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AB INITIO EFFECTIVE CORE POTENTIALS INCLUDING RELATIVISTIC EFFECTS.
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The first ab initio procedure for the treatment of spin—orbit coupling in molecules based on the use of relativistic effec-
tive potentials derived from Dirac—Fock atomic wavefunctions is presented. A rigorous definition for the spin—orbit opera-
tor is given and its use in molecular calculations discussed.

1. Introduction

The inclusion of relativistic effects in electronic structure calculations for molecules containing heavy elements
has recently received a great deal of attention [1—18]. Inasmuch as relativistic corrections are predominantly core
effects, the effective potential (EP) scheme [19] offers a particularly simple approach to the inclusion of relativis-
tic effects with (at least in principle) remarkably little loss in accuracy [20]. Pitzer and co-workers [7—13] have
developed EPs which are derived from atomic Dirac—Fock wavefunctions [21] and include explicitly the relativis-
tic corrections as given by the Dirac formalism [22]. This EP procedure greatly reduces the difficulties associated
with the large number of core electrons and at the same time eliminates the need to treat explicitly (at least in
molecular calculations) the small components of the Dirac wavefunction. The relativistic and core effects (includ-
ing the non-negligible two-electron contributions) appear in the form of a one-electron operator which is added to
the Schrodinger equation for the valence electrons.

Although these methods have been successfully employed in the study of very heavy molecular systems, the ex-
plicit inclusion of the spin—orbit effects makes such calculations difficult. Furthermore, for the somewhat lighter
elements such as Xe, Kr, etc._, the spin—orbit term is probably small enough that it can be adequately treated as a
perturbation following an initial SCF or CI calculation.

For the above reasons most workers [5—9. 14, 16—18] have opted to eliminate together the spin—orbit terms
from the effective potential. This is done either by deriving the EPs using atomic states from which the spin—orbit
splitting has been averaged out [16,18] or averaging the fully relativistic EPs themselves [7—9] to obtain a spin
averaged relativistic effective potential (AREP). With AREPs molecular calculations can be carried out using
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standard non-relativistic formalisms. The spin—orbit correction is then added as a perturbation. In practice this
has been done either by semi-empirically estimating the spin—orbit matrix elements which couple the various
L—S type molecular states |[7—9] or else the matrix elements are evaluated using some convenient spin—orbit
operator {4] suchas Z e&/r where the adjustable parameter zf s chosen to reproduce the atomic splittings.

The above procedures, though possibly inadequate for the heaviest elements [13], provide a particularly con-
venient technique for treating molecules containing somewhat lighter atoms. Unfortunately, selecting matrix ele-
ments semi-empirically becomes difficult if not impossible if very many states are involved. Furthermore, the
form of the operator, Z eﬁ/r3 , though justifiable in terms of atomic all-electron calculations, may be seriously in-
appropriate for calculations involving pseudo-orbitals whose behavior in the heavily weighted core region differs
dramatically from that of the original atomic orbitals or spinors from which they were derived [19,20]. In fact,
at first inspection it is not obvious how one would go about defining, ab initio, a spin—orbit operator for such
applications. Thus, until now there has been no alternative to the semi-empirical procedures discussed above.

In section 2 we propose the first ab initio procedure by which a spin—orbit operator appropriate for use in
molecular effective potential calculations may be rigorously determined and we discuss its use in molecular cal-
culations.

2. Formal procedure

The effective potentials of Pitzer and co-workers [7—13] (and also of Hafner and Schwarz [15]) may be written
in the general form

L I+— 7
UREP = UFR () + 24 %3 5, [ - U@ 2 Um)jml, (1)
Lo =

where the U,m(r) are the EPs derived from individual pseudospinors with angular quantum numbers/ and j. For
the “re31dua1” potential, ULJ (7), L is ideally chosen to be at least one greater than the hlghest angular quantum
number for the core electrons. The projection operators on the right ensure that the U operate only on spinors
of the proper angular symmetry. Previous work has shown that, when the Uj; are properly defined in terms of all-
electron atomic wavefunctions, the effective potential formalism is capable ot reproducing molecular all-electron
calculations to a high degree of reliability . Unfortunately, to date, calculations using the full potential of eq. (1)
have been limited to single-configuration SCF [11] or relatively simple MC SCF [12,13] calculatlons Whenever
large-scale configuration interaction has been included, the spin—orbit effects implicit in UREP were first averaged
out resulting in an averaged relativistic effective potential, UAREP , of the form

L z
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where the UfREP are defined as
UPRER() = 22+ D URER o) + (1 + 1) URE O], €)

and the projector on the right is now defined in terms of orbitals with the usual angular quantum numbers, / and
m. The effective potential operator, UAREP therefore includes all relativistic effects except for spin—orbit. This
potential can therefore be added to the usual non-relativistic hamiltonian and molecular calculations, including
configuration interaction, carried out in the non-relativistic formalism. The UAREF 4 Pitzer and co-workers
[7—91 (or of Hafner and Schwarz [15]) is then roughly equivalent to the “relativistic”” EPs of refs. [16,18] where
the spin—orbit effects were averaged out prior to determining the EPs.
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From the above discussion it is clear that the spin—orbit operator agpropriate for use with molecular pseudo-
orbitals can be defined simply as the difference of the U/ REP anq pAREP y

H® = UREP _ UAREP = UEJEP(I‘) . UQREP(Y)
L I+: i
+27 27, 25 [UFER0) - UPRER() — URFR () + URRER ()] jm)jrm . @
=0 j=|l-31 m=—y
Note that the projection operators of eq. (2) have been expanded in terms of the corresponding operators for two-
component spinors in order to combine terms with eq. (1). With increase in/ the difference between the effective
potentials forj =1+ £ from that forj =7 — § decreases rapidly. Thus the difference UEIEP(?') - UﬁREP(r) in most

cases will be very srnall and can be neglected. If we also introduce the relationship of eq. (3), we obtain as an ex-
cellent approximation

L-1 -3
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= RE A A — 1 1
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The matrix elements of H with respect to the atomic orbital basis set will have the form,
ng'(prpg) = <XpPr§Hm i:\(qps), @

where the x are spatial basis functions and the Pauli spinors p define the « and § spins of the electron such that
p=a= (g) orp;=8= (g)_ The matrix elements of > between the various L—S type states for a given molecule
can then be obtained as an expansion over one-electron integrals employing the various CI, MO, and spin symmetry
coefficients. An outline of this procedure follows.

The hamiltonian matrix element corresponding to the L-S states that correlate to the same M atomic asymp-
totesn,m=1, 2, ... M is defined by

Hy, =8, | HP,,), (8)

where ¥; is the CI wavefunction in L-S coupling. This is then expressed in terms of the sum of Slater determi-
nants, D;, with the appropriate CI coefficients C/' and individual Slater determinant coefficients a‘,’ that define the
spin eigenfunctions in —S$ coupling,

HY, = ; ;.D creyr 2 ;)a{a;'w, [H®1D). ©)
1 4

Substitution for the Slater determinants using the fact that ™ is a one-electron operator together with the
properties of the antisymmetrizer gives
np 2np
e S Pl J i pi, S0
Hym = IE%—) Crcy ?};—)"faj % s Tl [ Oppi L 190D, (10)

where ¢,.p;. is a one-electron molecular spin orbital (g, is either « or 8 depending on the electron configuration),
f% is the occupation number of 94.0; In determinant D;, and the sums on the one-electron spin orbitals go to 2n
to include both « and 8 spins. n, is the number of spatial orbitals. The integrals in eq. (10) can be obtained by a
straightforward transformation of the integrals from eq. (7) using the molecular orbital expansion coefficients.
Although (10) is formally identical to standard configuration-interaction property expansions, the limits for
the k and I summations are now 2ny, rather than ny, as is typical in CI programs. Furthermore, the integrals on the
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right may be complex. Except for the now rigorous definition of the spin—orbit operator and our inclusion of
two-center integrals, the matrix constructed from the above elements is of a form similar to that used by Hay et
al. [6]. Diagonalization of H® will yield the appropriate energies and coupling vectors for the desired manifold
of spin—orbit states in the co—c coupling framework. It is also noted that this general development in terms of
CI wavefunctions can be used to treat the special cases of MC SCF or SCF wavefunctions. Thus.correlation and
spin—orbit phenomena can be considered separately or simultaneously at varied levels of approximation.

3. Concluding remarks

Understanding the chemistry of molecules comprised of heavy atoms is inexorably bound to the proper in-
clusion of spin—orbit and other relativistic effects in the molecular wavefunctions. The operator proposed above
is to our knowledge the only ab initio spin—orbit operator rigorously applicable to effective potential calculations.
At the same time, being in the form of a one-electron operator, it circumvents the necessity for the costly large-
scale calculations required when the full microscopic spin—orbit hamiltonian is retained. The present ab initio ap-
proach thus emerges as a promising alternative to the existing procedures.

Applications to the homonuclear inert-gas excimer systems are among the initial objectives owing to the wide-
spread interest in our earlier, limited accuracy SCF calculations on the Xe3 states [7] in which one of the empiri-
cal approaches for the inclusion of spin—orbit coupling was employed. Calculations on molecules where the bond-
ing interactions are significantly stronger are also planned to investigate the dependence of molecular spin—orbit
coupling as a function of internuclear distance.
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