, S, L )  - ;d(s - BL, s, L )  - ik(B.s)] d2s,  

takes into account the double passage of the wave through the random inhomo- 
geneous medium. This component is responsible for the backward enhance- 
ment of radiant intensity. 

The radiant intensity of a wave reflected from an ideal mirror (f= 1) in a 
random inhomogeneous medium is plotted in fig. 2.14. It consists of a narrow 
peak of h ( B ,  L )  with semiangular width 8, N p,/L and a wide pedestal of 

L )  = W,(B, 2L) with characteristic angular scale a, - l/kp,(L). There is 
no absolute enhancement of radiant intensity scattered strictly backwards in 
this case, but there is a relative enhancement with coefficient 
K, = 2s (0)/yl (0) = 2. This effect may be interpreted as being due to a partial 
reversal of the reflected wavefront in the random inhomogeneous medium. 

Some applications ofthis formalism are worth noting. LUCHININ [ 19791 has 
established a radiant-intensity enhancement for the light reflected from the 
bottom which, thus, passed twice through the disturbed surface of the ocean. 
SAICHEV [ 19801 has described an enhancement of the radiant intensity back- 
scattered from a system of discrete scatterers randomly dispersed in a random 
inhomogeneous medium. JAKEMAN [ 19881 has described in depth the effect of 
enhancement of the radiant intensity that has twice passed through a random 
phase screen, before and after reflection from a mirror. 

Fig. 2.14. Radiant intensity profile for a seatterer embedded in a turbulent medium. 
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2.2.1. Giunt hackscatter enhancement in laser sounding of the ocean 

HOGE and SWIFT [ 1983a,b] have recorded strong fluctuations of echo pulses 
in laser sounding of scattering layers through the rippled surface of the ocean 
(fig. 2.15). They associated the strong fluctuations with a nonuniform distribu- 
tion of scatterers in the horizontal. VLASOV [ 19851 has given a more plausible 
explanation by pointing out the important role of the double passage of the light 
through the wavy surface of the ocean, which has the same effect as a random 
phase screen. (Random focusing of light caused by a disturbed ocean surface 
also has been discussed by GEHLHEAR [ 19821.) 

The theory of enhanced backscattering in the presence of a phase screen 
outlined in 5 2.1.2 is not well suited to handle laser sounding of the ocean 
because at the air-water interface the width b of a laser beam is usually small 
compared with the characteristic scale of surface roughness, 1,. More extensive 
work has been done by BUNKIN, VLASOV and MIRKAMILOV [1987] and 
APRESYAN and VLASOV [ 19881, and, therefore, our discussion will be in line 
with these studies. 

Suppose that the ocean surface is irradiated with a Gaussian beam 
u = uo exp ( - p2 /b2)  of width b. Given b 4 I,, the distortions of the eikonal $ ( p )  
of the incident wave may be described by second-order polynomials 

$ ( P )  = $0 + 0 . P  + +(w: + a2P,2). 

Here, the directions of p,  and p2 are taken to coincide with those of the main 
lines of curvature of +(p). The vector 8 = (e,, 8,) describes the angular devia- 
tions of the beam from the vertical x-axis, whereas = l/R1,*, where R, ,2  

- - - - - - - - 
5 = L  

J. IX 

Fig 2 15 Backscattering of a narrow laser beam from scatterers under a rough sea surface 
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are the main curvature radii of the phase front immediately behind the phase 
screen. 

In this approximation the beam remains Gaussian at any distance from the 
rough surface, its intensity in a plane at x = L being 

I (p ,L)  = IU0l2YI(P1 - 4L. )  Y Z b Z  - & L ) ,  (2.68) 

where the quantities 

Yl .Z(Y)  = exP[ -Y2/b2~:,2(L)l /~, ,2(L)  

and 

/? = 2L/kb2, 

characterize the compression or expansion of the beam in p, and p2. 
Let F(p,  L )  be proportional to the cross section of backscattering by a unit 

volume of water at depth x. Then the intensity Z,(L) of the echo signal from 
a depth of L in monostatic measurement is given by 

(2.69) 

Unlike eq. (2.60), this expression has not been averaged over all of the 
random inhomogeneities of the surface (over random values of slope 01,2 and 
curvature al,2 in the case of a narrow beam) because we wish to know not only 
the averages Z, but also the deviations from these values (fluctuations). 

Substituting eq. (2.68) into eq. (2.69) and assuming that the scattering layer 
is statistically uniform, F = const., we obtain for 

K(L)  = 4 ( L ) I W )  9 

where I,O(L) is the intensity for the case of a plane interface = 0), 

where bxo (L)  = b J m  is the radius of the diffraction-broadened, undis- 
turbed, Gaussian beam in the plane of scatterers at x = L. 

From eq. (2.70) it follows that if the rough surface focuses the beam in the 
plane of scatterers (a, = t12 = l /L) ,  the intensity of the received signal 
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experiences a giant enhancement, namely, it becomes K,,, = (1 + P2) /P2  times 
that for the plane interface (APRESYAN and VLASOV [1988]). In a typical 
sounding situation of an upper layer of the ocean with k = lo7 m-’,  
b = 0.01 m, and L = 10 m, we have K,,, = 2.5 x lo3. Of course, practical 
intensity peaks are smaller because the focusing in one coordinate is often 
accompanied by an expansion of the beam in the other coordinate. In particu- 
lar, when the random eikonal $(p)  is a statistically isotropic Gaussian field with 
correlation function 

the joint probability density of curvatures a1 and a2 (assuming a2 > a l )  is 

It is obvious that wa vanishes for identical curvature radii of the wavefront, 
so that the compression of the beam is essentially different in various coordi- 
nates. 

In a case more typical of the ocean surface, when the eikonal depends only 
upon one coordinate p,, the enhancement factor of the received intensity 

is caused by the one-dimensional focusing of the sounding beam. 
Complete information for the frequency of unusually large values of K may 

be obtained from the probability density wK(K). Let $(pJ  be a random 
Gaussian function for which the probability density of curvature a of the 
wavefront is 

w,(a) = ~ 1 e x p ( - 4 ) .  
f i  oa 20, 

In this case, the probability density of K is given by 

(2.7 1) 
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where 

= o  for n > 1 . 
Also, K , = J( 1 + fl; z'>/fl; z 2  is the maximum feasible value of K corre- 
sponding to the focusing of the beam in the plane of scatterers, z = a, L = L / R  * 
is the dimensionless thickness of the scattering slab, R , = l/a, is the typical 
depth of focusing, and /I, = 2R ,/kb2 is the wave parameter of the beam at 
depth L = R , .  

Exceedingly large values of K can be observed for K ,,, % 1 or, equivalently, 
at p, z 4 1. For moderate values of K that are far from K ,  - 1//3, z the 
probability density (2 .64)  is described by a relatively simple expression, corre- 
sponding to the geometrical optics approximation (p, + 0), 

The plots of wK ( K )  for z = 0.5, 1, and 2 are given in fig. 2.16. The maximum 
has shifted toward values of K that do not exceed unity. This implies that 
detection of a reduction, rather than an enhancement, of the signal, compared 
with that due to the plane interface, is more probable. For example, at z = 1 
the probability of obtaining K = 1 is 0.523. At the same time, from eq. (2.72) 
it is clear that for 1 4 K 4 K , the probability density falls at a comparatively 

Fig. 2.16. Probability density ofthe backscatter enhancement factor for a surface with Gaussian 
statistics of the curvature. 
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slow rate, approximately as K - ’. This means that fadings of the signal, which 
correspond to K < 1, alternate with giant surges of K %- 1. These rare but strong 
intensity surges can raise the average enhancement factor 

significantly above unity. The plots of ( K ( L ) )  versus dimensionless depth 
z = L / R ,  for j3, = 0.01 and 0.05 are given in fig. 2.17. 

A sizeable rise of ( K  ) above unity at z - 1 and 8, 4 1 will result in an equal 
measure of reduction for z %- 1 (APRESYAN and VLASOV [ 19881). Indeed, at a 
great distance where z 9 1, the rough surface always causes a defocusing of the 
beam, even where there is a focusing action, as in the initial segment 
0 < L < R,. The beam width increases in proportion to OfL, with 
Of = 2/cr,b = 2R ,/b being a typical angle of divergence of the beam. On the 
other hand, the unperturbed beam expands at large depths as O,L, where 
do = l / k b  is the angle of beam divergence due to diffraction. 

At large depths of the scattering layer the competing defocusing and dif- 
fraction divergence of the beam leads to 

which becomes small for P, 4 1. In the case of Gaussian curvature of the rough 
surface a, more accurate developments yield the ultimate value as 

Specifically, at P, = 0.01, ( K ( m ) )  = 0.22. 

I I I I 1 * 
0 1.0 2.0 3.0 4.0 z-L/U* 

Fig. 2.17. Enhancement factor ( K )  as a function of the dimensionless depth z = L / R ,  . 
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2.2.8. Backscattering of pulse signals 

A backscattered echo pulse is expanded in time because of multiple paths 
of backscattering; moreover, its arrival time becomes a random variable. For 
very short pulses the echo signals corresponding to various coherent channels 
diverge in time and no backscatter enhancement will be observed. This leads 
us to the following condition for observation of enhanced backscattering of 
pulse signals. The pulse duration T should greatly exceed the mean square time 
of random lag, i.e., 

T 4  a 7 ,  (2.73) 

The quantity a: consists of two terms. The first, a:o, is the variance of time 
it takes to propagate along a straightened ray 

- 1  
z = - IoL 2 ( p ,  x) dx . 

2c 

This quantity is related to the variance of the eikonal a; as a,'o = a$/c2. 

inhomogeneous medium. It may be estimated by 
The second part, a:,, is due to the elongation ofthe ray caused by the random 

where 0,' is the mean square of lateral deviation of a ray defined by eq. (2.1 1). 
Condition (2.73) for enhanced backscattering also allows a spectral treat- 

ment. The bandwidth 62 = 2n/T of the signal should not exceed the band of 
coherence = 2n/az. Since the variance of phase increases twice on the way 
from source to scatterer and back when compared with the variance of phase 
on the rectilinear path of length 2L (see $ 6.3), one might expect doubling of 
the variance of the arrival time. As far as our information goes, this effect has 
not yet been subjected to experimental verification in laser sounding applica- 
tions. 

2.2.9. Moving random inhomogeneities of the medium 

The reciprocity theorem, eq. (2.1), holds true only in media whose 
inhomogeneities are time invariant. Time-dependent fluctuations of permittivity 
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can lead to a reduction and even disappearance of the enhancement effect 
because the wave has to pass through different inhomogeneities on its forward 
and backward paths. 

To illustrate the effects feasible, let us calculate the average intensity of a 
wave emitted by a point source uo(p) = 6 ( p )  and backscattered by a point 
scatterer of f (p )  = 6(p) .  Given saturated fluctuations and uniform “frozen” 
motion of inhomogeneities in the atmosphere with wind velocity V, then 

(2.74) 

where 0, = V , / c ,  V ,  is transverse to the ray, and d(p,, p ,  x) is the mean 
square of the phase difference over a distance x when the points of radiation 
are spaced by pa and the points of observation by p. [This quantity is defined 
by eq. (2.27).]  

From eq. (2.74) it follows that a uniform drift of the inhomogeneities at a 
velocity V shifts the enhancement effect of K = 2 from the point of emittance 
a distance pv = 20,L by an amount equal to the transverse travel of the 
inhomogeneities in time At = 2L/c.  This effect of the shift of the enhancement 
region has been noted by AKHUNOV, BUNKIN, VLASOV and KRAVTSOV [ 19841 
and KRAVTSOV and SAICHEV [1985]. It should be obvious that when the 
magnitude and direction of the drift change markedly along the path, the 
enhancement effect weakens until it vanishes altogether. The effect also dis- 
appears when the condition that the inhomogeneities travel as a “frozen” 
cluster is no longer velid, i.e., when the inequality At = 2L/c 4 z, is violated, 
where z, is the lifetime of an inhomogeneity in the system where it is at rest. 
This effect of vanishing enhancement, i.e., the transition from (Is) = 21: to 
(1,)  = Z:, may be employed for monitoring the atmosphere. 

2.3. REFLECTION FROM WAVEFRONT-REVERSING MIRRORS EMBEDDED IN 

A RANDOM INHOMOGENEOUS MEDIUM 

2.3.1. Compensation of the effect of random inhomogeneities upon the 
rejected wave 

The effect of double passage of a wave through the same random inhomo- 
geneities of the medium is essential in evaluating the efficiency of adaptive 
systems and phase-conjugation systems, i.e., mirrors reversing the wavefront 
(WFR mirrors). Such systems are being designed to compensate the effect of 
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random inhomogeneities in the medium and to attain the diffraction limit in 
focusing the reflected intensity into the neighborhood of the source. 

In considering the properties of a wave reflected in a random inhomogeneous 
medium, we shall assume an ideal reversal of the wavefront within the aperture 
of the WFR mirror and suppose also that in a time At = 2L/c, while the wave 
travels from source to mirror and back, the inhomogeneities will remain almost 
unchanged. 

If a monochromatic wave with complex amplitude u0 ( p )  emitted in the plane 
x = 0 toward a WFR mirror with reflection factor f (p )  placed at x = L, then 
the complex amplitude of the reflected wave measured in the source plane x = 0 
is 

Us@) = f ( p ’ )  U * W ,  L ) g ( p ,  p’ ,  L )  d2P‘ 

(2 .75)  = ~ ~ l ( p ~ ) f ( p ’ ~ ) g * ( p ’ ,  p ” ,  L ) g ( p ’ ,  p”,  L )  d2p‘ d2p“ . 

We look for a condition which would ensure that the WFR mirror makes up 
for the effect of random inhomogeneities of the medium on the field of the 
reflected wave. For this purpose it suffices to consider the expression derived 
by POLOVINKIN and SAICHEV [ 198 11 for the average field. 

s 

From eqs. (2 .75)  and (2 .26)  it follows that 

(Us ( P I )  = 1 UC? ( P  - PI F( P l L )  
L ‘ S  

(2 .76)  
xeXP[- (k) + -  L ( p * p ) - - p 2  2 L  ik 1 d2p, 

513 ik 

where 

(2 .77)  

is the scattering diagram of the mirror with an angular width of A0 = l /ka,  
where a is the mirror radius. 

If 

p - A 8 L  4 P,(L) 1 (2 .78)  

from eq. (2 .76)  it is obvious that the average field of a wave reflected by a WFR 
mirror in a turbulent medium coincides with that reflected in vacuum. There- 
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fore, under this condition a WFR mirror compensates completely for the effect 
of random inhomogeneities on the field of the reflected wave in the plane x = 0. 

Condition (2.78) allows for a dual interpretation. On the one hand, in order 
to achieve compensation it is required that the random phase increment along 
any backscattered ray should almost coincide with that along the respective 
incident ray. Backscattered rays lie in a cone with an included angle dB - l / ka .  
Clearly, the phase increments acquired along the incident and reflected rays will 
differ little from one another when the characteristic distance between them, 
L AO, in the plane of the source is smaller than pc(L),  which leads to eq. (2.78). 
On the other hand, compensation in a turbulent medium requires that the rays 
incident on the WFR mirror should be almost the same as in vacuum. This 
requirement will be met if the characteristic lateral shift ap of the rays due to 
the random walk in the turbulent medium is within the mirror aperture, i.e., 
a,, ( L )  5 a .  Clearly, this inequality is also equivalent to condition (2.78) 
(SAICHEV [ 19821). 

2.3.2. Average intensity of a wave re8ected from a WFR mirror: Effect of 
superfocusing 

In applications the major interest is focused on the distribution of the average 
power flux of the reflected wave in the vicinity of the source. The total flux is 
given by 

(2.79) 

We limit our analysis to a typical situation where the prime field u, is due 

P = W j  lf(P)I2d2P, (2.80) 

Z,(L) - 1/L2 being the intensity of a spherical wave incident on the mirror in 
vacuum. 

We represent the average intensity of a wave reflected from the WFR mirror 
as a sum of the coherent and noncoherent components 

to a point source. Then, 

( L ( P ) >  = 4 ( P )  + L ( P )  9 (2.81) 

with 

L ( P )  = I ( U , ( P ) )  I 2  
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and 

I ” ( P )  = <lU,(P) - (U,(P))I2) 

The coherent component Zc(p) is the lower bound of the average intensity 
of the reflected wave, since always I c ( p )  6 ( Z s ( p ) ) .  For a point source, 

1, (P )  = m-4 exp [ - 2 (P/Pc)5’3 1 9 (2.82) 

where 

I ,”(P) = 10 ( L )  IF(P/L) I 2/L2 
is the intensity of the wave reflected by the WFR mirror in vacuum. It is 
remarkable that Z,(O) = 1,”(0), which implies that the average intensity of the 
reflected wave, as measured near the source, cannot be lower than the intensity 
Z,”(O) of the wave reflected in vacuum. In other words, a turbulent medium 
cannot reduce the wave intensity at the light spot (AKHUNOV, BUNKIN, 
VLASOV and KRAVTSOV [ 19841). 

Once condition (2.78) is satisfied, then I , ( p )  = I ; (p),  so that the radius of 
the focal spot in the plane of the source is L/ka as it is in vacuum. However, 
when condition (2.78) is violated, the focal spot of the reflected wave defined 
by eq. (2.82) contracts to about a size of pc N L/ka. We shall refer to such 
focusing of a coherent field improved over that in vacuum as superfocusing. 
The effect of superfocusing is explained by a contraction of the effective 
radiation pattern of the WFR mirror, which forms the coherent component, 

(2.83) 

In agreement with this formula only those rays which are reflected within the 
coherence cone 8,< Oc(L) ?: pc(L)/L contribute to the coherent component of 
the reflected field. 

The superfocusing of the coherent component may also be treated as an 
effective increase of WFR mirror size in a turbulent medium. We determine the 
effective reflection coefficient for the coherent component as 

Fee@) = F ( 8 )  exp [ - (8/8c)5/3] . 

LAP) = FeR(8)  exp(ikp. 8) d28 s 
= 1 f ( p  + P ’ )  ~ J P ‘ ,  L )  d2p’ , 

where W,(p, L)  is, as before, the probability density of the lateral shifts of rays 
determined by eq. (2.37). 
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Fig. 2.18. Effective rise of WFR mirror size in a turbulent medium due to random walk of rays 
(effect of superfocusing). 

The effective enlargement of the WFR mirror may be readily explained by 
a random walk of rays in the turbulent medium. Indeed, random walks can 
carry to the mirror even those rays which missed the mirror in vacuum 
(fig. 2.18). Accordingly, for a coherent field the size of the mirror increases to 

Physically, the reasons for obtaining a narrow region of focusing for Zc(p) 
are different for pc > a, and pc < op The first inequality, p, > op, holds true in 
the range of weak fluctuations of intensity incident on a wavefront-reversing 
mirror. Excluding amplitude fluctuations, which are insignificant in this case, 
the field of a reflected wave in the plane of the source may be represented as 

a + o,(L). 

where u,”(p) is the complex amplitude of the reflected wave in vacuum, and 
rp(p,L) is the random phase increment (with account for phase inversion) 
acquired along the paths of the incident and reflected waves. The mean square 
of q(p,  L )  is comparable to unity only at p -  pc(L). Consequently, if 
pc(L)  > a&), then ( I ,  ( p ) )  N I:(p),  irrespective of the WFR mirror size, and 
for a < op the superfocusing is caused by purely phase effects, i.e., by an 
incomplete compensation achieved with the WFR mirror of the random phase 
increments en route from the source (i.e., WFR mirror) point of observation. 

Now we turn to long paths along which o,(L) > pc(L). If we separate the 
correlations with the rules appropriate for a Gaussian field, under saturated 
fluctuations we obtain for the average intensity 
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where 

Iind(p) = I:(P + P I )  wp(p1, L)d2p1 (2.85) 

is the intensity of the reflected wave calculated on the assumption that the 
fluctuations are statistically independent in the forward and backward paths, 
W,(p) is defined by eq. (2.37), and for the turbulent medium d ( p )  = 4(p/p,)s'3. 

From eq. (2.84) it follows that Zind(p) N I,O(p) for sufficiently small mirrors 
only (a < p,), when the diffraction divergence of the rays reflected from the 
mirror is about L/ka, which exceeds the lateral shift np, i.e., when the WFR 
mirror is nowhere better than an ordinary reflector of the same size a < p,. 

The simple approximation (2.84) does not always lead to physically correct 
conclusions. For example, the full power flux of the reflected wave is P + P, 
rather than P, i.e., exceeds the true average flux (2.80) by 

s 

P, = Z,(p)d*p. s 
Specifically, when condition (2.79) of compensation of the effect of inhomo- 
geneities is satisfied, then P, = P so that the average flux computed with 
eq. (2.84) is twice the true value. Nevertheless, the easy-tractable ray con- 
siderations allow to modify the expression for the noncoherent component 
I , , (p)  so as to keep the advantages of eq. (2.84) but to eliminate the energy 
paradoxes peculiar to this expression. 

As already mentioned, the coherent part of the field of the reflected wave is 
formed by rays whose angle of reflection differs from the angles of incidence 
by a value smaller than the angle of coherence, 8 5 O,(L). The other rays do 
not contribute to the coherent part of the reflected field and form an incoherent 
component. If we suppress the coherent part responsible for scattering within 
the cone 0 5  0, in the scattering pattern of the mirror (2.77), we obtain an 
effective pattern for the noncoherent component of the reflected field, e.g., in 
the form 

which secures the energy balance 

I F , ( ~ ) I ~ =  iw)t2. 
If we calculate I,, with this F,, directional pattern, assuming statistical inde- 

pendence of random inhomogeneities of the medium in the forward and back- 
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(2.86) 

(2.87) 

and yields correct results in all the preceding situations that have been con- 
sidered. 

In particular, in the saturated fluctuation regime (p, < op) eq. (2.87) yields 
the expression 

( ‘ s ( p ) >  = I c ( p )  + Iind(p) - pc w p < p ?  L ,  * 

which at a 4 crp almost coincides with eq. (2.84) in view of the smallness of the 
last term on the right-hand side. For strong fluctuations, pc 6 o,,, this formula 
suggests that the envelope of the average intensity of the reflected wave will 
have a different structure, depending on the WFR mirror size. 

When a > ap, the mirror completely compensates the effect of turbulence on 
the reflected field, so that ( I , ( p ) )  = I,”@) as in the case of weak intensity 
fluctuations. For op > a > pc the average intensity consists of a high, sharp peak 
of I ,  ( p )  of radius - pc, rising up to I,O(O) over a wide and low pedestal - Iind (p) ,  
which, however, carries a considerable proportion of the energy flux. 

When a < p c ,  the average intensity of the reflected wave does not differ from 
the average intensity of the wave reflected from a common reflector of the same 
size. 

Certain aspects of the spatial flux distribution of a wave reflected from a 
WFR mirror have been described by AKHUNOV and KRAVTSOV [ 1983a1, 
SAICHEV [ 19831, KRAVTSOV and SAICHEV [ 19851, and MALAKHOV, 
POLOVINKIN and SAICHEV [ 1983, 19871. 

2.3.3. EfSect of a drft of random inhomogeneities on the eficiency of WFR 
mirrors 

A time variability of the random inhomogeneities of the medium and even 
a transverse drift of inhomogeneities can result in a degraded focusing of the 
wave reflected from a WFR mirror in the neighborhood of the source 
(MALAKHOV and SAICHEV [ 19811, AKHUNOV, BUNKIN, VLASOV and 
KRAVTSOV [ 1982, 19841, and POLOVINKIN and SAICHEV [ 19841). In this 
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section we limit consideration to a case of turbulent inhomogeneities that drift 
across the path with a constant velocity V.  

Using reasoning similar to that employed earlier leads us to conclude that 
the average intensity of the reflected wave is given by eq. (2 .87)  in the vicinity 
ofthe point source, Iind (p )  is defined by eq. (2 .85) ,  and the coherent component 
of the reflected field is given by 

(2 .88)  

where 6, = V , / c .  It is obvious that the motion of inhomogeneities alters the 
distribution of the average reflected intensity if the angle of the drift 20,  exceeds 
the angle of coherence 0, - p J L ;  i.e., 20,  > 8,. 

However paradoxical it may seem at first glance, in a turbulent medium the 
efficiency of a WFR mirror is least for large mirrors, a > max {p,, a,}. In this 
case, from eqs. (2.85)-(2.88) we have 

where 

v = exp[ - 2 ( 8 , / e ~ ~ / ~ ]  

is introduced to reflect a reduction of the coherent component of the reflected 
wave. 

The low efficiency of focusing by a large WFR mirror in a drifting turbulent 
medium is attributed to a narrow directional pattern of the large mirror 
(A0 = l /ka < &). Therefore, rays reflected from the mirror pass through 
random inhomogeneities and emerge shifted in the transverse direction by a 
distance 20,L from the locations of the inhomogeneities through which the 
incident rays have passed. 

In contrast to the situation in vacuum, the reduction of the WFR mirror size 
in a turbulent medium may result in a relative improvement of the focusing 
(POLOVINKIN and SAICHEV [ 19841) because in the cone of reflected rays with 
the included angle A 0  > 2 4 ,  there always exist rays passing through the same 
inhomogeneities through which the respective incident rays have passed. As a 
result, the superfocusing spot of the coherent component shifts, with respect 
to the source, a distance 20,L rather than disappears as is the case for a large 
mirror. 
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2.3 A. Magic-cap ejfect : Compensation of backscattering from small-scale 
inhomogeneities by a WFR mirror 

With an ideal, boundless WFR mirror of reflectivity 1 f I = 1, one more very 
interesting effect may be observed that will be referred to as the effect of the 
magic cap. This effect occurs because the ideal WFR mirror compensates not 
only the phase fluctuations of the field caused by large-scale inhomogeneities 
but also the backscattering from small-scale inhomogeneities (SAICHEV [ 198 1, 
19821). A closely related effect of compensation of phase distortions in wave- 
front inversion in random acoustic waveguides has been pointed out by 
GELFGAT [ 198 11. 

We illustrate the magic-cap effect by the example of a scalar monochromatic 
wave satisfying the Helmholtz equation 

A u + k 2 [ 1  + .F(p,x)]u=O. 

Assume that inhomogeneities are present only in a final layer 0 < x < L 
bounded at x = L by a wavefront-reversing mirror of reflectivity f. Following 
MALAKHOV and SAICHEV [1979], we represent the field as 
u ( p ,  x )  = T(p ,  x) + R ( p ,  x), where T(p ,  x) is the field of the forward wave 
propagating along the x-axis, and R(p ,  x) is a wave in the backward direction. 
These waves satisfy the following equations, 

Here, the operator M = i,/m and A = 112. 
Let a wave equal to uo(p)  at x = 0 be incident on the inhomogeneous layer 

from the side of negative x-values. Then eqs. (2.89) should be solved with the 
boundary conditions 

(2.90) 

If we suppose that &? and I? are purely imaginary, which corresponds to 
neglecting the total internal reflection, then with (2.89) and (2.90) we can verify 
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that the difference Q = R ( p ,  x) - f T * ( p ,  x) satisfies the equation 

3 + dQ = +PAI ( Q  - fQ*) + (1 - / f12)$k2fiIT 
ax 

(2.91) 

with the boundary condition Q(p, 15) = 0. 
If 1 f 1 = 1, i.e., ideal reflection, then the last term of eq. (2.91) equals zero, 

the equation becomes closed for Q, and its solution is identically zero, 
Q(p ,  x) = 0. Hence, for I f  I = 1, the relation 

R(p,  x) = f T * ( P ,  x) 

holds true at any distance from the mirror. In particular, at x = 0 we have 
R ( p ,  0) = &&), which implies that even under backscattering from inhomo- 
geneities of the medium the ideal WFR mirror provides a complete com- 
pensation of the distortions introduced by these inhomogeneities in the reflected 
wave. Actually, the WFR mirror sets up such phase relations between the fields 
of T and R that they extinguish the backscattering from small-scale dissemi- 
nations, making them invisible for the observer outside the inhomogeneous 
layer, i.e., at x -= 0. 

Let us also examine the behavior of the field inside a random inhomogeneous 
layer confined by an ideal WFR mirror. Assume for simplicity that both the 
wave incident on the inhomogeneous layer and the inhomogeneities of the layer 
proper change smoothly along the transverse coordinates in the scale of the 
wavelength. It is convenient to represent the field inside the layer in the form 

(P ,  4 9 
ik.r v ( ~ ,  x) + e W L - ~ f  v u(p ,  x) = e 

where the complex amplitudes U and V of the forward and reflected waves 
satisfy the system of parabolic equations following from eq. (2.89) upon sub- 
stituting ik(1 + +Al) for ~ and - ik for fi, viz., 

2ik - + AI U + k2 I U + k2fi V = 0 ,  av 
ax 

av 
ax 

-2ik - + A , V +  k21 V + k2ji*U = 0 ,  
(2.92) 
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If we represent the complex amplitude of the reflected wave as the sum 

the equations for U ( p ,  x )  and W(p,  x) follow from eq. (2.92) in the form 

au 
ax 

2ik - + A I U  + k2BU+ k2jlfU* + k2j lW= 0 ,  

a w  

U(P9 0) = U O ( P )  1 

- 2ik ~ + A L  W + k2 E W - k2 j l  * f W* + k2( 1 - I f 1 ' ) p  * U = 0 , 
ax 

(2.94) 

W(p, t) = 0 .  

If the backscattered intensity is rather weak in a random inhomogeneous 
medium, in the equation in W we may neglect the two last terms responsible 
for backscattering (in formal terms this corresponds to j l  = 0). In this case 
W = 0 for any J and eq. (2.93) describes the familiar effect of compensation 
of the effect of large-scale inhomogeneities on the wave reflected from a WFR 
mirror of a sufficiently large size. 

If the backscattering from small-scale inhomogeneities of the medium is 
significant, then, as noted for the more general case, for x < 0 the inhomo- 
geneities do not influence the profile of the reflected wave only if I f  I = 1. 

An interesting effect of localization (accumulation) of the energy of a wave 
in the small-scale random inhomogeneous layer positioned in front of the WFR 
mirror occurs where a compensation of backscattering takes place. To demon- 
strate this effect, we assume that the random inhomogeneities in the layer 
0 < x < L are such that the diffusion approximation (see, e.g., the monograph 
by KLYATSKIN [ 19801) is justified. This approximation is equivalent to replac- 
ing small-scale fluctuations B (p, x )  and j l  (p, x) with Gaussian &correlated 
random fields with correlation functions 

( E G )  = o ,  
in which for clarity we assume that A(s )  2 0 and a ( s )  2 0. 
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For I f 1  E 1 the field U ( p ,  x) satisfies the equation 

au 
ax 

2ik - + A L U  + k2 .? U + k2G fU* = 0 ,  

U(P, 0) = % ( P )  9 

which follows from eq. (2.94). Using standard closing procedures for closing 
averages (see, e.g., KLYATSKIN [ 1980]), it is not hard to transform this equation 
to the one for the coherence function of field U ( p ,  x), namely 

(V,V,)r t ik2[D(p) - a]r= $k2a(s ) r ,  ar i 

D ( p ) = A  - A ( p ) ,  A = A ( O ) ,  a = a ( O ) .  

(2.95) 

Although a general solution of this equation is yet to be found, it is not hard 
to determine the flux 

P ( p ,  x) = 

ax  k 

w, p, x) d2R . 

Assuming for simplicity that P ( p ,  0) is a real function ofp, which is valid, e.g., 
for the normal incidence of a collimated beam on a nonhomogeneous medium, 
we obtain from eq. (2.95) 

P ( p ,  x )  = P ( p ,  0) exp [ - ak2D(p)x + bk2(a + a ( p ) ) x ]  . 

It should be obvious that in the presence of small-scale inhomogeneities of 
the medium (a > 0), the average flux of the incident (as well as the reflected) 
wave increases exponentially as it approaches the WFR mirror, 

P(x) = ( I ( p ,  x)) d2p = P(0)  exp($k2ax). s 
Thus the small-scale, random inhomogeneous layer in front of the I f 1  = 1 

mirror accumulates, on average, the energy of the incident wave. Inversion of 
the phase of a wave reflected from the WFR mirror actually converts the 
inhomogeneous layer into a resonator. This seems to prove indirectly that the 
effects of partial reversal of backscattered wavefronts caused by multiple 
coherence paths may be one of the mechanisms of wave localization in multi- 
dimensional, small-scale, random inhomogeneous media. 
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4 3. Enhanced Backscattering by a Random Medium 

3.1. OVERVIEW 

In the preceding section we have considered backscatter enhancement in 
light scattered from a body embedded in a random medium. A similar 
phenomenon occurs in multiple scattering of light, or other types of waves, in 
a randomly inhomogeneous medium where there are no clear-cut scatterers that 
stand out against a background. In this case, the intensity of the backscattered 
radiation is found to be almost twice as large as that predicted by transport 
theory. This effect, called coherent backscattering, has been extensively dis- 
cussed in the literature. It seems to have been first noted by RUFFINE and DE 
WOLF [ 19651 and WATSON [ 19691 in a theoretical analysis of radio waves 
backscattered by the turbulent ionospheric plasma (see also DE WOLF [ 19711). 
BARABANENKOV [ 1973, 19751 had discussed the effect in connection with a 
microscopic basis for the phenomenological theory of radiative transport that 
ignores the previously mentioned interference processes. 

The salient features of the effect have been demonstrated experimentally by 
KUGA and ISHIMARU [ 19841 and KUGA, TSANG and ISHIMARU [ 19851, who 
observed an enhanced backscattering from a medium composed of a suspen- 
sion of latex particles. The earlier enhancement was less significant that that 
in later experiments. TSANG and ISHIMARU [ 1984, 19851 have interpreted the 
results by considering first double and then multiple scattering. 

A recent upsurge of interest in the effect is attributed primarily to the 
recognition that the processes underlying coherent backscattering are inti- 
mately related to the similar processes that occur when electrons interact with 
impurities in disordered metals (JOHN and STEPHEN [ 19831, AKKERMANS and 
MAYNARD [ 1985l). 

Effects of the type of coherent backscattering, commonly referred to as weak 
localization (ABRAHAMS, ANDERSON, LICCARDELLO and RAMAKRISHNAN 
[ 19791, GORKOV, LARKIN and KHMELNITSKII [ 19791, BERGMANN [ 1984]), 
lead to a decreased conductivity at low temperatures when compared with that 
predicted by the classical kinetic theory. Simultaneously with the interference 
effects the behavior of conductivity is considerably influenced by the Coulomb 
interaction of electrons (ALTSHULER, ARONOV, KHMELNITSKII and LARKIN 
[ 19821). 

Optical experiments make it possible to observe directly how the pure effects 
of weak localization enhance backscattering of light from dense water sus- 
pensions of submicron particles of latex or polystyrene (WOLF and MARET 
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[ 19851, VAN ALBADA and LAGENDIJK [ 19851, LAGENDIJK, VAN ALBADA and 
VAN DER MARK [ 19861, VAN DER MARK, VAN ALBADA and LAGENDIJK 
[ 19881, WOLF, MARET, AKKERMANS and MAYNARD [ 19881, ETEMAD 
[1988], DAINTY, Q u  and Xu [1988], Qu  and DAINTY [1988]). Similar 
experiments with solid disordered media have been reported by ETEMAD, 
THOMPSON and ANDREJCO [1986] and KAVEH, ROSENBLUH, EDREI and 
FREUND [ 19861. These studies have demonstrated that the angular distribution 
of scattered intensity is an almost triangular peak pointed backwards, the 
relative enhancement being close to two. The form of the peak as a function 
of depth of scattering layer, extinction, size of scatterers, and polarization of 
incident and detected radiation has been also investigated. 

A theoretical treatment of the effect has been carried out by AKKERMANS, 
WOLF and MAYNARD [ 19861 with the scalar theory formalism. They calculated 
the contribution to the beam intensity of cyclical (or maximally crossed) 
diagrams and their sum for the case of point scatterers. The sum was computed 
with the aid of the diffusion approximation of radiation transport theory, which 
has been devised for this purpose by BARABANENKOV [ 19731. This approxima- 
tion has been explored by STEPHEN and CWILICH [ 19861 and CWILICH and 
STEPHEN [ 19871 to investigate polarization effects in coherent backscattering, 
and by BARABANENKOV and OZRIN [ 19881 and ISHIMARU and TSANG [ 19881 
to study the effect of the size of the scatterers on the angular distribution of 
intensity. The characteristic features of the angular distribution have been 
elucidated by SCHMELTZER and KAVEH [ 19871 on the basis offield-theoretical 
methods. 

Extensive research efforts have been devoted to various factors leading to 
a smoothing of the coherent backscattering peak. These are primarily the finite 
extension of the scattering medium and its extension (ISHIMARU and TSANG 
[ 19881, ETEMAD, THOMPSON, ANDREJCO, JOHN and MACKINTOSH [ 19871, 
EDREI and KAVEH [ 1987 1, AKKERMANS, WOLF, MAYNARD and MARET 
[ 1988]), the motion of scatterers (GOLUBENTSEV [ 1984a]), and the presence 
of a magnetic field in the case of a gyrotropic medium (GOLUBENTSEV [ 1984b] 
and MACKINTOSH and JOHN [1988]). The two last factors result in a 
breakdown of the symmetry relative to the inversion of time and violate the 
reciprocity condition. 

This brief overview indicates that various aspects of coherent backscattering 
and weak localization of light have been well documented recently. In electron 
transfer theory the weak localization is thought to foretell the strong or 
Anderson localization. In the optical range the possibility of strong localization 
has also been considered (see, e.g., the review papers of KAVEH [ 19871 and 
JOHN [ 1988]), but so far no observation has been reported for this regime. 
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3.2. GENERAL THEORY OF MULTIPLE SCATTERING: LADDER AND 

MAXIMALLY CROSSED DIAGRAMS 

A simple case of a scalar wave field u(r) satisfying the Helmholtz equation 
will be considered initially. Note in passing that the solution of the scalar 
problem is applicable when the illumination and detection beams are co- 
polarized. Let a plane monochromatic wave uo(so, r)  = exp(ik,s,. r), 
k ,  = 2n / l ,  propagating along the direction of the unit vector so be incident on 
a confined random inhomogeneous medium. Then the field obeys the equation 

(3 .1)  

where I ( r )  is the random part of dielectric permittivity responsible for multiple 
scattering. For a source at infinity the solution of Helmholtz equation (3.1) is 
represented with the aid of the scattering operator T(r, r ’ )  as (LAX [ 195 11, 
FRISCH [ 19651 and GOLDBERGER and WATSON [ 19641) 

Here and below it is assumed that the integration is taken over the entire volume 
occupied by the scattering medium, and G,(Y) = ( - 47~)- I exp(ik,r) is the 
Green function for free space where I = 0. 

According to eq. (3.2),  in the Fraunhofer zone, the wavefield u(r) is the sum 
of the incident wave and a spherical scattered wave whose amplitude is the 
Fourier transform of the scattering operator accurate to a constant multiplier. 

We assume, for clarity, that the scattering medium is constituted by discrete 
scatterers. The preceding enhanced backscattering experiments used dense 
discrete media in which the average interscatter distance was comparable with 
the size of the scatterer. In such media, mutual correlations of scatterers may 
play a significant role. 

Let us expand the scattering operator T into the orders of multiple scattering 
from individual scatterers, and substitute the result into eq. (3.2). Averaging the 
respective expansions of u(r)  and u ( r I )  u*(rz )  over the ensemble of realizations 
of the scatterers yields the Dyson and Bethe-Salpeter equations for average 
field and coherence functions (FRISCH [ 19651 and FINKELBERG [ 19671 

( ~ ( r ) )  = uo(r) + d3r1 d3r;  G,(Y - r l ) W r l , r i )  ( u ( r ; ) )  , (3 .3)  
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(u(r1)u*(y2)) = ( u ( r 1 ) )  (u*( r2 ) )  

t d3r; d3r[ d3r; d’r,” ( G ( r l ,  r ; ) )  (G*(r , ,  r ; ) )  

x K ( r i , r ; ; r y , r i )  ( u ( r ; ) u ( r , ” ) ) ,  (3.4) 

where G ( r l ,  r ; )  is the Green function of Helmholtz equation (3.1) having the 
average ( G ( r l ,  r ;  )), which satisfies the Dyson equation, which differs from 
eq. (3.3) by having Go(r - r ‘ )  and ( G ( r ,  r ‘ ) )  in place of uo(r) and ( u ( r ) ) ,  
respectively. 

The mass operator M(r, r ’ )  and the intensity operator K ( r , ,  r,; r ; ,  r ; )  of the 
Dyson and Bethe-Salpeter equations characterize the optical properties of the 
effective inhomogeneities for coherent and incoherent (or partially coherent) 
fields. These operators are evaluated by the diagram technique for the respective 
discrete medium. Examples of diagrams for both A4 and K are given in fig. 3.1. 

The solution of the Bethe-Salpeter equation may be represented with the aid 
of the correlation function of the scattering operator (LAX [ 19511, 
BARABANENKOV [ 19751) 

W 1 , r 2 ; G , r 9  = ( W l , r ; ) T * ( r z , G ) )  - ( T ( r l , r ; ) )  ( T * ( r 2 , r ; ) ) ,  

as follows, 

(u(R1) u*(R2)) = (u(R1)) ( u * ( R 2 ) )  

+ d3r, d’r, d’r; d’r; Go(R, ,  r l )  G*(R2, r2)  

x ~ ( r l , r 2 ; r ~ , r ; ) u o ( r ~ ) u * ( r ; ) .  (3.5) 

Fig. 3.1. Diagrams for the mass operator M, and intensity operator K, in the single-group 
approximation. Solid lines correspond to the Green function Go, horizontal dashed lines to GX. 
and wavy lines to the correlation function of scatterers. Nonhorizontal dashed lines correspond 
to the interaction operator or the scattering operator for an isolated scatterer, but in the last case 

the first diagram for&f, is absent. 
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This representation indicates that the correlation function of the field is 
expressed directly through the correlation function of the scattering operator. 
Denote by ~ , , , , , ( r )  the average energy flux of the wavefield less the energy flux 
of the average field. Incorporating the concept of albedo (see, e.g., 
AKKERMANS, WOLF and MAYNARD [ 1986]), a(s, so), which characterizes the 
intensity of the fluctuation component of the scattered field propagating along 
the direction of the unit vector s, into the representation of eq. ( 3 . 9 ,  we obtain 
for the Fraunhofer zone of the medium 

(3.6) 

where s = R / R ,  C is the cross section of the medium, and 
c 

O(p, q ;  p' ,  q ' )  = d3r1 d3r2d3r;  d3r; V(rl, r2; r ; ,  r ; )  J 
x exp ( - ip * rl + iq - r2 + ip' r ;  - iq' - r ; )  

is the Fourier transform of the correlation function of the scattering operator. 
In addition to eq. (3.5) actual fluctuations of the scattering operator are 

calculated with another representation of the Bethe-Salpeter equation 

( 4 r I ) u * ( r 2 ) )  = (u(rl))  ( u * ( r 2 ) )  

+ d3r;  d3r; d3r: d3r; ( G ( r , ,  r ; ) )  ( G*(r2, r ; ) )  

x r(ri,r;;ry,ri) ( u ( r ; ) ) )  ( u * ( r i ) ) .  (3.7) 

The vertex function r(rl, r,; r ; ,  r ; )  satisfies an equation obtained by sub- 
stituting eq. (3.7) into the Bethe-Salpeter equation (3.4), which, written 
symbolically, has the form 

r= K + K ( G )  (G*) r ,  (3.8) 

where for brevity we have dropped the arguments of functions and integrations 
like (3.4). 

Comparison of the two representations (3.5) and (3.7) of the solution to the 
Bethe-Salpeter equation yields a relation between the correlation function of 
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the scattering operator and the vertex function, 

G , G ; U G ~ G ;  = ( G )  ( G )  r ( G )  ( G * ) ,  

u = x x * r y y *  

which is resolved for the correlation function of the scattering operator 

with the aid of two auxiliary operators 

X = l + ( T ) G o  and Y = l + G o ( T ) ,  

whose origin may be easily traced by representing the field (3.2) in terms of the 
scattering operator of the medium. In view of the reciprocity of the scattering 
operator (FRISCH [ 19651) 

T(r, r ’ )  = T ( r ’ ,  r ) ,  (3.9) 

the operators X(r, r ’ )  and Y(r, r ’ )  are related by 

X(r, r ’ )  = Y(r’,  r ) ,  

Finally, from the definition of Y and eq. (3.2) it follows that 

d’r’ Y(r, r ‘ )  uo(r’) = ( u ( r ) )  . s 
Now, we have arrived at the fundamental formula for the albedo 

d’r, d3r2 d’r; d3r; 
(4 n)2 z 

x ( u( - s, r ,  )> ( u * (  - s, r 2 ) )  U r , ,  r2;  r ; ,  r ; )  

x (u(s0,  r ; ) )  (u*(so ,  r;>> ? (3.10) 

where (4% r ) )  represents the solution to eq. (3.3) with the boundary con- 
dition involving uo(s, r). 

Formula (3.10) is exact and rather general. It is commonly used under some 
simplifying assumptions made with respect to the medium and the wavefield. 
The model of a medium constituted by independent (uncorrelated) scatterers 
ofcharacteristic size ro (FOLDY [ 19451, LAX [ 195 11, DOLGINOV, GNEDIN and 
SILANTYEV [ 19791) is appropriate at a low density n of scatterers distributed 
in space so that nr: 4 1. 

For dense scattering media where nr; is not small any longer, a model should 
take into account the correlations of scatterers. The single-group approxima- 
tion (FINKELBERG [ 19671, BARABANENKOV and FINKELBERG [ 19671, 
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BARABANENKOV [ 19751) takes into account the correlation functions of scat- 
terers of all orders. In this approximation the mass operator M and intensity 
operator K equal the sums M ,  and K ,  of all possible diagrams linear in the 
correlation functions of scatterers. Some of these diagrams are depicted in 
fig. 3.1. The kernels M I  and K ,  are put in correspondence to inhomogeneities 
of the medium of a spatial scale r, that is of the same order as the maximum 
of either the size of scatterers or their correlation radius. 

The representation of localized inhomogeneities forms the basis of a physi- 
cally appealing approach to coherent and incoherent scattering of waves. This 
approach is based on the assumption that the main contribution to wave 
scattering is due to the far configurations of inhomogeneities when these are 
in the Fraunhofer zone with respect to one another (BARABANENKOV 
and FINKELBERG [ 19671). For coherent scattering the Fraunhofer approxima- 
tion is equivalent to neglecting the spatial dispersion, and for incoherent scat- 
tering it is equivalent to a description in terms of radiative transfer theory. 

Neglecting the spatial dispersion reduces the Dyson equation for the average 
Green function in an unbounded scattering medium to the Helmholtz equation 
with an effective compiex wavenumber k ,  related to the Fourier transform of 
the mass operator M , ( p )  by the relation 

k :  k i  - M l ( k o ) .  

The expression for the average function GI satisfying the Dyson equation 

(3.11) 
where R = 1 r - r '  1 ,  and l,>' involves the contributions due to elastic scattering, 
1/1, and due to true absorption, 1/Iab, namely, 

with M I  is then 
GI@, r ' )  x - (4nR)- '  exp(ikR - R/21,,), 

le;' = - Im{M,(k,)}/k, = 1/1+ l /fab. (3.12) 

In eq. (3.11) it is assumed that k , / k o  is close to unity, 

4 I&. (3.13) 

For a bounded scattering medium the question of whether or not it is possible 
to neglect dispersion near the boundary requires a separate consideration. 
Digressing from this problem for a moment, the average field in the medium 
on neglecting the reflection and refraction of waves at the interface can be 
written as 

( u ( s , r ) )  zexp( ik , s* r -  r / 2 f e E ) ,  (3.14) 

where the origin is also placed inside the medium. 
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(3.15) 
and consider the solution QCL) to the approximate Bethe-Salpeter equation for 
an unbounded medium, which is derived from eq. (3.4) by substituting 
eqs. (3.15) and (3.11) for the inhomogeneous term and K ,  for the intensity 
operator. In this "ladder" approximation, in agreement with eq. (3.8), the vertex 
function r becomes 

(3.16) 
Expanding @ ( I - )  in scattering orders, i.e., in powers of K ,  , yields a represen- 

tation of in the form of a series whose terms can be represented by ladder 
diagrams, one of which is shown in fig. 3.2, along with the respective patterns 
of disturbance travel. 

I'z K ,  + r(L), rCL) = K 1 QjCL'K I '  

The condition 
r, 6 leE,  k,  r; G (3.17) 

assumes that inhomogeneities of the medium are in the Fraunhofer zone with 
respect to one another (BARABANENKOV [ 19751). The intensity operator K ,  
then can be represented as 

K , ( R  + i r ,  R - i r ;  R' + i r ' ,  R' - ' r ' )  2 

and the following relations holds for both @(L) and Q0 (BARABANENKOV 
[ 1969]), the latter being defined as f ( R  + $r, R - i r ;  R' + i r ' ,  R' - 'r') 2 

d3rd3r '  exp ( - ik - r  + ik*r ' ) (@(L) ;  a0) 

z ( 2 1 ~ ) ~  k,4 b(k - k,) b(k' - k,) (F, &), 

s 
(3.19) 

Fig. 3.2. (a) Typical ladder diagram: the solid line corresponds to G, = Go t G,M, G ,  ,horizontal 
dashed line to Gy,  and vertical dashed lines to K , .  (b)The path y corresponding to the ladder 

diagram in real space. 
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where s = k / k ,  s’ = k ’ / k ,  

$JR, S; R ‘ ,  s’ )  = 6(s - s’) 6(s - sRR.)  

x (4njR - R‘ I)-‘exp( - / R  - R‘ j / Z e K ) ,  (3.20) 

SRR. = ( R  - R ’ ) /  I R - R‘ 1 ,  and the quantity 9 is the Green function of the 
transport equation (CASE and ZWEIFEL [ 1967]), which follows from the 
Bethe-Salpeter equation for c P ( ~ ) ,  namely, 

9 ( r ,  s; r ’ ,  s’) = c%(r, s; r ’ ,  s’) 
P 

+ (47~)’ J d3rl  d’s, d2s; &(r, s; r l ,  sl) 

x na(s,, s;) F(r,, s;; r ’ ,  s‘). (3.21) 

Here and below d2s is an elementary solid angle. 

as 
The coefficient of elastic scattering of a unit volume of the medium is defined 

n C(S,  s’)  = W(ko s, k o s ’ )  . (3.22) 

For uncorrelated scatterers, a(s, s’) is the cross section of scattering of an 
individual particle. The mean free path 1 in elastic scattering can be obtained 
by 

I -  ’ = n ds a(s, s’) s (3.23) 

Now we return to eq. (3.10) for the albedo of the medium. We assume the 
scattering medium under consideration is a plane parallel slab perpendicular 
to the z-axis as shown in fig. 3.3. The transverse size of the slab is supposed 

Fig. 3.3. Geometry of the problem for albedo calculation [eqs. (3.10) and (3.24)]. The 
arrowed lines represent the average fields ( u )  and ( u * ) .  The quadrilateral represents a vertex 

function f. 
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to be rather wide so that we may safely neglect edge effects and make use of 
the translation invariance of the vertex function r with respect to shifts along 
the slab. The final expression for the albedo, with taking into account eq. (3.14), 
becomes 

r 

where r, = (p,, z,), the integration is over the entire slab 0 < z < L, 
I p, I < L, -+ a, and for backscattering s, < 0 for soz > 0. 

Substitution of eqs. (3.16), (3.18), and (3.19) into eq. (3.24) yields the albedo 
in the form of a sum, a z a( l )  + dL), where a ( ’ )  stands for the first term on the 
right-hand side of eq. (3.16), i.e., corresponds to single scattering, and the 
computation of the ladder part dL) of the albedo is a matter of solving the 
transfer equation, eq. (3.21). 

The ladder approximation and transfer theory are known to provide a 
satisfactory description of incoherent scattering for almost all directions s (see, 
e.g., BARABANENKOV [ 19751, ISHIMARU [ 19781) except for the narrow cone 
around the retroreflection direction with an included angle of A 0  5 l /kol,  where 
f3 is the angle between s and -so, i.e. cos0 = - s - s o .  At these angles the 
contribution of the interference processes that fail to be explained by the ladder 
approximation is insignificant. A qualitative insight into the matter may be 
provided by referring to the reasoning of AKKERMANS, WOLF and MAYNARD 
[ 19861 (see also MACKINTOSH and JOHN [ 19881). 

Consider a half-space filled by randomly spaced scatterers. Denote by u ,  
the contribution to the scattered field due to the passage of the wave along a 
path y including, in that order, the points R , ,  . . . , R,, locating the position of 
scatterers, which are assumed for simplicity to be point-like and uncorrelated. 
A typical path y is shown in figs. 3.2 and 3.4 by a continuous line. The overall 
field u is the sum of u, over all possible paths y,, and this is readily recognized 
to be an expansion of u in a series of multiple scattering devised by 
GOLDBERGER and WATSON [ 19643. 

The analysis can additionally be simplified by considering, at each section, 
R,,  , - R, instead of a diverging wave represented by the function 
Go(R,+ - R,), one of its plane components exp[ik,(R,+ - R,)], and by 
assuming that u y  is defined not only by the positions of the scatterers 
R , ,  . . . , R, but also by a fixed set of wave vectors k ,  = k,s,, . . ., k , ,  k ,  - ,, 
k ,  = kos. The intensity I u I ’ will, of course, contain cross terms uyu; ,  due to 
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Fig. 3.4. (a) Typical maximally crossed (cyclical) diagram; (b) corresponding paths y and - y, 
which interfere coherently at small 8. 

the interference of different paths, but the ladder approximation disregards 
these cross terms, retaining only the terms like IuYI2. 

It is worth noting that the scalar waves passing through R , ,  . . . , R N ,  and the 
amplitudes of scattering at these points are the same for the path y and the 
time-reserved path - y (dashed line in fig. 3.4), in which these points are 
traversed in reverse order. In the plane-wave representation the set of wave 

Consequently, ul,  and u can only differ due to the sections from the medium 
boundary to the first and to the last scatterer. If we neglect extinction in this 
section, the difference will consist of the phase multiplier, i.e., u,u? = 1 u y /  * 
exp[ik,(s + so).(RI - ItN)].  

Thus, the contribution of the sum of these two paths to the intensity takes 
the form 

vectors k,, k , ,  . . . , and kN is replaced by the set ko, - k,- ,, . . . , - k i *  kN. 

2 I u y + u - ),I = 2 1 u y 1 + 2 I u y  I cos [k,(s + so> ' ( R  1 - R N ) I  9 

where the first term on the right-hand side corresponds to the contribution of 
ladder diagrams (see fig. 3.2), and the second oscillating term, due to the 
interference of y and - y paths, can be pictured as a cyclical, or maximally 
crossed, diagram such as the one shown in fig. 3.4. Clearly, for backscattering 
at zero angle, when s = - so, these quantities coincide for any path y. In this 
case, their contributions to the albedo are equal; i.e., 

a ( L )  ( - so, so) = dC)( - so, so) (3.25) 

and the sum is twice the classical value of dL). 
We can estimate the angular width of the backscatter peak by assuming that 

the vector R ,  - R ,  is parallel to the medium boundary and that the incident 
light is normal to this boundary so that so= = 1. Then, the interference (cyclical) 
term will give a sizeable contribution in the intensity provided that the phase 
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increment is small; i.e., ko(s + so)*(Rl - R,) = ko8* IR, - RNI 4 1. The 
average value of the distance I R ,  - R,  I for the minimum number of scattering 
events (N = 2) is the mean free path of the travelling light, i.e., the extinction 
length 1. Therefore, an enhancement will be observed in a cone with included 
angle A 8  5 l/koI. From this result one may conclude, by the way, that the wings 
of the coherent backscatter peak (0 > l/kol) are mainly due to the contribution 
from double scattering (BARABANENKOV [ 19731, ISHIMARU and TSANG 
[ 19881, GORODNICHEV, DUDAREV and ROGOZKIN [ 19891). 

When N grows large, we may assume that the path y consists of random 
segments and make good use of the diffusion approximation, which yields 
IR, - RNI2 = D(rN - t , )  = IS,/3, where the path length S,  = c(r, - r l )  is 
estimated as IN. This implies that a path of length S,  contributes to the 
interference part of the intensity only within the cone 8 < 0, z l/ko(ISN)1’2; 
consequently, the top part of the backscattering peak is mainly formed by high 
multiplicity scattering. If path lengths are limited by a value of S,,,, say, due 
to a finite thickness (or transverse dimension) of the slab, when S,,, - L (or 
S,,, - L l ) ,  or due to absorption when S,,, - la,,, then we can expect that 
the peak will be rounded off at angles 8< em,, 5 l/k,,(lSmax)”2. A similar 
rounding off, associated with the suppression of the contribution of high 
multiplicity scattering, must be observed in the presence of factors breaking 
down the time-reversal invariance (MACKINTOSH and JOHN [ 19881). 

Proceeding along the lines of this qualitative reasoning, one can verify that 
the interference terms u,u? corresponding to different paths y’ # & 7, will 
contain, even at s = -so, uncompensated factors of the type 
exp [ikos, - (Ri - R,)], which depend not only on the random locations R,, Rj,  
but also on the random direction s,. The averaging of such quantities will 
introduce (for l/koZ 4 1) only insignificant corrections to the intensity. There- 
fore, in describing coherent backscattering, we may safely limit ourselves to 
consider only the ladder and maximally crossed (cyclical) diagrams. 

Now we turn to a more rigorous substantiation of the preceding results, 
specifically, equality (3.25) (BARABANENKOV [ 1973,19751). The key point here 
is the property of reciprocity of the scattering operator (Green function) formu- 
lated by eq. (3.9) and the respective property of the intensity operator in the 
single-group approximation 

_-  

KI(r l ,  r2; r ; ,  G I  = K,(rl, G ;  G ,  r2)  

= K , ( r ; ,  r2; r l ,  GI. (3.26) 

Based on the symmetry of the intensity operator K ,  and the reciprocity 
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Fig. 3.5. Equivalence of ladder diagrams and maximally crossed diagrams. Inversion of points 
on the upper (lower) row in a maximally crossed diagram transforms the diagram into the 

corresponding ladder diagram. 

condition for the average Green function G , ,  eq. (3.1 l), satisfying the Dyson 
equation with mass operator M , ,  we can establish a type of equivalency of 
maximally crossed diagrams and ladder diagrams under inversion of the points 
on the upper or lower row in a diagram (fig. 3.5). This brings us to a funda- 
mental conclusion for backscatter enhancement theory. Let K(c) ( r l ,  r,; r ; ,  r ; )  
represent the sum of all maximally crossed diagrams, then 

K ( c ) ( r , ,  r,, r ; ,  r ; )  = PL)(r , ,  r i ;  r ; ,  r,) 

= P L ) ( r ; ,  r,; r l ,  r ; )  , (3.27) 

This relation represents the contribution of the sum of all maximally crossed 
diagrams in the intensity operator in terms of the vertex function in the ladder 
approximation, eq. (3.16). The quantity Kcc) is also the contribution of the sum 
of maximally crossed diagrams in the vertex function, 

P C ) ( r , , r 2 ; r ; , r ; )  = K(c)(rl,r2;ri,ri), (3.28) 

and is an approximate solution to eq. (3.8) with K w K ,  + K(c) .  
Substituting PL) or rCc) for the vertex function r in the general formula for 

the albedo [eq. (3. lo)] yields, respectively, the expressions for the ladder part, 
dL)(s, so), or the maximally crossed (cyclical) part, dC)(s, so), of the total 
albedo. If in these integrals we let s = - so and make use of eqs. (3.27) and 
(3.28), we obtain equality (3.25). 

3.3. TRANSFER EQUATION AND ENHANCED BACKSCATTERING 

The qualitative consideration in the preceding section indicated that 
enhanced backscattering can be explained by choosing the vertex function in 
the form 
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We recall that the random inhomogeneous media under consideration are 
those with parameters satisfying conditions (3.13) and (3.17). This means that 
both the ladder FL) and the associated maximally crossed r(c) vertex function 
can be expressed through the solution of the transfer equation. Thus, the 
formulas (3.16)-(3.22) and (3.28) form a computational basis for the albedo. 

Substituting eqs. (3.29) to (3.24), we obtain after some algebra 

a = a( ’ )  + a’ , (3.30) 

where a ( ’ )  is the contribution of single scattering, 
a(”(s, so) = nfe,a(s, so) 

(3.31) 

(3.32) 

P = ko leff(Sr + s o z )  + i(soz + Isz I )/2 I s z  I soz * 

Thus the sum a‘ depends on the parameters q and p and the albedo due to 
scattering from an isolated inhomogeneity o = leff/l.  

The function F(q, p ,  p ’ )  may be written as the integral transform 

F(q, Pl P’) = jOLnm dz dz f  eiPZ + iP‘z F(q. 1 9  z ’ )  (3.33) 

of the function F(q; z, z ’ ) ,  which is expressed through the Green function of 
the transfer equation 

9 ( r l  s; r ’ ,  s’ )  = 9 ( p  - p ’ ,  z, s; z‘, s ‘ ) ,  

namely, 

F(q, z, z’) = 4 7 r o ( 4 ~ n Z 1 , ~ ) ~  d2pexp(iq.p) s 
x ds, ds2 4 - s o ,  s,) 4s2, so)  

(3.34) 



11, B 31 RANDOM MEDIA 137 

The first term on the right-hand side of eq. (3.32) is the contribution of the 
ladder diagrams, i.e., the result of classical transport theory, and the second 
term is the contribution of maximally crossed diagrams that take into account 
the interference effects. 

In deriving (3.32)-(3.34), we assumed that the angle 0 between s and -so 
is small; indeed, in coherent backscattering experiments this angle never 
exceeded 100 mrad. If we proceeded without this assumption, in the expression 
for dL) instead of the cross section a( - so, sl) we would put a(s, s,), and in 
the expression for dC) instead of a( & so, s’) we would use the function 
W (  k;, k,s ‘ )  with k; = fko(so - s) and j kbl = k, cos($0), which is defined 
in eqs. (3.18) and (3.22), and at k; z k, can be approximated by the cross 
section a( i s;, s‘) with s; = (so - s)/lso - s J  (BARABANENKOV and OZRIN 
[ 19881). 

The assumptions made in (3.32) and (3.34) are justified for Q4 1 when the 
sharp maximum of the differential cross section a(s, s‘), if any, points forward, 
and s - s’ = 1, as is usually the case. A similar approximation has been 
employed by ISHIMARU and TSANG [ 19881 in considering the bistatic scatter- 
ing coefficient y = 4na/ 1 s, 1 .  

The condition Q 4 1 makes it possible to neglect in the exponent of eq. (3.33) 
some insignificant differences to the result obtained by AKKERMANS, WOLF, 
MAYNARD and MARET [ 19881 in the framework of a heuristic approach. It 
should be emphasized that for random inhomogeneous media for which 
1/koleE -g 1, the condition 0 4 1, in fact, has no effect on the experimental line 
shapes of coherent backscattering confined within a cone such that 
k,Ie,AO 5 1. 

Thus, the calculation of the angular dependence of the albedo has been 
reduced to the evaluation of the Green function of the transfer equation for the 
slab. First, let us consider the simplified situation of a medium consisting of 
point-like uncorrelated scatterers with isotropic scattering cross section 

In this case, transfer equation (3.21) simplifies appreciably, and for the function 
F(q; z ,  z ’ )  defined in eq. (3.34) it takes the form 

~ ( s ,  s‘) = 1 / ( 4 d ) .  (3.35) 

J o  
where 

exp (iq p - r) 
4n r2  

FoTo(q, z )  = w [ d2p (3.37) 

with r = Jp’+zz. 
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RYBICKI [ 19711 has investigated eq. (3.36) in depth, both for finite optical 
depths L/lcK and for the half-space with L/leK+ 00. The last case is of particular 
interest because for L tending to infinity, eq. (3.36) can be solved explicitly. This 
solution may be used as the point of departure for subsequent studies of the 
angular profile of the albedo under more complicated, and realistic, conditions. 

Indeed, as L + 00 from eq. (3.36), it follows (SOBOLEV [ 19631) 

- + - F(q; z ,  zl)  = &; z,  0) F(q; 0, z’) . (iZ a3 (3.38) 

After the transformation (3.33) (at L = 00 this is the Laplace transform), this 
expression becomes 

where the condition of symmetry F(q, z, z ’ )  = F(q; z’, z )  following from 
eq. (3.36) has been used, and F(q, p )  stands for the Laplace transform of 

For this function eq. (3.36) is an integral equation of the type of convolution 
on a half-axis with the kernel Fo(q, z) that exponentially decays as IzI + 00. 

Therefore, this equation can be solved by the standard Wiener-Hopf approach, 
which operates with the Laplace transform F(q, p )  analytical on the half-plane 
Im{p} > 0 and vanishing as [ P I - ,  00. 

The Wiener-Hopf method produces an auxiliary function A(q, p )  related to 
the kernel of the integral equation by 

&; z ,  0). 

dz eipr Fo(q, z )  

(3.40) 

with k = Jm. This function is analytic on the complex plane cut along 
the imaginary axis Re { p }  = 0, l  Im { p }  I > d m ,  and has two simple zeros 
at p = & ipo(q), po(q) < d m  where for q < 1 and 0 < 1 - w < 1 ,  

The analytic strip commonly considered in the Wiener-Hopf method lies 
along the real axis I Im { p }  I < po(q). In this strip, the function A(q, p )  can be 
easily factorized, and the solution becomes 

P O ( d  = JF-a=-s. 

F(q, P) = H(4 .  UP) - 1 3 (3.41) 
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where H(4, w )  is the generalized Chandrasekhar function introduced by 
RYBICKI [ 19711 

(3.42) 

where Re { w }  > 0. This function satisfies the nonlinear integral equation 

where '* = (1 + 4 2 ) -  ' I 2 ,  At 4 = 0, this function coincides with the ordinary 
function from CHANDRASEKHAR [ 19601. 

Formulas (3.41) and (3.39) yield a solution to the albedo problem (3.32) for 
point-like scatterers occupying a half-space. Summing up the preceding results, 
we obtain (GORODNICHEV, DUDAREV and ROGOZKIN [ 19891) 

(3.43) 

with the parameters p and 4 given in eq. (3.32). 

3.4. ANGULAR DISTRIBUTION OF BACKSCATTERED INTENSITY 

Let us analyze the angular behavior of the albedo for the rather frequently 
encountered experimental situation of almost normal incidence of light upon 
an interface, i.e., so= z 1, with a small angle of backscattering 8 6 1, so that 
s, = cos 8 x - 1 and p x i in eq. (3.43), whereas 4 = kale, sin 8 x kole,B being 
not necessarily small by virtue of k0leR 4 1. 

The first term in braces in eq. (3.43) represents the contribution of ladder 
diagrams and single scattering in the albedo; i.e., it corresponds to the result 
of the classical transfer theory. This quantity, denoted by a,,, remains almost 
constant for angle 8 varying in the range A 8  - l/kole,. On the other hand, the 
second, interference (cyclic) term almost coincides with the first at 8 = 0 or 
4 = 0 and decays for 4 4 1 as q - ' .  

We introduce the backscatter enhancement factor K ( 8 )  as the ratio of the 
albedo a(s, so) = a(8) to its value on the plateau, i.e. for 4 > 1, where it 
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coincides with the classical value acl, 

K ( @  = a ( W c , .  (3.44) 

K ( e )  = 2 + [H2(q,  1) - H ~ O ,  1) - 1 1 / ~ 2 ( 0 , i ) .  (3.45) 

On substitution of a(s, so) from eq. (3.43), we obtain 

According to eq. (3.42), at weak absorption, i.e., 1 - o -4 1, and a small 
value of q, the function H(q,  w) behaves like 

It decreases monotonously in the region of high q's and for q & 1 becomes 

H ( g ,  1) x 1 + no/4q.  (3.47) 

Thus, for elastic scatterers, K ( 8 )  of the angular distribution of coherent back- 
scattering has a triangular line shape peaked about the backward direction with 

q e ) - K ( o ) x  - 2 q ,  q = k o i o - 4 i ,  a =  1 .  (3.48) 

The halfwidth of this peak calculated at the level K(8,,,) = 1.44 amounts to 
q,,2 = 0.36; or 13 , ,~  = 0.36 k,I. The maximum value of the enhancement factor 
K(0)  = 2 - W 2 ( 0 ,  1) x 1.88 is somewhat less than two as a result of the 
contribution of single scattering; indeed, from eqs. (3.25) and (3.30), 
~ ( ~ ' ( 0 )  = d C ) ( 0 )  and 

K ( 0 )  = ( a ( ' )  + 2a'L')/(a"' + a(=') = 2 - u(l) /uc, .  

For large q, 

con 
K ( 6 ) x  1 + 9 - ' ,  q > l  

2H2(0, 1) 
(3.49) 

This result can be obtained by direct computation by including the contribu- 
tion of only one maximally crossed diagram of second order in the interference 
term dc). (In eq. (3.36) this corresponds to neglecting the integral term.) 
Consequently, the background of the coherent backscattering line shape is 
determined mainly by double scattering events, as predicted by 
BARABANENKOV [ 19731. 

As can be seen from eq. (3.46), weak absorption, 1 - (04 1, leads to a 
reduced albedo a(0) and to a reduced peak of K ( 6 )  in the range q 6 J-), 
which confirms the estimates derived earlier. A similar alteration of the K ( 8 )  
line shape is observed for slabs offinite optical depth z = L/lem. This conclusion 
has been drawn by TSANG and ISHIMARU [ 19851 and VAN DER MARK, VAN 
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Albada and LAGENDIJK [ 19881 on the basis of numerical solutions of 
eq. (3.36) for various z and w. These solutions indicate in particular that at 
z = 32 (w = l), a(@ amounts to 95% of the albedo at z = 03. We note in 
passing that for q @ 1 a transition from the linear dependence of a(0) for a 
semi-infinite medium with z = GO to a quadratic dependence for r < 03 can be 
demonstrated with an equation for the derivative of F(q; z ,  2') with respect to 
q, which follows from eq. (3.36) and at q = 0 and z <  co has only a trivial 
solution. 

An analysis of eq. (3.36), performed by GORODNICHEV, DUDAREV and 
ROGOZKIN [ 1990b1, indicates that for 1 -3 z -= co, equality (3.48) for 
K ( 0 )  - K ( 0 )  holds true if z- '" % q -4 1, and in the region of 4% @ 1 its right- 
hand side must be replaced with - 2q2z/3. 

One more circumstance is worth noting. In formulating a theory describing 
coherent backscattering, we have considered a situation when a plane wave or 
a beam of width Lo far exceeding the lateral size of an illuminated region, L ,  , 
is incident on the region occupied by a scattering medium. On the other hand, 
in a standard experiment generally the diameter of a spot illuminated by the 
laser beam is such that L, B L I. Thus, we may assume for simplicity that the 
wave incident along the normal to the surface of the slab under consideration 
has the form 

u0(r) z exp(ik,z - p2/2Li) .  

Then in eq. (3.10) the incident average fields 

Z 

21,, 2L; 
(3.50) 

and the outcoming average fields ( u (  - s, r ) )  obey eq. (3.14). Incorporating the 
respective modifications in eq. (3.24) and observing (3.28) and (3.29) yield for 
the classical part of the albedo, a,, = a' ' )  + dL), the following simple expression 

(3.51) a,,(& Lo) = (L,/L, )2 WI(0) Y 

where aCl(0) corresponds to Lo = 00. 

the enhancement factor is given by 
Now, the interference part of the albedo has the form of a convolution and 

(3.52) 

Given I,, + Lo, the enhancement factor decreases by a factor of I/L, because 
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of the finite size of the beam, and the line shape peak rounds off in the range 
of angles ko16 < JI/L,. 

3.5. DIFFUSION APPROXIMATION 

The scalar version of the theory developed for point-like scatterers described 
the salient features of coherent backscattering well. However, to attain a 
quantitative agreement with experiment, this simple version should incorporate 
several additional factors. The first factor is, beyond doubt, the finite dimen- 
sions of scatterers, which are frequently of the order of the wavelength, and also 
the anisotropy of the scattering properties when the extinction length I is a 
fraction of the transport length I,, = I/( 1 - p), where p is the average cosine of 
the angle of scattering. 

Unfortunately, no explicit solution of the transport equation for an arbitrary 
cross section of scattering a(s, s ’ )  is known. Nevertheless, there exists a simple 
method of approximate calculation of the albedo a(6) for small angles, which 
also allows a useful physical interpretation. From eqs. (3.32)-(3.34), it follows 
that the deviation of the interference part of the albedo a(6) = a(s, so), soz = 1 
from the value at 6 = 0, has the structure 

a(6) - a(0) = d2p [eiq.P - 1 1 f ( P )  9 s (3 .53)  

where f ( p )  is expressed through an integral with the Green function of the 
transfer equation for the slab. An asymptotic expansion of the integral in 
eq. (3.53) for q = kOl6+ 0 is governed by the behavior of f ( p )  as p+ co; the 
expansion begins with a term linear in q only if f (p)  This is the 
asymptotic diffusion expansion of the solution of the transfer equation for a 
half-space. 

Thus, to evaluate the difference a(6) - a(0) for small angles, we may repre- 
sent the Green function of the transfer equation in the form 

F ( p  - p ’ ;  z,  s; z’ ,  s’) = [ 1 - 3 D ( s * V  - s‘ . V ’ ) ]  F ( p  - p ’ ;  2, z ’ ) ,  

(3 .54)  

where F(p; z ,  z ‘ )  obeys the stationary diffusion equation 

~ v ~ F ( p  - p’ ,  z ,  z ’ )  = - 6(r - r ’ ) / (4n)’ ,  (3.55) 
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with the diffusion coefficient 

D = i l t r ,  

143 

(3.56) 

where ltr = f/(l - p), and 

p = ni s * s’ a(s, s‘) d2s . s 
The diffusion approximation is faced with a major difficulty due to the 

approximate condition for 9 ( p ;  z ,  z ’ )  at the boundary ofthe scattering medium. 
This approximation must be used in place of the exact conditions on the Green 
function of the transfer equation 9 ( p ;  z ,  s; z ‘ ,  s‘) = 0, s, > 0, z = 0 or s, < 0, 
z = L.  One version of the boundary conditions used by ISHIMARU and TSANG 
[ 19881 and BARABANENKOV and OZRIN [ 19881 corresponds to the integral 
flux from a source inside the layer vanishing at the boundary z = 0 or z = L. 
Then, 

(3.57a) 

and on the other boundary, z = L, the respective equality differs from this by 
the sign of the derivative. The parameter y is usually unity; it has been incorpo- 
rated to compare the results with another popular version of the boundary 
condition, that of the “absorbing plane” type, when 

9 ( p ;  2 = -zo * ,z ‘ )=O, 

9 ( p ;  2, z‘ = L + zo*) = 0 ,  
(3.57 b) 

where z8  w 0.7 1 ltr, and at p = 0 this is the extrapolated length in Milne’s 
problem (CASE and ZWEIFEL [ 19671). It is not hard to verify that the asymp- 
totic expansions of the solutions of eq. (3.55) with the boundary condition 
(3.57a) obtained for y = 2 8 / 2 0  and with the boundary condition (3.57b) for 
p-+ 00 coincide. 

The boundary conditions (3.57a) were first used by BARABANENKOV [ 19731 
to estimate the contribution of maximally crossed diagrams in the back- 
scattering intensity. Based on this approximation, AKKERMANS, WOLF and 
MAYNARD [ 19861 investigated the angular profile of the intensity in coherent 
backscattering for both isotropic and anisotropic situations. A number of 
workers have used this approximation to estimate how various factors affect 
the peak line shape (EDREI and KAVEH [1987], FREUND, ROSENBLUH, 
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BERKOVITS and KAVEH [1988], VAN DER MARK, VAN ALBADA and 
LAGENDIJK [ 19881, AKKERMANS, WOLF, MAYNARD and MARET [ 19881). 

It should be emphasized that none of the afore-mentioned boundary condi- 
tions is perfectly appropriate for albedo calcuIations. Their derivation is based 
on a study of how the solution to the transfer equation behaves for z’ $- 1 or 
z, z’ 9 1, whereas the main contribution to integrals (3.33) and (3.34) is due to 
the region 0 < z,  z’ ;5 1 near the boundary. This disadvantage is, of course, 
irrelevant for the exact solution for isotropic scatterers occupying the half- 
space, which has been outlined in the preceding section. 

The asymptotic expansion of the exact solution coincides with the solution 
to the diffusion problem subject to eq. (3.57a) obtained at y = z1/2D or sub- 
ject to eq. (3.57b) after the substitution of z1 for zd, where 
zl/l = - 1 + H(0, 1)/$ x 0.68. Since no exact solution is known for the 
general case of anisotropic scatterers, we can only assume that y = zf/2D with 
zf x 0.681,, is a suitable choice in this case. 

In fact, the different listed boundary conditions lead to almost identical 
results for the albedo in the range of small angles 8. It is worth noting that there 
exist different ways of expressing the diffusion formula eq. (3.54) for the Green 
function of the transport equation. Sometimes, the gradient terms are dropped, 
being treated as small corrections (ISHIMARU and TSANG [ 19881 ). These 
terms are small for an infinite medium, or for z, z‘ % it, in the case of a 
half-space. However, in the situation under consideration the key role is played 
by the region 0 < z, z’ ;5 I, where from eq. (3.56) it follows that l l V 9 1  - 9 so 
that all terms on the right-hand side of eq. (3.54) have the same order of 
magnitude. 

After substitution in eq. (3.54) and then in eqs. (3.32)-(3.34) the solution of 
the problem (3.55) subject to eq. (3.57) is an explicit expression for the albedo 
(BARABANENKOV and OZRIN [ 19881). We give a simplified formula for the 
enhancement factor by omitting the contribution due to single scattering. For 
normal incidence of a wave on the interface of a medium occupying a half- 
space, we have for small angles 0, 

I? co\ 

where q = k,l8. In the limit of small q, this expression yields 

(3.59) 
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At 6 = 0, K ( 6 )  has a triangular line shape of halfwidth q,/2 dependent on p. 
In the case of isotropic scatterers, p e 1, eq. (3.59) coincides with the result 
obtained by AKKERMANS, WOLF and MAYNARD [ 19861, accurate to within 
the substitution y = 3z0/1. For large-scale inhomogeneities, 1 - p < 1, 

44,,2-3(1 - p ) ( l  + 2 ~ > [ 2 y ( l  + $ r ) I - ’ .  

In general, the line shape of K ( 8 )  depends appreciably on the average cosine 
ofp. For p < pcr = $, K ( 8 )  monotonously decreases as q increases. For p > per, 
the contribution of maximally crossed diagrams becomes negative at sufficiently 
large angles of scattering and K ( 8 )  crosses the axis K = 1 at q = qo, peaks at 
q = q,, and asymptotically approaches K = 1 as q - ’. The value qo and a rough 
estimate of q, may be obtained from 

40 2(1 - 11) [ I  4- 3(1 + p)/47/(3p - l>1 3 

4 m  = [(3 + 7) (1 - P)/2YI’/’ 9 

where 1 - p 6 1. The behavior of K ( 8 )  as a function of q for different p is 
illustrated in fig. 3.6. 

A noticeable feature of K ( 6 )  behavior is the presence of a minimum in the 
case of large-scale scatterers. This result is usually consistent with the general 
representations of the interference pattern and with the results quoted in the 
previous section. However, in deriving eq. (3.58), we have used the boundary 
condition (3.57a), which is, of course, an approximation. Moreover, if we solve 
the problem subject to the boundary condition (3.57b), the enhancement factor 

-2 -1 0 I L 

Fig. 3.6. Enhancement factor K ( 0 )  calculated for coherent backscattering: (a), (b), and (c) show 
the diffusion approximation (3.58) with y = 1 computed for p = 0, 0.93 and 0.67, respectively; 
(d) exact solution for isotropic scatterers ( p  = 0) represented for K(0)/0.94; (e) diffusion approxi- 
mation with boundary condition (3.57b) of the absorbing-plane type calculated for p = 0.67. 
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becomes 

(3.60) 

where ~6 z 0.71. This K ( 0 )  is seen to be a monotonous function of q. Its 
difference from the results of AKKERMANS, WOLF, MAYNARD and MARET 
[ 19881 and VAN DER MARK, VAN ALBADA and LAGENDIJK [ 19881 may be 
attributed to the fact that in considering the diffusion approximation with the 
boundary condition (3.57b), these authors failed to account for the gradient 
terms in eq. (3.54) and also substituted I,, for I in the exponents of (3.32) and 

It is noteworthy that the position of the minimum belongs to the range of 
angles and parameter q in which, strictly speaking, the diffusion approximation 
(accurate for q --t 0) is inapplicable. Therefore, the question of whether or not 
the minimum exists can be answered only with the aid of an exact solution of 
the transfer equation for a half-space with nonisotropic scatterers. 

Another fact worthy of note is that the diffusion approximation gives a 
lowered value of the albedo in the maximum 0 = 0 and a distorted pattern of 
K ( 6 )  at large q. Actually, as in the isotropic case, K(@ - q - ' ,  q %- 1 .  This 
aspect has been treated in detail by ISHIMARU and TSANG [ 19881. However, 
in the range of small q, q 5 1, where the diffusion approximation is operable, 
results (3.58) and (3.60) agree well with the experimental evidence (fig. 3.7). 

(3.33). 

-.. 
h 

9 

1. a 

Fig. 3.7. (a) Experimental enhanced backscattering from a 10% water suspension of 0.46 pm 
diameter polystyrene spheres, where I, ,  = 20 Im, the incident and detected wave vectors are 
co-polarized so that I e .  e, I = 1, and the plane of scanning is perpendicular to e, (WOLF, MARET, 
AKKERMANS and MAYNARD [1988]); (b) diffusion approximation curve obtained with a boun- 

dary condition of the absorbing-plane type. 
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1. 0 

n (e) 
Q C l  

0.5 

0 

Fig. 3.8. Relative intensity of coherent backscattering calculated for scalar waves in the diffusion 
approximation with 5 = Jl,bi31 (MACKINTOSH and JOHN [1988]). Similar K ( 0 )  profiles have 
been obtained for: ( 1 )  a layer offinite thickness (< = L/I) in the scalar problem or the co-polarized 
configuration, or identical helicities of circularly polarized waves, and (2) Faraday rotation for 

identical circular polarizations (( = l/gk,J). 

The diffusion approximation is well suited for an account of the effects of 
absorption. For this purpose in the diffusion equation, eq. (3.55), one should 
replace the operator DV2 with [DV2 - fib']], with lab = of / ( l  - 0). Then in 
the final formulas (3.58) or (3.60) the parameter q is replaced by 
Jq2 + 3(1 - w), and the backscattering peak finds itself rounded off as for 
isotropic scatterers (fig. 3.8). For a slab of finite thickness, like in the presence 
of absorption, the asymptotic behavior to the diffusion equation changes as 
p+m, and it decays exponentially rather than by a power law ( P - ~ ) .  For 
example, for boundary condition (3.57b), L %- z,, and p+m, we have 

Therefore, near the maximum the enhancement factor becomes 

21 

3L 
K(O) z 2 - - (k,LO)2 (1 + $ 7 )  ( 1  + $ y ) - '  , (3.61) 

ji = 0 ,  k 0 L 0 4  1, 

and at larger angles 0, K ( 0 )  again becomes a linear function. Similar estimates 
have been obtained by EDREI and KAVEH [ 19871. 
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3.6. POLARIZATION EFFECTS 

The vectorial nature of the electromagnetic field is another factor that 
appreciably affects the coherent backscattering. Polarization effects have been 
studied in the experiments of WOLF and MARET [ 19851, VAN ALBADA and 
LACENDIJK [ 19851, ETEMAD, THOMPSON and ANDREJCO [ 19861, 
ROSENBLUH, EDREI, KAVEH and FREUND [ 19871, ETEMAD [ 19881, and 
WOLF, MARET, AKKERMANS and MAYNARD [ 19881. They have demonstrated 
that the backscattering pattern is strongly dependent on the angle between the 
polarizations of the incident and detected radiation. 

Before we begin discussing polarization effects, we wish to introduce neces- 
sary corrections to the statement of the problem formulated in fi 3.2. The 
medium under consideration is nonmagnetic, is isotropic on the average, and 
exhibits a fluctuating permittivity or refractive index. Let a linearly polarized 
plane monochromatic wave 

E(O)(s,, r) = e, exp(ik,s,r) , 

with e, so = 0 and 1 e, I = 1 be incident on the space occupied by the medium 
in the direction of so. The field in the space obeys the Maxwell equations, which 
may be written in the form 

(3.62) 
E,(eo, so,  4 IS(, . r +  - 00 = eo, exp (ikosor) 9 

where a and f l  label the Cartesian projections of the vectors, and summation 
is assumed over the repeating indices. For the average field (E,(r)) and the 
mutual coherence function (E , ( r )  E J ( r ) ) ,  tensor analogs of eqs. (3.3) and 
(3.7) are formulated, which involve a tensor mass operator Mas(r, r’), average 
Green function ( GUg(r, r’)) of eq. (3.62), and vertex function 
T,p;a3p’(rlt r2; r;, G).  

For free space and r + 00, the Green function becomes 

Giy(r) x - (4nr)- ‘P,,(s) exp(ik,r), 

where s = r/r, and the polarization matrix 

P,&) = h,, - SaSp (3.63) 

secures the transversality condition. Similarly to eq. (3.6), we introduce the 
albedo 

(3.64) 
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where s = R / R ,  and I ( R ,  e )  = ( I e E ( R )  I ’) is the intensity corresponding to 
the component of scattered field polarized along unit vector e ;  i.e., e + s = 0. 

Making use of the Dyson equation and the reciprocity condition, which is 
now written as 

G,,j(r, r ‘ )  = Gp,(r’, r )  3 (3.65) 

we may generalize (3.10)-(3.14) and (3.24) for the case of the vector field. 

approximation 
If we take for the average field in the medium the effective wavenumber 

( E , ( e ,  s, r ) )  x e ,  exp(ik,s * r - r/2/eff), 

then the expression for the albedo is 

(s, so; e, eo) 
r 

= (4xL,)-, dr, dr, dr; dr; e,ege,,,eo8. rap: a.B. (rI ,  r2; r ; ,  r ; )  J 
ik,s - ( r ,  - r 2 )  + ik,s, * ( r ;  - r ; )  , x exp[ - ~ - __ - 1 z ,  + z2 z ;  + z; 

21effSz 21eRSoz 
(3.66) 

This expression “automatically” takes into account the transversality of the 
incident and scattered waves. 

We will again consider the contribution to the vertex function from single- 
scattering events and ladder and maximally crossed diagrams. As in the case 
of a scalar field, the qualitative reasoning underlying this constraint is based 
on the analysis of the phase relationships (see 0 3.2). For the vector field, 
however, these relationships are not enough to ensure that the contributions of 
the ladder and maximally crossed diagrams coincide. The rotation that the 
polarization vector undergoes in the processes of scattering should also be 
taken into account. 

Following AKKERMANS, WOLF and MAYNARD [ 19861 (see also for a more 
detailed discussion and estimates, AKKERMANS, WOLF, MAYNARD and 
MARET [ 1988]), we consider a simple case of Rayleigh scattering by an isolated 
scatterer, in which the polarization vector el of the scattered field has the form 
e l  = P ( s , )  e,, where P ( s , )  is the polarization matrix (3.63). 

Along a trajectory y defined by fixed positions of scatterers, R , ,  . . . , R,, 
and a sequence of wave vectors k ,  = sok,, k , ,  ..., k,-,, k,  = sk,, the 
polarization vector of the outcoming wave is e, = M,eo, where 
M,, = P(s,,,) P(s , -  ,) . . . P ( s , )  P(s , ) ,  and sj = kj/kj .  For the time-reversed path 
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-y with the sequence of wave vectors k,, - k,_ ,, . , . , - k , ,  k,, the polari- 
zation vector of the outcoming wave is e -  , = M-ye,. The matrices P(s,) are 
symmetrical and independent of the sign of k,. Therefore, for backscattering 
at zero angles when k ,  = - k,, we have M -  = It is conceivable that 
in this case the projections of e,  and e - , on the direction of e = e,  coincide 
[the case of the parallel (co-polarized) polarization of incident and detected 
radiation]. The coherence is conserved, and an enhancement of backscattering 
may be expected which is similar to that of the scalar case with K ( 0 )  z 2. 

For orthogonal polarization, e I e,, the projections e . e ,  and e * e - , differ 
for all N except N = 2. This leads to the suppression of the interference part 
of the intensity, which peaks to about one half of its classical value. 

To obtain a more detailed description of the polarization effects, we consider 
a simple model of a medium constituted by a point-like, nonabsorbing, isotropi- 
cally polarized species. The reciprocity condition, eq. (3.65), leads to a relation 
combining the contributions of the ladder and maximally crossed diagrams into 
the vertex function 

(3.67) 

which differs from (3.27) and (3.28) by an additional transposition of the 
polarization indices. To calculate PL)  and r(c), we may resort to the scheme 
of transfer theory, outlined in $ 3.2 and 0 3.3, as generalized for an electro- 
magnetic field. 

The intensity operator of a pointline scatterer will be written as 

Then for the medium occupying the space, we obtain 

where the contribution due to single scattering is 

3i (eae,)’ a‘” = - ~ 

811 p - p *  ’ 

(3.68) 

(3.69) 

and the contribution due to the ladder and maximally crossed (cyclical) 



11, c 31 RANDOM MEDIA 151 

diagrams are 

(3.70) 

(3.71) 

is related to the Fourier transform Fin the difference of transverse coordinates 
p - p’  of the Green function Yap; a,p ( p  - p’ ; z, z’) of the transfer equation for 
an electromagnetic field in the medium occupying a half-space ( DOLGINOV, 
GNEDIN and SILANTYEV [ 19791). The equation for F“ (more accurately, the 
system of equations) has the form 

FaS; ,,B’(q; 2, z’) = F$$ a’B’ (4; z - z ’ )  

P x  

where 

(3.74) 

with r = Jm, and s = rjr. 

the Laplace transformation (3.72) becomes 
From eq. (3.73) it follows that we generalized relationship (3.38), which after 
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For functions pap; a,p (q ,p) ,  analytic in the upper half-plane of Im ( p }  > 0 
as lpI -00,  eqs. (3.73) transform to a system of and falling off as ( P I  

Wiener-Hopf equations, namely, 

Asp; a ” v  (4, P) Fa,,p ; a’p’ (4,  PI 
(3.76) 

(3.77) 

and L + is the Laplace transform of F“(O). We shall assume that the values 1, 
2, and 3, through which c1 and fl run, correspond to the x, y ,  and z projections 
of the vectors. 

As in the preceding section, we are willing to elicit as many analytical 
corollaries as possible from the derived system (3.76) of Wiener-Hopf 
equations. Specifically, we wish to analyze the angular dependence of enhanced 
backscattering predicted by the solution of this system. We intend also to 
investigate the results of a diffusion approximation constructed by STEPHEN 
and CWILICH [ 19861. 

At 4 = 0 the matrix { A ( q , p ) }  and the matrix ( F ( q , p ) }  become sparse and 
exhibit a block structure: an entry is nonzero provided that its index pair 
belongs to one of the following four groups 

(3.78) 

(iv) . 
As a consequence, system (3.76) can be partitioned into four systems. In view 
of the symmetry Amp; a,P = APE; which is true for functions Fap; a,p (0, p )  as 
well, the solutions to systems (ii)-(iv) can be obtained in an explicit form. As 
an example, for index group (ii) we have 

(3.79) F,2;12(O,P) = i[H+(i/P) + H-(i/P)l - 17 

F12,2,(0,~) = :[H-(i/p) - H-(~/P)I  
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where H ,  ( w )  and H -  ( w )  are Chandrasekhar's functions which are constructed 
according to the principle used for H(0 ,  w )  of eq. (3.42) and, which for 
Re{w} > 0, have the form 

(3.80) 

It is essential that the functions 

n , (O ,P)  = 1 - [Ll2;12(O,P) ~L12;21(01P)I (3.81) 

are analytic on thep-plane except the imaginary axis Re { p }  = 0, I Im { p }  I > 1, 
and have simple zeros within the intervals < IIm{p} < 1. Therefore, solu- 
tions (3.79) have the respective poles and cuts in the lower half-plane 
Im { p }  < 0, and their inverse Laplace transforms Rap; a,P' (0; z, 0) decay expo- 
nentially as z -+ a. 

Instead of the functions FaB;a.p' with group (i) indices of eq. (3.78) it is 
convenient to introduce linear combinations, 

@I = Form; 1 1  1 

XI = Fll;ll - F 2 2 ; I l .  

y 1 - - 1  2 ( F l l ; l l  -k F22;11) - F33;11 3 (3.82) 

The counterparts a2, Y2, X,, and a,, Y,, X ,  are constructed by replacing 
on the right-hand sides of eq. (3.82) the second pair of indices (1, 1) with (2,2) 
and (3, 3), respectively. Recognizing that these functions are symmetrical with 
respect to transposing the index pairs (1, 1) and (2,2), i.e., x and y at q = 0, 
we obtain 

(3.83) 

The system of equations for functions (3.82) derived from eq. (3.76) sepa- 
rates into a pair of equations for @a and !Pa and an independent equation for 
X, .  Solving the latter yields 

X , ( O ? P )  = F12;12(09P) + Fl2;2l(O,P) 7 (3.84) 

which can be expressed by means of H ,  and H -  with the aid of eq. (3.79). 
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Unfortunately, an explicit solution for the remaining three pairs of equations 
for functions @a and Ya, a = 1,2,3, defies evaluation. Nevertheless, a 
straightforward analysis indicates that the solutions of these equations may be 
represented in the form 

@o(o,P) = H(O9 i lp) [1 + X A P ) I  - 1 1 

Y3(O,P) = 1 - Hl(i/P) [ 1 + X$(P)l ¶ 

~ y , ( O , P )  = 9-fl(i/P) [ 1  + X ; ( P ) I  - ; 3 (3.85) 

where a = 1,2, 3; H ( 0 ,  w )  is the Chandrasekhar function (3.42) with w = 1 ;  
and the expression for H,(w) may be obtained from eq. (3.80), where A.(O,p)  
should be replaced with 

4 ( 0 , P )  = 1 - f[Lll;ll(O,P) + Lll;22(0,P) 

+ 2L33;33(07P) - 4 ~ , , ; 3 3 ( 0 l P ) 1 ~  (3.86) 

It can be established that ~ , ( p )  and xL(p)  are analytic in thep plane except 
the imaginary axis in the interval Im { p }  < - and as I pI -+ co fall off as 
I p I ~ I .  HI (i/p) exhibits similar properties. Consequently, the inverse Laplace 
transform for Yo(O, p ) ,  a = 1,2,3, decays exponentially as z -, 00. At the same 
time the Chandrasekhar function H ( 0 ,  i/p) has a simple pole at p = 0, and the 
inverse Laplace transform of aa(0, p )  demonstrates a “diffusive” behavior. 
Therefore, we should expect that the behavior of the intensity near the direction 
of backscatter will be defined by the components FaB;a,P’ diagonal in the 
indices a, /I, and a’, p’ . 

In the general case of an arbitrary q # 0 the system of eqs. (3.76) has a rather 
complicated structure. It defies an explicit solution but lends itself to an analysis 
of the behavior of the solution at large and small values of q. First, we look at 
the range of q 4 1 to evaluate the peak line shape in backscattering. If we 
differentiate the right- and left-hand sides of eq. (3.76) with respect to q at q = 0, 
it is not hard to verify that for the derivatives 

with the indices from eq. (3.78) we obtain four closed systems of equations, 
which differ from their counterparts for Fas; (0, p )  in their homogeneous 
form only. 

The systems (ii)-(iv) for bus; a,B’ (0, p )  have a trivial solution only, 
Fms; a,P’ (0 ,p )  = 0. For system (i) we again introduce the linear combinations 
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da, Ya,  and X a ,  composed of Fap; a, according to the scheme of eq. (3.83). 
The solution of the equation for Xa also yields ka(O,p) = 0. However, 
the system for &a and Ya has a nontrivial solution, since 
A ( 0 , p )  = [H(O, i/p) H(0, - i/p)] - I has at p = 0 a (diffusion) zero of second 
order, namely 

(3.87) 

where t,ba and I& possess properties similar to those of xn and x ; .  
Now we return to the formulas (3.69)-(3.71) for the albedo, Consider the 

case of a normal incidence where so, = 1 and the vector eo of polarization of 
the incident wave lies in the xy-plane; for clarity we let eo,, = 1 (fig. 3.9). For 
small angles of backscattering 0 -% 1, for which s, x - 1, p x i, and q x kolO, 
we may neglect in (3.70) and (3.71) the contribution of terms that contain the 
z-projection of the polarization vector e, which is proportional to sin 19, and 
assume that e,’ + e,2 z 1. Then 

a @ ,  so, e, e,) = a ( @  cp) 
3 3 

16n 8n 

+ - [cos2cpFII~ l l (q;  i, i) + sin’qIF,,;,,(q, i, i)] , 

- --  cos’ cp + - [ cos’ ~IF,  I I I (0, i, i) + sin’ ~ I F ~ ~ ;  I I (0, i, i)] 

(3.88) 
3 
8n 

Fig. 3.9. Geometry of the normal-incidence scattering problem: so and s represent the directions 
of the incident and detected fields, e, and e represent the corresponding polarization vectors, and 

qz  represents the plane of scanning with q = k,,l(so + sL ). 
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where cos cp = e * e,. The first term in this expression corresponds to single 
scattering, the second to the contribution of the ladder diagrams, and the third 
to the contribution of the maximally crossed diagrams. It suggests that for the 
parallel configuration when the polarizations of the incident and detected 
radiation are identical and cp = 0, the contributions due to the ladder and 
maximally crossed diagrams in the backscattered intensity coincide, and the 
enhancement factor K ( 0 ,  cp) = u(0, $)/ucl(O, cp) deviates from two, resulting 
from the contribution due to the single scattering only. 

For the orthogonal configuration of cp = n, no doubling of the intensity is 
observed any longer. Making use of the results of an analysis of the exact 
solution, we may establish that 

d L ’ ( O ,  f 71) > u‘C’(O,$ n) , 
(3.89) 

2dL’(0, 0) > U‘L’(0, $ n) + u y o ,  ; n) * 
These inequalities indicate that at cp = $ n, the peak of enhancement factor 
(8 = 0) is below 2 and lower than that of the parallel configuration, 

1 < K ( 0 ,  f n) < K(0,O) 6 2 . 

The behavior of albedo as a function of (3 in the range of q 4 1 is appreciably 
dependent on the mutual orientation of the polarization vectors. Observing the 
structure ofthe solutions for functions tiaa; a,B’ (0, p )  and tiaa; (0, p )  and using 
eq. (3.75), one can easily verify that differentiation of the functions 
Fap; a,B’ (4, p ,  p ’  ) with respect to q at q = 0 leads to a nonzero result for the 
functions diagonal in a, /3, and a’ ,  /3’. Therefore, from eq. (3.88) it follows 

(3.90) 

where h is derived from eqs. (3.75), (3.82), and (3.83) as 

i) + ~ ~ ( 0 ,  i) + $1 h = - $ [dI(o, i) + YI(o, i)] 

- $ [ d3(0, i) + Y3(0, i)] [ ~ ~ ( 0 ,  i) + ~ ~ ( 0 ,  i)] . 

Resorting to eq. (3.89), we can demonstrate that h =- 0. 
Thus, for the parallel configuration, the angular profile of the albedo u (8, cp) 

is a symmetrical triangular peak centered at 8 = 0 (fig. 3.10). When cpincreases, 
the included angle at the vertex of the peak widens, and the peak albedo 
decreases in magnitude to be a minimum at the perpendicular configuration, 
rp = f n, when the peak rounds off and the curve becomes smooth. The curve 
of the enhancement factor K(8, cp) parallels these variations. 

(3.91) 
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-2 -1 0 I 2 
q=k0,lfl 

Fig. 3.10. Enhancement factor K ( 0 ,  cp) for normal incidence of linearly polarized light and various 
angles between the polarization vectors of incident e,, and detected e light (cos cp = e * e,). Curves 
(a), (b), and (c) correspond to cp = 0, K, and 4 n, respectively, with e, lying in the plane of 
scanning; i.e., q - e, = q. q = k&, I + sL ). Curve (d) corresponds to the case of parallel configu- 

ration (9 = 0) and scanning in a plane orthogonal to e,, i.e., with q -  e,, = 0. 

The origin of these results can be evaluated with the aid of the diffusion 
approximation, which in the case of a vector field is applicable, of course, for 
small q. As in the scalar problem, now the behavior of a(0, cp) is governed by 
the behavior of the Green function of the transfer equation, Pap; (r, r ’ ) ,  at 
far transverse distances I p - p’ I .  To be more specific, the diffusion law 
I p - p’ I - leads to a linear dependence of 0, to a triangular peak line shape, 
and at a faster, say power-exponential decay we find ourselves with a rounded 
peak. 

Consider the integrals of Green functions Yap; a,8’ (r,  r ’ )  of the transfer 
equation with a concentrated isotropic source. These integrals describe the 
averages of field component products ( E , ( r )  E J ( r ’ ) ) .  In an unconfined 
scattering medium, at distances r from the source greater than the mean free 
path or extinction length 1, the averages ( ExE,*) are factorized and fall off as 
exp ( - p r / l )  with a constant j?. In view of the isotropic property the averages 
oftype (lEx12 - IE,I’) or ($ ( lEx12  + lEy12) - (EZl2),relatedrespectively 
with the functions X ,  and YG of eq. (3.82), exhibit the same behavior. An 
exception is the diagonal combination ( I Ex I ’ + 1 Ey I ’ + I E, I ’) , which can be 
expressed through the function @, of eq. (3.82), which is proportional to the 
energy density and falls off as r -  ’. 

In the case of a half-space, as p+oo the averages (ExE,*) and 
( I E,I - I E.,( 2 ,  decay. as before, exponentially fast at a fixed z, and the 
energy density law of r - ’  gives way to P - ~ .  However, now that the isotropic 
property is broken by the medium boundary, at finite distances z from this 
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boundary the average (+( I E x  I + I E,, I 2, - I E,  I 2 ,  decays as p -+ co, according 
to the same law as (E,E,*) . This is the reason why the coefficient of the linear 
term in eq. (3.91) is expressed by means of the derivatives Yu and &a. It is 
worth noting that the relation of these two “modes” manifests itself at finite 
distances from the interface, in that the pairs of Wiener-Hopf equations for Qa 
and !Pa defy separation into independent equations. If we neglect this relation- 
ship, i.e., let xu = x: = $u = IG.:, = 0 in eqs. (3.87) and (3.85), the coefficient h 
in eq. (3.91) assumes the form it had in the scalar problem, namely, 

Although the evaluation of estimates of a(0, rp), K ( 0 ,  q), and h in the exact- 
solution approach needs a rather cumbersome computational procedure asso- 
ciated with the solution of the system of integral equations for Qa and !Pa, the 
diffusion approximation of STEPHEN and CWILICH [ 19861 yields these esti- 
mates in a rather straightforward manner. If we take for each function 
FaS; a,B’ (q, z, z’) the boundary condition (3.57b) of the absorbing plane type, 
then in the diffusion approximation 

h wfH2(0,  1). 

I 

r r m  
FED, .‘P’ (4 ,  PI P‘ 1 = J J dz dz’ exp(ipz t ip’z’) 

0 

- exp [ - ip, (z t z’ t 2z,)] G$‘L.s. (q,  p , )  . (3.92) 

Here, G;$L.,. stands for the diffusion asymptotic expansion obtained for the 
Fourier transform Gab; (q, p) of the Green function of the transfer equation 
derived for an infinite scattering medium. Unlike eq. (3.73), in the equation for 
this function the integral term is a convolution over the entire z-axis. The 
equation is solvable with the aid of Fourier transformation resulting in 

I 

(3.93) 

where A ( k )  is a matrix with elements A,p;,rs.(q,p) given in eq. (3.77), and 
Mep; ,.p.(q, p) is the cofactor of A,,B’; &,p). By virtue of the invariance of the 
determinant, the function det A(k)  depends only on the magnitude of k with 
components k, = p ,  k = q. A simple algebraic calculation yields 

det{A(k)} = [ n + ( O , k ) n : ( O , k ) n l ( O , k ) ] * A _ ( O , k )  

x “0, kMl(0 ,  k) - B2(k)l 7 
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where the functions A’+ - differ from the functions A * defined in eq. (3.8 1) by 
having L13; l3  k L 1 3 ; 3 1  in place of L12; 12 $ L, , ; , , .  The function B(k)  can also 
be expressed in terms of LaB: a,B’ (0, k )  which for k tending to zero, falls off as 
k2.  Note also that the Wiener-Hopf equations for QU and Yu are combined into 
a system resulting from B # 0. 

In order to construct the diffusion asymptotics we solve the problem and 
obtain the eigenvalues A,(k) and eigenvectors j$!)(q, p )  of the matrix 
{Aap; a,p (q, p ) } .  Seven in the nine eigenvalues coincide with the functions 
A + - (0, k )  and A’+ - (0, k) ,  whereas the respective eigenvectors are independent of 
k at q = 0. The remaining two eigenvalues are the solution of the equation 

( A  - A) ( A ,  - A) - B2 = 0 , 

and for k tending to zero they coincide, accurate to k2, with A(0, k )  and 

The function Gab; a,B’ ( q , p )  is written as an expansion in eigenmodes; i.e., the 
ratio Malt ..,./detA in eq. (3.93) is replaced with the sum Xif:$f:!bz/Ai. If we 
keep only the leading terms of the expansion for k -+ 0 in the numerator and 
denominator of these fractions, we obtain precisely GLT$p (q, p). 

It should be noted that only one of these eigenvalues exhibits a purely 
diffusive behavior, namely, A(0, k )  z fk2 as k -+ 0. The expansion of the other 
eigenvalues has the form Ai(O, k )  z Ci( 1 + at k2) .  For example, for the diagonal 
components of the Green function we have 

AI(0, k ) .  

(3.94) 

where k2 = p 2  + q2, a: = g, and a, = 5,  and the minus sign of the last term 
relates to GJ;;?. 

Substituting this expression into eq. (3.92) yields 

(3.95) 

where, for the sake of simplicity, we put zo = 0. It will be useful to emphasize 
that in deriving this expression we diagonalized the exact matrix {Aafi;  
therefore, eq. (3.95) refines the results that STEPHEN and CWILICH [ 19861 have 
obtained with perturbation theory. 

The first term on the right-hand side of (3.95) is related to the pole of Giy:f/l 
at k = 0. For the parallel configuration this term gives a contribution to the 
albedo, which coincides with the solution of the scalar problem. The second 
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and third terms are associated with the poles of non-diffusion modes. 
Expressions of this type enter the function F2,;  ,2(q; i, i). Therefore, the angular 
profile of a(&, cp) and K(B, cp) is an approximately Lorentzian shape at cp = n. 

STEPHEN and CWILICH [ 19861 have performed an albedo calculation, also 
taking into account the contribution of single scattering events. The experi- 
mental estimates are K(0,O)  = 1.9 and K(0, in) = 1.2. 

The estimates obtained with the diffusion approximations agree well with the 
experimental evidence for the enhancement factor K (0, 0), for the parallel 
configuration, and q 5 1 (see fig. 3.7). For the perpendicular configuration 
ROSENBLUH, EDREI, KAVEH and FREUND [1987] noted that the diffusion 
approximation yields no satisfactory agreement with experiment although it 
predicts a correct qualitative behavior of K(B, 4 n). Comparison of an exact 
solution with the experimental evidence is yet to be done. Characteristic experi- 
mental plots for cp = $71 are given in fig. 3.11. 

For large values of q where the diffusion approximation is no longer 
applicable, a (0, q) falls off as q - ' and levels off to a plateau. In this range the 
albedo is formed basically by double-scattering events, the contribution of 
which in eq. (3.71) corresponds to the first term in eq. (3.73). Straightforward 
calculation gives for q $- 1 

9 

649 
a(e, 9) - a,,(cp) = - [cos(tp + q,)cos~coscp, + $sin2(rp + 9,) sin2cpo], 

(3.96) 

where cos p,, = e, - 4/4.  This expression indicates that at sufficiently large q, in 

t 

I I I 

-70 -5 0 5 70 

Fig. 3.1 1. Enhancement factor K(0,  rp) for perpendicular configuration of rp = i n  measured for 
the scattering of light in a 10% water suspension of polystyrene spheres 0.109.0.305,0.46, and 
0.797 pm in diameter. Corresponding curves are (a) through (d); 8* is defined from K(P, 0) = 1.4 

and is dependent on the size of scatterers. 

S/6* 
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contrast to the range of q 4 1, backscattering exhibits the anisotropy noted by 
VAN ALBADA and LAGENDIJK [ 19871. To be more precise, the backscattered 
intensity begins to depend not only on the angle between the polarization 
vectors e and e,, but also on the orientation of the plane of scanning with 
respect to the polarization of the incident radiation, on e, * q. By way of an 
example for the parallel configuration rp = 0, and given q, the backscattering 
intensity is a maximum when the scanning plane is parallel to e, and 4po = 0. 
This effect was observed by VAN ALBADA, VAN DER MARK and LAGENDIJK 
[ 19871. 

Results obtained for linearly polarized light show how the angular depend- 
ence of the albedo looks for various polarizations of the incident and detected 
light. We focus on the case of circular polarization (MACKINTOSH and JOHN 
[ 19881). In this case the products e,eaand eom, eOp in eqs. (3.69)-(3.71) should 
be replaced with the tensors PasP. (s) and P2p (so) having components 

(3.97) 

where easy is an absolutely antisymmetrical unit tensor, and a is plus or minus 
unity, depending on the direction of rotation of the polarization vector. Given 
soz = 1 and 8 4 1, the components of P:&) with a = 3 or = 3 may be deemed 
equal to zero. 

Let a = a,, i.e., the directions of the circular polarization of the incident (with 
respect to so) and detected (with respect to s) rotation are identical. It is not 
hard to verify that the contributions of the ladder and maximally crossed 
diagrams for s = -so coincide, and at small q we have for the albedo 
a(e, a,, 0,) 

(3.98) a (8, a,, 0,) - a (0, a,, 0,) = ( - 2 K) hq , 

a(O,o,,a,) = ( i ~ ) [ ~ , ~ ; ~ , @ , i , i )  - ~ ~ ~ ; ~ A ~ , i , i ) l ,  

where h is the same as in eqs. (3.90) and (3.91). 
The profile of K ( 0 ;  o,, a,) differs only insignificantly from the case of a 

parallel configuration of linear polarizations. It is essential, however, that for 
circular polarizations with a = a,, in contrast to the case of linear polarizations 
with eee, = f 1, single-scattering events do not affect the intensity at small 
backscattering angles 8. Therefore, such a configuration is convenient to test 
experimentally if the enhancement is 2 at the maximum (ETEMAD, THOMPSON, 
ANDREJCO, JOHN and MACKINTOSH [ 19871). 

If the incident and detected waves are circularly polarized in opposite 
directions a = - a,, the contribution of the maximally crossed diagrams to the 
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albedo is smaller than that resulting from the ladder diagrams. Thus, 
K(0;  - a,, a,,) < 2 and its dependence on I3 are almost the same as in the case 
of perpendicular linear polarizations e . e,  = 0, the difference being that single- 
scattering events contribute to circular polarizations and do not affect the 
intensity of linear polarizations. A detailed investigation of backscattering for 
circular polarizations has been conducted by MACKINTOSH and JOHN [ 19881 
on the basis of the diffusion approximation. 

The model of a medium constituted by point-like isotropic scatterers occupy- 
ing a half-space describes the main features of the polarization effects pertinent 
to backscattering. STEPHEN and CWILICH [ 19861 have demonstrated that the 
anisotropy and polarizability of the particles do not qualitatively affect the 
results. These authors and CWILICH and STEPHEN [ 19871, ETEMAD, 

THOMSON, ANDREJCO, JOHN and MACKINTOSH [ 19871, MACKINTOSH and 
JOHN [ 19881, and AKKERMANS, WOLF, MAYNARD and MARET [ 19881 have 
analyzed the effect of absorption and finite thickness of the scattering layer on 
the angular distribution of the intensity of polarized light. These factors mani- 
fest themselves significantly for the parallel linear and identical circular 
(helicity-preserving channel) polarizations of the incident and detected radia- 
tion. In these situations they cause a rounding off of the coherent backscattering 
peak, and so qualitatively the pattern does not differ from the case of scalar 
waves. The situation appears the same for a medium of large-scale scatterers, 
where polarization effects have been poorly documented thus far. 

3.7. COHERENT BACKSCATTERING IN THE PRESENCE OF TIME-REVERSAL 

NONINVARIANT MEDIA 

In Q §  3.4 and 3.5 we have demonstrated that absorption and confined 
geometry of the scattering medium round off the backscatter intensity peak and 
reduce its magnitude at B = 0. Nevertheless, the property of reversibility of the 
scattering operator and the Green function remain invariant under these condi- 
tions and the coherence is preserved. Therefore, in the case of a scalar field or 
linear parallel or circular identical polarizations, the enhancement factor at 
I3 = 0 (maximum) is, as before, equal (or almost equal) to 2 due to the 
coincidence of the contributions of the ladder and maximally crossed diagrams. 
In the following subsection we intend to sketch the factors that do  not affect 
the classical (ladder) part of the backscatter peak practically but suppress the 
interference processes described by maximally crossed (cyclical) diagrams. 
This suppression is effected through the mechanisms destroying the time- 
reversal invariance. 
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3.1.1. A weakly gyrotropic medium in a magnetic field 

Consider an electromagnetic wave scattering in a nonabsorbing, weakly 
gyrotropic medium constituted by point-like scatterers (MACKINTOSH and 
JOHN [ 19881). If we put such a medium into a magnetic field B, its permittivity 
becomes a tensor 

&,p(r) = [ 1 + Z(r)l 6,p + ie,flygy I 
(3.99) 

and the refractive index depends on the direction of propagation s and helicity 
of the polarization vector as 

n,  N n - ag. s / 2 n ,  

where CT = f 1 ,  g = fB is the gyration vector such that g 4 1 ,  and f is the 
Faraday constant. 

To understand what changes in the pattern of coherent backscattering when 
the medium is brought in a magnetic field, we resort to the qualitative argument 
of 5 3.2 with one essential addition. Now, to each step Rj+ - Rj of path y we 
put a corresponding a wave vector kj and parameter $, = k 1, indicating the 
helicity of the polarization vector. For B # 0 the propagation velocities of 
radiation with right-hand and left-hand helicities differ from one another. 
Therefore, the product of uy and u *_ corresponding to the contributions of the 
path y and the time-reversed path - y in the field has the form 

u p *  = 1 uy I exp(iAcp) . 
The phase difference Arp is the sum of the phase increments in individual steps 
R,, , - R,, and it does not vanish even at s = so. 

Assume that in the path - y described by the set k,, CT,; - k,- 1,  oh- , ; . . . ; 
- k , ,  a;; k,, a, we have for the helicity (ri' = CT, -~ .  Then, Arp may be re- 
presented in the form 

(3.100) 

Let c 3 N 1 and g . k, N gk, cos q-, and assume that 5 and cos f$ are uncorrelated 
random variables so that (Acp)rms N k o l g , / w l ,  where S,  = Nl. Since for 
constructive interference (AV)~,,,~ < 1, then a helicity-preserving magnetic field 
will not destroy coherence if the path length S,,, < S,,, - l / l(k,g)2.  At the 
same time the contribution of events with higher multiplicity of scattering 
having S ,  > S,,,, which determine the backscattering intensity for angles 
6' < Om,, - l / k , E ,  will be suppressed. Hence, the magnetic field rounds 
off the backscattering peak for angles 8 < g .  
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The pattern for the albedo (not for the enhancement factor) appears to be 
almost the same as in the absorption case if we choose the parameter 
( = l/ko1Omax in the form 5 = l/kolg (see fig. 3.8). We note that when on the 
time-reversed path - y the helicity meets the condition q! = - o,,,-~, the phase 
difference Acpvanishes. Hence, Faraday rotation does not affect, or affects only 
insignificantly, the backscattered intensity in opposite helicity channels. 

In addition to gyrotropy, MACKINTOSH and JOHN [ 19881 have considered 
the effect of the natural optical activity on coherent backscattering. In optically 
active materials the dielectric constant assumes different values for right-hand 
and left-hand helicity states of light and is independent of the direction of light 
propagation, the refractive index being nu = n - af/2n. In this case the parity 
is not conserved, but the invariance to time-reversed paths remains. Therefore, 
natural activity does not manifest itself in helicity-preserving channels (in 
estimates like eq. (3. loo), Acp N 0) and does not affect the backscatter intensity 
peak line shape. 

A quantitative theory describing the effect of Faraday rotation on coherent 
backscattering of circularly polarized light is developed in a scheme which 
differs in some details from that outlined in 9 3.6. The equation for E ,  is derived 
by adding the term ikoecla,gr, connected with the off-diagonal part of the 
dielectric tensor (3.99), to the expression in the brackets in eq. (3.62). Therefore, 
in the far zone the averaged Green function of the Maxwell equation in the 
medium, calculated for E 6 1 in the effective-wavenumber approximation, has 
the form 

( G,,, (r, r ' ) )  1: - (47rR)- ' 1 P:,, (s) exp ik,R( 1 + ig s) - - , 
u =  * l  21 "I 

(3.101) 

where r - rf = R = sR, and PlP is the polarization matrix defined by eq. (3.97). 
We note that in the presence of a constant magnetic field B the Green 

function, like the approximate expression, eq. (3.101) for its average, obeys the 
reversibility condition in the form 

G,,.(r, r' ,  B)  = Car.a(r', r, - B ) ,  (3.102) 

which follows from the time-reversal symmetry in the system "medium + light 
+ magnetic field". Hence, for the subsystem of a medium and light we may 
speak of the breakdown of this symmetry (GOLUBENTSEV [ 1984b]), which 
manifests itself in that at B # 0 the equality (3.67) for the contributions of ladder 
and maximally crossed diagrams in the vertex function is no longer valid. 
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At B = 0 and circular polarizations of the incident and detected light, the 
formulas for the albedo a(s, so; a, a,) can be derived from eqs. (3.69)-(3.71) 
with the substitution e,ep for P&(s) and e,,.eOB for P 2 F .  Now, if B # 0, the 
expressions for the ladder part dL) and cyclic part dc) of the albedo involve 
different functions Fhk,,.a.(q,p,p') and F$!asB(q ,p ,p ' ) .  With the aid of 
eq. (3.75) the calculation of either of these functions is reduced to solving the 
system of the Wiener-Hopf equation of the type (3.76) and (3.77), where the 
coefficients Lapi a,8' for F ( L )  and the coefficients Lkp; a,P' for F(c)  are expressed 
through the Fourier transforms of the products ( G,,, (r,  0)) ( G& (r, 0)) and 
(G,, .(r ,  0)) (C$,(O, r ' ) ) .  Using eq. (3.101), we find 

Lap;a'P. = 1 L"." ap;a'/?'  7 

0, 0' = * 1 

(3.103) 

where the components of k are k, = p and k ,  = q. 
These coefficients satisfy the conditions 

L2p:a,p (k ,  g) = L2p:,x.p ( k  + k,lg, 0) , 

L&Up ( k ,  g )  = L:p;-aUB (k ,  0) , (3.104) 

L2b;,.,y (k ,  0) = LzB; &(A, 0) . 

The solution of the system for F2S!,.a. and for Fii,,,8' has a more complicated 
structure than in the case of B = 0, although the technique of its construction 
for g 4 1 remains almost the same. We only consider those salient features of 
the solution that control the behavior of the albedo near the zero angle, 8 = 0. 
This is the case of normal incidence with N 1, 0 + 1, q FS: k,l$, and p z i. 

As indicated in the preceding section, at 0 = a, the linear dependence of 
a($ ,  a, a,), i.e., a triangular line shape, is associated with a diffusion pole at 
p = 0 exhibited by functions Fas; a,B' (0 ,p )  diagonal in c1, p, and a' ,  8'. In turn, 
this pole occurs because one of the eigenvalues of matrix { A(0, p ) }  behaves as 
A, ( p )  z fp2 as p + 0, whereas for the others A,(O) # 0. 

At B = 0 (or g = 0) the matrix {A ' (O,p ,  g ) }  coincides with ( A ( 0 , p ) ) .  Cor- 
rections to its eigenvalues due to a magnetic field can be computed with the use 
of perturbation theory. A simple calculation based on symmetry conditions 
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(3.104) yields 

where both p and kolg Q 1. Thus, the solution has no diffusion pole, and the 
dependence of the albedo on 4 = ko18 is devoid of a linear term. 

A more detailed analysis indicates that for B # 0 and q, k,lg Q 1, the quantity 
4 on the right-hand side of (3.98) should be replaced with ,/-. This 
bears out the preceding qualitative estimates of peak rounding in the helicity- 
preserving channel. A thorough analysis of the albedo based on the diffusion 
approximation has been performed by MACKINTOSH and JOHN [ 19881. 

3.1.2.  Brownian motion of scatterers 

Time-reversal noninvariance also takes place for light scattered by a system 
of moving particles. Examples of such media may be water suspensions of 
spherical particles of latex or polystyrene frequently employed in coherent 
backscattering experiments. Because of collisions with water molecules, these 
particles of 0.1-1.0 pm typical diameter are in constant Brownian movement. 
Clearly, the system consisting of a radiation and water suspension is invariant 
with respect to time inversion, since it also assumes the inversion of velocity 
of all particles. However, in a given medium, for a subsystem of light and 
scatterers, such a symmetry is no longer present and the Green function 
G(r ,  t ;  r ' ,  t ' )  # G ( r ' ,  t ;  r, t ' )  while the coherence of the forward and reverse 
paths is destroyed. 

The effect of Brownian motion has been analyzed by GOLUBENTSEV 
[ 1984a1, and similar reasoning has been explored by MARET and WOLF 
[ 19871 and AKKERMANS, WOLF, MAYNARD and MARET [ 19881. 

Consider a path y of length S, 1: Nl. Light travels this distance in time 
t - Nl/c, and the distance between every pair of scatterers alters in this time on 
average by (AR,)rms N a t ,  where DB is the diffusion coefficient of Brownian 
motion. Since the increments ARj are uncorrelated, the length of the entire path 
can change by AS, - mt. For interference between paths y and - y to 
occur it is required that AS, < 1. Therefore, for paths S, =- ,/=, the 
Brownian motion destroys coherence, suppresses the contribution of scattering 
events of higher multiplicity, and for angles B < (D,/CZ~~:)'/~ the back- 
scattering intensity peak is rounded off. 

In experiments on coherent backscattering in solid disordered media, 
KAVEH, ROSENBLUH, EDREI and FREUND [ 19861 observed considerable 
jumps of intensity as a function of angle 19 (speckle noise) associated with the 
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fixed disorder in the placement of scatterers. A common backscattering inten- 
sity peak at B = 0 is obtained by rotating the specimen to attain averaging over 
positions of scatterers. In experiments with suspensions the role of the averag- 
ing factor is played by Brownian motion. Therefore, the observation time in 
such systems is chosen to be sufficiently large (or the scanning speed over 
angle 8 sufficiently small, see, e.g., WOLF, MARET, AKKERMANS and 
MAYNARD [ 19881). This time exceeds the characteristic time to destroy the 
time-invariance t ,  - d m .  Under ordinary experimental circumstances 
t ,  is in the order of 10-8s, and the characteristic angle is 0, - 10-*(k0l)-  '. 

3.8. COHERENT EFFECTS IN THE AVERAGE FIELD: INFLUENCE ON 

BACKSCATTER INTENSITY ENVELOPE 

When scattering particles are embedded in a medium of effective dielectric 
constant I > 1 (which is usually the case in backscattering experiments), the 
effects of coherent interaction of waves with the medium-vacuum interface 
may become significant. These effects affect the refraction of the incident and 
backscattered waves and the process of multiple scattering of this intensity in 
the medium. 

If I E - 1 I 4 1, then for grazing propagation of incident and scattered waves 
the coherent effects in the average field will be significant only at shallow depths 
(GORODNICHEV, DUDAREV, ROGOZKIN and RYAZANOV [ 19871). Therefore, 
we may conclude that the effects of refraction and coherent scattering affect 
only the transmission of waves through the interface and do not affect the 
scattering in the medium. Corrections for the energy density due to the inter- 
action with the interface are small, of the order of the angular size of the region 
where there is internal scattering from the interface related to the entire span 
of the scattering angles. 

The results of G ~ R ~ D N I ~ H E v ,  DUDAREV and ROGOZKIN [ 19891 enable us 
to analyze how coherent effects in the average field ( u  ( r ) )  affect enhancement. 
Specifically, the dependence ofthe enhancement factor K (  - so, so) on the angle 
of incidence $, f o r  = cos 0, is monotonic. In an optically dense medium of 
5 > 1, the grazing angle of an incident wave is larger than in vacuum. This leads 
to a higher effective multiplicity of scattering in the medium and accordingly 
to a higher enhancement factor. 

If the medium permittivity is significantly different from unity ( I  - 1 2 l), 
the total internal reflection from the interface becomes significant and may alter 
the character of the multiple scattering and interference of waves in the medium. 
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A phenomenological treatment by LAGENDIJK, VREEKER and DE VRIES 
[ 19891 on the basis of the diffusion approximation with the boundary condi- 
tions involving almost total internal reflection resulted in the following con- 
clusions. As the reflection from the medium-vacuum interface increases, the 
effective multiplicity of scattering in the medium also increases, producing a 
sharper peak of coherent backscatter intensity. This effect may be described 
with the aid of a renormalized diffusion coefficient, i.e., by substituting for D 
the quantity D * = D( 1 + 8 ’ )  - 413, where E’ = R/(  1 - R),  and R is the coefficient 
of coherent reflection from the interface. 

8 4. Multipath Coherent Effects in Scattering From a Limited Cluster of 
Scatterers 

4.1. ENHANCED BACKSCATTERING FROM A PARTICLE 

4.1.1 Singfe particle near an interface 

In his early model WATSON [I9691 interpreted scatterers as centers of 
elementary volumes of the scattering medium. However, situations exist where 
scatterers are centers of actual small bodies randomly distributed in space. In 
the preceding section we discussed the scattering from a very large number of 
scatterers that paved the way for an approximation of a continuous scattering 
medium. In this section we consider the opposite case of a small number of 
scatterers in which summation cannot be replaced with integration. 

The possibility of enhanced backscattering due to multi-path coherent effects 
was recognized by KRAVTSOV and NAMAZOV [ 1979, 19801 who studied the 
single scattering of radio waves reflected from the ionosphere. However, the 
pure effect of enhanced backscattering from a single scatterer was evaluated by 
AKHUNOV and KRAVTSOV [ 1983bI somewhat later for acoustic waves. The 
reasoning of this paper relates to all types of waves and may be readily extended 
to optical phenomena. 

Consider a point-like scatterer placed near the interface between two media. 
A wave from a source 0 travels to the scatterer S by way of two paths, as shown 
in fig. 4. la;  the direct path is labelled 1, and the path involving a reflection from 
the interface is labelled 2 .  Likewise there are two paths, 1’ and 2 ’ ,  that 
propagate the scattered field to the point of observation 0’. Hence, there are 
four channels of single scattering, namely, 1 1 ’ , 12‘, 2 1’ , and 22‘. Correspond- 
ingly the total scattered field at point 0’ is represented by the sum of four 
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a d C 

Fig. 4.1. Ray geometry of (a) scattered transmitter 0 and receiver 0‘ for a scatterer S near the 
interface. When the locations of the transmitter and receiver coincide, the cross channels (b) 1-2 

and (c) 2-1 becomes coherent. 

contributions 

us = u11. + u12. + u21. + u22 . ,  

and the total intensity is 

(4.1) 

I ,  = Iu,I2 = I U I 1 ’  + u12. + U21’ + u22.12. (4.2) 

Let us assume that the scatterer S is placed at random in a volume V, 
embracing many interference fringes of the prime field. Averaging the intensity 
I ,  over the possible positions of the scatterer r,, i.e., integration of eq. (4.2) with 
the weight function w(rJ being the probability density of r,, eliminates all the 
interference terms in eq. (4.2) except the contributions characterizing the inter- 
ference between the channels 12’ and 21‘. The point is that for 0’ = 0, i.e., 
for the location of the receiver to coincide with the transmitter’s location, paths 
12’ and 21’ become identical and the respective fields become completely 
coherent, as illustrated in fig. 4. lb  and 4. lc, 

u12 = u21 . (4.3) 

Thus, in the particular case of backscattering with r’ = r,, 

( I b s c )  = (I l l )  + (122) + 4(112)  

(1 , )  = ( 1 1 1 )  + (122) + ( Iu12, + u2142>  ? 

(4.4) 
whereas in the general case 

(4.5) 

where the angular brackets imply averaging over the ensemble of positions of 
scatterer r, .  Thus 

and by virtue of eq. (4.3), ( lu12 + u 2 J 2 )  = 4 ( I 1 2 ) .  
When the transmitter and receiver are separated by a sufficiently large 
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distance for the interference between channels 12' and 2 1' to vanish, we obtain 
instead of eq. (4.5) 

(4.6) 

This intensity corresponds to an incoherent addition of the fields u12,  and u,, ,. 
If we introduce the backscatter factor as the ratio of ( Ibsc ) to ( I , , ,  ) , then 

(Lp) = (Ill) + ( I , * )  +2(112) .  

(4.7) 

For a perfectly reflecting interface and about equal path lengths traversed by 
the wave in channels 11, 22, 12, and 21, eq. (4.7) yields the estimate K x 1.5. 
This figure suggests that the effective cross section of scattering of a small body 
placed near the interface is about 1.5 times as large as in bistatic observation 
and about 6 times as large as in free space. This simple and somewhat 
unexpected effect is directly related to the existence of coherent channels of the 
Watson-Ruffine type. 

It is useful to note that one may average over a finite band of frequencies 
(al, w, t A w )  rather than over the realizations of the body in (4.4-4.7). It is 
required only that a sufficiently large number of interference fringes AN should 
pass through the scatterer as the frequency sweeps the band. Where the 
condition A N +  1 is satisfied, one can observe enhancement in a single 
measurement employing a wideband signal. Essentially, under the circum- 
stances a self-averaging over the frequency band is realized. 

4.1.2. Combined action of a rough suface, turbulence, and multipath 
coherent efects 

If the interface is rough, strong focusing, as for a random phase screen, is 
possible in path 22, and in eq. (4.4) I,, acquires a factor Ksurf to describe the 
backscatter enhancement in double reflection from the surface (ZAVOROTNYI 
and TATARSKII [ 19821). If the incoming and scattered waves pass through a 
turbulent medium, all terms in eq. (4.4) should be multiplied by a factor Kturb. 
If we take, for the purpose of estimation, Kturb x 2, as for saturated fluc- 
tuations, and Ksurf x 2 (moderate focusing), then for ( Ibsc ) we obtain 
(2 t 2 x 2 t 2 x 4)I, = 141,, . This implies that, given the preceding circum- 
stances, the effective backscatter cross section may be 14 times as strong as 
the scattering of a body in free space (AKHUNOV and KRAVTSOV [ 1983a1). 
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4.1.3. Existence of backscatter enhancement under time-varying conditions 

In situations where the parameters of the medium or interface vary in time, 
the coherence of paths 12 and 2 1 breaks down, and we cross over from eq. (4.4) 
for coherent addition of fields u , ~  and u21 to formula (4.6) for incoherent 
addition. The transition from eq. (4.4) to eq. (4.6) actually occurs once the 
phase difference of paths 12 and 21 exceeds n. From this condition we may 
derive a requirement imposed on the velocity u, of vertical motion of the surface 
that would not destroy the coherence of fields u12 and u21. If t' is the time for 
u 1 2  to travel from source to surface and t "  is the similar time for u z , ,  then in 
time t' - t" the surface should not go further than (AKHUNOV and 
KRAVTSOV [ 19821); i.e., 

u,(t' - t " )  5 $1. (4.8) 

4.1.4. Kettler effect 

The class of phenomena under consideration includes the Kettler effect, 
which was already known to Newton. It consists of observing iridescent rings 
on a dusty mirror viewed from a point close to a source of light. This effect can 
be explained as follows. If the distance p between the source r, and the observer 
r' is comparatively small (fig. 4.2), at a frequency o, waves 1' and 2' add up 
at a certain angle 0, which depends on the frequency and glass thickness h.  In 
this case, averaging occurs due to the wide band of common sources of light 
and to the summation over numerous dust particles occupying the outer surface 
of the glass. 

dust 

Fig. 4.2. In Kettlefs experiment, coherent scattering channels occur when the point of observa- 
tion r' approaches the point of transmission r,. 
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4.1.5. Particle in a waveguide 

For a waveguide we may expect higher values of the enhancement factor than 
for a particle near the interface, because the waveguide sharply increases the 
number of coherent channels. If m rays are incident on a scatterer, the total 
number of backscatter paths is m2, of which m(m - 1) paths make 
i m ( m  - 1) = Mcoh coherent pairs (ray j induces a scattered ray p ,  and vice 
versa), and m paths have no coherent counterparts (ray j reproduces itself, i.e., 
also ray j ) .  Therefore, after averaging over all the realizations of the scatterer 
(the domain of averaging should embrace sufficiently many interference maxima 
of the prime field), the detected intensity in monostatic reception is estimated 
as 

Ibsc z ml, ,  + Mcoh4II1 = m(2m - 1)1 ,1 ,  

and in separated (bistatic) reception as 

I s e p z m I l ,  +Mcoh2II1 =m21, ,  . 

Hence, an estimate for the backscatter enhancement factor is (AKHUNOV, 
KRAVTSOV and KUZKIN [ 19841) 

One may arrive at this estimate from the mode consideration, where the 
transformation of rays in scattering is treated as the transformation of the 
modes and m is treated as the number of propagating modes. The mode 
analysis suggests that the maximum number of distinct rays in a waveguide m 
equals the number of propagating normal waves. Hence, eq. (4.9) allows dual 
interpretation. 

According to eq. (4.9), in a single-mode waveguide (m = 1) no enhancement 
of the backscattered intensity is evident ( K  = 1). In a two-mode waveguide 
( m  = 2), K = 1.5, as for the case of a scatterer near an interface. This 
coincidence is not by chance: both situations involve four scattering channels, 
of which two are single (1 1 and 22) and the other two form a coherent pair. 
Finally, for many propagating modes (m D 1) we have K -, 2. The effect of 
doubling the effective scattering cross section should be taken into account 
when interpreting the backscattering data gathered in fiber multimode light 
guides. 

If  the waveguide possesses a clearcut property of focusing the field of a point 
source, which is the case with a parabolic index waveguide, then for a scatterer 
placed in a focal spot the scattered field increases by a factor off ’, where 
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j” is the focusing factor indicating how many times the field at the scatterer 
exceeds that produced by the source in free space. 

For a waveguide the backscatter enhancement factor is 
K = Ibscllsep 

= ( I W t ?  r J  “> I ( I W t 9  r , )  G(r9 r , )  I 2 ,  9 

where, as before, the angular brackets indicate that the ensemble average has 
been performed over positions of the scatterer. If the domain of averaging is 
limited by a focal spot, then K is rather high, K - f’ % 1. When the averaging 
domain exceeds the distance between adjacent focal spots, then K + 2, since 
this follows from eq. (4.9) for m $ 1. For a single-mode propagation the Green 
function is devoid of interference structure, hence K = 1 .  

4.2. ENHANCED BACKSCATTERING BY A SYSTEM OF TWO SCATTERERS 

4.2.1. Watson equations (scalar problem) 

The system of two small scatterers is interesting since it enables an exact 
solution of the wave problem to any desired order of multiple scattering. First, 
we consider the scattering problem in the scalar formulation. Let u1 and u2 be 
the field of an external source at the locations of the first and the second 
scatterer, and let a, and a2 be the “polarizabilities” of the scatterers. The 
moments induced on the scatterers, pI and p 2 ,  combine from those due to the 
external field ai ,2u1,2  and those due to adjacent particles a l g 1 2 p 2  and a 2 g Z 1 p i ,  
where g ,  = g,  I = - exp (ik1)/4 n1 are the Green functions corresponding to the 
distance I between the particles. 

This simple argument leads to the following system of equations 

(4.10) 

which is an example of the equations derived by WATSON [1969]. Having 
determined the “moments” p1 and p 2  from eq. (4.10), the scattered field is 

u,(r) = Plg(ri7 r)  + pzg(r2, r )  7 (4.11) 

SO that p I  and p 2  have the meaning of the scattering amplitudes. 
For identical particles (a,  = a2 = a) the solution to eq. (4.10) has the form 

(4.12) 
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If we expand the denominator in a series in the powers of the parameter 
(org,2)2, we obtain an expansion of moments pl,, into orders of multiple 
scattering. When the parameter ag,, is small, we can only retain in eq. (4.12) 
the numerator that corresponds to the double-scattering approximation. 

We formulate the main results without going into great detail. Let us assume 
that the direction of the axis connecting the centers of the particles is uniformly 
distributed over a unit sphere and the distance between the particles, I assumes 
random values with probability density w,(l). If the source of the prime field 
is at a considerable distance from the system of particles ( r  B 1, where 1 is the 
mean distance between the scatterers), eqs. (4.11) and (4.12) may be used to 
calculate the averaged (over I and axis orientations) cross section of scattering 
a(0), which is a function of the angle 0 between the directions to the source and 
the detector. 

If 0, = (a/4n),  is the cross section for a single particle, the plot of the angular 
dependence for the normalized cross section of scattering 0(0)/20, may be 
viewed as the profile of the enhancement factor (fig. 4.3) 

(4.13) 

In the forward direction (0 = n) there is always a maximum of K ( 8 )  = 2 
corresponding to the in-phase addition of single scattered fields cr(n) x 40,. 
Another maximum of considerably lower height 

Kbsc - 1 = K ( 0 )  - 1 N (~lgl,)* N C T O / I ~  (4.14) 

is evident in the backscatter direction. 

Fig. 4.3. Enhancement factor K ( 0 )  for two identical, randomly located scatterers. 
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Thus, the averaged cross section of backscattering o,,, = o(0) always 
exceeds the sum of single cross sections 20,. This small enhancement is 
observed in a comparatively narrow cone of halfwidth AO N l/kj. Despite its 
small magnitude the effect is of major significance because a maximum in K ( 8 )  
suggests that the scatterer should have an internal structure which is often hard 
to reveal by other methods. 

4.2.2. Polarization efsects 

For an electromagnetic field the system of Watson equations takes the form 

(4.15) 

where this time M ~ , ~  are the “true” polarizabilities, pl,z have the meaning of 
induced dipole moments, and the tensor operators g,2 and gzl yield the field 
due to the dipole moments p1 and p 2  at the adjacent particles. 

Because of the random orientation of vector I = r, - r1 connecting 
the particle centers, the polarization of the scattered field 
E,  = g(r, r ,  ) p ,  + g(r ,  r2)p2 differs from the polarization of the prime wave. Let 
the center of the system of two particles lie at the origin, and the source at a 
distance L % 7 from this center along the z-axis radiates an intensity polarized 
along the x-axis. For a detector receiving the co-polarized component of the 
scattered field, E,,, we introduce the angular dependences of the enhancement 
factor K,, on angles O,, and 0,. lying in the mutually orthogonal planes yz and 
xz (fig. 4.4a). 

Figure 4.4b illustrates an analysis of such dependences for the case where 

K-7 

a b 

Fig. 4.4. (a) System of coordinates and (b) angular profiles of K ( 0 )  for the different measurement 
schemes: (1) K . x ( O y z ) .  (2) K x x ( L ) ,  and (3) KY(Q 



176 ENHANCED BACKSCATTERING IN OPTICS [II, § 4 

the interparticle distance I is distributed uniformly in the interval (A, lOA). The 
enhancement factor in the backscatter direction, K,,, differs from unity by a 
value of about ao/f2, i.e., of the same magnitude as in the scalar problem. In 
the xz plane the peak is 1.5 times as wide as in the yz plane (which may be 
attributed to the different interference pattern of secondary electromagnetic 
waves), but for both cases he- l/k7 (curves 1 and 2). For the orthogonal 
y-polarization difference K,,,(B) - 1, curve 3, is one tenth as high as K,, - 1. 

It is hoped that the polarization features of backscattering from a system of 
two particles will take place in the case of many particles if double scattering 
is the dominant mechanism. A proof of this hypothesis can be obtained by 
comparing the experimental data of VAN ALBADA and LAGENDIJK [ 19871, who 
established that the intensity of a depolarized scattered field is about one tenth 
as strong as the intensity of the polarized component. 

It should be noted that the considered model of two scatterers yields very 
small enhancement as compared with the many-particle experiment, namely, 
K - 1 - I ag12 - ao/f2 3 1. For N scatterers, there will be about i N  pairs, and 
K - 1 will increase many times. 

4.3. MORE INVOLVED SCATTERER SYSTEMS A N D  GEOMETRIES 

4.3.1. Cluster of N scatterers: Paired and single scattering channels 

For a system consisting of more than two scatterers, it would be reasonable 
to evaluate the classes of paired and single scatterings from the entire family 
of multiple scatterings (BUTKOVSKII, KRAVTSOV and RYABYKIN [ 19871). 
Consider N scatterers that are more or less uniformly distributed within a 
volume V. The scattered field us can be represented as a series into the orders 
of multiple scattering 

(4.16) 

where in turn, every term may be written as a sum of the fields that have 
experienced scattering by certain scatterers. 

Let us consider a specific path Osisj.. . spO’ of scattering of order n along 
with the corresponding field uoii., Clearly the number of partners in such 
a path can be less than n, due to repeated scattering, but all adjacent indices 
in the series i, j ,  . . . , p must be different in order to prevent self-scattering from 
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entering into consideration. In other words, a field scattered by one particle will 
have another scattering event at a different particle. The single, double, and 
triple scattered fields are represented, respectively, by the sums 

N 

u p  = c U O i 0 ’ ,  

u\?= c u o i j o . ,  

i =  I 

N 

i ,J= 1 

UP’ = 5 UOijkO’ , 
i , J ,  k = 1 

where the primes correspond to the requirement that two adjacent indices 
should not coincide. All in all there are N terms for a single scattered field, 
N ( N  - 1) terms for double scattering, N ( N  - 1)2 for triple scattering, etc. 

When the locations of the transmitter and receiver coincide (0 = O’), 
expansion (4.16) acquires coherent Watson-Ruf?ine pairs; specifically, the 
field uoi,.. equals the field corresponding to the reverse sequence of 
scatterers 

- 
%ij . . . p  0 -  u ~ p  ... j io* (4.17) 

Some sequences, however, remain without a coherent partner. These are pri- 
marily single scattered fields uol0 and the fields of multiplicity 2m i- 1 that have 
been scattered m times in the forward direction, say, via an index series 
j ,  , . . . , j,, and rn + 1 times in the reverse direction via a series j ,  + , , j , ,  . . . , j, . 
For such fields a reversed row of indices p ,  . . . , j ,  i coincides with the forward 
row i, j, . . . , p ,  so that the fields uoi j , .  . and uop,,  . j i  are identical, as is, for 
example, uo 123210 or uo765670. A typical scattering pattern corresponding to 
such unpaired, or single, channels is shown in fig. 4.5. Single channels of an 
even order of scattering (n = 2m) are absent. 

Let us use the sum of coherent pair fields (denoted by 28) and the sum of 

Fig. 4.5. Example of a simple scattering channel Ojlj2 . . . j ,  + I . . . j a l O ,  for which the forward 
and reversed sequence of symbols coincide. 
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single fields li, including the single-scattered fields 

u = i i + 2 i i  

m m 

(4.18) 

All cross terms in these sums vanish because of the averaging over the positions 
of the scatterers (or over the frequencies), so that the intensity of the back- 
scattered field may be written as 

- =  
I b , , = I + 4 1 ,  (4.19) 

where 

I =  c 1 f i ( 2 m + 1 )  I 9  2 

m = O  

03 

f'= c ( 1 6 ( 2 m ) 1 2  + I f ( Z m + l )  I 2 1 9  

and the average is implied but not indicated. 
When the point of observation 0' moves away from the source 0, the fields 

uoij,.  and uop, ,  ,,io, are no longer in phase, although the intensities of these 
fields remain almost unchanged. As a result, the coherent effects manifest 
themselves only within a certain coherence zone surrounding the source. 

Let a cloud of scatterers of diameter L be seen from a source at a distance 
R at an angle 0 N L/R. If the source is in the near zone with respect to the cloud 
( R  < L2/A), the longitudinal dimension of the coherence zone I , ,  (along the line 
from the source to the center of the cloud) is estimated as Ale2 and the 
transverse dimension as I ,  N Ale (fig. 4.6a). (These estimates are similar to 
those given in the monograph of RYTov, KRAVTSOV and TATARSKII [ 1989al.) 
If the source is in the far (Fraunhofer) zone of R > Lz/A, the transverse 
dimension of the coherence zone is given by the previous formula 

m = O  

R 
a !3 

Fig. 4.6. Region of enhanced backscatter intensity in the vicinity of the transmitter rt for many- 
scatterer cases with the source (a) in the near zone (R < LZ/A) and (b) in the far zone 

(R > LZ/L). 
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I, - 110 - 1R/L, but in the longitudinal direction the coherence zone extends 
from the Fresnel length R - L2/ln to infinity, as shown in fig. 4.6b. 

Outside the coherence zone the coherent addition of paired channels gives 
way to an incoherent addition, so that instead of eq. (4.19) we have 

Ki 

Isep = r”+ 2 1 .  

The ratio of Ibsc to Isep yields the enhancement factor 

2M 

1 + 2 M  
,=1+-, 

7+ 4 7  2 7  
*= 1 + __ Kbsc = __ T+ 21 i +  21 

(4.20) 

(4.21) 

where M = 2$characterizes the contribution of paired channels with respect 
to single channels, 

M = 215/7= ( K  - 1)/(2 - K ) .  (4.22) 

Values of K close to unity imply that single scattering predominates and 
M < 1. Converseiy, when K + 2, multiple scattering prevails. In this case the 
contribution of unpaired channels, the principle of which is single scattering, 
tends to zero, hence M -+ 00. Thus the magnitude of an enhancement factor 
conveys information about the ratio of the contribution of paired channels to 
that of single scattering channels. 

Let us estimate the contribution of paired channels on the assumption that 
in expansion (4.16) we may limit ourselves to single and double scattering only. 
Let a, be the scattering cross section of a single scatterer and I ,  be the 
characteristic distance for most events of double scattering. If w(1) is the 
probability density of interparticle spacing 1, then 

This distance I compares in the order of magnitude, with the diameter of the 
scatterer cluster, L. 

If a prime field of intensity Z, is incident upon a scatterer, an individual single 
scattering event produces a field of intensity I ‘  - I ,  a,/R2, in the neighborhood 
ofthe source, where R is the distance from the source to the center ofthe cluster. 
All N scatterers of the cluster give the intensity I ( ’ )  - NI’. Likewise, a single 
event of double scattering produces the intensity I” - I ,  o,Z/R21: near the 
source, and the total number of such events is N(N - 1) fi: N 2 .  As a result, the 
total intensity of double scattering is I ( 2 )  N N 2 1 ”  N I ,  + N2a,Z/R21:. 

The total intensity of a scattered field outside the coherence zone may be 
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written as 

where the correction p - N oo/l: is considered to be small. Continuing this 
argument, we may think of the triple scattered field as being of the order of 
p 2 P 1 ) ,  etc. As long as p is small compared with unity p 6 1, we can neglect the 
contribution of triple scattering; then, M - p and 

(4.24) 

Thus, by the backscatter enhancement data, we can judge the magnitude of the 
ratio NCn/l: .  

It should be stressed that the evaluation of N by the preceding method does 
not require that the magnitudes of intensities be measured and, consequently, 
eliminates the need for calibration of the transmitter and receiver. Therefore, 
the method suggested to estimate p = NgJZ: can be an addition to the tradi- 
tional techniques of scattering media analysis. It can be used either by 
measuring the intensity ofthe scattered field, which is proportional to No0 when 
single scattering predominates, or by measuring the extinction coefficient, 
which is proportional to Noo/ V.  

4.3.2. Scattering by bodies of intricate geometry 

We say that a scattering body has an intricate geometry if the intensity 
scattered from this body exhibits a number of spatially separated light spots due 
to specular reflections and scattering from edges, vertices, and such. The 
Fresnel criterion for physical independence of these light spots has been out- 
lined by KRAVTSOV [ 19881. The multipath coherent effects leading to enhanced 
backscattering in this case stem from the fact that the incident wave suffers 
sequential scattering (diffraction) on a complex envelope as is the case with 
multiple scattering by a cluster of N individual scatterers. 

There exists, however, an important distinction between such a body and a 
system of independent scatterers; namely, some light spots are tightly asso- 
ciated with the characteristic elements of diffraction on the surface of the body 
(bosses, vertices, and sharp peaks). Accordingly, the averaging to reveal back- 
scatter enhancement in this case is performed over the orientations of the body, 
rather than over the locations of the scatterer. 

Despite this difference, many features of backscattering for a body of intricate 
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geometry are essentially the same as those for a cluster of scatterers. These 
include, e.g., the envelope of the coherence zone and relationships (4.21) and 
(4.22) between the enhancement factor K and factor of multiple scattering M .  
The importance of eqs. (4.21) and (4.22) is that they qualitatively characterize 
the intricacy of the shape of a body, e.g., in laser detection and ranging. 
Specifically, the value of M = ( K  - 1)/(2 - K )  can be viewed as a criterion in 
target identification. 

4.3.3. Coherent eflects in difraction by large bodies 

In the systematic analysis of scattering by bodies of regular shape (e.g., discs, 
spheres, cylinders, bodies of revolution) the multipath coherent effects are 
automatically incorporated into consideration. However, their contribution to 
the total scattering cross section has not been treated separately, perhaps 
because it has not occurred to anyone to break down symmetrical bodies into 
individual elements that alone are capable of inducing the multipath transverse 
effects. The “elementary” approach to scattering may be of methodological and 
practical significance in much the same way as the approximate methods of 
diffraction theory, which were tried out initially for elementary solids, have been 
extended to bodies of more intricate geometry. In fact, the method of edge 
waves due to UFIMTSEV [ 19711 and the geometrical theory of diffraction due 
to J. B. KELLER [ 19581, along with their generalizations, have been developed 
precisely in this manner. 

As an example, consider the scattering by a conducting sphere and focus 
attention on the Keller dfiraction rays returning toward the source (fig. 4.7a). 
All such rays represent mutually coherent fields, with a forward and reverse 
channel corresponding to each ray. Therefore, the axis connecting the source 
to the sphere is the focus where focusing of the Keller diffraction rays will occur. 
Depending on the phase difference between the Keller rays and a ray secularly 
reflected from the sphere, the corresponding fields will be added or subtracted. 
This explains the noteworthy oscillating behavior of the cross section of the 

Fig. 4.7. Coherent paths formed by rays diffracted on (a) a large conducting sphere and (b) on 
a large conducting ellipsoid. (c) In dielectric bodies, coherent paths can form due to total internal 

reflection. 
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sphere as a function of frequency when the sphere perimeter 2xa is several 
wavelengths long. 

Although the amplitude of the Keller rays is markedly attenuated on travers- 
ing around the sphere, this attenuation is compensated to a large degree by the 
“number” of rays taking part in the constructive interference. If we supply 
each ray with the Fresnel width A1 - 2,,& in a fairly natural manner, the 
sphere perimeter will accommodate about N = m / 2 @  rays. Accordingly, 
the focused field will be about N 2  N n2a/41 = i x k a  times stronger than the 
field of one ray; e.g., for a = 41, N 2  - 10. 

For a deformed sphere the number of the Keller rays whose fields add 
coherently in backscattering drops sharply. For example, only two pairs of 
coherent rays survive in the scattering by an ellipsoid, as shown in fig. 4.7b. 

For a dielectric sphere the coherent effects can be associated not only with 
the Keller grazing diffraction rays, but also with the rays that suffered internal 
reflection (fig. 4 .7~) .  Such rays occurring in small water droplets help to explain 
the phenomenon of a halo when sunlight incident from the observer’s back to 
a cloud or a mist gives rise to a light nimbus around the head of the shadow. 
A dark ring around the nimbus corresponds to the subtraction of the diffracted 
waves. This phenomenon can be observed high in the mountains, above the 
clouds, or in an airplane for a certain position with respect to the sun. In the 
latter situation a halo is observed around the airplane shadow. A diffraction 
theory for this phenomenon (without evaluation of coherent channels) has been 
proposed by NUSSENZVEIG [ 19771. 

Similar effects take place in an optical phenomenon observed when auto- 
mobile headlights illuminate modern road signs. An enhanced backscattering 
is achieved here with the aid of tiny glass spheres added in the coating of the 
road sign. These balls scatter the light in a backward direction as in the case 
of a water droplet. A similar effect occurs with the reflection of light from 
retroreflectors, specifically those mounted on the moon for laser ranging. 

It is useful to note the difference in the action of cat’s eyes and the effect of 
backscatter enhancement. Cat’s eye devices are usually arranged as sets of 
retroreflecting studs that concentrate the reflected rays toward the radiant 
source. The action of these devices is underlaid by the incoherent addition of 
the fields from all elements of the device. Accurate measurements of reflected 
fields near the source may reveal the coherent addition of the fields correspond- 
ing to coherent pairs of rays. As far as we know, no coherent experiments with 
cat’s eye devices have been reported. The coherent effects may manifest them- 
selves as a very narrow peak of angular width in the order of AID, where D is 
the cat’s eye diameter, with the intensity in the close neighborhood of the source 
being twice that of the background. 
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c s  
Fig. 4.8. Typical ray pattern in laser sounding ofgrain crops. The laser return to the source gives 

rise to the hot-spot effect. 

The double magnitude of the backscattered intensity peak will be observed 
on the average over the various positions (orientations) of the device. Certain 
realizations may exhibit both enhancement by a factor N of the number of 
reflecting studs in the device, and attenuation of the intensity down to zero, 
which corresponds to an equal number of elements in phase and out of phase; 
but on the average the quantity K = ( Ibsc ) / ( Isep ) will be around two. 

The analogy with the cat’s eye is useful in considering another interesting 
effect, referred to as the hot-spot (GERSTL, SIMMER and POWERS [ 19861 and 
Ross and MARSHAK [ 19881). This effect is observed in the laser scanning of 
grain crops when a considerable proportion of the beam energy is reflected from 
the plant stem and blade almost in the backscatter direction (fig. 4.8), giving 
rise to the name of this phenomenon. In general, in the circumstances one may 
also expect an enhanced backscattering due to coherent scattering channels, 
but actually this is hardly feasible for in-flight laser scanning of grain crops from 
an airplane or helicopter. 

4 5. Enhanced Backscattering from Rough Surfaces 

5.1. TREND TO INTENSITY PEAKING IN THE ANTISPECULAR DIRECTION 

An early indication of enhanced backscattering from randomly rough sur- 
faces seems to have been given by KRAVTSOV and SAICHEV [ 1982bl for very 
rough, steep surfaces that reflect the rays back to the source with a high 
probability (fig. 5.  la), and by ZAVOROTNYI and OSTASHEV [ 19821 for rough 
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Fig. 5.1. Coherent channels arising in scattering from statistically rough surfaces, specifically due 
to double scattering by small inhornogeneities. 

surface areas illuminating one another. ZAVOROTNYI [ 19841 extended these 
considerations on a two-scale surface (fig. 5.lb). 

In the treatment of ZAVoRoTNYI and OSTASHEV [. 19821 and ZAVOROTNYI 
[ 19841, one of the reflections in fig. 5.lb, say, at point A ,  is specular (the field 
is reflected from the large-scale component of the surface roughness profile), 
and the other reflection at B is diffusive. The latter is due to the small-scale 
component and does not obey the laws of geometrical optics. Hence, the 
relevant coherence scattering channels occur because of single Bragg scattering 
and single specular reflection. For large and steep roughness heights as in 
fig. 5 .  la, coherence channels occur due to multiple (at least double) scattering 
of the rays. 

One more mechanism is capable of producing coherent channels, namely, 
that due to double scattering from small surface inhomogeneities (fig. 5. lc). It 
is weaker than its counterparts, but it does not involve specular channels and, 
in this respect, is a more universal mechanism; weak effects of double scattering 
always co-exist with the stronger mechanisms. 

Of the theories developed thus far to describe backscatter enhancement, the 
full-wave approach of BAHAR and FITZWATER [ 1987,19891 is worth mention- 
ing. According to the authors’ terminology, it deals with single scattering, but 
actually represents a second-order iterative solution. In fact, the enhancement 
effect is “hidden” in the ordinary theory of double scattering, but it has avoided 
an explicit elucidation as far as we know. On the other hand, computer 
simulations performed with great ingenuity by NIETO-VESPERINAS and 
SOTO-CRESPO [ 19871, MACASKILL and KACHOYAN [ 19881, and SOTO- 
CRESPO and NIETO-VESPERINAS [ 19891 have revealed a backscatter 
intensity peak and certain polarization effects. 

Neither analytical nor numerical methods, however, have been able to pro- 
duce an effect that compares with the experimental data of MENDEZ and 
O’DONNELL [ 19871, O’DONNELL and MENDEZ [ 19871, SANT, DAINTY and 
KIM [ 19891, KIM, DAINTY, FRIBERG and SANT [ 19901. These workers studied 
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scattering from a specially prepared, very rough surface, i.e., an aluminium 
coated rough surface of a photoresist resulted after speckle-field irradiation. 
These experiments revealed a sizeable maximum in the antispecular direction 
and a very strong depolarization - the intensity of the depolarized back- 
scattered component was almost 50%. 

The qualitative interpretation of the backscatter intensity peak given by these 
authors bears on the ray optics representations and essentially parallels the 
arguments of KRAVTSOV and SAICHEV [ 1982bI. The ray optics interpretation 
provides an explanation for certain features of the polarization, specifically for 
the absence of axial symmetry of the scattered field. A reasonable explanation 
of the polarization characteristics has been given in the full-wave theory of 
BAHAR and FITZWATER [ 1987, 19891. 

As long as a well-developed theory of scattering from large, steep, and rough 
heights is unavailable, it is logical to resort to a model description of antispecu- 
lar scattering. A simple model of a unipolar, very rough surface has been 
devised by KRAVTSOV and RYABYKIN [ 19881. This model does not pretend 
to explain polarization phenomena and has been constructed as a collection of 
upright waveguides of random depth and width, as illustrated in fig. 5.2a. A 
beam launched at an angle Oo with the axis of the waveguides excites in them 
eigenwaves of different types. If the waveguides are sufficiently wide and deep 
compared to the wavelength, the reflection of the incident wave from the side 
walls and bottom of the waveguides may be described in the framework of 
geometrical optics. In this approximation the incident beam is split into two 
parts - one portion of the energy is reflected in the specular direction, as shown 
in fig. 5.2b, and the other portion is reflected backwards, i.e., in the antispecular 
direction, as illustrated in fig. 5 . 2 ~ .  

Averaged over all the waveguides, one half of the energy is reflected in the 
mirror direction, and the other half in the antispecular direction, so that the 
angular distribution of intensity will exhibit two sharp maxima of equal magni- 
tudes. If we observe the diffraction nature of the reflection, these peaks acquire 

Fig. 5.2. (a) Model of a very rough surface made of open waveguide sections of random depth 
and width; (b) and (c) specular and antispecular ray paths. 
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5.2. BACKSCATTER ENHANCEMENT INVOLVING SURFACE WAVES 

A well-known method of exciting electromagnetic surface waves by light 
involves diffraction gratings that launch one of the diffraction spectra along the 
metallic surface. These surface waves can suffer multiple scattering in view of 
the imperfections of the grating and roughness of the metal surface. Among 
other directions the scattered waves will emerge from the grating in the specular 
or antispecular direction. In the presence of paired coherent channels for 
surface waves one can expect enhanced backscattering for spatial light waves. 

These types of effect have been the focus of theoretical and numerical 
considerations of CELL], MARADUDIN, MARVIN and MCGURN [ 19851, 
MCGURN, MARADUDIN and CELLI [ 19851, ARYA, S u  and BIRMAN [ 19851, 
MCGURN and MARADUDIN [1987], TRAN and CELL] [1988], and 
MARADUDIN, MENDEZ and MICHEL [1989]. An important event was the 
experimental observation of enhanced backscattering for spatial light waves by 
Gu, DUMMER, MARADUDIN and MCGURN [ 19891. 

The effects involving surface waves (polaritons) are interesting because 
they are accompanied by wave-type transformation : light -+ polariton + light, 
the enhancement occurring in the transformed wave. It is likely that this is not 
the only example of scattering in the transformed wave process. Specifically, 
the scattering after a nonlinear transformation of a wave type or frequency 
seems feasible as a result of a parametric interaction. 

6. Related Effects in Allied Fields of Physics 

6.1. ENHANCED BACKSCATTERING IN ACOUSTICS 

In acoustics, enhanced backscatter effects are almost as diverse as in optics. 
At the same time there are some specific acoustic manifestations caused by the 
small value of the velocity of sound. 

We note the possibility of the multipath coherent phenomena in a confined 
volume. A beam launched in a confined space by a transmitter t (fig. 6.1) gives 
rise to paired channels like tabcdt and tdcbat, as well as single channeis like 
tAt. In measuring pulse signals the different reflections from the walls may be 
resolved in time to discover that the amplitudes in the paired channels have 
been doubled and the intensities quadrupled. 

When the transmitter and receiver locations are separated, the transverse 
effect vanishes. This explains why we hear our own voices differently from our 
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Fig. 6.1. Single (tAt) and paired (tabcdt) scattering channels in a confined space of rectangular 
cross section. 

roommates, but alas fails to explain the origin of misunderstanding. A theory 
of coherent effects in confined geometries is outlined by BUTKOVSKII, 
KRAVTSOV and RYABYKIN [ 19861 and the relevant experimental evidence by 
GINDLER, KRAVTSOV and RYABYKIN [ 19861. 

In view of the small velocity of sound the acoustic coherent effects find 
themselves destroyed faster than their optical counterparts. This circumstance 
can be utilized to monitor the stationary status of a medium by recording the 
front where the enhancement effect vanishes (AKHUNOV and KRAVTSOV 
[ 19841). The variety of acoustical manifestations of this effect has been 
examined by KRAVTSOV and RYABYKIN [ 19881. 

6.2. EFFECTS IN THE RADIO WAVE BAND 

An early indication of the important role of backscatter enhancement in radio 
sounding of the ionosphere can be found in the work of VINOGRADOV and 
KRAVTSOV [1973]. It is devoted to the evaluation of the concentration of 
electrons in the upper ionosphere by the method of incoherent scattering that 
has been incapable of determining the electronic concentration by the power 
of the scattered field. The backscatter enhancement increases this power (in 
monostatic observations), thus leading to concentration estimates K times 
higher than the true concentration values. Similar problems have been 
addressed by YEH [ 19831 and YANG and YEH [ 19851 for scatterers of other 
physical origin. 

Multi-channel coherent effects can also be observed in the scattering of radio 
waves from the ionosphere. These effects occur when the inhomogeneities are 
irradiated simultaneously by a direct wave from the transmitter and a wave 
reflected from the ionosphere (KRAVTSOV and NAMAZOV [ 1979, 19801). 
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In microwave scattering from vegetation, coherent channels occur due to the 
reflection of the wave from the earth’s surface (LANG [ 19811 and LANG and 
SIDHU [ 19831). If the coefficient of reflection of microwaves from the earth’s 
surface is close to unity, then, on average, one may expect a growth of the 
effective cross section of scattering from leaves, branches, blades, and stems 
by a factor of 1.5 compared with the value in free space. The estimate of 
vegetable biomass will increase accordingly. 

6.3. OTHER EFFECTS OF DOUBLE PASSAGE THROUGH RANDOM MEDIA 

In addition to the intensity the backscattered wave has its other parameter 
altered, specifically, the phase. Let be the variance of phase for a single 
passage of distance L in a random medium. As has been shown, in backscatter- 
ing the variance of phase increases four times over a:@) rather than twice, as 
might be expected from a common-sense consideration. 

For a rather large separation of the transmitter and receiver when the forward 
and reverse paths propagate through different inhomogeneities of the medium, 
the relevant variance exceeds only twice. These and other features of 
phase fluctuations have been investigated in the review paper of KRAVTSOV 
and SAICHEV [ 1982bl. 

The growth of the variance of the phase leads to an additional widening of 
the partial spectrum because the fluctuations of frequency occur as the deriva- 
tive of the fluctuation of phase. Such a broadening of the spectrum has been 
observed experimentally in radio communications with the Venera space probe 
(EFIMOV, YAKOVLEV, VYSHILOV, NABATOV, RUBTSOV and SHEVERDYAEV 
[ 1989]), when the fluctuations of phase were caused by the motion of inhomo- 
geneities in space plasma (solar wind). 

6.4. COHERENT BACKSCATTERING OF PARTICLES FROM DISORDERED 
MEDIA 

The coherent backscattering of particles other than photons has been 
approached only from the theoretical standpoint. IGARASHI [ 19871 has 
considered the effect of backscattering for isotopic and spin incoherent scatter- 
ing of neutrons in the framework of the double-collision model. When the 
predominant channel of incoherent scattering is by spin-spin (magnetic) inter- 
actions, the enhancement may give way to the attenuation of backscattering. 
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The backscattering of electrons of middle energy (in the order of several 
hundred eV) and an unusual behavior of the enhancement factor as a function 
of the cross section of spin-orbital interaction have been discussed qualitatively 
by BERKOVITS and KAVEH [1988]. They have noted that the spin-orbital 
interaction can bring about a coherent antienhancement of backscattering and 
a sharp minimum in the angular distribution of the backscattered intensity. 

GORODNICHEV, DUDAREV and ROGOZKIN [ 1990al have obtained an exact 
solution to the problem of scattering of spin-$ particles, which participate in 
magnetic and spin-orbital interactions with a disordered medium and with a 
medium with an Anderson's type of disorder. These authors have also 
developed a theory of coherent enhancement of the backscattering process. 

The effect of enhancement for neutrons scattered backwards and in certain 
other directions has been taken up by DUDAREV [ 19881 for neutrons diffracted 
in imperfect crystals, i.e., in crystals with isotopic and spin disorder, which 
corresponds to an Anderson model of disorder. The sharp resonance peaks 
revealed in the angular spectrum of reflected particles is associated with the 
diffraction of the particles at a regular part of the crystal potential. Moreover, 
resonance peaks occur when the periods of oscillations of the coherent field 
density in the nodes of the crystal lattice coincide as the particle is approaching 
a scatterer and returns to the surface of the crystal. 

DUDAREV [ 19881 and GORODNICHEV, DUDAREV, ROGOZKIN and 
RYAZANOV [ 19891 noted in their studies of scattering in ordered periodic 
structures with fluctuating potentials that the effect of an additional enhance- 
ment of incoherent intensity owes its existence to the fact that the system of 
scattering centers possesses translational symmetry. The coherent enhance- 
ment of backscattering is caused by the effect of weak localization of particles 
in multiple scattering in the medium. 

We have avoided discussing the problem of weak localization of electrons 
in metals and semiconductors in this review, since it is too large a topic to be 
addressed in the space allotted to this article. The interested reader is referred 
to the review paper by BERGMANN [ 19841. 

8 7. Conclusion 

It is not uncommon in the history of physics that a chance remark, trivial 
at first glance, has been a seedling for an entire branch of new physical 
phenomena, giving birth (not immediately but in 15 or 20 years) to a developed 
system of theoretical representations and experimental evidence. This is exactly 
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what happened with the private communication between Ruffine and Watson 
about coherent channels in 1969. It is high time to reconsider the evolution of 
this beautiful physical idea. Has it been completely exhausted, or will new and 
interesting facets be revealed to researchers? Whatever happens, we admit that 
we have been completely satisfied by our participation in the solution of 
problems associated with enhanced backscattering and weak localization 
phenomena. 
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