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Quantum computers have the potential to solve certain problems faster than classical computers.
To exploit their power, it is necessary to perform interqubit operations and generate entangled
states. Spin qubits are a promising candidate for implementing a quantum processor because of
their potential for scalability and miniaturization. However, their weak interactions with the
environment, which lead to their long coherence times, make interqubit operations challenging.
We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically
decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its
fluctuating environment. Using state tomography, we measured the full density matrix of the
system and determined the concurrence and the fidelity of the generated state, providing proof of
entanglement.

Singlet-triplet (S-T0) qubits, a particular real-
ization of spin qubits (1–7), store quantum
information in the joint spin state of two

electrons (8–10). The basis states for the S-T0
qubit can be constructed from the eigenstates of
a single electron spin, |↑〉 and |↓〉. We chose |S 〉 =

(1/√2)(|↑↓〉 – |↓↑〉) and |T0〉 = (1/√2)(|↑↓〉 + |↓↑〉)
because these states are insensitive to uniform
fluctuations in the magnetic field. The qubit can
then be described as a two-level system with a
representation on the so-called Bloch sphere
(Fig. 1A). Universal quantum control is achieved
using two physically distinct operations that drive
rotations around the x and z axes of the Bloch
sphere (11). Rotations around the z axis are driv-
en by the exchange splitting, J, between |S 〉 and
|T0〉, and rotations around the x axis are driven
by a magnetic field gradient, ∆Bz, between the
electrons.

We implemented the S-T0 qubit by confining
two electrons to a double quantum dot (QD) in a
two-dimensional electron gas (2DEG) located

91 nm below the surface of a GaAs-AlGaAs het-
erostructure. We deposited local top gates using
standard electron beam lithography techniques to
locally deplete the 2DEG and form the QDs. We
operated between the states (0,2) and (1,1), where
(nL,nR) describes the state with nL(nR) electrons in
the left (right) QD. The |S 〉 and |T0〉 states, the
logical subspace for the qubit, are isolated by
applying an external magnetic field of 700 mT in
the plane of the device such that the Zeeman
splitting makes T+ = |↑↑〉 and T− = |↓↓〉 energet-
ically inaccessible. The exchange splitting, J, is
a function of the difference in energy, e, between
the levels of the left and right QDs. Pulsed DC
electric fields rapidly change e, allowing us to
switch J on, which drives rotations around the
z axis. When J is off, the qubit precesses around
the x axis due to a fixed ∆Bz, which is stabilized
to ∆Bz/2p = 30 MHz by operating the qubit as a
feedback loop between iterations of the experi-
ment (12). Dephasing of the qubit rotations re-
flects fluctuations in the magnitude of the two
control axes, J and ∆B, caused by electrical noise
and variation in the magnetic field gradient, re-
spectively. The qubit is rapidly (<50 ns) initial-
ized in |S〉 by exchanging an electron with the
nearby Fermi sea of the leads of the QD, by tun-
ing the QD potentials so that only |S〉 lies below
the Fermi energy. The qubit state is read out
using standard Pauli blockade techniques, where
e is quickly tuned to the regime where S occu-
pies (0,2) and T0 occupies (1,1), allowing the
qubit state to be determined by the proximal
charge sensor. The charge state of the qubit is
rapidly determined (∼1 ms) using standard radio
frequency techniques (13, 14) on an adjacent
sensing QD.
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Fig. 1. Two-qubit coupling scheme. (A) A Bloch sphere can be used to describe the
states of the effective two-level system defined by the singlet and triplet states of the
qubit, with the z axis along the S-T0 axis and the x axis along the |↑↓〉 / |↓↑〉 axes. (B)
A scanning electron microscope image of the top of the device used shows gates used
to define the S-T0 qubits (white), dedicated control leads, the approximate locations
of the electrons in the two qubits (red), and current paths for the sensing dots (green
arrows). The left qubit uses the electrons labeled LR and LL, whereas the right qubit
uses the electrons labeled RL and RR. (C) A schematic of the electronic charge
configurations for the |S〉〉 (blue) and the |T0〉〉 (red). This difference in charge con-
figuration is the basis for the electrostatic coupling between the qubits. (D) The pulse
sequence used to entangle the qubits: initialize each qubit in |S〉〉; perform a p/2
rotation around the x axis; allow the qubits to evolve under exchange for a time t/2;
perform a p rotation around the x axis, thereby decoupling the qubits from the environment but not each other; evolve under exchange for t/2; and perform state
tomography to determine the resulting density matrix (fig. S3.)
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To make use of the power of quantum in-
formation processing, it is necessary to perform
two qubit operations in which the state of one
qubit is conditioned on the state of the other (15).
To investigate two-qubit operations, we fabricated
two adjacent S-T0 qubits such that they are ca-
pacitively coupled, but tunneling between them is
suppressed (Fig. 1B). A charge-sensing QD next
to each qubit allows for simultaneous and in-
dependent projective measurement of each qubit
(see supplementary materials). We used the elec-
trostatic coupling between the qubits to generate
the two-qubit operation (16). When J is nonzero,
the |S〉 and |T0〉 states have different charge con-
figurations in the two QDs because of the Pauli
exclusion principle (Fig. 1C). This charge differ-
ence, which is a function of e, causes the |S 〉
and |T0〉 states in one qubit to impose different
electric fields on the other qubit. As J is a func-
tion of the electric field, the change in electric
field imposed by the first qubit causes a shift in
the precession frequency of the second qubit. In
this way, the state of the second qubit may be
conditioned on the state of the first qubit. More
precisely, when a single qubit evolves under ex-
change, there exists a state-dependent dipole
moment, d

→
, between |S〉 and |T0〉, resulting from

their difference in charge occupation of the QDs.
Therefore, when simultaneously evolving both

qubits under exchange, they experience a capac-
itively mediated, dipole-dipole coupling that
can generate an entangled state. The two-qubit
Hamiltonian is therefore given by:

H2−qubit ¼ ℏ
2 ðJ1ðsz ⊗ IÞ þ J2ðI ⊗ szÞ þ
J12
2

ððsz − IÞ⊗ ðsz − IÞÞ þ

DBz;1ðsx ⊗ IÞ þ DBz;2ðI ⊗ sxÞÞ ð1Þ

where sx,y,z are the Pauli matrices, I is the identi-
ty operator, ∆Bz,i, and Ji are the magnetic field
gradients and the exchange splittings (i = 1,2
respectively for the two qubits), and J12 is the
two-qubit coupling, which is proportional to the
product of the dipole moments in each qubit. For
a two-level systemwith constant tunnel coupling,
the dipole moment scales as d

→
i º ∂Ji /∂ei. Em-

pirically, we find that for experimentally rele-
vant values of Ji, ∂Ji /∂ei º Ji(e), so that J12 º
J1J2. As with the single qubit operations, this
two-qubit operation requires only pulsed DC
electric fields.

In principle, evolving both qubits under ex-
change produces an entangling gate. However,
the time to produce thismaximally entangled state
exceeds the inhomogeneously broadened coher-
ence times of each individual qubit, rendering

this simple implementation of the two-qubit gate
ineffective. To mitigate this, we used a dynam-
ically decoupled entangling sequence (17, 18)
(Fig. 1D). In this sequence, each qubit is prepared
in |S〉 and is then rotated by p/2 around the x axis
(Ji = 0, ∆Bz,i /2p ≈ 30 MHz) to prepare a state in
the x-y plane. The two qubits are subsequently
both evolved under a large exchange splitting
(J1/2p ≈ 280MHZ, J2/2p ≈ 320MHz >> ∆Bz) for
a time t/2, during which the qubits begin to en-
tangle and disentangle. A p pulse around the x
axis (∆Bz) is then applied simultaneously to both
qubits, after which the qubits are again allowed to
exchange for a time t/2. This Hahn echo–like
sequence (19) removes the dephasing effect of
noise that is low frequency compared to 1/t, and
the p pulses preserve the sign of the two-qubit
interaction. The resulting operation produces a
controlled phase (CPhase) gate, which, in a
basis of {|SS〉,|T0S〉,|ST0〉,|T0T0〉}, is an opera-
tion described by a matrix diag(e−iq/2,1,1,e−iq/2).
For t = tent = p

ð2J12Þ, the resulting state is a max-
imally entangled generalized Bell state |Yent〉 =
eip(I⊗sy+sy⊗I)/8|Y−〉, which differs from the Bell
state |Y−〉 = (1/√2)(|SS〉 − |T0T0〉) by single-qubit
rotations.

To characterize our two-qubit gate and verify
that we produced an entangled state, we per-
formed two-qubit state tomography and extracted
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Fig. 2. Proof of entanglement: concurrence and state fidelity. (A) A plot of the
difference of the sorted eigenvalues of the matrix R, which for positive values is
equal to the concurrence c(r). States with a concurrence greater than zero
(shaded region) are necessarily entangled. (B) The fidelity with which the mea-
sured state approximates the target |Yent〉 (blue), and eip(sy⊗I+I⊗sy)/4|Yent〉
(green), which differs from |Yent〉 by single-qubit rotations and is the expected
state for t =

3p
(2J12). The fidelity with which the measured state approximates

a dephasing-free model of the entangling operation (red) shows smooth
decay due to decoherence. The solid lines are fits to the data. (Inset) The
time, tent, to produce a maximally entangled state as a function of the
change in e (and therefore J) in the two qubits. Arrows indicate which y axis is

to be used. (C) The Bell state fidelity as a function of time for different values of J (offset for clarity), with guides to show where the fidelity exceeds 1/2 for
each curve.
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the density matrix and appropriate entanglement
measures. The tomographic procedure is careful-
ly calibrated with minimal assumptions to avoid
adding spurious correlations to the data that may
artificially increase the measured degree of en-
tanglement (fig. S4). We chose the Pauli set rep-
resentation of the density matrix (15, 20, 21),
where we measured and plotted the 16 two-qubit
correlators 〈ij〉 = 〈sisj〉 where si are the Pauli
matrices and i, j ∈ {I,X,Y,Z}. As a first measure of
entanglement, we evaluated the concurrence
(22) (Fig. 2A), C(r) = max{0, l4 − l3 − l2 − l1}
for different t, where r is the experimentally
measured density matrix and li are the eigenval-
ues, sorted from smallest to largest, of the matrix

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

p
r̃

ffiffiffi
r

pp
, and r̃= (sy⊗sy)r*(sy⊗sy), and

r* is the complex conjugate of r. A positive val-
ue of the concurrence is a necessary and suffi-
cient condition for demonstration of entanglement
(22). For t = 140 ns, we extracted a maximum
concurrence of 0.44.

A positive value of the concurrence is a defin-
itive proof of entanglement; however, it alone does
not verify that the two-qubit operation produces
the intended entangled state. To better character-
ize the generated quantum state, we evaluated
another measure of entanglement, the Bell state
fidelity,F≡ 〈Yent|r|Yent〉. Thismay be interpreted
as the probability of measuring our two-qubit
state in the desired |Yent〉. Additionally, for all
nonentangled states, one can show that F ≤ 0.5
(23, 24). The Bell state fidelity takes the simple
form F = (1/4)P

→
ent × P

→
experiment , where P

→
ent and

P
→
experiment are the Pauli sets of a pure target Bell

state and of the experimentally measured state,
respectively. For our target state |Yent〉, the result-
ing Pauli set is given by 〈XZ〉 = 〈ZX〉 = 〈YY〉 = 1,
with all other elements equal to zero (Fig. 3A).

In an idealized, dephasing-free version of the
experiment, as t increases and the qubits entangle
and disentangle, we expect the nonzero elements
of the Pauli set for the resulting state to be

〈YI〉 ¼ 〈IY 〉 ¼ cosðJ12tÞ,
〈XZ〉 ¼ 〈ZX 〉 ¼ sinðJ12tÞ,〈YY 〉 ¼ 1 ð2Þ

Dephasing due to electrical noise causes the am-
plitudes of the Pauli set to decay. However, the
two-qubit Hamiltonian (Eq. 1) includes rapid
single-qubit rotations around the S-T0 axis
(J1,J2 >> J12/2p ≈ 1 MHz) that change with t be-
cause of imperfect pulse rise times in the experi-
ment. These contribute additional single-qubit
rotations around the S-T0 axis of each qubit, not
accounted for in Eq. 2. We determined the angle
of the single-qubit rotations by performing a least-
squares analysis to find the single-qubit rotations
that map the experimental data to the expected
state without rotations (eq. S1), which is a mod-
ified form of Eq. 2 that accounts for dephasing.
The decays due to dephasing were fit by calcu-
lating r(t) in the presence of noise on J1 and J2,
which leads to decay of certain terms in the den-
sity matrix (25, 26). For the present case, where
J12 << J1, J2, we neglected the two-qubit de-

phasing, which is smaller than single-qubit de-
phasings by a factor of J1/J12, J2/J12 ≈ 300, and
we extracted a separate dephasing time for each
individual qubit. We removed the single-qubit
rotations numerically to simplify the presentation
of the data (Fig. 3E). The extracted angles exhibit
a smooth monotonic behavior that is consistent
with their underlying origin (fig. S5).

In the absence of dephasing, wewould expect
the Bell state fidelity to oscillate between 0.5 for
an unentangled state and 1 for an entangled state
as a function of t. This oscillation is caused by
the phase accumulated by a CPhase gate between
the two qubits. However, the qubits dephase as
the state becomes increasingly mixed, and the
amplitude of the oscillation decays to 0.25. In-
deed, the following behavior is observed (Fig.
2B): For very short t, there is very little dephas-
ing present, and the qubits are not entangled. As
t increases, the Bell state fidelity increases as the
qubits entangle, reaching a maximum value of
0.72 at t = 140 ns. As t is increased further, we

continue to see oscillations in the Bell state fi-
delity, but because of dephasing, they do not
again rise above 0.5.

Figure 2C shows these oscillations in Bell
state fidelity as a function of t for several dif-
ferent values of J as e is changed symmetrically
in the two qubits. We see that as the value of J
increases in the two qubits, the time required to
produce a maximally entangled state, tent, de-
creases, but the maximum attainable fidelity is
approximately constant. This is consistent with the
theory that J12 º ∂J1/∂ e1 · ∂J2/∂ e2 º J1 · J2.

To further understand the evolution of the
quantum state, we focused on one value of J and
compared the measured Pauli set to that expected
from single-qubit dephasing rates and J12 (eq. S1).
Figure 3A shows the Pauli set for the measured
and expected quantum states for t = 40 ns, which
shows three large bars in the 〈YI〉, 〈IY〉, and 〈YY〉
components of the Pauli set. This is a nearly
unentangled state. At t = 140 ns, we seeweight in
the 〈XZ〉, 〈ZX〉, and 〈YY〉 components of the Pauli
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set (Fig. 3B), andwe extracted a Bell state fidelity
of 0.72, which demonstrates the production of an
entangled state. For t = tent = p

ð2J12Þ = 160 ns (Fig.
3C), we see a similar state to t = 140 ns, but with
less weight in the single-qubit components of the
Pauli set. This state corresponds to the intended
CPhase of p, although the fidelity is slightly
lower than at t = 140 ns due to additional
decoherence. Finally, at t = p/J12 = 320 ns (Fig.
3D), where we expect the state to be unentangled,
we again see large weight in the 〈YI〉, 〈IY〉, and
〈YY 〉 components of the Pauli set, although the
bars are shorter than the Pauli set for t = 40 ns
because of dephasing of the qubits. We plotted
the entire Pauli set as a function of time (Fig. 3E),
which clearly shows the predicted oscillation
(Eq. 2) between 〈YI〉,〈IY〉 and 〈XZ〉,〈ZX〉, with
decays due to decoherence.

The two-qubit gate that we have demon-
strated is an important step toward establishing a
scalable architecture for quantum information
processing in S-T0 qubits. Although a Bell state
fidelity of 0.72 is not as high as what has been
reported in other solid state implementations of
qubits (21, 27), there are easily implemented im-
provements to this two-qubit gate. State fidelity is
lost to dephasing from electrical noise, and de-
creasing the ratio tent/T2

echo, where T2
echo is the

single-qubit coherence time with an echo pulse,
is therefore paramount to generating high-fidelity
Bell states. Large improvements can be made by
introducing an electrostatic coupler between the
two qubits (28) to increase the two-qubit cou-

pling (J12) and reduce tent. We estimate that in the
absence of other losses, if an electrostatic coupler
were used, a Bell state with fidelity exceeding
90% could be produced. Other improvements can
be made by studying the origins and properties of
the charge noise that dephases the qubit and
mitigating its adverse effects in order to increase
T2

echo. This would allow future tests of complex
quantum operations, including quantum algorithms
and quantum error correction. Finally, the addition
of electrostatic couplers would allow the qubits to
be spacially separated and is a path toward im-
plementing surface codes for quantum computation.
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Topological Transitions in Metamaterials
Harish N. S. Krishnamoorthy,1,2* Zubin Jacob,3* Evgenii Narimanov,4

Ilona Kretzschmar,5 Vinod M. Menon1,2†

Light-matter interactions can be controlled by manipulating the photonic environment. We
uncovered an optical topological transition in strongly anisotropic metamaterials that results in
a dramatic increase in the photon density of states—an effect that can be used to engineer this
interaction. We describe a transition in the topology of the iso-frequency surface from a closed
ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that
this topological transition manifests itself in increased rates of spontaneous emission of emitters
positioned near the metamaterial. Altering the topology of the iso-frequency surface by using
metamaterials provides a fundamentally new route to manipulating light-matter interactions.

Metamaterials are artificial media in
which the subwavelength features of
the designed unit cells and coupling

between them governs the macroscopic electro-

magnetic properties (1). This control over mate-
rial parameters has led to new applications (2–4)
and also the ability to mimic and study physical
processes, which is difficult by other methods
(5–7). One specific design freedom afforded by
metamaterials is the control over the iso-frequency
surface, the surface of allowed wavevectors at
constant frequency (8, 9). The topology of this
surface governs wave dynamics inside a medium.

The ideas of mathematical topology play an
important role in many aspects of modern phys-
ics, from phase transitions to field theory to non-
linear dynamics (10, 11). An important example
of this is the Lifshitz transition (12), in which the
transformation of the Fermi surface of a metal

from a closed to an open geometry (because of,
for example, external pressure) leads to a dra-
matic effect on the electron magneto-transport
(13). In optics, the role of the Fermi surface is
played by the optical iso-frequency surface
wðk→Þ ¼ const, which can be engineered by tai-
loring the dielectric tensor, e

↔ðr→Þ. We use this to
demonstrate the optical equivalent of the “Lifshitz
transition”—the optical topological transition (OTT)
in which the very nature of the electromagnetic
radiation in the metamaterial undergoes a drastic
change. Effects on the kinetic and thermodynamic
properties, such as the dynamics of propagating
waves supported by the system and the electro-
magnetic energy density, respectively, are modi-
fied at the transition point and can be probed by
following the light-metamaterial interaction using
a quantum emitter.

We considered a metamaterial structure that
has a uniaxial form of the dielectric tensor e

↔ðr→Þ ¼
diagðexx, eyy, ezzÞ, where exx ¼ eyy ¼ e∥and ezz ¼
e⊥. The iso-frequency surface for the extraordi-
nary (TM-polarized) waves propagating in such
a strongly anisotropic metamaterial is given by

k2x þ k2y
e⊥

þ k2z
e∥

¼ w2

c2
ð1Þ

Closed iso-frequency surfaces differing from a
simple sphere (such as an ellipsoid) can occur
in these metamaterials when e∥,e⊥ > 0 and
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