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Abstract

The Boltzmann machine (BM) for travelling salesman problem is considered. The BM
modification having only the distance connections between neurons and using the "column replacement"
rule is proposed. Computer simulation results are presented. The optoelectronic hardware of this BM is
discussed.

lIntroduction

The improvement of traditional methods for solving NP-complete combinatorial opthnization
problems has been successfully made over the past 30 years. Now these approaches have exhausted
substantially, because non-traditional methods using parallel computing have attracted much attention lately.

It was J. Hopfield who showed how a feedback neural network could be used for solving optimization
problems [11, in particular the travelling salesman problem (TSP) [2J. Later on, the stochastic "simulated
annealing" method [3] was added to Hopfield's approach and the BM was proposed by D.Acldey,
G.Hinton and T.Sejnowski [4].

The BM was originaliy used in creating associative memoiy or classifier. E.Aarts and J. Korst
argued that computer architectures based on BM may also provide computational power required for canying
out the complex calculations imposed by e. g. combinatorial search and combinatorial optimization [5]. The
approach is based on the observation that the structure of many combinatorial optimization problems can be
mapped directly onto the structure of the connections between the BM computer units.

It should be noted that the BM has a massively parallel architecture so the solution process is the
fastest if multi processor computer systems are used. Among such systems the neurocomputer and the optical
neurocomputer hardware are more attractive. In this paper we discuss the modification of BM for TSP and
its optoelectronic implementation.

2. Boltzmann machine

The BM being one of the neural paradigms is a connectionist model in which the information is
represented as strengths of connections between individual computing units. The BM consists of a network of
simple computing units (neurons) having two discrete states, viz. "1" and "0". The neurons are connected in
some way and have effect on states of each other. The neurons try to reach a maximum consensus as to their
individual states. A stochastic mechanism controls state transitions of neurons.
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Let the BM consists of N neurons V linked by connections S . The energy of the system is

defined as

E=SJ'V,. (1)

The energy variation Ek due to a transition of neuron k V — V, is:

k +S). (2)

The probability oftransition is:

P=1/(1+e_'T), (3)

where parameter T denotes the temperature of the system. To achieve the global or near glObal energy
minimum the simulated annealing algorithm is applied with a temperature starting from some high value and
decreasing sufficiently slowly, so that the system reaches thermal equilibrium at each temperature.

3. Travelling salesman problem

The TSP is a famous combinatorial optimization problem that has attracted much attention over the
years. It can be formulated as follows. Let N be the number of cities and {d(,) be the distance matrix whose

entries d denote the length of the shortest path from city I to cityj. Then TSP is the problem of finding a

tour of minimal length, visiting each of the N cities exactly once.

Let binary variable x, 1 or 0 indicates whether or not the tour visits city I at p4h position. The TSP
is formulated as:

minimize F = ajj,qxxjq. (4)
i,j,p,q

subject to =1, p 1, ..., N, (5)

(6)

where a = if q =(p+1)nxxlN (7)
ypq ( () otherwise

i.e. d only contributes to the cost function if the tour goes directly from city ito cityj.

4. TSP on a Boltzmann machine

The approach to use a BM for solving TSP is based [5]:
a structure of a BM is chosen such that an instance of the TSP can be directly mapped on to this

structure;
the energy of the BM represents the cost function (tour length) in the TSP.
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Let the 2-D arrangement of binary neurons V,,, be used to define the variables x, .Let S(V,, ,Vjq)
be the strength of the connection between V,,, and V neurons. The energy of the system is defined in
accordance with the equation (1).

E = • (8)
i,j,p,q

Consider the structure of BM for TSP in detail. The state of neuron V, denotes whether or not the tour
visits city I at p position. The state matrix (V,) determining one of possible configurations of neuron states
is shown in Fig.1.

0100
0010
0001
1000

Fig. 1. The state matrix detennining the tour configuration.

Aarts and Korst use tree types ofconnections [5]:
distance connections for q = (p+1)modN;

- inhibitoiyconnections for (1 =jrp (1 j p =
- bias connections for i =j p = q.

The distance connections link only neurons determining the visit of two cities when the tour directly goes to
one city from another one. The strength of distance connection between neurons V,, and Vjq S CU3i to the
distance between cities I and j. The inhibitoty connections connect all neurons of the same row or column of
the state matrix. These connections prevent from visiting eveiy city more than one time and visiting some
cities at the same position in tour. The bias connections link eveiy neuron with itself and cause visiting eveiy
city.

The inhibitozy connections contribute inversely to the bias connections. They should be chosen such
that local minima of system energy are corresponded only with the BM's configurations in which evezy row
and column of the state matrix contains exactly one unity. We will call such BM's configurations as tour
configurations. All the other configurations where the number of nonzero neuron states in each row (or
column) is excess of or less than one are unstable, and the system tends to evolve to a tour configuration.

The process of the BM convergence to a configuration with global ( or near global ) energy
minimum appears to be strongly dependent on the strengths of the inhibitoiy and bias connections. Computer
simulations show that the system can reach a tour configuration only when operating in the serial mode. In
the parallel mode, the BM slides down to a non-controllable process of updating states of several neurons
whose number grows, so that the process finally involves eveiy neuron. This can be avoided by reducing the
number of neurons that can be simultaneously switched over and increasing the strengths of the inhibitory and
bias connections as compared to the strengths of the distance connections. On the one hand, this produces a
positive effect: evolution of neuron states always results in tour configurations. However, as the distance
connection strengths contribute less to the system energy, the difference between energy minima
corresponding to tours of different length vanishes. The global minimum slightly differs from other local
minima, and the algorithm for finding the shortest tour becomes low- effective.
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5. The Boltzmann machine with "column replacement"

To avoid the above disadvantages we propose to modify BM:
. removing the inhibitoiy and bias connections;

using the "column replacement" rule to update the state matrix leading to transition offour neurons
ia parallel. It should be noted that new tour configuration ofBM can be Obtained by exchanging two columns
(or rows) ofthe state matrix {V,,,} . It results in changing the states of four neurons. In our modification only

the distance connections exist ,so the energy of the system is defined as:

E = . (9)
i.j,p

Theenergy change due to transition of one neuron V is:

&EkT dJk(r-I + 'r+i)r . (10)
jk

Because +1 or 4 define the action force driving the state of neuron V,,.

F =djk(VjrI +Vr+i). (11)

Let two columns r and s mustbe exchanged. Assume that in the initial moment V and V are on.
After rearrangement of columns rand s, these neurons will be off and neurons V and V, will be on.
The action force driving the states of four neurons is:

F,, = (Fmr Fjcr + Fk -Fm). (12)

The probability of setting neuron V,, and V,3 to 1 is:

P=exp(—F,/T). (13)

6Simulation results

We have carried computer simulations of the our BM modification for different problem instances,
i.e. with 10, 20, 30 cities. Simulations were implemented on PC386 computer. The parameters of cooling
schedule for TSP with 30 cities were follows:

the initial temperature is T0 = 15;
- the temperature decreasing rule T = To0.999? , wheren is the number of iteration.

Fig.2 shows the tour of shortest length obtained by computer simulations. The average number of column
replacements were 285187. The worthiest tour bad length of 149.3 while the length of the best determined
tour was 134.3. Thus the relative difference in tour lengths was about 11%. This is good result because the
cooling was not slow enough.
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Fig.2. The best tour determined by computer simulations.

7. Optical implementation

Below we discuss the practical implementation of the BM algorithm using parallel computing
structures. These veiy structures can provide for the fastest computing speed. The need in parallel operations
arises as soon as the energy increment is computed due to a transition ofthe state ofthe neuron V,,,.
Introduce a modified matrix (V,,) determining for the p-th position of visiting the ith town, the
previous (p-1)th and next (p±1)th positions.

.v; +v;+1. (14)

Fig.3 shows the matrix (V,) corresponding to the state matrix (V,,j. Using (14) transform the expression
(11) to determine the action forceF,

1010
0101
1010
0101

Fig.3. The modified state matrix

F;,=dflJ';; . (15)

These computations can be effectively performed by means of a vector-matrix multiplier depicted in
Fig.4. Here a linear array of light emitters LMA forms optical signals V,, corresponding to the p4h matrix

column (Vj. By using an anamorphic lens system (omitted for the sake of simplicity) light beams are
smeared in the horizontal plane and come to a spatial light modulator SLM that sets the distance matrix 4

Then, the beams passed through the SLM cells and attenuated in accordance with the d1, values are collected
by another anamorphic lens system (too, omitted in the figure for simplicity) in the vertical plane, and come to
the PDA. In the result, electric signals are formed at the outputs of the PDA cells, corresponding to F1.

In our algorithm, the above-described operation should be performed for two columns r ands and the
state matrix. The simplest solutions is either to double the device shown in Fig.4, or to perform these
operations sequentially. However, the first assumes two identical SLMs, which is not only advisable, but also
problematic. The second increases the time of computing twice, which is quite undesirable.
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LMA

Fig.5. The optoelectromc implementation of BM for TSP.
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Fig.4. The scheme of the vector-matrix multiplier.
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To multiply simultaneously two vectors by the same matrix, we propose to use the polarization
properties of the light, as described in [6J. Fig.5 shows illustrates the optoelectronic multiplier scheme that
computes the possible energy increment due to exchange ofany two state matrix columns. Two light polarizing
modulators PLMA1 and PLMA2 form optical signals of orthogonal polarization, which correspond to the
values of two columns V, and V of the modified state matrix. As in the previous scheme, beams of each
modulator pass through the SLM, but they are collected on two linear photodector arrays PDA1 and PDA2.
This is achieved by using a polarising beam splitter (PS), e.g. Wollaston prism placed after the SLM. The
output signals of the PDAS Fr and P' are parity subtracted and go to the control unit (CU). The CU
computes the action force F,. driving the arrangement of columns r and s in accordance with the equation
(1 1). This can be readily implemented by electronic methods, so not to encumber the explanation by secondaiy
details, we will omit the CU scheme and, instead, confine ourselves by description of its functions. The control
unit forms the vector signals Yr fld Vs for controlling the PLMA1 and PLM.A2, computes the action force
and determines the probability of column replacement .Depending on the result, the columns rand s of the

state matrix (Vip I are either exchanged or not. To select randomly the columns rands, as well as generate
the random value for performing stochastic process, a random number generator is used, implemented by
software.

8. Conclusion

We have proposed an improved version ofthe Boltzmann Machine as applied for solving the TSP and
its optoelectronic implementation. This BM operates in a series-parallel mode. We sequentially exchange the
state matrix columns, 2N neurons exchanging the states. In fact, only four neurons can change their states.
The parallelism can be augmented. When two columns are exchanged, the energy of the system is affected, in
the general case, by four others columns, two by each of the columns to be exchanged. Hence, N/6 column
pairs can be exchanged in one clock, i.e. one third of the neurons will be used. This is the highest parallelism
which is possible.
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