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The electronic properties of graphene, a two-dimensional crystal of carbon
atoms, are exceptionally novel. For instance, the low-energy quasiparticles
in graphene behave as massless chiral Dirac fermions which has led to the
experimental observation of many interesting effects similar to those
predicted in the relativistic regime. Graphene also has immense potential to
be a key ingredient of new devices, such as single molecule gas sensors,
ballistic transistors and spintronic devices. Bilayer graphene, which consists
of two stacked monolayers and where the quasiparticles are massive chiral
fermions, has a quadratic low-energy band structure which generates very
different scattering properties from those of the monolayer. It also presents
the unique property that a tunable band gap can be opened and controlled
easily by a top gate. These properties have made bilayer graphene a subject
of intense interest. In this review, we provide an in-depth description of the
physics of monolayer and bilayer graphene from a theorist’s perspective.
We discuss the physical properties of graphene in an external magnetic
field, reflecting the chiral nature of the quasiparticles near the Dirac point
with a Landau level at zero energy. We address the unique integer quantum
Hall effects, the role of electron correlations, and the recent observation
of the fractional quantum Hall effect in the monolayer graphene. The
quantum Hall effect in bilayer graphene is fundamentally different from
that of a monolayer, reflecting the unique band structure of this system.
The theory of transport in the absence of an external magnetic field is
discussed in detail, along with the role of disorder studied in various
theoretical models. Recent experminental observations of a metal-insulator
transition in hydrogenated graphene is discussed in terms of a self-
consistent theory and compared with related numerical simulations. We
highlight the differences and similarities between monolayer and bilayer
graphene, and focus on thermodynamic properties such as the compress-
ibility, the plasmon spectra, the weak localization correction, quantum Hall
effect and optical properties. Confinement of electrons in graphene is non-
trivial due to Klein tunnelling. We review various theoretical and
experimental studies of quantum confined structures made from graphene.
The band structure of graphene nanoribbons and the role of the sublattice
symmetry, edge geometry and the size of the nanoribbon on the electronic
and magnetic properties are very active areas of research, and a detailed
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review of these topics is presented. Also, the effects of substrate interac-
tions, adsorbed atoms, lattice defects and doping on the band structure of
finite-sized graphene systems are discussed. We also include a brief
description of graphane — gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.

Keywords: monolayer graphene; bilayer graphene; Dirac fermions; quan-
tum Hall effect; electron-electron interaction; plasmon dispersion; zero-
field transport; metal-insulator transition; quantum dots; graphene
nanoribbons; edge-states; graphane
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1. Introduction

Everything about graphite involves a mix of the very old and very young. Known to
man since ancient times (ca 1500CE), graphite is as ubiquitous as the /ead in a pencil,
and yet the subject of our current review, graphene, being a single atomic layer
of graphite, was isolated only in 2004! That discovery marked the beginning of the
academic equivalent of a gold rush which has become a major topic of research for the
condensed matter and materials physics community, along with chemists, electrical
engineers and device specialists. Several thousand papers have been written in the past
couple of years that have attempted to explain every aspect of the electronic properties
of graphene. There are review articles, long and short (see, e.g. [1-5]), special journal
issues [6] and popular magazine articles (see, e.g. [7]). This development at “Mozartian
speed’ is primarily due to the fact that a two-dimensional system of electrons in
graphene behaves rather uniquely as compared to its counterpart in semiconductor
systems. In fact, many of the fundamental properties of graphene that were crucial for
the present developments were already reported in the early part of the past century,
merely waiting to be confirmed experimentally until now.

In graphene, one finds a new class of low-dimensional system, only one atom
thick, with vast potential for applications in future nanotechnology. Our review is
organized as follows. In this section, we introduce graphene by describing its crystal
structure, and discussing its band structure via the frequently-used tight-binding
model. We also discuss the low-energy properties of this material, and in particular
we focus on the linear (Dirac-like) nature of the energy dispersion near the edges of
the Brillouin zone, and on the chiral nature of the low-energy electrons. We also
briefly discuss fabrication techniques for graphene, and whet the appetite for study
of this material by describing some of the devices utilizing the unique properties of
graphene which have already been created in the laboratory.

Section 2 deals with the quantum Hall effect, i.e. quantization of Hall
conductance as a function of the magnetic field or the electron density, that was
initially discovered in conventional non-relativistic two-dimensional electron sys-
tems. The effect is a direct manifestation of the Landau quantization of electron
dynamics. An electron system in graphene, being a two-dimensional system, also
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shows Landau quantization of electron motion and the corresponding quantum
Hall effect, which has been observed experimentally. The relativistic massless nature
of the energy dispersion law in graphene results in striking differences between the
quantum Hall effect observed in graphene and in conventional two-dimensional
systems. In graphene, the quantum Hall effect can be observed even at room
temperature, while in non-relativistic systems it is observable only at low temper-
atures. The quantized Hall effect in graphene occurs not at integer values as in the
conventional Hall effect, but at half-integer values. Such anomalous behavior of the
quantum Hall effect is due to massless relativistic nature of the charge carrier
dispersion and the electron—hole symmetry of the system. In addition to anomalous
half-integer values of the Hall conductance, a rich structure of Hall plateaus has been
observed experimentally. This structure is associated with the lifting of valley and
spin degeneracy of the Landau levels. Different many-body mechanisms of lifting of
the degeneracy of the Landau levels have been proposed in the literature. These
mechanisms are reviewed in detail. The specific features of the many-particle
excitations of the quantum Hall states, the fractional quantum Hall effect in
graphene and the unique structure of the quantum Hall state edge states are also
discussed in this article.

In Section 3, we discuss specific aspects of bilayer graphene, and try to highlight
the similarities and differences between this and the monolayer material. We
introduce experimental techniques for distinguishing the number of layers in a
graphene flake. We present the tight-binding formalism in order to derive the
quadratic low-energy spectrum, and to discuss the influence of trigonal warping
and the formation of a band gap. We describe the quantum Hall effect and the
formation of the zero-energy level with doubled degeneracy, which is unique to this
system. The interactions between electrons are fascinating in this material,
and several properties are distinct from both the monolayer and traditional two-
dimensional electron systems, and we describe the formation of spin-polarized
and other ordered states. The interactions between electrons and phonons are also
important (e.g. in the context of Raman scattering experiments), so we briefly
describe the phonon anomalies and the electron—phonon interaction. Lastly, we
review some of the proposals for devices which utilize bilayer graphene in their
design.

Electronic properties that are intimately related to electron—electron interactions,
namely, the compressibility and plasmon dispersion in a two-dimensional electron
gas shows unique behavior in graphene. The compressibility of a two-dimensional
electron gas is an important physical quantity which can be deduced from the ground
state energy. It provides important information about the electron correlations,
the chemical potential, the stability of the system, and so on. In Section 4, we discuss
the unique behavior of the electron compressibility in monolayer and bilayer
graphene. In that section, we also describe the excitation spectra of graphene in the
presence of the spin—orbit interaction (SOI) within the random-phase approximation
(RPA). The SOI opens a gap between the valence and conduction bands and between
the intraband and inter-band electron—hole excitation continuum (EHC) of the
semimetal Dirac system. As a result, one sees a dramatic change in the long-
wavelength dielectric function of the system. An undamped plasmon mode appears
in the EHC gap reflecting the interplay between the intraband and interband electron
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correlations. In undoped bilayer graphene, the static screening effect is anisotropic
and much stronger than that in monolayer graphene. The dynamic screening shows
the properties of a Dirac gas in the low-frequency limit and of Fermi gas in the
high-frequency limit. A similar transition from the Dirac gas to the Fermi gas is also
observed in the plasmon spectrum. In doped bilayer graphene, the plasmon spectrum
is quite similar to that of Fermi gas for momentum less than half the Fermi
momentum while becoming softer at higher momentum. We close this section with
a discussion of the properties of graphene in a strong external electromagnetic field
(EMF). The possibility of inducing valley-polarized currents by irradiating gapped
bilayer graphene is described.

In Section 5, we review the transport behavior of monolayer and bilayer graphene
in the absence of an external magnetic field, focusing on properties in the vicinity of
the charge neutrality points. Beginning with the classical Boltzmann approach, we
compare the latter with the more general linear-response (Kubo) approach. The
effect of electron—electron and electron—phonon interactions as well as the effect of
different types of disorder are discussed. Of all these effects, disorder seems to be the
most important. We present and compare several schemes of approximation:
perturbation theory, self-consistent and saddle-point approximations and numerical
simulations. Finally, the properties of a random gap and a related metal-insulator
transition are investigated.

Quantum dots (QDs) or artificial atoms [8,9] are crucial building blocks in many
nanoscale semiconductor applications. Their unique properties, such as superior
transport and tunable optical spectra, originate from their zero dimensionality,
which results in discrete energy spectra and sharp density of states. In conventional
‘non-relativistic’ semiconductor systems, the natural way to realize nanoscale QDs is
through a confinement potential or as nanoscale islands of semiconductor material.
In both cases the QDs have discrete energy spectra and electrons are localized within
the QD regions. In graphene, the massless relativistic nature of the dispersion law
results in unique properties of graphene QDs. That is, the above two approaches of
the realization of QDs have very different outcomes in graphene. While the QDs as
isolated islands of graphene have been successfully realized experimentally and have
all the properties of zero-dimensional systems with discrete energy spectra, the
conventional QDs realized through the confinement potential do not exist in
graphene. This is due to Klein’s tunnelling, which provides an efficient escape
channel from a confinement potential of any strength. Therefore electrons in
graphene cannot be localized by a confinement potential. Different approaches have
been proposed to overcome this problem: generation of an electron effective mass
through interaction with a substrate, introducing a confinement potential in a
double-layer system, in which electrons have non-zero mass under applied gate
voltage, or considering special types of confinement potentials, e.g. smooth
cylindrically symmetric potentials, for which not the problem of localization but
the problem of efficient electron trapping is discussed. In Section 6, we review
different approaches to overcome the Klein’s tunnelling and realize graphene QDs
through a confinement potential. Even for QDs realized as islands of materials, the
graphene islands show some unique properties. Although the main manifestations of
a two-dimensional quantization, such as the Coulomb blockade and discrete energy
spectra, are observed in experiments, the graphene nanoscale islands show specific



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

Advances in Physics 267

features. Such features are degenerate zero-energy edge states with unique magnetic
properties, specific energy level statistics related to the Dirac billiard and so on.
These special properties of nanoscale graphene islands are also discussed. Finally, we
also present a brief review of QDs in bilayer graphene.

In Section 7, we review the band structure of graphene nanoribbons which is
known to be modified by the presence of edges where the alteration of the sp”
network due to the mixture of the sp and sp> hybridization occurs. The nature of the
zigzag edges impose localization of the electron density with the maximum at the
border carbon atoms leading to the formation of flat conduction and valence
bands near the Fermi level when the wave vector, k> 2m/3. The localized states
are spin-polarized and in the case of ordering of the electron spin along the zigzag
edges, graphene can be established in ferromagnetic or antiferromagnetic phases.
The antiferromagnetic spin ordering of the localized states at the opposite zigzag
edges breaks the sublattice symmetry of graphene that changes its band structure
and opens a gap. Because the energetics, localization and spin ordering of the
edge states can be modified by the size of graphene nanoribbon, edge geometry,
orbital hybridization at the edges and an external electric field, their influence on
the electronic and magnetic properties of graphene are discussed. Finally, we turn
to finite-sized bilayer graphene systems, e.g. nanoribbons, and describe how the
confinement and edge structures affect the properties of this system.

Graphene in the real world would interact with a substrate and the surrounding
environment. If these interactions cause an imbalance of the charge or spin
distribution between graphene sublattices or modify the graphene lattice, the
sublattice or lattice symmetry of graphene will be broken, resulting in a change of the
electronic and magnetic properties of the graphene. The edges of graphene are
chemically active and prone to structural modifications and interactions with gas
dissolved in the environment, thereby influencing the properties of graphene as well.
Therefore, in Section 8, we discuss the influence of the changes brought by the
external sources into the electronic and magnetic properties of graphene and
prospects of their manipulation in a controllable way.

1.1. A sheet of molecular chicken wire

Graphene can be considered as the building block of many carbon allotropes. It is
a two-dimensional crystal with hexagonal structure consisting of a bipartite lattice
of two triangular sublattices (Figure la). Each atom is tied to its three nearest
neighbors via strong o bonds that lie in the graphene plane with angles of 120°. The o
bond is a result of the sp> hybridization of the 2s, 2p., and 2p, orbitals for the three
valence electrons. The fourth valence electron is in the 2p. orbital that is orthogonal
to the graphene plane. A weak w bond is formed by the overlap of half-filled 2p.
orbitals with other 2p. orbitals. The transport properties of graphene are determined
by these delocalized 7 electrons.

The crystal structure of graphite consists of layers of graphene, with strong
intralayer covalent coupling and weak interlayer binding. The weak interlayer
coupling supposedly arises due to van der Waals interaction (the separation between
the adjacent layers (0.34nm) is much larger than the nearest neighbor distance



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

268 D.S.L. Abergel et al.

Figure 1. (a) Graphene lattice in real space, and (b) the corresponding reciprocal lattice.
The unit cell of graphene contains two atoms A and B. The first Brillouin zone is drawn as
shaded hexagon. The basis vectors of the direct lattice and the reciprocal lattice are a; and b,,
i=1,2, respectively. The high-symmetry points I', M and K in the Brillouin zone are also
indicated.

between two carbon atoms (a..=0.142nm)) and the particular bonding mechanism
along the direction normal to the plane. Similarly, if a graphene sheet is rolled up
along one axis, it forms a carbon nanotube and it can be formed into a ball to create
a fullerene. Due to this, graphene has long been considered a starting point for band
structure calculations of graphite [10] and carbon nanotubes, and also for the
calculation of their magnetic properties [11,12]. In what follows, we shall present a
very brief description of the band structure. A detailed description can be found, for
example in [13,14].

As mentioned above, graphene is a honeycomb lattice of carbon atoms. It is a
bipartite lattice with two sublattices A and B that are triangular Bravais
lattices (Figure la). Considering only the xy plane, the unit vectors in real
space, a; and a, and the reciprocal lattice vectors by and b, are shown in Figure 1.
The real space lattice vectors are written as

i =5(V31), @=5(v3 ),
2 2
where a = |a;| = |dy] = 0.246nm is the lattice constant. The corresponding unit
vectors in the reciprocal lattice are

- 2 (1 - 2 (1
by =" (—=.,1), bh=""A(—, -1},
: (ﬁ) ’ a(ﬁ )

with a reciprocal space lattice constant 47r/+/3a. The first Brillouin zone is a hexagon
(Figure 1b), where the corners are called the K points. The six corners form two
inequivalent groups of K points, traditionally labelled K and K'.

The energy dispersion of 7 electrons in graphene was first derived in 1947 by
Wallace [10] within the tight-binding approximation. In this case, the wave function
of graphene is a linear combination of Bloch functions for sublattice A

1 = -
Dy = —— e1/c-RA ’—;_ R i
A JN RZ o( A)
A

and an equivalent function ®p for the B sublattice. Here N is the number of unit
cells, Ra are the positions of the atom A and @(F — Rp) is the 2p. orbital of the atom
at Ra. The sum runs over all unit cells, i.e. all possible lattice vectors.
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(a) - n*Band (b)

Energy (ev)

Electrons

Figure 2. (a) Energy dispersion relation for graphene, drawn in the entire region of the
Brillouin zone. Since we ignore the coupling between the graphene sheets, the bands depend
only on k, and k,. The 7 band is completely filled and meets the totally empty 7* band
at the K points. Near these points both bands have linear dispersion as described in the text.
(b) The dispersion along the high-symmetry points TMK.

In the nearest neighbor approximation (every A site has three nearest B sites, and
vice versa), the energy eigenvalues can be obtained in a closed form [13,14]

cos—— + 4 cos® 2=

Vha  ka kyd]’
5 5 1 (1

Elky, ky) = :I:yo[l + 4 cos

where y is the transfer integral between the nearest neighbors. The energy dispersion
of two-dimensional graphene according to this formula is plotted in Figure 2(a) as a
function of the wave vector k. The upper half of the curves is called the 7* or the
anti-bonding band while the lower one is 7 or the bonding band. The two bands
degenerate at the two K points given by the reciprocal space vectors
K = (2n/a)(1/3,1/4/3) and K = (2m/a)(—1/3,1/+/3) points where the dispersion
vanishes. This is also the Fermi energy level Er in intrinsic (undoped) graphene.
There are two atoms per unit cell and hence there are two electrons per unit cell.
The lower 7w band is therefore completely filled, which leaves the upper 7* band
completely empty.

The derivation of this formula neglected the overlap integral between electron
orbitals on adjacent lattice sites. Restoring this additional parameter introduces
an electron—hole asymmetry to the 7 bands away from the K points. This is shown
in Figure 2(b) for parameters quoted in [13].

A full description of the band structure in graphene should also include the
consideration of the o bands, since they are the lowest energy bands near the center
of the Brillouin zone. However, since most transport properties of bulk graphene
are determined by the low-energy band structure near the K points, we mention them
only in passing. A description of their inclusion in the tight-binding model can be
found in [13], and the presence of these bands within first-principles calculations are
discussed in Section 7.

1.2. Massless Dirac fermions

We now describe how the tight-binding model discussed in the previous section yields
the famous massless Dirac fermions which have made the study of monolayer
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graphene so enticing. In this Section, we give a brief overview of the main points:
detailed discussion of these results will be given where appropriate in the rest of this
review. As noted above, the Fermi energy corresponds to £=0 at the K points.
The low-energy properties, corresponding to the electronic states near the Fermi
energy, can be described by expanding the energy dispersion around the K points.
Writing the graphene wave vector qg= K + k, such that |k|la < 1, one can write a
Taylor expansion of £.(g) near K which yields

Ex(k) = i?yoak = Ly ik,

where vp = V3ya/2k ~ 106 ms~! is the Fermi velocity. This velocity is independent
of the carrier density, therefore the energy dispersion corresponds to two cones
meeting at the K point (see the inset to Figure 2a) with /inear dependence on the
wave vector. The corresponding density of states is

p(E) o< |€],

i.e. the density of states is linear and vanishes at zero energy. This is a direct
consequence of the linear dispersion near K, in marked contrast to conventional
two-dimensional electron gas, where the density of states is a constant.

The unique band structure of graphene just described, brings about profound
changes in the electronic properties of the system. In the continuum limit and in the
effective-mass approximation, the Hamiltonian in the vicinity of the K point is [15]

ky — ik,

k) =
Hy (k) th(kx—i-iky 0

) = hvpo -k = —HL(K), )
where the ¢ = (0x,0,) is a vector of Pauli matrices. The Hamiltonian therefore
describes two-dimensional massless neutrinos [15] with a linear energy dispersion,
E1(k)=+tvghk. The wave functions of these relativistic-like (Dirac) particles have
a spinor structure. For the K and K’ points, they are (without normalization)

- - i0-
K _ ki S ). K _ k7 €%
\IJS’/; =¢ <e19,\j>9 "I/X’k =¢ ( s )a (3)

where s=+1 for the upper band (electrons) and —1 for the lower band (holes),
tan6; = ky/k.. The upper and lower terms correspond to the quantum mechanical
amplitudes (or pseudospin) of finding the particle on one of the two sublattices,
A and B. There is a convenient alternative representation of the graphene
Hamiltonian which allows the Hamiltonians of the two valleys to be combined
into one expression. The basis is written as {¢4, ¢} in the K valley with index £ =1,
and {¢p, ¢4} in the K’ valley with § = —1. Then, the Hamiltonian and wave functions
for either valley can be written as the 2 x 2 matrix

- 0 ke—ik i
Hé(k)zgth(kx—i—iky 0 }>; Vp=d <53> “)

Interestingly, in graphene, the pseudospin direction is associated with the
momentum of the particles. This means that the wave functions in the vicinity of the
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Figure 3. Dirac cones at the Dirac points.

K and K’ points (Dirac points) are chiral, or helical fermions. One consequence
of this is that any backscattering, i.e. scattering of particles from the wave vector k to
—k, is suppressed [16]. Particles have opposite chirality in the K or K’ valleys or
in the electron or hole bands. The energy bands in the vicinity of these Dirac points
are two cones meeting at k =0 (Figure 3). The charge carriers in graphene are usually
described as massless Dirac fermions [17]. Experimental observation of full Dirac
cone dispersion has been reported recently [18]. The transformation of electrons
in graphene to relativistic-like objects have led to many novel effects: anomalous
integer quantum Hall effect, Klein’s paradox, novel effects at the edges, etc. They are
all subjects of our present review.

1.3. How it’s made

Monolayer, bilayer and few-layer graphenes' are primarily fabricated in one of three
ways. Although this review will focus on the theoretical study of graphene, we shall
briefly describe these methods here.?

The first method is the mechanical exfoliation of single layers from a bulk
graphite sample [21,22]. Due to its weakly-bound layered structure, dry cleaving
of highly oriented pyrolytic graphite or single graphite crystals has been very
successfully utilized by Novoselov et al. to synthesize single-, double- and triple-layer
flakes up to 10 um in size. This technique (also called the Scotch tape method)
involves peeling flakes from bulk graphite using adhesive tape [21], or cleavage
by mechanical rubbing [22]. The number of layers in the resulting flakes can be
determined by optical spectroscopy and Raman spectroscopy [23] (Section 3.1).
The technical details about the preparation and characterization can be found in the
excellent review article by the pioneers of this technique [1]. Mechanically exfoliated
graphene flakes were important in determining most of the fundamental properties
of Dirac fermions that are expected in an isolated graphene plane.

Exfoliated graphene can be processed to create samples of suspended graphene
[24-26] where the monolayer flake is not in contact with a substrate. These samples
can be created either by placing a metal grid on top of exfoliated graphene [24] or
by depositing metallic electrodes [25,26] before etching away the silicon dioxide
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substrate from below the graphene. The measured electron mobility is as large
as 185,000cm®V~'s™! at 100K [26] and 230,000cm>V~'s~! at 5K [25]. This is
approximately a factor of 10 higher than the largest reported mobility in exfoliated
graphene, and matches predictions based on the measurement of phonon-induced
disorder and extrapolation from transport measurements on exfoliated graphene
samples [27].

The other main route to fabricate graphene samples has been developed by
de Heer et al. [28-31]. In this method, hexagonal silicon carbide crystals are heated
to approximately 1300°C in ultra-high vacuum which allows the Si atoms to evaporate
from the surface leaving behind a purely graphitic film. The properties of the residual
film vary depending on which face of the SiC crystal is used in the procedure. If the
SiC(0001) (silicon-terminated) face is used, high-quality graphene films are deposited
which show Dirac cones in their low-energy band structure, although interaction
between the graphene and the substrate induces n-type doping which shifts the
Fermi energy above the Dirac point. Experimental data suggests that the graphene is
covalently bound to the substrate via a buffer layer [32] which does not show
graphene-like 7 bands due to the additional strain caused by a dilated C-C bond
length in this layer [33]. In contrast, when the SiC(0001) (carbon-terminated) face is
used, the graphene is not seperated by a buffer layer, but is bound directly to the
substrate by weak dispersion forces. Also, multi-layer graphenes grown on this face
still exhibit the monolayer-like linear low-energy dispersion because the layers
show rotational disorder which minimizes the interactions between them.
Magnetospectroscopy of few-layer carbon-face epitaxial graphene [34] also showed
the Landau level dispersion characteristic of graphene monolayers. It has been
suggested that the interaction between the graphene and the SiC(0001) substrate is not
the same for the two sites in the graphene unit cell [35]. This has the effect of opening
a band gap at the Dirac points of ~0.26 ¢V, although this is still controversial as other
authors [33,36] claim that many-body effects are the cause of this gap.

Lastly, chemical vapor deposition can be utilized to grow thin graphite films
[37,38], and graphene layers [39] which may be patterned and transferred to
semiconducting or insulating substrates. In this method [40], hydrocarbon gas is
placed near a metal foil surface where the hydrocarbon molecules can be decomposed
and carbon atoms are dissolved into the metal. The foil is then allowed to cool
(at a predetermined rate) and a carbon film may be formed on the surface. This film
can be transferred to a polymer or semiconducting substrate via chemical etching [39].
Graphene monolayers grown in this way can be fully coherent over step edges in the
underlying substrate and contain few defects [41,42]. The large size of flakes
produced and accompanying high mobility (~4000cm>V~'s™!) make chemical
vapor deposition a very promising avenue for the future industrial fabrication of
graphene devices.

1.4. Graphene devices

The relatively short life of experimental research in graphene has limited the number
of proposals for devices which might utilize this material. We briefly introduce some
device concepts which have been implemented experimentally.
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Obviously, the first concept is that of the graphene field effect transistor (FET),
but as this is discussed elsewhere in this review, we do not dwell on it now. A
comprehensive report on the current state of graphene transitor devices has been
written by Lemme [43]. However, two variants do deserve to be mentioned, and they
are the high-frequency performance of graphene FETSs, and single-electron transis-
tors (SETs). Lin et al. [44] demonstrate that a graphene transistor with a gate length
of 150 nm may have peak cutoff frequency of 26 GHz, representing a significant step
towards utilizing graphene in high-frequency applications, although the authors
found the regular 1/f behavior of the gain, suggesting that graphene cannot change
the operational paradigm of these devices. Other works on high-frequency FETs
have been published by Meric et al. [45] and Moon et al. [46]. Also, Stampfer et al.
[47] fabricated a fully-tunable single electron transistor from a monolayer graphene
nanoribbon and extracted device characteristics from the observed Coulomb
diamonds. Additionally, room-temperature spin transport has been measured
through graphene transistors [48], with spin polarization to be approximately 10%.

The adsorption of gas molecules on the surface of a graphene flake changes the
Hall resistivity, and this effect has been used to develop graphene-based chemical
sensors [49]. Micrometer-sized sensors were fabricated which were sensitive to the
attaching or detaching of a single gas molecule, producing step-like changes
in the resistance. The high sensitivity is a result of the impact of the adsorption on the
electronic properties of the graphene flake, which is discussed in detail in Section 8.2.

The mechanical properties of graphene may also be employed in the creation of
devices. For example, Bunch et al. [50] have created the ‘world’s thinnest balloon’
and claim that it is impermeable to gases. They suggest that this property may be
utilized in membrane sensors for pressure changes in small volumes, as selective
barriers for filtration of gases, as a platform for imaging of graphene-fluid interfaces
and for providing a physical barrier between two phases of matter. Similarly,
Stolyarova et al. [S1] demonstrated that gaseous bubbles can be trapped between a
graphene monolayer and the surface of an SiO, substrate, and subsequently
manipulated by an AFM tip. This has the potential to be applied in ‘lab-on-a-chip’
devices.

Graphene may also be used as a novel information storage device, as suggested
by Standley et al. [52]. Retention times of over 24h, and operation over many
thousands of cycles without significant degradation of the device were reported.
Finally, the high transparency, large conductivity, high chemical and thermal
stability and good flexibility make ‘graphene window devices’ [53] a natural
candidate for solar cells and other next-generation optoelectronic devices. Blake
et al. [54] argued that graphene, with its low resistivity, high transparency and
chemical stability would offer improved durability and simpler technology for future
optoelectronic devices.

The properties of graphene are so fascinating that there are reports of attempts
to recreate many of those exotic properties in a high-mobility modulated two-
dimensional electron gas confined in an AlGaAs/GaAs quantum well [55]. The
electronic dispersion in this hexagonal superlattice is expected to be Dirac-like
with the pseudospin degree of freedom. Creation of such artificially engineered
systems has the obvious advantages over natural graphene because of the possibility
to tune the parameters. This would provide unique opportunities to study
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Dirac-fermion physics in a conventional two-dimensional electron gas confined in
semiconductor systems nanopatterned with honeycomb geometry.

The physics of graphene is a challenging and fascinating subject at the nanoscale.
Its impact is already felt both in fundamental scientific research and potential
industrial applications. From Dirac electrons in condensed matter to future
‘valleytronics’ in graphene nanodevices, graphene has unleashed limitless potential
to impact our lives as we look through the magical quantum world at the nanoscale,
a world that is not much different from an Alice-in-Wonderland world that plays by
its own rules.> We are yet to completely understand most of those rules, but we hope
that this review will help understand some.

2. Graphene in a magnetic field
2.1. Landau levels in graphene

Just as for non-relativistic particles, the motion of relativistic charges in graphene in
a strong perpendicular magnetic field is quantized, which results in discrete energy
levels (Landau levels). In a conventional electron gas (non-relativistic) Landau
quantization produces equidistant energy levels, which is due to the parabolic
dispersion law of free electrons. In graphene the electrons have relativistic dispersion
law, which strongly modifies the Landau quantization of the energy levels and the
positions of the levels.

The Landau quantization of the energy levels in graphene in a perpendicular
magnetic field has been studied [11] within the tight-binding model [56,57] and within
the effective-mass relativistic model [15,58]. The tight-binding approach is the more
fundamental one and it is valid for a wider energy range. In many applications of
graphene in a magnetic field only the low-energy processes are important, which can
be efficiently described within the effective-mass approximation.

The effective-mass Hamiltonian of a single electron in graphene in a uniform
perpendicular magnetic field has a form of a 4 x 4 matrix [15,58]

0 T, —im, 0 0
B m, +im, 0 0 0

HDiraC =V 0 0 0 . + iJTy 5 (5)
0 0 T, —im, 0

where 7 =p+ ed is the generalized momentum and A is the vector potential.
In the above expression we disregard the spin of the electron, taking into account
the fact that all energy levels obtained will have additional twofold degeneracy due to
spin. For a single electron this degeneracy can be lifted by the Zeeman interaction.

The four-component wave functions corresponding to the Hamiltonian (5) have
the form

LN
vy
wK
wK
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where \I!}§ and WX are envelope wavefunctions at A and B sites for the valley K,
and \I—"g’ and \Ilﬁ/ are envelope wavefunctions at A and B sites for the valley K’. For a
magnetic field orthogonal to the graphene layer, the vector potential can be chosen
in the Landau gauge, 4 = (0, Bx). Then the eigenfunctions of the Hamiltonian (5)
are labelled by (j, n, k). Here j =K, K’ is the valley index, which describes the valley
pseudospin, n=0, +1, £2, £3, ... is the Landau level index and k is the wave vector
along the y axis. If we take into account the electron spin then we need to multiply
the wavefunction (6) by the two-component spin function.

The Hamiltonian (5) can be easily diagonalized, which results in the discrete
Landau energy level. The energies of the Landau levels depend only on the index n
and have the following form:

g, = ha)gi““c sgn(n)y/|n|, (7

where w™¢ = /2v,./l, and [, = /hi/eB is the magnetic length. The Landau level
index, n, can be positive or negative. The positive values correspond to electrons
(conduction band), while the negative values correspond to holes (valence band).
This expression shows that, in contrast to the case of conventional 2DES, the
Landau levels in graphene are not equidistant and the largest energy separation
is between the zero and the first Landau level. The typical energy separation between
the Landau levels in graphene achieved in experiments is much larger than the
corresponding inter-level separation in normal 2D layers. For example, the energy
difference between the lowest Landau levels (=0) and the next Landau levels
(n==+£1) is AE~400 K,/B(Tesla), which for B=20 Tesla is 1800 K. In what follows,
we will see that such a large electron energy gap allows one to observe the quantum
Hall effect in graphene, even at room temperature.

The wavefunctions corresponding to the Landau levels (7) are given by the
following expressions [15,58]:

Sgn(n)(_i)¢|n|71,k

Cn . ¢ n|ﬂk
WK, = —Zexp(—iky) | , ®)
VL 0
0
for valley K and
0
W = G exp(—iky) ’ )
nk = 7 - )
ﬁ ¢\n|,k

Sgn(n)(—i)¢|,1|71’k
for valley K’. Here C,=1 for n=0, and C, = 1/+/2 for n#0,

B = (2Tl e P H [(x — kD3)/ 1] (10)
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is the standard wavefunction for a non-relativistic electron at the nth Landau level,
H,(x) are the Hermite polynomials, and

0 @m=0),
sento) = | (1n
n/lnl (n#0).

In terms of the occupation of the sublattices A and B, the wavefunctions (8,9)
have an interesting property. Specifically, the wavefunctions at Landau levels n#£0
always have non-zero amplitudes on both sublattices A and B, while the
wavefunctions at the Landau level n=0 have non-zero amplitude only on one
sublattice: B sublattice for valley K or A sublattice for valley K'. This property of the
wavefunctions of the Landau levels in graphene makes the =0 Landau level very
special for different magnetic applications of graphene.

Taking into account the spin degree of freedom, we can conclude that each
Landau level has fourfold degeneracy, which corresponds to twofold degeneracy due
to spin and twofold degeneracy due to the valley, i.e. the flavor [59], or valley
pseudospin [60]. The above description is a single-electron picture of pure graphene.
In a many-electron system of real graphene the inter-electron interactions and
disorder are important and can introduce splitting of the levels and lift their
degeneracy. These topics will be discussed below.

In the presence of an uniform electric field, Lukose et al. [61] predicted that the
Landau levels are profoundly modified, leading to a collapse of the spectrum when
the value of the electric to magnetic field ratio exceeds a certain critical value.

Experimentally, the Landau levels in graphene have been observed by measuring
cyclotron resonances of the electrons and holes in infrared spectroscopy experiments
[34,62,63], and by measuring tunneling current in scanning tunneling spectroscopy
experiments [64—66]. In infrared spectroscopy experiments the Landau level optical
transitions were studied. There is a crucial difference between the Landau level
optical transitions for non-relativistic electrons in conventional 2DES and relativistic
electrons in graphene. For non-relativistic electrons there is the Kohn theorem,
which states that the energy of Landau level transitions is equal to the cyclotron
energy, regardless of the number of electrons (i.e. the filling factor of the Landau
levels), and uninfluenced by the inter-electron interactions. The frequencies of all
optical transitions in non-relativistic system are equal to the cyclotron frequency.
In the graphene system the Kohn theorem [67] is not applicable. In this case, the
frequencies of optical transitions are influenced by the interaction between electrons
and the number of electrons, i.e. the filling factor. Since the Landau levels in
graphene are not equidistant, all frequencies of optical transitions in graphene are
different from each other. The cyclotron optical transitions in a graphene system are
of two types: (i) intraband transitions, i.e. transitions between the electron (hole)
states; (i1) interband optical transitions, i.e. transitions between the electron and hole
states (conduction and valence bands). Since in graphene both conduction and
valence bands have the same symmetry, the optical transition selection rule has the
same form for both intra- and inter-band transition, and is given by the relation [63]

An = |ny| — |n|| = £1. (12)
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Figure 4. Direct measurement of Landau quantization in epitaxial graphene. Data points
show the tunnelling differential conductance spectra versus sample bias of Landau levels
in multilayer graphene at B=35 Tesla. Landau level indices are marked. The grey line shows
a fit to a series of Voigt line shapes at the Landau level peak positions. Inset: Landau
level peak position versus square root of Landau level index and applied field from the
peak position in A. Errors in peak positions are smaller than the symbol size (Reprinted figure
with permission from D.L. Miller et al., Science, 324, p. 924, 2009 [64]. Copyright © (2009)
The American Association for Advancement of Science.).

For example, the allowed optical transitions (absorption) from the Landau level
n=—1 are n=—1—n=0 (intra-band transition) and n=—1— n=+2 (inter-band
transition). In usual non-relativistic systems the selection rule for inter-band optical
transitions is 7y = n,.

In scanning tunnelling spectroscopy experiments, the Landau levels are directly
observed as the pronounced peaks in the tunnelling spectra [64-66]. From the
positions of these peaks the energy of the Landau levels are directly extracted. In
Figure 4, typical experimental results of scanning tunneling measurements are
shown, where the peaks in the tunneling differential conductance reveal the positions
of the Landau levels.

From the experimentally measured cyclotron resonances, the electron Fermi
velocity has been obtained [34,62-66]. The electron velocity ve~ 1.1 x 10°ms™" was
obtained in [34,62-64], but a smaller value vg~0.79 x 10°ms~' was reported in [65].
The reduction of vg in [65] was attributed to electron—phonon interaction due to
strong coupling with the graphite substrate.

The effective-mass approximation of the electron dynamics in graphene in a
uniform magnetic field is valid only at low energies, i.c. for low-lying Landau levels.
The properties of higher Landau levels can be described within the tight-
binding model [56,57]. The Hamiltonian of the tight-binding model has the following
form:

- +
Htight-binding = Z EiC} ¢+ Z tijci ¢ (13)

<ij>
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Figure 5. The variation of the low Landau-level energies with square root of magnetic
field. The Landau-level energy are obtained within the effective-mass approximation
(solid lines) and tight-binding model (symbols). Magnetic field is in Tesla (T) (Reprinted
from Physica E, 40, J.H. Ho et al., Landau levels in graphene, 1722-1725 [57]. Copyright ©
(2008), with permission from Elsevier.).

where ¢; is the electron annihilation operator. The magnetic field in the tight-binding
model is incorporated through the Peierls substitution

J
cjci — c:-rcj exp(/ Ad?). (14)

The Landau levels within the tight-binding model have been obtained numerically
[56,57]. The results of the calculations show that the effective-mass approximation is
valid at low energies, ¢ < 1eV, but at higher energies there are deviations from
Equation (7). For example, at B=30 Tesla the deviation from Equation (7) occurs at
the Landau level n=15 (Figure 5). At high energies the magnetic field also affects
the degeneracy of the levels [57]. For example, at energies ¢ 2 2.5¢V the valley
degeneracy is lifted, resulting in twofold (spin only) degeneracy of the Landau levels.

The non-linear features of the energy dispersion law in graphene have been
studied experimentally by magneto-optical transmission spectroscopy [68]. The
graphene system has been studied in magnetic fields up to 32 Tesla and within the
energy range from the far infrared to the visible. It was found that the low-energy
part of the energy spectrum is well described by the linear relativistic equation, while
at energies higher than 0.5 eV the deviation from the linear dispersion was observed.
For example, at the highest studied energy of 1.25 eV, the deviation from the linear
dispersion is around 40 meV.

The parameter which controls the magnetoelectronic properties of graphene
within the tight-binding model is the magnetic flux passing through a hexagonal ring
of the graphene lattice [69]. As a function of this flux the energy dispersion, the
density of states, and magnetoabsorption spectra all have the oscillating behavior
[69]. The lattice model of graphene in a magnetic field, introduced beyond the Peierls
substitute, was studied in [70,71]. Taking into account the higher order magnetic
terms, i.e. the diamagnetic shift and shrinkage of the wave functions, in the lattice
Hamiltonian these authors found lifting of two-fold degeneracy of the lowest Landau
levels in high magnetic fields.



07: 48 23 August 2010

Downl oaded By: [CAS Chi nese Acadeny of Sciences] At:

Advances in Physics 279

2.2. Anomalous quantum Hall effect
2.2.1. Experimental observation of the quantum Hall effect in graphene

Just as for the conventional non-relativistic electron systems [72,73], the Landau
quantization of the energy levels in graphene results in the quantization of the Hall
conductance, i.e. the quantum Hall effect. In the quantum Hall effect regime, the
Hall conductance exhibits a plateau when the Fermi energy, Ef, falls between the
Landau levels. Every time the Fermi energy crosses a Landau level, the Hall
conductance, o,, jumps by an amount of g, ¢*/h, where g, is the degeneracy of the
Landau level. In graphene, each Landau level has fourfold degeneracy due to valley
and spin, i.e. go=4. Based on this simple picture of the quantum Hall effect,
we expect that the Hall conductance in graphene should show plateaus at o, =
(4¢’/h)N, where N is an integer. It so happens that the unique properties of the lowest
Landau level (n =0) introduces a shift in quantization of the Hall conductance. This
shift is related to the electron—hole symmetry of the graphene layer. The Landau level
with 7=0 is robust, i.e. it has zero energy regardless of the value of the magnetic
field, and it has the properties of both electrons and holes. This quantum anomaly
of the n =0 Landau level makes this level effectively twofold degenerate for electrons
and twofold degenerate for holes [74]. As a result, the quantization of the Hall
conductance occurs at half-integer values

7 = GEM(N+3). (15)

The half-integer (or anomalous) quantum Hall effect corresponds to the filling
factors v = 4(N + %) =42, £6, £10,.... This sequence of filling factors is different
from that of the conventional semiconductor quantum Hall effect (where the
plateaus are at v=+4, £8, +12,...) and this anomalous behavior gives the
phenomenon its name (see, e.g. [75]). This quantization rule can be derived from
the Kubo formalism [76-79] applied to relativistic electrons in graphene [74,80-82].
The half-integer quantum Hall effect has been observed experimentally [17,83-85].
The typical experimental results for the magnetoresistance and Hall resistance are
shown in Figure 6. The Hall resistance shows plateaus at filling factors v = 4(N + %),
while the magnetoresistance vanishes. A good quality sample studied in [85]
(mobility of electrons was higher than 10*cm?V~'s™!) allows one to observe
plateaus at large filling factors. The quantum Hall effect is clearly seen at filling
factors v=+2 and v==46. A developing plateau at v=10 is also visible.

An important breakthrough has occured recently. The quantum Hall effect
has been observed in epitaxial graphene layers grown on silicon carbide [86,87],
thus illustrating the similarity of fundamental electronic properties of epitaxial and
exfoliated graphene films. The growth conditions and electrical characteristics of
epitaxial graphene films strongly depend on the type of the face of SiC. The growth
of graphene on the C-face is rapid and results in graphene films with high mobility
around 20,000cm?® V~'s™! [86]. The formation of graphene films on the Si-face is
slower and can be easily controlled, but the mobility of the carrier is much smaller
with the typical value around 1500cm®>V~'s™!. For the high-mobility epitaxial
graphene on the C-face, the quantum Hall plateaus corresponding to filling factors
v=2,6,10, and 14 have been observed [86]. For low-mobility epitaxial graphene
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Figure 6. Hall resistance (R,,) and magnetoresistance (R.,) versus the magnetic field at
T=30mK. The vertical arrows and the numbers on them indicate the values of the
corresponding filling factor, v, of the quantum Hall state. The horizontal lines correspond to
hje*v values. The inset shows the quantum Hall effect for a hole gas, measured at 1.6K
(Reprinted with permission from Y. Zhang et al., Nature, 438, p. 201, 2005 [85]. Copyright ©
(2005) Nature Publishing Group.).

grown on the Si-face, only the lowest quantum Hall effect with filling factors v=2, 6,
and 10 have been reported [87]. These results bring epitaxial graphene a step closer
to becoming a scalable platform for graphene-based electronics.

One important difference between the quantum Hall effect in graphene and that
in usual non-relativistic systems is that the quantum Hall effect in graphene survives
even at room temperature [83,84,88]. The reason for such robust behavior of the
quantum Hall states is the large activation energy, i.e. the cyclotron energy. For
example, at B=45 Tesla the energy gap is 2800 K, which exceeds the thermal energy
at room temperature by a factor of 10. The quantum Hall effect has been observed at
room temperatures even in a sample with low mobility, x =4000cm?V~'s™! [83].
These properties of the quantum Hall effect in graphene are in stark contrast to what
we have seen in non-relativistic systems, where the quantum Hall effect can be
realized only at low temperatures and in samples with high electron mobility.

In [89,90] the activation energies of the quantum Hall states have been extracted
from the Arrhenius plots (temperature dependence). The excitation gaps for v=42
and v=6 quantum Hall states have been analyzed. The excitation gaps are affected
by the Landau level broadening, which depends on the magnetic field and the
strength of the disorder. Without any Landau level broadening the excitation gaps
are equal to the energy gaps between the nearest sharp Landau levels. The
broadening of the Landau levels introduces a constant offset of the excitation gaps
from the theoretical value for the sharp Landau levels (Figure 7). For the quantum
Hall state at v==6, the experimental results are consistent with the picture of broad
Landau levels with the broadening around 400 K. The v=+2 gap, however, behaves
totally differently. For example, at a high magnetic field the v= =2 gap, approaches
the bare Landau-level separation. This behavior can only be explained by the unique
nature of the n=0 Landau level: with increasing magnetic field the »=0 Landau
level becomes very sharp. The density of states, which illustrates the sharp nature of
the n=0 Landau level, is shown schematically in Figure 7.
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Figure 7. Energy gap between two Landau levels as a function of magnetic field for v=2 (full
triangles), v=—2 (open circles), and v=6 (full squares) as deduced from the Arrhenius plots.
The dashed and dotted lines are the expected (theoretically) energy gaps for sharp Landau
levels. The inset shows schematically the density of states for a sharp n=0 Landau level and
broadened higher Landau levels for electrons and holes at 30 Tesla. The form and width of the
higher Landau levels were extracted from the experimental data. Extended states are
represented by the white areas, localized states by the dashed areas (Reprinted figure with
permission from A.J.M. Giesben et al., Physical Review Letters, 99, 206803, 2007 [89].
Copyright © (2007) by the American Physical Society.).
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Figure 8. R., and R,, measured in the device shown in the left inset, as a function of gate
voltage, Vg, at B=45Tand T=1.4K. —R,, is plotted for V', > 0. The numbers with the vertical
arrows indicate the corresponding filling factor, v. Gray arrows indicate developing quantum
Hall states at v==3. ny is the sheet carrier density derived from the geometric consideration.
Right inset: R, and R, or another device measured at B=30 T and 7= 1.4 K in the region
close to the Dirac point. Left inset: an optical microscope image of a graphene device used in this
experiment (Reprinted figure with permission from Y. Zhang et al., Physical Review Letters,
96, 136806, 2006 [92]. Copyright © (2006) by the American Physical Society.).

At large magnetic fields, B > 20 Tesla, and in high-mobility samples (mobility as
high as 5 x 10* cm? V~'s™"), new quantum Hall plateaus at filling factors v=0, 1,
+4 have been reported in the literature [86,91,92]. The new quantum Hall plateaus
are shown in Figure 8 with clear quantization of the Hall resistance and vanishing
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Figure 9. Schematic illustration of the hierarchy of the lifting the degeneracy of the Landau
levels in strong magnetic fields. Here n is the Landau level index and v describes the
corresponding quantum Hall effect. The arrows next to the lines illustrate the direction of the
spin at the corresponding energy levels. The fourfold degeneracy of the Landau level n=0
is completely lifted. For the =41 Landau levels only the twofold spin degeneracy is lifted
and each level remains twofold valley degenerate.

magnetoresistance. Such plateaus originate from lifting of the fourfold degeneracy
of the Landau levels. The quantum Hall effect at v=0, &1 indicates that the fourfold
degeneracy of the Landau level n =0 is completely lifted [86,91,92], so that the Hall
conductance, o,,, increases in steps of é*/h as the Fermi level passes through the
Landau levels. The fact that only v =44 quantum Hall plateaus are observed means
that the fourfold degeneracy of the Landau levels » ==1 is only partially resolved.
The experiments in a tilted magnetic field [86,92] show that for the Landau level n =1
the twofold spin degeneracy is lifted, leaving the twofold valley degeneracy
unbroken.

To distinguish the origin of the broken symmetry (either spin or valley),
experiments in a tilted magnetic field have been performed [91]. The spin splitting,
which is related to the Zeeman energy, depends on the total magnetic field, while the
valley (sublattice) splitting depends only on the perpendicular component of the
magnetic field. This is because the valley splitting is caused by the electron—electron
interaction and the corresponding ground state is the valley ferromagnet (see the next
section). The results of magnetotransport measurements show that the minimum
magnetoresistance, which is determined by the inter-level splitting, depends on the
total magnetic field for v==4, and depends on the perpendicular component of the
magnetic field for v==41 [91]. These results show that the states v=0 and v==+1
arise from the lifting of the spin and valley degeneracy of the Landau level n=0,
respectively [91]. The order of the lifting of the degeneracy of the Landau levels n =0
and n==+1 in graphene is illustrated in Figure 9.

Although the behavior of the Hall conductance, o,,, is consistent with the lifting
of the degeneracy of the Landau level n =0, the properties of the magnetoresistance,
R, are unexpected. For the usual quantum Hall effect in non-relativistic systems
the magnetoresistance, R.,, shows a minimum at the quantum Hall plateaus and
activated behavior as a function of temperature. Such a behavior is observed in
graphene for v=41 Hall states, but the v=0 Hall state does not show the minimum
resistance [91]. There is also no activated behavior at v=0. In Figure 10 the
magnetoresistance of a graphene sample is shown for three values of magnetic field.
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Figure 10. The magnetoresistance R, (a) and Hall conductivity o, (b) versus gate voltage,
V/ at 0.3 K with the magnetic field fixed at 8, 11, and 14 T. Peaks of R., at finite gate voltage
correspond to the filling of the n=1 and n=2 Landau levels. At zero bias voltage the peak
in R, grows to 190k at 14 Tesla. The inset shows the sample with Au leads deposited.
The bar indicate 5pum. Panel (b) shows the quantization of Hall conductance at the values
(4e2/h)(n+ D. At 03K, 0,,=0 in a 2-V interval around V; =0 (Reprinted figure with
permission from J.G. Checkelsky et al., Physical Review Letters 100, 206801, 2008 [93].
Copyright © (2008) by the American Phys1cal Society.).

The magnetoresistance maximum (not minimum) is clearly seen at zero filling factor
(zero bias).

The v==+1 are the usual quantum Hall states with a minimum resistance and
activation behavior. The activation energy at v==+1 has a non-linear magnetic field
dependence, which was attributed to the many-body effects indicating a many-body
origin of the v=+1 states [91].

A detailed analysis of the v=0 quantum Hall state has shown that this state can
be in two phases: metallic or insulating, which are characterized by finite and
infinitely large values of the magnetoresistance, R, [93,94], respectively. The
transition from the metallic to the insulating phase occurs with increasing magnetic
field at some critical value B.. In all samples studied in [94] the critical magnetic field
is around B.~ 30 Tesla. The actual value of the critical magnetic field depends on the
disorder strength in a non-trivial way, namely, with increasing disorder the critical
magnetic field increases [94]. The phase transition of the v=0 quantum Hall state
was identified as the Berezinskii—Kosterlitz-Thouless phase transition, for which the
magnetic field plays the role of the effective temperature. In two-dimensional systems
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such a transition is described by the XY model. Within this model the ordered phase
is destroyed at the transition point by unbinding of pairs of topological excitations,
the corresponding separation (correlation length), & depends on the deviation of the
magnetic field (effective temperature) from the critical value in the following form:

E=uaexplb/\/1 — B/B.], (16)

where « is the lattice constant and b is a number of the order 1. The expression (16)
fits the experimental data [94], which indicates that at v=0 the system shows the
Berezinskii—Kosterlitz—Thouless phase transition to a high-field insulating ordered
state.

Recent experiments performed in ultraclean suspended graphene samples [95,96]
illustrate an insulating nature of the v=0 quantum Hall state. The device is fully
insulating at high magnetic fields (B > 5 Tesla) and at low temperature (7' < 10 K),
while at higher temperature the system shows an activated behavior with an energy
of 60K [96]. The distinctive features of the suspended graphene compared to the
graphene on substrate are very high quality of graphene samples and enhanced inter-
electron interaction strength. The enhancement of the electron—electron interactions
is due to the small value of dielectric constant (¢ = 1) of suspended graphene.

A strong increase in low-temperature resistivity, o, in graphene samples with a
relatively large amount of disorder have been observed in [97]. In terms of the
conductivity, the graphene system at the charge neutrality point has shown a zero-
value plateau in the Hall conductivity, o,, and a minimum in the longitudinal
conductivity, o,. Such a behavior was explained in [97] as due to opening of a gap,
e.g. due to the Zeeman splitting, in the density of states at the n=0 Landau level.
Due to the presence of large disorder, the opening of the gap was observed only for
the n=0 Landau level, for which the width of the Landau level is much smaller
compared to that in higher Landau levels.

2.2.2. Symmetry breaking: theoretical models

Experimental observation of the v=0, +1, +£4 quantum Hall effect opens the
question of a mechanism of a symmetry breaking in graphene, which results in lifting
of the degeneracy of the Landau levels and the additional quantum Hall plateau. The
problem of symmetry breaking in graphene systems in a magnetic field has been
studied theoretically in detail [59,75,98—111]. A review of the different aspects of
spontaneous symmetry breaking in graphene is available in [107]. Here we discuss
only the main mechanisms of symmetry breaking and lifting of the Landau level
degeneracy in graphene. In general, the following mechanisms can break the
symmetry in graphene quantum Hall systems: (i) disorder can lift the twofold valley
degeneracy. (ii) Electron—electron interactions can lift both valley and spin
degeneracies. For example, the exchange part of the electron—electron interaction
favors the quantum Hall ferromagnetic state. (iii) Zeeman interaction, which is an
explicit symmetry breaking term in the Hamiltonian. The Zeeman interaction can lift
only the spin degeneracy. (iv) Explicit terms in the Hamiltonian, which can lift the
valley symmetry. These terms originate from the graphene lattice structure.
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2.2.3. Symmetry breaking: disorder effects

Within the noninteracting electron system the main mechanism of symmetry
breaking is the interaction with the disorder potential, which introduces the inter-
valley coupling and splits the valley subbands. Such a potential should be short-
ranged with the length scale of the order of the lattice constant [75,105]. An example
of a short-range potential is a scatterer localized at a particular A or B site with a
random amplitude. Such a potential introduces the following term into the
relativistic Hamiltonian (5)

1 0 ziz), O 0 0 0 0
0 0 0 L = 0 1 0 zjzy .
U(r) = 5(F— R 5(F = Rg).
D=1 0 ol" (' A)+ o 0o o o | (r B)
0 0 0 0 0 zfzy 0 1

(17)

where z, = el®Rx| 2 = KR Y =A, B and u, = (v/3d?/2)U,, U; is the random
amplitude of the on-site potential. The first and second terms in Equation (17)
correspond to the scatterer on sites A and B, respectively (Figure 11).

It is easy to see that the short-range potential (17) has very different effects on
the lowest Landau level, =0, and on higher Landau levels, |n| > 0. Indeed, the
amplitudes of the wavefunctions in the »=0 Landau level is non-zero only on one
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Figure 11. Main panel: divergence of the maximum magnetoresistance, Ry, at the Dirac point
with B at T=0.3, 1.5, 5, and 27 K. At 27K, the increase in Ry is quite moderate (to 190 k2
at H=231 Tesla). At T=0.3 K, however, Ry exceeds 20 M2 above 27 T. The curves at 0.3 and
1.5K undergo a 1000-fold increase (40kQ2 to 40 M) in the narrow field interval
17—=27T. In high B, the 5K curve deviates significantly from them. The inset shows the
behavior of Ry versus B in greatly expanded scale (x100) (Reprinted figure with permission
from J.G. Checkelsky ez al., Physical Review B, 79, 115434, 2009 [94]. Copyright © (2009) by the
American Physical Society.).
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of the sublattices, ecither A or B. As a result the intervalley matrix element of the
potential (17) is zero for the states of the lowest Landau level, n =0. Therefore, if the
Landau level mixing is disregarded then the random on-site (short-range) potential
does not lift the valley degeneracy for the =0 Landau level [105]. For higher
Landau levels even the on-site potential introduces intervalley coupling, which
results in lifting of the valley degeneracy. If the Landau level mixing is taken into
account then even at the lowest Landau level, the short-range potential introduces
the intervalley coupling [75].

Disorder-induced intervalley coupling and mixture in the lowest Landau level
results also in anomalous electron localization properties [110]: increasing the
strength of the on-site random potential introduces delocalization, instead of
localization in the lowest Landau level. This anomalous behavior is closely related to
the Landau level mixing and it is correlated with the disorder-induced valley
depolarization of the Landau level states [110] due to mixing of the valleys.

In the lowest Landau level, the intervalley coupling can be introduced even
without the Landau level mixing through the randomness in the hopping intergral
between two neighboring sites [104,105,112]. Such randomness can be realized
through the local lattice distortion or due to scatterers localized between the neigh-
boring sites. The shift from 7 to 74357 in the hopping integral between the neighboring
atoms at sites A and B results in the following potential term in the relativistic
Hamiltonian [105]

0 zZizg 0 zZizg
U(r) = ZHZA 0 zZizZy 0
r) = 0 ZNzR 0 ZXzg
ZRzZA 0 IRz 0

u,(F — F,), (18)

1

where u;, = (v/3d%/2)8t. Tt is easy to see that even in the lowest Landau level the
intervalley matrix elements are non-zero.

The randomness in intervalley hopping integrals can be reformulated in terms of
an effective random magnetic field [104]. If the variations of the hopping integrals
between the site j and the nearest neighbor sites (there are three such sites) are &z;,
i=1,2,3, then a vector potential for valleys K and K’ at point j is [104]

ay =23 s, (19)

€03

where X =K or K’. Such a vector potential introduces a random magnetic field, 8/,
pointing in the z direction (orthogonal to the graphene layer), which results in a
Zeeman-like interaction for the pseudospin order parameter. The typical fluctuation
of the random magnetic field is around 0.1-1 Tesla [104]. Although the weak random
magnetic field, 8k, is orthogonal to the graphene plane, it produces an easy-plane
anisotropy which favors the XY wvalley ferromagnetic state [104]. The XY
ferromagnetic system shows the Berezinskii—Kosterlitz—Thouless transition to the
ordered state. Due to the valley anisotropy-induced random magnetic field,
the twofold valley degeneracy of the Landau level is lifted. The Zeeman energy
lifts the twofold spin degeneracy. Taking into account both the effective random
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magnetic field and the Zeeman interaction, we obtain a complete lifting of the
fourfold degeneracy of the Landau level. In the lowest Landau level the valley
anisotropy induced by the random magnetic field is around few degrees of Kelvin at
an uniform magnetic field of 30 Tesla, while the Zeeman splitting at B=30 Tesla is
around 50K. This energy scale is consistent with the hierarchy of lifting the
degeneracy of the n=0 Landau level, as shown in Figure 9. Therefore the v=1
quantum Hall state is valley and spin polarized while the v =0 state is spin-polarized
and valley-unpolarized.

The disorder in graphene not only results in valley symmetry breaking but also
destroys the quantum Hall effect as in non-relativistic systems. The effect of disorder
on the existence of the quantum Hall states and electron localization in a strong
magnetic field has been studied numerically within the tight-binding model with
random on-site potential [99,106,110]. The corresponding Hamiltonian has the
following form:

Htight-binding = Zeic:ci +t Z C;rcja (20)
<ij>

where the hopping integral 7 is assumed to be constant and the disorder is introduced
through the randomness in the values of the on-site energies, ¢;. In this approach,
the mixing between the Landau levels is taken into account automatically and the
intervalley coupling is introduced for all Landau levels. It was found that the most
robust quantum Hall state against the disorder strength is the v= 42 state [99] for
a system without symmetry breaking and the v==+£1 state [106] for a system with
lifted degeneracy of the Landau levels.

2.2.4. Symmetry breaking: the effect of electron—electron interaction

The disorder potential does not affect the twofold spin degeneracy. The simplest
mechanism of breaking the spin symmetry is the Zeeman interaction, gug B, which
splits the single particle spin levels. The g-factor of electrons in graphene is close to 2,
resulting in the Zeeman energy gugB~1.5B[Tesla] K. Another mechanism of
breaking the spin symmetry is related to the long-range Coulomb interaction
through the formation of the ferromagnetic state [59,98,101,103,106]. The quantum
ferromagnetic state is stabilized by the exchange part of the Coulomb interaction.
This symmetry breaking mechanism works well for both spin and valley symmetries.

In the case of the valley symmetry the Coulomb interaction Hamiltonian has also
explicit lattice symmetry-breaking terms [59,101,103]. These terms can be obtained
from the exact expression for the Coulomb repulsion Hamiltonian within the lattice
model

1 -
Hs = 5; V(x = xXn.ny, 21

where V(r) is the Coulomb interaction potential and #, is the total electron number
operator. Rewriting the above expression in the continuum approximation, one can
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obtain the following terms in the interaction Hamiltonian in a continuum theory
[59,103]:

(1) SU4) spin and valley symmetric Hamiltonian, Hg.
1 P o -
Hs = / XX Py () V(X = X) Py (X)), (22)

where pioia1 18 the total electron density operator.
(i1) Valley symmetry breaking term, Hps 1, is due to backscattering processes
and has the following form [59,103]:

Hpst = —iy [J1J+ + J‘[J_], (23)

where > ~ (4/3)a*(¢?[4eay), J. L= 1//1'1 AV p and J_ = WIT(,BI/fK’, A- Here
Y x.4 and Yy g are annihilation operatofs for valley X =K, K’ corresponding
to sublattices A and B, respectively.

(iii) Valley symmetry breaking term, Hps,, reflects the lattice-scale physics
[59,103]. These terms originate from the fact that the two sublattices are
shifted with respect to each other. As a result, two electrons at the same
continuous point interact stronger if they belong to the same sublattice than
if they belong to different sublattices. This symmetry breaking term has the
following form:

Hasa == [ @53 1,0l + Dol (24)
Here 7 corresponds to the positions of sites of one of the sublattice, py., is the
staggered electron density between sublattices A and B [59,103] and
3at . R
0 () = J; [ VG + 1330 = 1), (25)

for r#0. This symmetry breaking term is algebraically small and is of the order of
(a/lg) compared to the Coulomb energy, (e?/el) [59,101,103], where « is the lattice
constant in graphene. This lattice symmetry breaking term can also be understood
in terms of the analogy of the two valley system and the usual bilayer non-relativistic
electron system. Here each layer corresponds to a single valley, and the distance
between the layers is of the order of the lattice constant, a. Therefore, the asymmetry
is controlled by the small parameter a/lz~0.03 at B~30Tesla. The interaction
described by the Hamiltonian H pg 5 is short-ranged, but one should be careful when
dealing with the lowest Landau level, n=0. As we discussed in the previous section,
at the lowest Landau level the short-range interaction does not introduce the
intervalley coupling, i.e. the intervalley matrix element is zero. Therefore, when
considering the lowest Landau level the finite range of the interaction potential v,
should be taken into account. As a result, the valley symmetry breaking term
becomes additionally suppressed by a factor of a/lp in the lowest Landau level
[59,103]. There are also interaction-induced umklapp scattering processes, which also
introduce the valley symmetry breaking terms. These processes are exponentially
small in a/lp and are considered in [101].
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The SU(4) symmetric interaction Hamiltonian (22) results in spin and valley
ferromagnetic ordering, i.e. spontaneous symmetry breaking at corresponding
Landau filling factors [98,106]. The direction of spin or pseudospin ordering in the
quantum ferromagnetic state is determined by small explicit symmetry breaking
terms in the Hamiltonian. Such symmetry breaking terms can result in easy axis or
easy plane ferromagnetic states with ferromagnetic order perpendicular or parallel
to the graphene layer, respectively [59,103]. In the case of spin, the explicit symmetry
breaking term is the Zeeman Hamiltonian, which results in easy axis ferromagnetic
ordering.

For valley pseudospin we need to consider the lattice-related symmetry breaking
Hamiltonians (23), (24). It was shown that at odd filling factors the symmetry
breaking Hamiltonian (24) provides the leading symmetry breaking interaction. This
type of Hamiltonian results in easy axis valley ferromagnetic state at the lowest
Landau level (v==1 quantum Hall states) and easy plane ferromagnetic state at the
Landau level n==+1 (v=3 and 5 quantum Hall states) [59,103]. The explicit
numerical analysis of a finite electron system within the tight-binding model with
Coulomb interaction supports this conclusion [106].

The easy axis valley ferromagnetic state at n =0 Landau level (v==+1) means that
all electrons at filling factor v=1 occupy one valley only:

v=—1)= HC;K’mWaC). (26)

Since the wavefunctions of a single valley at =0 Landau level occupy only one
sublattice, the easy axis valley ferromagnetic ordering means that the electrons reside
on one sublattice producing a charge density wave. For the easy plane ferromagnetic
state realized at v=3 and v=135 the Berezinskii—Kosterlitz—Thouless transition is
expected [59,103]. The effect of the symmetry breaking Hamiltonian (23) has been
studied in [101]. It was shown that this type of valley symmetry breaking term results
in easy-plane valley ferromagnetic ordering.

Disorder suppresses the exchange ferromagnetic ordering and there is a critical
disorder strength above which the corresponding quantum Hall effect is destroyed.
A numerical analysis of the tight-binding model of graphene in a strong magnetic
field shows that the critical disorder strength for the v=3 ferromagnetic state (n=1
Landau level) is much smaller than the critical disorder strength for the v=1 state
(n=0 Landau level). A similar conclusion was reached in [98] using the Stoner
criterion for the formation of quantum Hall ferromagnetism. In [98] the inter-
electron interaction was treated within the Hartree-Fock approximation and the
disorder was introduced within the self-consistent Born approximation. Within this
approach the phase diagram (Figure 12), illustrating the sensitivity of quantum Hall
states to the strength of the disorder, was obtained [98].

The stability of exchange-induced ferromagnetic ordering is determined by
the strength of inter-electron interactions. Without the disorder the inter-electron
interactions completely characterize the energy. Formation of the ferromagnetic
ordering within the finite-size system has been studied numerically in [113], where only
the spin degree of freedom was taken into account. For the Landau levels n=0, 1, 2,
and 3 the formation of spin-ordered states, i.e. ferromagnetic states, for a partially
occupied Landau level, the corresponding filling factor % has been obtained.
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Figure 12. Phase diagram for SU(4) quantum Hall ferromagnetism in the n=0 and n=1
Landau levels of graphene. The ordered region is bounded by a maximum value of v, the ratio
of the density of Coulomb scatterers to the density of a full Landau level. v, is inversely
proportional to the product of the sample mobility and the external field strength and order
near integer filling factors requires the minimum values for this product indicated on the
right-hand vertical axis (Reprinted figure with permission from K. Nomura and A.H.
MacDonald, Physical Review Letters, 96, 256602, 2006 [98]. Copyright © (2006) by the
American Physical Society.).

For each quantum Hall state, both the ground state Coulomb energy and the
activation gaps have been found. The activation gap is one of the important
parameters, which characterizes the stability of the corresponding quantum Hall
state with respect to disorder and temperature. Due to the unique structure of the
Landau wavefunctions in graphene, the interaction-induced activation energy
of the spin-ordered states is largest for the n=1 Landau level. These results
illustrate that the electron correlations are dominant for the n=1 Landau level
and the ferromagnetic ordered quantum Hall state should be the most stable. This
behavior is different from the non-relativistic system, where the largest excitation gap
is expected in the lowest Landau level.

The charged excitations of the quantum ferromagnetic states are skyrmions,
which are similar in structure to the skyrmionic states in usual multi-component
non-relativistic systems. The properties of skyrmions at the nth Landau level are
determined by the relative strength of the Coulomb interaction within the nth
Landau level and a symmetry breaking term, e.g. the Zeeman coupling. The
interaction within that Landau level is obtained from the expression (22) by taking
the projection of the Hamiltonian Hg onto the nth Landau level. Due to the special
structure of the wavefunctions belonging to different Landau levels (Equations (8)
and (9)), the projection of the Coulomb interaction Hamiltonian onto the nth
Landau level takes the following form [98,101]:

1 27e? - .
Hsn=32_ 9. 6; [l )P 00 (D) Py (), 27)

0,0 q

where the form factor is given by the following expression:
Fo(x) = Lo(x/2) (28)

Fy(x) = % [Ln(x*/2) + Lu1(x*/2)], (29)
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where x =¢lp, and L,,(x) are the Laguerre polynomials. In the above expressions
(27)~(29), a magnetic field specific Gaussian factor, exp[—(g/)*/4], is absorbed in the
definition of the electron density. Therefore the form factors have a polynomial
form [101]. The Gaussian factor can also be introduced not only in the electron
density but also in the form factors themselves [98].

In the wusual two-component non-relativistic systems the skyrmionic
excitations exist only in the lowest Landau level (filling factor v=1). In
graphene the Coulomb interaction is several times stronger than in non-relativistic
systems, e¢.g. GaAs. As a result, the skyrmion excitations survive even in higher
Landau levels, |n] <3 [59,102]. The charge of such excitations is 1 for any integer
filling [102].

Another interaction-induced mechanism for spontaneous symmetry breaking
was introduced in a series of publications [100,108,109,111]. The order parameter
in this approach is the gap (the Dirac mass) in the energy dispersion of relativistic
electrons. This gap originates from the spontaneous excitonic condensation catalyzed
by the magnetic field (magnetic catalysis). The presence of the gap, A, in the energy
dispersion splits the lowest Landau level, but does not affect the degeneracy of the
highest Landau level. For example, the energies of the lowest Landau levels become
+A and each level is twofold spin degenerate, while the energies of the higher Landau

levels are
g, = :l:,/Zhv%|n|eB+A2. (30)

Therefore for the higher Landau levels the gap changes only the dispersion
relation, but does not change the level degeneracy. This fact has a straightfor-
ward effect on the quantization of the Hall conductance. Due to the splitting of only
the lowest Landau level, there is an additional Hall plateau at v=0. Therefore
the graphene system with a dynamically generated gap shows Hall conductance
quantization at v=0 and v = +4(N —i—%). Taking the Zeeman splitting into
account, Gusynin et al. [100] reproduced the quantum Hall effect at v=0, +1,
+2N, N=1,2,.... The degeneracy of the highest Landau levels is lifted only
by the Zeeman interaction. In Figure 13, a schematic illustration of the
Landau quantization with dynamical excitonic gap, A, and Zeeman splitting, uzB,
is shown. There are two types of mass order parameters (dynamical gaps),
which can be introduced into the model. The dynamical gaps correspond to
singlet and triplet contributions with respect to the valley symmetry group
[108,109,111]. In general, the dynamical gap order parameters coexist with
quantum ferromagnetic order parameters and should be considered
simultaneously [108].

Generation of the dynamical gap in a strong magnetic field was studied in
[114] within the extended Hubbard model on a honeycomb lattice. The extended
Hubbard model takes into account both on-site and nearest neighbor repulsions. The
transition to the charge density wave state and an antiferromagnetic state has been
illustrated within the model of [114]. Similar to the magnetic catalysis model
[100,108,109,111], the generation of the dynamical gap explains the quantum Hall
effect at v=0 and =+1.
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Figure 13. Schematic illustration of the spectrum of the Hall conductivity in n=0 and n=1
Landau levels for four different cases. (a) A=0 and no Zeeman term. (b) Non-zero A and
no Zeeman term. (c) A=0 and the Zeeman term is taken into account. (d) Both A and the
Zeeman term are non-zero. Thickness of the lines represents the degeneracy x4, x2 and x1
of the level; L = \/hvieB. (Reprinted with permission from V.P. Gusynin et al., Physical
Review B, 74, 195429, 2006 [100]. Copyright © by the American Physical Society.)

2.2.5. Symmetry breaking: lattice distortion

The twofold valley degeneracy in graphene can be lifted by an out-of-plane lattice
distortion [115]. In a perpendicular magnetic field the distortion of the lattice can
lower the total energy of the system. This energy includes both the elastic energy
of the lattice and the energy of the electronic system. The distortion of the lattice
is described as the relative shift of the sublattices A and B towards and away
from a substrate by some distance [115]. Due to interaction with the substrate, the
sublattices A and B acquire different on-site energies, which effectively results
in effective mass of electrons in graphene and lower the energy of electron in the
system. Therefore the electrons preferably occupy the sublattice with the lower
on-site energy, spontancously breaking the valley symmetry.

The gain in the energy of electronic system in graphene due to the distortion
of the lattice is determined by the strength of the distortion and increases with the
magnetic field [115]. This gain should be compared with the energy cost of the
distortion, i.e. with the elastic energy of the lattice. Minimization of the total energy
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Figure 14. Graphene honeycomb lattice with (a) zigzag and (b) armchair edge terminations.

of the system, which includes the elastic energy of the lattice and the energy of
electrons, determines the strength of the spontaneous lattice distortion. A detailed
analysis of the graphene system in a magnetic field shows that spontaneous lattice
distortion lifts the valley degeneracy only in the lowest Landau level, n=0 [115],
while the n > 0 Landau levels remain twofold valley degenerate.

The mechanism of lifting of twofold valley degeneracy based on magnetic-
field-induced lattice distortion crucially depends on the asymmetric interaction of
graphene layer with substrate. If the interaction with substrate is suppressed, e.g. in a
suspended graphene, then the spontaneous lattice distortion does not occur.

The magnetic field can also induce lattice instability and lift the valley degeneracy
in a suspended graphene even without a substrate if the graphene surface is curved.
The example of such a system is the carbon nanotube. A strong magnetic field
perpendicular to the nanotubes axis results in lattice instability towards in-plane or
out-of-plane distortions [116—119]. The in-plane instability has the Kekule pattern,
which is a network of hexagons with alternating short and long bonds.

2.2.6. Edge states in a strong magnetic field

The half-integer quantum Hall effect in graphene can be understood from the
viewpoint of the edge states as well. In the edge state description of the quantum
Hall effect, the Hall conductance is determined by the number of edge state bands
crossing the Fermi level. In graphene there are two main types of edges: (i) armchair
edge and (ii) zigzag edge (Figure 14). Even without a magnetic field, these edges have
different properties, e.g. at the zigzag edge, zero energy surface states are observed.
In a magnetic field the structure of the quantum Hall edge modes also depends on the
type of the edge [104,109,120-125].

Within the continuum model, the difference between the two types of edges
originates from different boundary conditions imposed at the edge. For the zigzag
edges, the wavefunction vanishes on a single sublattice across the edge, while for the
armchair edge, the wavefunction vanishes on both sublattices at the edge [122,123].
To find the structure and the energy dispersion of the edge states, the relativistic
Dirac equation with appropriate boundary conditions should be solved. For each
valley the corresponding wavefunctions are the two-component functions, i.e. (Vg a,
Ykp) and (Yk A, Yk p) for valleys K and K, respectively. Excluding one of the
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components from the Dirac equations, we obtain the system of equations for valleys
K and K’ in the following form [123]:

1
5 (2 + =0+ Dwea = 2l (1)
1
B) (—Bf, +(y—1) - 1>1//K/,A = AR, A> (32)

where the edge is along the x axis, the vector potentialis 4, = —By, A, =0, and along
the x axis the wavefunctions are propagating waves, exp(ip.x). Here A= (g/g0)>
g = hv0(2eB/hc)%, Yp=—Dy, and y and p, are measured in units of /z and 7/l
respectively.

Equations (31) and (32) determine the wavefunctions and corresponding energies
of the Landau levels in graphene. Without any boundaries the Landau quantization
with A ocn, ie. & o« o/n, and wavefunctions in the form of Hermite polynomials,
H,(y —y,), localized at y,, can be obtained from Equations (31) and (32). The
energies of the states do not depend on the electron position, y,, within the layer,
resulting in high degeneracy of the Landau levels. When y, becomes close to the
boundary of the system, the degeneracy of the Landau levels is lifted. Such dispersive
edge states can be obtained from Equations (31) and (32) by introducing the
corresponding boundary conditions.

Then for the armchair edge termination the boundary condition takes the form

WK,A = wK’,A’ 1r”K,B = 1/fK’,B (33)
at the boundary and for the zigzag edge the boundary condition is
Yra =0, Vg a=0. (34)

For higher Landau levels, |n| > 0, there is not much difference in the energies of
the edge states between the zigzag and armchair terminations. In both cases, the edge
boundary conditions violate the valley symmetry at the edge, resulting in lifting of
the twofold valley degeneracy at the boundary, shown schematically in Figure 15.
For the armchair edge the boundary condition introduces inter-valley mixing, while
for the zigzag edge the boundary condition itself violates the valley symmetry,
but does not introduce the mixture between the K and K’ valleys. Thus only for
the zigzag edge the valley indexes, K and K’, can be assigned to the edge states
(Figure 15).

The lowest Landau level (n=0) behaves differently for zigzag and armchair
edges. For the armchair edge, the lowest Landau band disperses and there is one
pair of particle-like and one pair of hole-like edge states [104,109,120-125]. The
appearance of both particle-like and hole-like edge states at n=0 Landau level is a
direct manifestation of the relativistic nature of electrons in graphene and can be
understood from Equations (27) and (28). The solutions of these equations provide
the value of the effective energy, A, which is proportional to the square of the real
energy, A=(e/ey)>. Therefore any positive solution of Equations (27) and (28)
produce two real solutions: one with positive energy, & = gor2, and another with the
negative energy, & — —goA2. The states with the positive and negative energies
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Figure 15. Graphene energy spectrum shown schematically as a function of momentum, p,,
near the armchair (a) and zigzag (b) edges. Here n is the Landau level index. (a) For the
armchair edge the boundary condition at the edge introduces inter-valley mixing. In this case
the valley indexes, K or K’, cannot be assigned to the edge states. (b) For the zigzag edge the
boundary condition violates the valley symmetry and lifts the valley degeneracy. There is
no inter-valley mixture for the zigzag edge and each edge state belongs to a specific valley.
The corresponding valleys are shown by labels K and K'.

correspond to the particle-like and hole-like states, respectively. By counting the
number of edge bands at different positions of the Fermi level, it is easy to see
that the existence of particle-like and hole-like states at the zero Landau level
explains the half-integer quantum Hall effect.

For the zigzag edge, there are two types of edge states: dispersionless (with zero
energy) and current-carrying surface states [104,109,120-125]. These two surface
states belong to different valleys. The existence of zero-energy state can be
understood from the special structure of the electron wavefunctions at the lowest
Landau level. That is, in the K valley the n=0 Landau states reside on the B
sublattice only which automatically satisfies zigzag boundary conditions, ¥k A =0.
For the K’ valley we obtain the dispersive states, which satisfy ¥ o =0. Similar to
the armchair edge, such boundary condition result in two types of edge states:
particle-like and hole-like states. The edge states at the lowest Landau level are
shown schematically in Figure 15.

The effect of disorder and electron—electron interactions on the structure of the
edge states have been studied in [124], where edge reconstruction has been observed.
Such reconstruction is more pronounced for a partially occupied Landau level, i.e. in
the regime of the fractional quantum Hall effect.

The properties of the v=0 quantum Hall state are closely related to the structure
of the edge states at the lowest Landau level [126]. The v =0 state can be attributed to
either valley or spin splitting. Depending on whether the spin or valley symmetry is
broken, the v=0 quantum Hall state has completely different properties. The system
becomes either quantum Hall metal or quantum Hall insulator. We consider the
armchair edge termination, for which the lowest Landau band consists of particle-
like and hole-like edge states belonging to two different valleys (Figure 15a). Both
types of states are twofold spin degenerate. Therefore the valley symmetry in this
case is broken near the edge. If the valley symmetry is also broken in the bulk of the
system (Figure 16a), then there are no current-carrying edge states at zero energy
(Fermi level) and the system shows insulating properties. The edge levels in this case
are twofold spin degenerate. If the spin symmetry is broken in the bulk of the
graphene layer (Figure 16b) then at zero energy there are counter-propagating
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Figure 16. Energy spectrum of graphene shown schematically as a function of momentum, p,,
near the armchair edge for the lowest Landau level: (a) the case of broken valley symmetry
(valley-polarized v=0 quantum Hall state); (b) the case of broken spin symmetry (spin-
polarized v =0 quantum Hall state). The arrows next to the lines illustrate the direction of spin
at the corresponding energy levels.

gapless edge modes [126]. In the experiments [92] the v=0 quantum Hall system
shows a peak in the magnetoresistance near the Dirac point (zero energy). This
observation supports the picture of spin symmetry breaking as the origin of v=0
quantum Hall state [126]. In [127], a simple technique has been proposed to measure
the chirality of the quantum Hall edge states. This method can be used to clarify the
nature of the edge states at the v=0 quantum Hall effect.

The properties of counterpropagating edge states of opposite spin at n=0
Landau level have been explored in [128] to explain the results of the experiment
reported in [94], where the transition from the metallic to an insulating v=0
quantum Hall state was observed. In [128], magnetic impurities were also introduced.
Such impurities can flip the electron spin and introduce backscattering between the
counterpropagating edge states. Each edge model is described as a one-dimensional
Luttinger liquid with Luttinger parameter K. The value of the parameter depends on
the magnetic field strength and the details of the edge potential. In such a system the
Kondo (magnetic) impurities introduce the critical value, IC., of the parameter /C, so
that for /IC > K. the system is in an insulating state, while for L < K, it is in a metallic
phase.

The condition of the existence of the gapless edge states in graphene with
zigzag and armchair edges was analyzed in [109] within the approach based on the
dynamical generation of the Dirac mass gap due to the magnetic catalysis.
The condition is determined by the relative strength of the mass order parameters
and the quantum Hall ferromagnetic order parameters.

2.3. Fractional quantum Hall effect

Observation of the fractional quantum Hall effect [72,73] in high-mobility planar
electron gas at large magnetic fields allows one to study the collective behavior of
two-dimensional electrons. Theoretical aspects of this problem in graphene have
been addressed in a few publications [129—133], where a finite size system has been
studied within the scheme of direct diagonalization of the Hamiltonian matrix or
within the trial-wavefunction approach. The properties of the fractional quantum
Hall effect in graphene can be determined by Haldane’s pseudopotentials, V,, [134],
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Figure 17. Pseudopotentials calculated from Equation (35) are shown as a function of the
relative angular momentum (a) for relativistic and for non-relativistic two-dimensional
electrons in the first two Landau levels, and (b) for relativistic electrons in various
Landau levels. The energies are measured in units of ¢?/ely; (reproduced from [129]).

which are the interaction energies of two electrons with relative angular momen-
tum m. The pseudopotentials for the nth Landau level has the following form
[129,130,132,133]

~d 2
v = [ SV P L (39)

where V(q) =2me*/(elgq) is the Coulomb interaction in the momentum space, and
F,(q) is the form factor corresponding to the nth Landau level (see Equations (28)
and (29)). For non-relativistic electrons in graphene, the corresponding form factors
are F,(q)=L,(¢*/2). Comparing this expression with Equations (28) and (29), it is
possible to see that the inter-electron interactions for the relativistic and non-
relativistic electrons are same for n =0 and different for n > 0.

In Figure 17 the pseudopotentials for relativistic and non-relativistic systems
are shown. The behavior of the relativistic and non-relativistic pseudopotentials are
clearly different. For relativistic electrons, the suppression of the pseudopotential
for n=1 as compared to n =0 occurs only for m =0, while for all other values of m,
we have VD > 119 For non-relativistic electrons, there is also a suppression of the
pseudopotential for m = 1. The behavior of relativistic pseudopotentials for different
Landau levels is shown in Figure 17(b). At all values of the relative angular
momentum, m, except for m=1, there is a monotonic dependence of the
pseudopotentials on the Landau level index, n: the pseudopotential decreases
with increasing n for m =0 and increases with increasing n for m > 1. In contrast,
for the angular momentum m =1, the dependence of the pseudopotential on the
Landau index is non-monotonic: the pseudopotential has the maximum value
atn=1.
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The special dependence of the relativistic pseudopotential on the angular
momentum and Landau level index has a profound influence on the interaction
energy scale of the fractional quantum Hall states at different Landau levels
[129,130,132,135]. By looking at the values of the pseudopotentials we can reach a
conclusion about the relative strength and stability of the fractional quantum
Hall effect in graphene, as compared to the conventional non-relativistic systems.
For example, since the electron wave functions at the lowest Landau level in
graphene are identical to the lowest Landau level wavefunctions in the conventional
(non-relativistic) electron systems, the relativistic pseudopotentials at =0 in
graphene are exactly equal to the corresponding pseudopotentials of the non-
relativistic systems [129]. Therefore, without the inter-Landau level coupling, the
properties of the fractional quantum Hall state at » =0 Landau level in graphene are
the same as for the non-relativistic systems. The specific feature of the quantum Hall
system in graphene is that the electrons now have spin and valley degrees of freedom,
which would open up the possibility for spin and valley-polarized or unpolarized
ground states and the corresponding excitations. The relativistic pseudopotentials
at n > 0 Landau levels are different from those in the non-relativistic systems. As a
result, the fractional quantum Hall states at the n > 0 Landau levels should have
different properties compared to the non-relativistic systems [129]. Since at the n=1
Landau level the pseudopotentials are enhanced compared to the non-relativistic
ones, the fractional quantum Hall states at the n=1 Landau level should be more
stable in the relativistic graphene system.

Apalkov and co-workers [129,130] investigated the energy spectra of the
fractional quantum Hall states in graphene for a finite-size system within
the spherical geometry [72], where the magnetic field strength is determined by the
magnetic field fluxes, 2.5, though the sphere in units of the flux quanta. Here 25 is an
integer and S is also the angular momentum of the single-electron states. It was
shown that the ground state of v = % and v = % are spin and valley polarized at both
n=0 and n=1 Landau levels [130]. The excitation gaps in the fractional quantum
Hall systems are determined by the interaction strength at the corresponding Landau
levels. The results shown in Figures 18 and 19 for v = { and { quantum Hall states at
n=0and n=1 Landau levels clearly illustrate the enhancement of the energy scale at
the n=1 Landau level compared to that at the n=0 Landau level. That is, both
valley-polarized and valley unpolarized excitation gaps at the n=1 Landau level are
larger than those at the n=0 Landau level. This enhancement is especially
pronounced for the v :% state, for which the pseudopotential at small values of
the angular momentum determine the inter-electron interaction strength. At v :%
the excitation spectra for the n=1 and n=0 Landau levels are almost the same.
Although larger energy gaps at n=1 Landau level are observed for the v=1/m
states, this is not a general rule for other fractional Hall states. The pseudopotential
at zero relative angular momentum, m =0, is the strongest for the =0 Landau level.
Therefore, for the fractional quantum Hall states for which the on-site interaction
with m=0 is dominant, the energy gap in the =0 Landau level is the largest.
An example of such a fractional quantum Hall state is the v = % state. The excitation
gap of the valley-unpolarized v = % state is larger in the n =0 Landau level than that
for the n=1 Landau level.
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Figure 18. The energy spectra of an eight-electron valley-polarized v = % fractional quantum
Hall system obtained in spherical geometry are shown for different Landau levels: n =0 (stars)
and n=1 (full circles). The flux quanta is 2S5 =21. (b) The energy spectra of a six-electron
valley-polarized v :% system is shown for different Landau levels: n=0 (stars) and n=1
(full circles). The flux quanta is 25 = 25. The energy is shown in units of the Coulomb energy,

ec=e*/ely (reproduced from [130]).
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Figure 19. The energy spectra of a six-electron valley-unpolarized v :% fractional quantum

Hall system obtained in the spherical geometry, are shown for different Landau levels: n=0
(stars) and n=1 (full circles). The flux quanta is 2S=15. The spin-wave excitations are
illustrated by solid (n=1) and dashed (n=0) lines. The energy is shown in units of the
Coulomb energy, ec=e?/ely (reproduced from [130]).

The single-particle excitations of the fractional quantum Hall states were studied
in [135] within a numerical approach. It was shown that at v = % the excitations are
valley skyrmions both at n=0 and n=1 Landau levels. A more complicated
situation occurs for the v = % and v = % fractional quantum Hall states. The ground
states in these two cases are valley-unpolarized at =0 Landau level and valley-
polarized in the n=1 Landau level. The single-particle excitations are valley-
unpolarized except at the v :% state in the =1 Landau level, for which the

excitation has the skyrmion-like valley texture.
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Figure 20. Gate voltage dependence of resistance for a suspended graphene sample is shown
at different magnetic fields and at temperature 1.2 K. The plateaus at v=1, 2 and % are clearly
visible. (Reprinted with permission from X. Du et al., Nature, 462, p.192, 2009 [95]. Copyright
© (2009) Nature Publishing Group.)

In [136], the ground state of the electron system with partial filling factor was
studied within a mean-field approach. The competition between the uniform state,
Wigner crystal (with one electron per unit cell) and the bubble crystal (with more
than two electrons per unit cell) was considered. It was shown that at all filling
factors (except integer) the Wigner crystal state has the lowest energy at the lowest
Landau levels, n=0,1. At n > 1 a bubble crystal with two electrons per unit cell is
realized at intermediate values of the filling factor, while at all other filling factors the
Wigner crystal state occurs. This approach does not take into account the strongly
correlated fractional quantum Hall states (Laughlin liquids) [72,73] realized at
special fractional filling factors, e.g. v = % Such states will have the lowest energy at
these filling factors.

The fractional quantum Hall effect has been recently observed experimentally
[95,96] in specially prepared suspended graphene samples. In such suspended
samples, the disorder, which is usually due to the substrate, is strongly suppressed,
which has made it possible to observe the fractional quantum Hall effect at the filling
factor % (Figure 20). The fractional quantum Hall state is a strongly correlated
electron state, which at v = % is the Laughlin liquid state [137]. The activation gap of
such a state is determined by the strength of the inter-electron interaction, i.e. by the
Coulomb energy, ec= ¢*/elz. The activation gap of the v=1/3 quantum Hall state
was analyzed in [138] based on the two-terminal conductance measurements [95,96].
The activation gap was found to be around 4.4 K and the corresponding fractional
quantum Hall effect is clearly visible up to 10 K (the fractional quantum Hall effect
in conventional ‘non-relativistic’ systems usually appear at much lower temperatures,
i.e. below 1 K). The experimentally obtained activation gap is much smaller than the
theoretically predicted value which, for the experimental parameters of [95,96] is
around 40K [138]. This discrepancy can be attributed to the presence of disorder
in the system. Observation of the strong enhancement of interaction effects in
suspended graphene can be clearly attributed to the small value of the dielectric
constant, ¢ & 1, in suspended graphene.
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3. Bilayer graphene

Bilayer graphene consists of two graphene monolayers, typically arranged in the
Bernal (AB) stacking arrangement. It is a fascinating and complex system in its own
right, distinct from both the monolayer and the traditional two-dimensional electron
system (2DES) even though it shares some characteristics of each. The study of
bilayer graphene started in 2006 with the publication of three papers describing
its properties for the first time [139-141]. McCann et al. [139] demonstrated that
the low-energy band structure of neutral bilayer graphene is gapless and exhibits a
variety of second-order effects, and described an unusual sequence of Landau levels.
Experimental descriptions of this material were published by Ohta [140], who
described the low-energy band structure as well as the formation of a gap at the K
point when a transverse electric field is applied (in this case by negatively charged
dopants), and by Novoselov et al. [141] who measured the quantized Hall
conductance as predicted by McCann and Falko. In addition to the quadratic
low-energy band structure, with its associated effective mass, the chiral nature of the
charge carriers is manifest in the Berry’s phase and other properties. The bilayer
shares many other physical properties with the monolayer, such as the exceptionally
high electron mobility (with mean free path in the sub-micron range), and high
mechanical stability. Massive chiral particles do not exist in standard field theory,
and this makes the bilayer graphene system a promising venue in which the effects
of chirality can be distinguished from those of the Dirac spectrum in comparison
with monolayer graphene and traditional 2DESs. One unique feature of bilayer
graphene is the ability to open a tunable band gap by engineering a potential
difference between the two layers. This may be done either by gating, or by external
dopants. This tunable gap (as opposed to the gap in a 2DES which is an intrinsic
effect of the crystal structure and therefore not tunable), along with the high electron
mobility and simplicity of fabrication techniques opens the possibility of many
applications of bilayer graphene in the construction of devices.

Here we present a summary of the properties of this material, and in particular
seek to show the similarities and differences between it and the monolayer. We begin
in Section 3.1 by discussing the fabrication and identification of bilayer flakes
from an experimental point of view. Then, in Section 3.2, the commonly-used tight-
binding model is introduced including the effective low-energy description.
In Section 3.3 we review the theoretical predictions for the opening of a band gap
at the K points, and discuss the experimental evidence for this gap. When bilayer
graphene is placed in a strong magnetic field, it exhibits a unique integer quantum
Hall effect, and this is reviewed in detail in Section 3.4. The impact of electron—
electron interactions is often neglected in the theoretical work, but they may have
important consequences and we review analytical and numerical studies of their
effects in Section 3.5. Phonon anomalies in this material, and the coupling between
electrons and phonons are discussed in Section 3.6, and finally we present a few of
the devices which have been proposed to utilize bilayer graphene in Section 3.7.

3.1. Sample fabrication and identification

Fabrication techniques for bilayer graphene are similar to those for the monolayer
material. In the case of mechanically exfoliated flakes, the ‘Scotch tape’ part of the
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process deposits many flakes of varying thicknesses onto the substrate, so the process
of identifying which flakes are mono- or bilayers becomes the key part of the
technique. Bilayer samples have also been made on silicon carbide substrates by
the sublimation of the silicon atoms on heating, a process called epitaxial growth.
In this section, we describe the optimization of the visibility of graphene, and in
particular the ideal conditions for distinguishing the number of layers of exfoliated
flakes. We then review other diagnostic techniques, such as atomic force microscopy
and Raman spectroscopy which proved to be useful tools in characterizing graphene.

3.1.1. Optical identification of exfoliated bilayer graphene

The visibility of graphene is a key issue for the mechanical microcleavage fabrication
technique, and in 2007, four papers were published [142—145] discussing the visibility
of graphene and few-layer graphene on dielectric substrates. Defining the optical
contrast (or visibility) to be

V'=(R— Ro)/Ro,

where R, is the reflection coefficient of the bare substrate, and R is the reflection
coefficient of the substrate with a graphene flake present, all authors reported that
the visibility of the bilayer is twice as high as that of the monolayer in the visible
frequency range. All authors also recommended using substrates with SiO, of width
~280nm. While Blake et al. [142] modelled the enhanced reflection of visible light
due to constructive interference of light caused by the additional optical path length
introduced by the presence of graphene, Abergel et al. [143] gave a complimentary
analysis considering the effect of the conductivity of the graphene flake at the
boundary between the air and the substrate. They gave an analytical condition for
the peak visibility, finding that the frequency of incident light w, the oxide width d,
and dielectric function ¢, should be arranged such that

_c(n+d)m
© d./é,cosa,’

where n is an integer which labels the resonance, ¢ is the speed of light and
sina, = sina/,/€,. This approach was supplemented by Nair et al. [146] in the
publication of measurements of the absorption of visible light by suspended
graphene, showing that the absorption scales linearly with the number of layers
for energies below about 1eV and that the constant of proportionality is exactly
the fine structure constant o =e’/hc (Figure 21). Abergel et al. [143] noted that
since the optical conductivity of bilayer graphene has a peak at y;~400meV,
then the visibility of the bilayer will be enhanced with respect to the monolayer
in the far infra-red frequency range. This was subsequently observed by Kuzmenko
et al. [147].

Wang et al. [148] discussed several pertinent differences between the mono-
layer and bilayer optical properties, including the van Hove singularity which
is present in the bilayer, but not in the monolayer. This effect causes the sign
of the peak normalized reflectivity to be opposite in the two materials.
Additionally, the normalized reflectance exhibits a peak when the photon energy is

(36)
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Figure 21. (Colour online) Looking through one-atom-thick crystals. (a) Photograph of a
50 um aperture partially covered by graphene and its bilayer. The line scan profile shows the
intensity of transmitted white light along the yellow line. (Inset) The sample design: A 20 pm
thick metal support structure has several apertures of 20, 30, and 50 um in diameter with
graphene crystallites placed over them. (b) Transmittance spectrum on single layer graphene
(open circles). Slightly lower transmittance for A < 400nm is probably due to hydrocarbon
contamination. The red line is the transmittance T'=(1+0.57a)~> expected for two-
dimensional Dirac fermions, whereas the green curve takes into account a non-linearity and
triangular warping of graphene’s electronic spectrum. The gray area indicates the standard
error for the measurements. (Inset) Transmittance of white light as a function of the number of
graphene layers (squares). The dashed lines correspond to an intensity reduction by ma
with each added layer (Reprinted figure with permission from R.R. Nair et al., Science, 320,
1308, 2008 [146]. Copyright © (2008) The American Association for the Advancement of
Science.).

equal to the interlayer coupling energy y; corresponding to the inter-band
excitations becoming accessible. The gate-induced changes in the reflectivity
are also significantly different, with the monolayer showing a difference which is
roughly constant with the photon energy, but the bilayer peaking at y;. Note
that the detail explanation of the theory of optical conductivity can be found
in [149-151].

Ni et al. [152] measured the visibility of multi-layered graphene on an SiO,
substrate, and fitted their data to the bulk graphite refractive index (ng=2.6 — 1.3i).
They did not find good agreement between the calculations using Fresnel’s equations
and the experiment, and instead found that the refractive index n=2.0 — 1.1/ fitted
better.

Abergel et al. [143] also discussed the visibility of graphene on SiC substrates,
Roddaro et al. [144] presented computations of the observed color of the graphene
flakes, Casiraghi et al. [145] discussed Raleigh spectroscopy and flakes with larger
numbers of layers, and also the dependence of the visibility on the aperture size of the
detection device. Gaskell et al. [153] measured the contrast in reflection for graphene
flakes mounted on glass substrates and also found a linear increase in visibility with
the number of layers, linking this to the fine structure constant (Figure 22), after
Nair et al. [146]. Gao et al. proposed a method for flake identification which utilized
the color difference between the substrate and the graphene, and discussed various
alternative dielectric materials for use in the substrate.
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Figure 22. Left: Measured contrast ratios for 41 unique graphitic flakes. Theoretical contrast
ratios based on the Fresnel theory with m-layer graphene conductance Z,G = mna are plotted
as bands for a substrate refractive index n,=1.522 £ 0.004. Right: Contrast ratios for each
layer, including error due to camera non-linearity and lamp power fluctuation, compared with
Fresnel theory with reported graphite induces (A) n, =2.675 — 1.35i [154], (B) n, =2.52 — 1.94i
[155], graphene index reported by Ni er al. [152] (C), and universal conductance (D)
(Reprinted figure with permission from P.E. Gaskell et al., Applied Physics Letters, 94,
143101, 2009 [153]. Copyright © (2009) American Institute of Physics.).

3.1.2. Atomic force microscopy and miscellaneous diagnostic techniques

Atomic force microscopy is a technique which can be employed to measure the
relative height of a graphene flake above the substrate, and thus determine the
number of layers present in the flake. Obraztsova et al. [156] carried out a statistical
analysis of the atomic force microscopy (AFM) measurements of the height of many
graphene flakes to determine the systematic dependence of the height on the number
of layers. They demonstrated (Figure 23) that the peaks in the histograms of
measured heights occur at 0.35nm intervals, corresponding to the predicted
interlayer spacing in few-layer graphite flakes. The height of the first layer in a
given flake varies due to the differing strength of interactions between the substrate
and the flake, and the height of graphene in one plateau varies due to the intrinsic
rippling or corrugation of the flake. Their study shows that the flake height is a
reliable way of determining the number of layers on a plateau on a given flake, but
the low throughput of the AFM technique means that other diagnostic techniques
are more promising for the identification stage of the exfoliation fabrication method.
Stacking faults have been observed by Warner et al. [157] in exfoliated bilayer
and few-layer samples by tunnelling electron microscopy (TEM) measurements.
The relative rotation of the layers can be distinguished and the experimental data
is fitted well by considering two decoupled monolayers. High-resolution TEM is a
good tool for determining the stacking faults for flakes up to six layers thick.
When bilayer graphene is deposited on a (metallic) ruthenium substrate [158], the
upper layer is screened from the substrate by the lower layer, which couples strongly
to the metal. The authors claim that the linear band structure is regained in the upper
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Figure 23. The atomic force microscopy images of three different arbitrary graphene flakes
and the distribution of the height values over their surface points (Reprinted with permission
from E.A. Obraztsova, A.V. Osadchy, E.D. Obratztsova, S. Lefrant, and 1.V. Yaminsky,
Physica Status Solidi b, 245, p. 2055, 2008 [156]. Copyright © (2008) Wiley-VCH Verlag
GmbH & Co. KGaA.).

layer, and that scanning tunnelling microscopy (STM) images of the flake show both
carbon sublattices indicating that the AB symmetry is restored.

3.1.3. Raman spectroscopy

Both the optical imaging and AFM methods of determining the number of layers
in a graphene flake are time-consuming processes. Raman spectroscopy has a much
higher throughput, and is therefore a promising candidate for a much faster
identification technique, and several authors have claimed that it can reliably
distinguish the number of layers in a flake. Raman spectroscopy is intimately related
to the phonon modes in the sample being probed. Ferrari et al. [23] have shown
that the doubly-degenerate 2D peak in monolayer graphene splits into four non-
degenerate modes in the bilayer. This splitting causes the 2D peak to broaden in a
systematic way (Figure 24a), to gain a shoulder on its low-energy tail, and to shift
slightly upward in frequency. This is also seen in experiments carried out by Graf
et al. [159], where spatially-resolved Raman spectroscopy can distinguish between
mono- and bilayer portions of a single flake (Figure 24b). Also noticeable in this
figure is a dramatic increase of intensity, and a slight downward shift (by ~3 cm™") of
the G peak, relative to the monolayer.

The Raman spectrum of two overlapping monolayer flakes has been investigated
by Poncharal et al. [160]. Figure 25(a) shows the G and D band regions of the 633 nm
Raman trace of monolayer and overlapping graphene. There is a slight down-
ward frequency shift and narrowing of the G peak in the overlapping flakes. Figure
25(b) shows the trace for the 2D band in the same flakes, with that of the
Bernal stacked bilayer for comparison. The splitting of the 2D band into four peaks
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Figure 24. (a) The 2D peak shown in Raman spectra in bilayer graphene (Reprinted figure
with permission from A.C. Ferrari et al., Physical Review Letters, 97, 187401, 2006 [23].
Copyright © (2006) by the American Physical Society.). (b) Raman spectra of single- and
double-layer graphene (Reprinted with permission from D. Graf et al., Nano Letters, 7, 238,
2007 [159]. Copyright © (2007) by the American Chemical Society.).
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Figure 25. (Colour online) (a),(b) Raman spectra of a single graphene sheet (black lines),
Bernal bilayer (yellow lines) and two overlapping misoriented graphene sheets (green lines) at
633nm. (a) G and D band range of the graphene and overlapping configuration. Curves have
been vertically offset for clarity and normalized on the G peak. (b) 2D band region for single
graphene sheet and overlap compared to the Bernal-stacked bilayer. The overlapping
graphene spectrum consists of a single peak clearly shifted compared to monolayer graphene.
It strongly differs from the Bernal-stacked bilayer. Its width (19cm™") is smaller than the
monolayer graphene peak (26cm™'). (c) Raman spectrum at 488 nm (top) and 514.5 nm
(bottom). The difference in Raman shift is reduced compared to the traces at 633 nm in (a, b).
The slight asymmetry is due to experimental shortcomings (Reprinted figure with permission
from P. Poncharal et al., Physical Review B, 78, 113407, 2008 [160]. Copyright © (2008) by the
American Physical Society.).

in the bilayer is completely absent from the overlapping region. Therefore, the
authors conclude that the coupling between the two layers in the overlapping region
is minimal. However there is an upward shift in the peak frequency, and the peak
is ~20% narrower than in the monolayer case. The authors describe why they think
(in contrast to other works, [161,162]) that neither the renormalization of the
Fermi velocity nor the opening of a gap at the charge neutrality point cause this
frequency shift. Instead, they suggest that the weak coupling between the two
monolayers causes a modification of the phonon spectrum, which manifests in
Raman trace while leaving the electronic spectrum unaltered.



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

Advances in Physics 307

Figure 26. The bilayer lattice in (a) isometric, and (b) top-down projections. The upper
(lower) layer is shown in solid (dashed) lines, the interlayer dimer bonds are in grey. The
A atoms in the top layer are directly above the B atoms in the lower layer.

3.2. Tight-binding model

In this section we introduce the commonly-used tight-binding model for bilayer
graphene. It is a natural extension of the model used for the monolayer, although
additional complexity is introduced by the various interlayer hopping elements. We
shall describe each of these and the effect that they have on the low-energy spectrum.
Discussion of the interlayer potential is deferred until Section 3.3.

3.2.1. Nearest neighbor and next-nearest neighbor models

The bilayer crystal lattice is shown in Figure 26. The two monolayer lattices
are shown as solid lines for the upper lattice (where the two lattice sites are labelled
by a subscript ‘u’) and the lower lattice in dashed lines (labelled by a subscript ‘/”).
The two lattices are offset from each other in the xy plane so that the A, sublattice
is directly above the B, sublattice, and it is between these pairs of atoms that the
interlayer dimer bonds are formed. The B, and A, atoms are not directly bonded to
the opposite layer. This arrangement is known as Bernal stacking, and is the stacking
arrangement which is most commonly considered. Other possible arrangements are
AA stacking, where the two lattices are directly above each other and bonds form
between the same sublattices, and the turbostratic arrangement where the upper
layer is rotated with respect to the lower layer and so interlayer bonding is haphazard
and noticeably weaker. The AB stacking arrangement was experimentally verified in
epitaxial graphene by Ohta er al. [163].

In order to construct the tight-binding model for bilayer graphene, we follow the
same scheme as for the monolayer. Assuming that the sp’-hybridized electrons are
inert, we consider the p. electrons only, which form the 7 bands as in the monolayer.*
Since there are four atomic sites per unit cell, the wave function can be written as
a four component spinor in the following basis:

(YA, B, YA, ¥B,)-

The intralayer nearest neighbor hopping elements (characterized by the vectors such
as R in Figure 27(b)) with the transfer integral ¢ (which was also denoted by y



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

308 D.S.L. Abergel et al.

Figure 27. (a) Designation of couplings in the tight-binding model of bilayer graphene.
Intralayer couplings are the nearest neighbor (A <> B) with energy ¢, and the next-nearest
neighbor (A<>A and B<>B) with energy 7. Interlayer couplings are A,, <>B; with energy y; A,
<B, with energy ys; and A,<>A; and B, <>B; with energy y4. (b) Illustration of the twelve
nearest and next-nearest neighbor lattice sites about site j. The vectors R and R’ appear in the
tight-binding formalism.

in Section 2.2) and the next-nearest neighbor hops with vectors like R’ and transfer
integral ¢ are trivially the same as in the monolayer case, so we concentrate
on describing the various interlayer couplings, which are illustrated in Figure 27(a).
The most important interlayer coupling is the dimer bond between the A, and B,
lattice sites. The strength of this coupling is parametrized by the transfer integral y;,
and since there is no projection of the vector connecting these two lattice sites on the
xy plane, there is no momentum dependence in the matrix element. The next-nearest
neighbor interlayer couplings are the A,;<> B, hops parametrized by y3, and the
A;<> A, and B;< B, hops parameterized by y4. In each case, the momentum
dependence is the same function f(k) as for the intralayer nearest neighbor hops.
Finally, the presence of the dimer bond may induce an additional asymmetry
between the two sublattices within each layer, which we account for this by including
the parameter A. Therefore, the tight-binding Hamiltonian for the 7 bands of neutral
bilayer graphene can be written as

1g(k) /() vaf(k) 1f (k)
i e i R
y — | R Lek) if (k) VS (k)
T - - 3k -
vaf (k) tf (k) A+ 1g(k) 14
g Lok =,
k) vaf(k) " A+ 1g(k)
where f (12) = Zle exp(ilg “R)), g(lz) = Z?:l exp(ilz - R), and the superscript asterisk
denotes complex conjugation. The values of the transfer matrix elements which
appear in the Hamiltonian are still controversial. It seems that they may vary
between exfoliated and epitaxial graphene, and theoretical calculations do not
currently agree completely with experimental measurement. In Table 1 we collect the
values as currently known. The most thorough experimental determination of
the tight-binding parameters was carried out by Kuzmenko ez al. [164], who used
infra-red spectroscopy to compare detailed reflection spectra with the predictions
of the tight-binding model. They fitted their data to nine free parameters, including

the four tight-binding parameters shown in Table 1, the interlayer gap, scattering
rate, temperature and position of the charge-neutrality point. The spectrum

) (37)
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Table 1. Tight-binding parameters for bilayer graphene, given in eV.

1=y 1 ) Ya A
Kuzmenko [147] (IR spec.) 0.378 0.015
(0.005) (0.005)
Kuzmenko [164] (IR spec.) 3.16 0.381 0.38 0.14 0.022
(0.03) (0.003) (0.06) (0.03) (0.003)
Zhang [165] (IR spec.) 3.0 0.40 0.3 0.15 0.018
Malard [166] (Raman) 2.9 0.30 0.10 0.12
Malard [167] (Raman) 3.0 0.35 0.13 0.13
Min [168] (ab initio) 2.6 ~0.34 0.3
Gava [169] (ab initio) —3.4013 0.3963 0.3301 0.1671

Notes: Methods of determination of the parameters include infra-red spectroscopy (IR spec.),
Raman spectroscopy (Raman), and ab initio density functional theory calculations (ab initio).
Note that Min et al. claim that y; varies slightly with the interlayer potential U. Bracketed
values are stated uncertainties.

(@ 10 (b) \ T

Energy (eV)
<)
T
Energy (eV)

N

r K M

—

Figure 28. (a) The 7 bands in bilayer graphene along the high symmetry directions. The tight-
binding parameters are taken from Zhang [165]. We have ignored the intra-plane next-nearest
neighbor hopping parametrized by ¢ (i.e. we have set ¢/ =0). (b) The low-energy spectrum
for k,, =0 in the nearest neighbor tight-binding model, (i.e. for y3=y4=1=A =0). The bands
are labelled by the pair of values (x,«) (Equation (39)). The higher energy bands (¢=1)
are split by y; from the low-energy bands (¢ =—1), which are degenerate exactly at the K
point. In this case, all four bands are isotropic.

associated with this Hamiltonian is shown in Figure 28, where we have taken the
tight-binding parameters given by Zhang et al. [165].

Mucha-Kruczynski et al. [170] have proposed a method for determining the size
and sign of various tight-binding parameters by utilizing angle-resolved photoemis-
sion spectroscopy (ARPES) data. Variation of the intensity of constant energy maps
reveal the wave function symmetry due to trigonal warping, band gaps and intralayer
site asymmetry. The location of the bottom of the split band immediately gives the size
of the interlayer coupling y;, and for energies greater than y4, the relative intensity of
the signal from the low-energy and split bands determines the sign of this parameter.
The magnitude and direction of the trigonal warping of the low-energy band structure
are set by the ratio y3/y;, so once y; is accurately known, the analysis of the constant
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energy maps near the charge neutrality point reveals the sign and magnitude of y3. The
band gaps can also be characterized, and the relative contributions from the intralayer
asymmetry A and the interlayer bias U can be distinguished.

The Hamiltonian in Equation (37) is valid for the = bands across the whole
Brillouin zone. However, the low-energy properties of bilayer graphene are
determined by the electrons near the Fermi surface, which (for moderate doping
or gating) is located near the six K points. We therefore expand the momentum
dependence of H, near the two inequivalent points, and assign the valley index &
(such that £=+1 in the K valley, and £=—1 in the K’ valley) to be a new quantum
number for the system. This causes the basis to expand to contain eight elements,
not counting the spin degree of freedom. It is convenient to swap the order of the
components in the K’ valley, so that the basis is

{wA/a wBua wAus 1/fl3/} in the K Val]ey» and
{¥B,» YA UB,» ¥a,} in the K’ valley.

Using this basis, we can write the low-energy Hamiltonian in valley & by expanding
the functions of momentum to the leading order about the K points as

%t’az|l€|2 Evymr &'11471T gyt
gvrt 21 A k) gvr gy,
He=| " v ) * : (38)
Evym vt A+30d k! Y
gy gv,m’ Y A+3 £ 2|k |?

where v = v/3at/(2h) is the Fermi velocity of monolayer graphene, vy = \/§ay3 /(2h)
and v, = ﬁay4/(2h) are the velocities associated with the interlayer hops,
T=p.+ip,, and p = hk = —ihV.

In the simplest case (the nearest neighbor approximation), with y;=y;=
A =1 =0, we see that the spectrum near the K point is quadratic:

Enn = x\/vzp2 + y1/2 + ayy/ VP2 + vi/4, (39)

where y =1 refers to the conduction and valence band, and « =41 to the low-
energy and split branches illustrated in Figure 28(b). A cross-over to a linear
spectrum occurs at pA y;/2v, corresponding to the electron density n'" ~ vi/
(4mh*v?) ~ 4 x 102 cm~2 [139], which is lower than the density at which the higher
energy band becomes occupied: n® ~ 2y7/(wh*v?) ~ 8n'™ [139]. The equivalent
energy is approximately y,/5.

The qualitative features of this model have been confirmed in optical experiments
by Wang et al. [148] and Kuzmenko et al. [147,164]. Wang et al. spectulated that
disagreements between the predicted and observed reflectivity properties could be
due to excitonic effects altering the optical spectrum. Kuzmenko et al. [147] observed
peaks in the reflectivity associated with the onset of various inter-band transitions,
and were able to extract parameters for the tight-binding model from them. However
there were some features which required additional couplings to be considered in the
tight-binding model before they could be explained, and we shall discuss them later.
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Figure 29. Detail of the effect of y4 and A (the intralayer site asymmetry induced by the
presence of the dimer bond) on the low-energy spectrum near the K point. In each case
the solid line represents the labelled tight-binding parameters with y; =+ =0, and the dashed
lines correspond to y3=y4=A=¢=0. The k, momentum is measured from the K point,
and k, =0 throughout.

The effects of the interlayer hop parametrized by y4, and the onsite assymmetry A
is shown in Figure 29, where we plot numerical solutions of the Hamiltonian
in Equation (38) with y3=1¢ =0, and various values of y, and A. We see that y,
introduces a small electron—hole asymmetry, and that A increases the conduction
band energy near the K point. The combined effect is shown in the third panel
of Figure 29. At larger momentum (k.a~0.1), the combined effects of y4 and
A cancel, leaving the bands almost unchanged.

Note that in this section, the overlap matrix has been neglected (see, e.g. Mucha-
Kruczynski et al. [170], or the book by Saito et al. [13]). This has an effect on the
band structure, including introducing an asymmetry between the electron and hole
bands, although only minimal effect is observed on the low-energy part near the K
points.

An analysis of the real space Green’s function of bilayer graphene near the K
points has been carried out by Wang et al. [171]. They derive analytical expressions
for the Green’s function, and plot the local density of states (LDOS) to compare with
experimental scanning tunnelling microscopy images of bilayer flakes. They predict
that the lattice sites not involved in the dimer bonds have the highest electron density
for electrons with energy below the interlayer coupling y;. This is in contrast to
monolayer flakes where the two lattice sites are equivalent and the LDOS are
identical to each other. The difference in the LDOS, Apy(e) is given by

0 el >n,
Apy(e) = Sy
1
— <
27[’2 |8| Y1,

where S = 34/34%/2 is the area of the unit cell in real space.

Lopes dos Santos ef al. [162] used the continuum limit of the tight-binding
formulation to consider the effect on the spectrum of a small rotation (parametrized
by the angle 0) between the two graphene layers. The main consequence of the
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rotation is that the Dirac cones in each layer are shifted in momentum space, so that
the doublet of zero energy states in the lower layer cannot couple via the interlayer
dimers to the zero energy states in the upper layer. Instead, they couple to three sets
of finite energy states, at =vAK, where AK =2 sin(f/2). The effect of this altered
coupling is that the Dirac cones are preserved, although their energy is shifted
downward by an amount 672 sin(6/2)/(vAK). The Fermi velocity is also renormalized
so that v/v=1-9[7,/ (vAK)]z, where 7 is the modified interlayer hopping parameter
at the reciprocal lattice vectors, and this reduced velocity constitutes an experimental
tool for identifying twisted bilayers. The twist also generates an electric potential
difference between the layers, but the absence of coupling between the zero energy
states in each layer prevents the opening of a gap at the Dirac point. Finally, an
electron—hole asymmetry develops, which shifts the Fermi energy away from the
Dirac point at half-filling.

Katsnelson e al. [172] showed that, as in the monolayer, the ripples’ which
are intrisic to graphene [24,173] cause the Hamiltonian to be modified by an
effective gauge field. This induces zero energy states, which the authors prove (via the
Atiyah-Singer theorem) to be topologically protected. The number of these states
is determined by the total ‘flux’ in the sample.

3.2.2. Trigonal warping

The next-nearest neighbor couplings may have important effects in the low-energy
limit. Chiefly, the direct coupling between atomic sites not involved in the dimer
bond (the A, and B, sites), which is parametrized by the hopping integral y; causes
the low-energy spectrum to become anisotropic. This effect is called trigonal
warping, is detectable in ARPES measurements [174,175], and has a significant effect
on the weak localization properties of bilayer graphene [176,177]. It is included in the
tight-binding formalism with the transfer integral y; which leads to the velocity
vy = «/ga)@ /(2h). The spectrum associated with the nearest neighbor Hamiltonian
with the trigonal warping terms was given by McCann [139] as

1 1
e’ = i\/ W+ <V2 " 5"%>1ﬂ + (=T, (40a)
where o =1, 2 represents the lower and higher energy bands respectively, and
1 2
I'= 1 (vi = v3p?) v (v + vip?) + 2Ey,v3v7p’ cos(39). (40Db)

In Figure 30(a) we show this spectrum for the parameters given by Zhang et al., but
with y4=A =1 =0, so that we reveal the effects of the trigonal warping only. Plotting
the energy along the line k,, =0, the spectrum is asymmetrical about k, =0, although
electron—hole symmetry is still present since the sublattice symmetry is not broken.
For small energies, a Lifshitz transition occurs whereby the Fermi surface breaks into
one central region with area A, e*/(hvs)* and three elliptical ‘leg’ regions with area
A;~ A,3. The center of the leg regions are at momenta with magnitude y;vs/v>
and angles 0, 27/3, and 4n/3. The electron density at which this transition in
the shape of the Fermi surface will occur is n; ~(v3/v)* n'™~1x 10" cm™2,
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Figure 30. (a) Effect of inclusion of trigonal warping (solid line) in spectrum. The dashed line
is for v3=0. An asymmetry about k, =0 is introduced, but electron—hole symmetry persists.
The inset shows the very low energy spectrum, and the band overlap of ~2meV induced by
the trigonal warping. (b) Isoenergetic lines in momentum space for v3/v=0.1. For E~ 1 meV
the Fermi surface splits into four pockets.

where n'"™ is the density corresponding to the cross-over from the quadratic to the
linear spectrum, discussed after Equation (39). The trigonal warping has a substantial
effect on the low-energy transport properties of the bilayer.

3.2.3. Effective low-energy theory

In 2006, McCann and Falko [139] introduced a low-energy effective model for
bilayer graphene. In essence, it is an expansion of the Hamiltonian in the parameter
¢/y1 which effectively excludes the atomic sites involved in the dimer bond. Starting
from the Hamiltonian in Equation (38), with y4,=¢=A=0, and including the
interlayer bias U discussed in Section 3.3, four blocks can be identified:

Hi =&(Uo. 2+ vilow, —,p,)), Mo = —U0./2+ vi0,,
Hy = Hipp = &'V(O'xp)C + O'ypy).

The 4 x 4 Green’s function associated with H; can also be split into 2 x 2 blocks,
and the approach taken by McCann was to compute the block G;; involving only
the lower band states, and use it to identify the effective low-energy Hamiltonian.

In particular, using G¥) = (H,, — €)',

Gyt

-1 11

G= (Hg - 6) = ( 01 .
Ha Gy

Simple evaluation of the equation GG~' =1 gave

Gl_l] +e="Hy — leG(ZOZ)Hzl.
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Now, the low-energy effective Hamiltonian H, is identified with the Green’s function
G as Hy = Gy! + € so that the Schrédinger equation for this Hamiltonian was
written as

Hoy = e = My = HiGYHa [y = ey
Making a Taylor expansion of Ggol) in the small parameters ¢/y, and U/y,,
substituting in the Schrodinger equation for the 2 x 2 Hamiltonian, moving all terms
containing energy to the right-hand side, and rearranging for H, gives

V(o P 0 7\ &U[/1 o0 27 (7t 0
re=p(e ) el )20 5) 5 (0 )
(41)

This expression is interesting in a number of ways. Firstly, the kinetic energy now
comes with factors of 7°, which ensures that the energy dispersion is quadratic in this
limit. This corresponds to the electrons gaining a finite effective mass at the bottom
(top) of the conduction (valence) band, and the Dirac spectrum disappears.
However, the chirality of the electrons persists because the sublattice pseudospin is
still a relevant degree of freedom. The linear momentum term now carries the
velocity vz~ v/10. Therefore, this term is important at low momentum and its effect
on the band structure (called trigonal warping) is discussed in Section 3.2.2. The final
term in this expression contains contributions to the Hamiltonian from the interlayer
asymmetry potential. Since the decoupled lattice sites retained in this model are in
opposite layers, the low-energy band structure keeps its dependence on U via the first
term in the bracket as it was in the four band case. Further discussion of this term
is deferred until Section 3.3. The second term in the bracket is sometimes called the
kinetic asymmetry, and is due to the depletion of charge on the A,, B, dimer sites.
Using a more compact notation, this equation can also be written as the final result
of McCann and Falko [139]:

O LR R R G LG TS

2

where m = y,/(2v%) is the effective mass induced by the curvature of the bands, and
the superscript ¢ denotes the transpose of the matrix.

3.3. Band gap in bilayer graphene
3.3.1. Band gap in the tight-binding model

The symmetry governing the degeneracy of the highest valence and lowest
conduction bands at the K points in neutral bilayer graphene is the inversion
symmetry. If this symmetry is broken, then a gap is expected to appear in the low-
energy spectrum [139,178,179]. This breaking of symmetry can be modelled within
the tight-binding approximation by assuming that the two layers are at different
electrostatic potentials (Figure 31(a)) so that the difference between them is
parametrized by the energy U. The Hamiltonian corresponding to the full bilayer
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Figure 31. (a) Side-on view of the bilayer lattice, with the interlayer potential U and the
interlayer separation d labelled. (b) Low-energy tight-binding bands for three values of the
gap U, with y3=y4=A=7¢=0,r=3¢eV and y; =0.4¢eV. The gap at the K point is U, whereas
the minimum splitting between the bands occurs at U.

system with broken inversion symmetry is given by H =Hy+ Hy, where H, is
discussed fully in Section 3.2, and

U2 0 0 0
|l o —gu2 o0 0 | eU
Huo=1 0 v 0 |72 0: ® oz, (43)
0 0 0 &UR2

which corresponds to the lower layer being at potential +U/2, and the upper layer at
—U/2. The factor of & is necessitated by the definition of the bases in the two valleys.
The effect of the inclusion of this term is illustrated in Figure 31(b) for the nearest
neighbor tight-binding model. We see that for moderate values of the interlayer
potential (often called the bias potential), a gap does indeed appear at the K point,
but the quadratic profile of the low-energy dispersion is retained. For higher values
of the bias, the quadratic nature is replaced with the ‘Mexican hat’ dispersion [180].
The band structure associated with this simplified Hamiltonian is

€ = VP £ Y22+ U+ o[ pA(U2 + 7)) + v /4,

where o = 1 designates the split bands, and « = —1 gives the low-energy bands. From
this expression, it is straightforward to compute that the gap exactly at the K point is
U, and that the minimum separation of the conduction band and valence band is
U? U* 4+ 2y}

2
at momentum p° =-— .
4?2 U2+ y?

44

The two quantities are labelled in Figure 31(b). Therefore, U~ U for bias up to
U=0.2¢eV.

In the preceding analysis, the size of that gap was treated as a phenomenological
parameter. In a typical experimental setup, the source of the symmetry breaking is
either a gating arrangement, or a number of dopants placed on one face of the
graphene bilayer. Two studies [178,181] have related the characteristics of the gate
or the dopant concentration to the size of the gap in the context of the continuum
limit of the tight-binding model. We shall discuss first-principles calculations of these
effects in Section 3.3.3. The excess charge density n=n; + n, is distributed between

U=
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both layers because of the incomplete screening, so that there is a potential energy
difference [178]

U= U+ en,L*/Cy (44)

between the two layers. In this expression, U is the bare asymmetry parameter which
gives a finite asymmetry at zero density (due to, e.g. uncontrolled doping in the
fabrication process, or interactions between the graphene flake and the substrate),
L? is the flake area and C,=e¢,e0L*/d is the capacitance of the bilayer with dielectric
constant &,. The gap is calculated self-consistently, and Figure 32(a) shows the
calculated value of the gap for three values of the bare asymmetry. Figure 32(b)
shows the densities on the two individual layers for a finite bare asymmetry
Uy=7y1/5=78 meV. The result of the screening is to reduce the zero density gap so
that U(0) < Uy. In the limiting case y,, €g > |U|, an analytic expression for U(n) can
be derived. Integrating the wave function amplitudes to find the layer density of the
partially occupied bands, the densities are
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Figure 32. (a) Numerical evaluation of the bilayer asymmetry U(n) for different values of the
bare asymmetry: Uy =0 (solid line), Uy = y1/10 =39 meV (dashed line) and Uy =y;/5 =78 meV
(dotted line), using typical parameter values y;=0.39¢V, d=3.55A, ¢e.=1 and
v=8.0x10°ms™'. (b) Layer densities 7, (solid) and n, (dashed) as functions of n for
Up=1y1/5=78meV. (c) U(0) as a function of U, for ¢,=1 (solid line) and e,=2 (dashed).
(d) The cyclotron mass in units of the bare electronic mass for different values of Uy as in (a). (¢)
U(n), where the solid and dotted lines are the result of the self-consistent procedure for
y1=0.2¢eV and y; =0.4eV, respectively; the dashed line is the unscreened result; the circles
represent U(n) measured by ARPES [140]. (f) Band gap U as a function of density (bottom axis)
and gate voltage (top axis): solid and dashed lines are for the screened and unscreened cases,
respectively. The thin dashed-dotted line is a linear fit to the screened result at small biases. ((a)—
(d) Reprinted with permission from E. McCann, Physical Review B, 74, 161403, 2006 [178].
Copyright © (2006) by the American Physical Society); ((e) and (f) Reprinted with permission
from E.V. Castro et al., Physical Review Letters, 99, 216802, 2007 [181]. Copyright © (2007) by
the American Physical Society.)
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where the ‘ungapped’ energy is €, = (y, /2)[‘/1 + 42 pl )yt — 1]. In the limit discussed,
Vpi A € + y,|ep| so that € is independent of U and Equation (44) is used to find

U~ Uy + *L’n/(2Cp)
- € & € ’

a2
This approximation is valid for intermediate densities U, U < |ep| < y; Where ep ~ €.
The effectiveness of the screening is given by the parameter A = ¢*Ly,/(2ali*v>Cy),
which depends on the model parameters, as illustrated in Figure 32(c). Here U(0) is
shown as a function of Uy for ¢.=1 (solid line) and ¢,=2 (dashed line). It is clear
that the gap increases with the dielectric constant.

According to Castro et al. [181], the screened potential difference between the two
layers is given by

U:(z_LL("’V))M

9
ng 1 2¢,

where An(n, V') is the induced charge imbalance between the two layers, which is
calculated through the weight of the wave functions in each layer. This charge
imbalance produces an internal electric field which screens the external one.
Figure 32(e) shows the comparison of the screened and unscreened calculations with
experimental data taken in ARPES measurements by Ohta et al. [140]. The
unscreened model cannot accurately describe the experimental data, whereas the
results of the self-consistent procedure do. The theoretical dependence of the gap on
the electron density is shown in Figure 32(f), along with a linear fit (valid in the small
gap regime only). The theory predicts saturation of the gap U~ y; at large biases.

Pereira et al. [182] performed an analytical study of the effect of a band gap and
changing electron density on the length of the interlayer dimer bonds. In their model,
the atoms not involved in the bonding are assumed to be static, and a uniform
displacement of the A, and B, atoms towards each other is considered assuming that
the Fermi energy is in the conduction band. The Mexican hat shape of the band
structure plays a role by changing the topology of the Fermi surface, and introducing
non-monotonicity into the displacement. Two densities,

= gAc V2 and n*™* = g—AC( V2 + 2y12
47ry? 47ry?

characterize the behavior, where A, is the area of the unit cell. The quantity n*
designates the density which corresponds to the Fermi level being at the top of the
Mexican hat, and sets the scale for the minimum of the lattice displacement. As the
density is increased further, the displacement saturates with the onset of saturation
being marked by n**. Since there are a number of poorly-known parameters in the
model, the quantitative results are unreliable.

*

3.3.2. Experimental evidence of gap

Experimental verification of the predicted band structure of gapped bilayer graphene
has been obtained in two ways. Firstly, it has been shown by Ohta et al. [140] that
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Figure 33. (Colour online) Variation of states at the K point with increasing potassium
coverage. (a) The image map shows the energy distribution curve at K as a function of
potassium coverage. The blue markers are the fitted positions of the tight-binding 7 and 7"
bands, and the yellow line indicates Ep. The closing and reopening of the gap between 7 and
7" states are clearly shown. (b) The influence of doping concentration on the band parameters
U (filled dots) and y; (open circles) (Reprinted figure with permission from T. Ohta er al.,
Science, 313, p. 951, 2006 [140]. Copyright © (2006) The American Association for the
Advancement of Science.).

n-type doping of a bilayer graphene flake by potassium atoms causes an increase
in the total charge density on the upper layer which generates a static electric field
which was characterized by U. Since the screening length (~4 A) is comparable to the
interlayer separation (d~ 3.4 A), the screening of this charge is incomplete and a net
dipole field results between the two layers. Ohta and Bostwick [140,179] used ARPES
to determine the low-energy band structure of the bilayer and hence determined
the gap and other band structure parameters. Figure 33(a) shows the evolution of the
four m bands as the concentration of potassium dopants increases. At minimal
doping, the remnant charge asymmetry from the manufacturing process and
substrate interactions causes the bilayer to be slightly positively doped and a small
gap is seen between the middle two bands. For the doping of approximately 0.012
electrons per unit cell, the bilayer is overall charge-neutral and the gap closes.
Increasing the doping further provides overall negative charge density and the gap
reopens. Figure 33(b) shows the evolution of the interlayer potential difference U as
a function of the dopant concentration (filled dots). For moderate dopant density,
the change in the potential is linear and moves through zero at approximately 0.012
electrons per unit cell, precisely coinciding with the closing of the gap. Castro et al.
[181] also demonstrated the existence of a gap by chemically doping a bilayer in the
case of a finite magnetic field.

The second method of producing a gap in the low-energy spectrum is to use
electronic gating. Infra-red spectroscopy [183,184] has shown band gaps of up to
250meV (Figure 35) which have a slight nonlinear dependence on both photon
energy and electronic density. An example device is shown in Figure 34(a),
where a top gate is fabricated over an AB-stacked graphene bilayer (Figure 34b).
The presence of this gate and the back gate allow two electrical displacement
fields D, of the back gate and D, of the top gate (Figure 34c) to be
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Figure 34. Dual-gated bilayer graphene. (a) Optical microscopy image of the bilayer device
(top view). (b) Illustration of a cross-sectional side view of the gated device. (c) Sketch showing
how gating of the bilayer induces top (D,) and bottom (D,) electrical displacement fields.
(d) Left, the electronic structure of a pristine bilayer has zero band gap (where k denotes the
wave vector.) Right, upon gating, the displacement fields induce a non-zero band gap U and
a shift of the Fermi energy FEf. (e) Graphene electrical resistance as a function of top
gate voltage V] at different fixed bottom gate voltages V. The traces are taken with 20V steps
in V;, from 60V to —100V and at ;,=—130 V. The resistance peak in each curve corresponds
to the charge-neutrality point (CNP) where D, = D, for a given V. (f) The linear relation
between top and bottom gate voltages that results in bilayer CNPs (Reprinted figure with
permission from Y. Zhang et al., Nature, 459, p. 820, 2009 [184]. Copyright © (2009) Nature
Publishing Group.).

independently controlled. The average of these fields breaks the inversion symmetry
of the graphene flake and opens the gap at the charge neutrality point. The difference
of these fields leads to a net carrier doping, so that the position of the Fermi level
and the size of the band gap may be controlled independently (Figure 34d). If the
back gate voltage is fixed and the top gate voltage swept, traces such as those
in Figure 34(e) are found, showing that the charge-neutrality point (corresponding to
the peak in the resistance) shifts, and the magnitude of the peak resistance increases
with both increasing positive and negative back gate voltage. This increase in the
peak resistance may be linked to an increasing magnitude of the band gap.

The infra-red spectroscopy measurements show that the absorption peak near
y1~0.4 eV associated with the inter-band optical transitions splits into two when the
top gate is applied. One peak moves downwards in energy with increasing gate
voltage, the other upwards, as in the left-most panel of Figure 35. This behavior is
explained by noting that peak 1 is due to transitions between the lower and upper
conduction bands, while peak 2 is due to transitions from the upper valence band to
the upper conduction band. Therefore, if a gap is present between the upper valence
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Figure 35. Experimental and theoretical spectra of the IR conductivity in units of we?/2h for
(a) the hole side and (b) the electron side as a function of photon energy. Charge neutrality
occurs at '=—0.5V. In the case of hole doping, the traces correspond to V'=-0.5, —0.8,
-1.0,-1.2,-14,-1.6, —1.8, —=2.0, —=2.2, —2.4, —2.6, —2.8 and —3.0 V from bottom to top. In
the electron side, the traces are for '=-0.5, —0.4, —0.3, —0.2, 0.0, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0,
2.4,2.8,3.2and 3.6 V. The theoretical data is obtained via the Kubo formula (Reprinted figure
with permission from K.A. Mak et al., Physical Review Letters, 102, 256405, 2009 [183].
Copyright © (2009) by the American Physical Society.).

and lower conduction bands, and the Fermi energy is located in the conduction
band, the energy of the transition associated with peak 1 will decrease, whereas
that associated with peak 2 will increase. The energy gap between the two peaks
is then precisely the band gap. The left-hand plots in both Figure 35(a) and (b) are
experimental data showing exactly this trend. A maximum gap of ~200 meV is seen
for a gate voltage of 3.6 V. The peaks also broaden because the bands are not exactly
parallel, so a wider range of transition energies are allowed for stronger gating.

As has already been stated, one of the attractive prospects for the utilization
of graphene in technological applications is in ballistic field-effect transistors.
The external tunability of the band gap in the biased bilayer is particularly exciting
in this context, and attempts have been made to implement current-switching devices
using this idea [185]. Transport measurements showed a gate-induced insulating
state and significantly non-Ohmic current—voltage characteristics at low tempera-
tures, but the band gap revealed by these transport measurements was significantly
lower than predicted by theory, and current switching was unobtainable at high
temperature. While these experiments may demonstrate the proof of principle
for these devices, there are still many challenges to be overcome. In addition, the
careful analysis of the low-temperature data revealed that the transport is best
described by disorder induced by variable range hopping in an insulating material
where impurity states localized in the band gap are the predominant mechanism
for transport. Thermally activated transport did not qualitatively explain the
experimental results.

3.3.3. Ab-initio simulations

Various studies have been carried out on the effect of the interlayer electric field
using first principles techniques [168,169,186—-188]. There is some confusion in the
literature because for the two main approximations for the exchange and correlation
potentials, the local density approximation (LDA) and generalized gradient
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Figure 36. (a) o (as defined in Equation (45)) as a function of doping n, for an electronic
temperature of 300 K calculated with DFT-GGA (crosses), and DFT-LDA (pluses),
calculated using the TB model with yo=3.1eV and yi= 0.4eV (circles) and using the GW
correction (up-triangles). The continuous thick line is the ﬁt of the GW result. (b) Planar
average of the linearly induced charge (per unit volume) p'" for bilayer graphene in the
presence of an external electric field E,, =1.6 x ¢/(269)10">cm™ for doping level
n=2x10"?cm™> (continuous line) and n =238 x 10"*>cm ™ (dashed line). (c) The symmetric
component, p{"; (d) the dntlsymmetrlc component p{V, with respect to each layer, of the
linearly induced charge p" shown in (b) for the same doping levels (Reprinted figure with
permission from P. Gava et al., Physical Review B, 79, 165431, 2009 [169]. Copyright © (2009)
by the American Physical Society.).

approximation (GGA) have been shown to give quantitatively different results for
the optimum interlayer spacing ¢ and the band gap U.

The most thorough study was published by Gava et al. [169] in which they
describe the size of the gap as a function of the doping and the external electric field.
They demonstrate first that the size of the gap is linearly dependent on the charge
imbalance between the two layers, and define the linear coefficient as

Uln, Eay) = a(n)(n; —ny), (45)

where 1, are the densities on the two layers, and E,, is the applied electric field.
In the absence of electronic screening, « is independent of the doping, and

e =4 — 303 x 10~'>cm? meV. The DFT results within the LDA, GGA and
GW approxmlatlons are compared to tight-binding results employing a simple
electrostatic model to account for the screening in Figure 36(a). It is clear from the
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figure that while all four estimations give the same qualitative dependence, the tight-
binding approximation gives a significantly higher slope than any of the first
principles results. There are two possible reasons for this discrepancy: The crude
electrostatic model used in the self-consistent process in the tight-binding model, and
systemic differences in the calculated band structures between the first principles and
tight-binding results. The authors demonstrate that both factors play a significant
role. The differences in charge transfer which lead to the reduced screening between
the two models is illustrated in Figure 36(b—d). The linearly induced charge (per unit
volume) is

ap(29 n, Eav) E

Dz n E..) = ;
10 (25 na dV) 8Eav a

Tz, B~ e, — B

where p(z; n, E,,) is the planar average of the charge density (per unit volume) at
doping n and in the presence of an external average electric field E,,. The charge
density p'" is antisymmetric with respect to z=0 (which corresponds to the point
half-way between the two graphene planes) and is plotted in Figure 36(b). We see
that the electronic screening is characterized by the charge transfer between the
two layers, and an intralayer polarization (which is also present in the monolayer).
The density is decomposed into a symmetric component p{") and an antisymmetric
component pf}) with respect to each individual layer defined by

Pi};(z) = % {pV(2) £ pV[sgn(z)d — z]}.

These are shown in Figure 36(c) and (d), respectively. Clearly, these quantities are
related to the inter- and intralayer charge transfer, respectively. The antisymmetric
contribution is very similar to the induced charge in a single monolayer, and is of the
same order of magnitude as the total induced charge in the bilayer. On this basis,
the authors conclude that the intralayer polarization gives an important contribution
to the screening properties of the system. This contribution is not taken into account
in the tight-binding approximation, and is the major contribution to the discrepancy
between these two models. The authors also show that the GW correction adds a
contribution to the density dependence of the linear parameter « (Figure 36a) which
can be explained within a perturbation theory analysis. Also, the temperature
dependence of the linear parameters is small.

Other notable works include the comparison of the AB and AA stacking
arrangements by Huang et al. [188] and Aoki et al. [186], in which they demonstrate
that AB stacking is energetically favorable over the AA arrangement. Also, Min
et al. [168] published the first systematic DFT study of the gapped bilayer, showing
that the size of the gap saturates with increasing interlayer potential. They also claim
that the exchange potential may contribute to the discrepancies between the DFT
and tight-binding results, and that the logarithmic divergence of the screening ratio
at small gate voltage (demonstrated within the tight-binding model by McCann
[178]) is reproduced in their calculations. Yu et al. [189] considered the polarizability
of graphene stacks within the LDA approximation, and they also found the same
qualitative picture sketched above. Specifically, the gap saturation was at approx-
imately 0.25eV, although the gap size at fields where electric breakdown will start to
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occur in SiO, was 0.17eV. They also investigated the distribution of charge between
layers and sublattices, finding that an external field induces a significant electron
concentration on one layer, with a positive charge cloud on the other, and that the
lattice sites not involved in the dimer (y;) bonding have higher density. Finally,
atomistic calculations have been presented by Fiori et al. [187] to assess the
practicality of FET devices implemented in gapped bilayer graphene. They claim that
there is no conceptual issue, but that the band gap is not wide enough to support a
sufficiently high on/off current ratio.

3.4. Quantum Hall effect

The quantum Hall effect in bilayer graphene is a fascinating manifestation of the
massive chiral nature of the low-energy quasiparticles. When a magnetic field with a
large component perpendicular to the graphene plane is applied, the electron
spectrum splits into Landau levels (LLs), just as in a traditional two-dimensional
electron system, or as in monolayer graphene (Section 2.1). However, the form of the
dependence of the energy of these levels on the magnetic field, level index, density
and other parameters are qualitatively different from both of these examples. The
chiral nature of the electrons is reflected in the presence of zero-energy levels, and
the increased Berry’s phase manifests in the doubled degeneracy of these levels.
The quadratic low-energy dispersion is represented by the linear dependence of the
LL spectrum on the magnetic field, and the near-linear dependence on the LL index.
We shall begin in this section by presenting the experimental evidence for the novel
quantum Hall effect in bilayer graphene. Then, in order to describe the behavior of
the low-energy Landau levels, the two band tight-binding model introduced by
McCann et al. [139] will be used in Section 3.4.2 to demonstrate the main features.
The magneto-optical properties are discussed in Section 3.4.3, the trigonal warping is
included in Section 3.4.4 and electron—electron interactions and the perculiar
properties of the zero modes are reviewed in Section 3.4.5.

3.4.1. Experimental picture

The first report of an observation of the quantum Hall effect in bilayer graphene was
given by Novoselov et al. [141]. Using samples obtained by the microcleavage
technique and fashioned into multi-terminal transistor devices, the low-temperature
transport properties were measured in strong magnetic fields. Figure 37(a) shows
typical traces of the longitudinal and transverse resistivities at fixed electron density
as a function of the magnetic field. Plateaus in the Hall resistivity accompanied
by dips in the longitudinal resistivity are clearly seen. The sequence of QHE plateaus
is described by ,oxy:h/4ne2 (where n is an integer designating the level), as would
be expected in a traditional two-dimensional electron system with spin and valley
degeneracies. However, a significant discrepancy with this case is manifest at small
filling factors, as shown in Figure 37(b): the expected level at zero density is not
present, leading to a double-sized step across the zero density point, and indicating
a Landau level with doubled degeneracy relative to the higher Landau levels.
The absence of a plateau at zero energy resembles the behavior of the massless Dirac
fermions observed in the monolayer material (Section 2.2). Figure 37(c—f) shows that



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

324 D.S.L. Abergel et al.

(@) . R (©) g4 - @ o
10T
. 0T /‘_\_______
g _ 6 __6BF
£ | d
4
& hige? % =
2 ' < <
& hi12e? 3 B 3k T=4K
sl |
0 Il 1
i ; L x5 -5 0 50 0 5 10 15
0 10 20 30 AL B
B
(b) N (e) M
4 4+ =
sl 2 100K K
50K
2 \ L 4K Potagpeent 00 0 ¢ o
< 0 K K
bi? = @ QO B=10T
; N\ 271 | 3F T 3r
e N N
_4 IZT\ 0 1 1 1
, , , , -50 0 50 0 100 200 300
-4 =2 0 2 4 AU T

Figure 37. (a) Hall resistivities p,, and p,, measured as a function of B for fixed
concentrations of electrons n~2.5x 10"?cm™ induced by the electric field effect. The
known geometry of the devices allowed the authors to convert the measured resistance into
Pxx With an accuracy of better than 10%. (b) o, plotted as a function of » at a fixed B and
temperature 7'=4 K. Positive and negative n correspond to field-induced electrons and holes,
respectively. o, crosses zero without any sign of the zero-level plateau that would be expected
for a conventional 2D system. (c—f) Resistivity of bilayer graphene near zero concentration as
a function of magnetic field and temperature. The peak in p,, remains of the order of /1/4¢?,
independent of B (c,d) and T (e,f). This yields no gap in the Landau spectrum at zero energy
(Reprinted figure with permission from K.S. Novoselov et al., Nature Physics, 2, p. 177, 2006
[141]. Copyright © (2006) Nature Publishing Group.).

the height of the p., peak is only weakly dependent on magnetic field and temper-
ature, which again contrasts starkly with the traditional two-dimensional case.

3.4.2. Tight-binding description of low-energy Landau levels

The main features of the Landau level spectrum are best exhibited in the low-energy
effective model introduced by McCann and Falko [139] and discussed in
Section 3.2.3. The leading term in the two-band Hamiltonian for bilayer graphene is

| -
H=—5(5-p)o(a-p).

which corresponds to the continuum limit of the nearest neighbor tight-binding
theory in the K valley. To account for a magnetic field characterized by the vector
potential 4, we employ the generalized momentum operator p — g4, where g=—e
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such that ¢ > 0 is the electron charge. In that case, the matrix form of the
Hamiltonian becomes

! 0 (py +edy —ip, —ied,)’
2m\ (py + edy +ip, +ied,)’ 0 :

We shall work within the Landau gauge defined by A Bxﬂ so that the
magnetic field B=VxAd= BE In this case, the w and =’ operators correspond
to lowering and raising operators for the basis of magnetic oscillator functions given
by ¢, =" ¢,,(x). These functions are defined so that

wpy =0, 7wp, = ‘/‘_(pm 1» 77T¢m = }_ v 2(m+ 1)¢m+1’ (46)
B

where /; = \/li/(eB) is the magnetic length, and the indices m > 0 are integers. Using
these relations in the Schrodinger equation gives the spectrum of discrete levels &F
and associated wave functions ®* as®

¢ ¢
8020, @0:<00>’ {;‘1:0’ (I)lz(ol)’
s
Einz2 = Fho/Inl(In] = 1), Py, = _( il )

where . = eB/m = Ii/(A4m) = 2 /(A3y1) is the cyclotron frequency in bilayer
graphene. Each of these levels is four-fold degenerate due to the combined two-fold
spin and valley degeneracies. This derivation illustrates the existence of the eight-fold
degenerate zero energy state, since the Hamiltonian ( ©, !’ along with the relations
in Equation (46) shows clearly that it is possible to "act twice with  on the wave
function ‘%1> and return a zero eigenvalue. In the monolayer case (Section 2.1),

the Hamiltonian contains only linear powers of 7, so it is possible to act only once to
return the zero eigenvalue. The magnetic field dependence of these levels is contained
entirely in w.=eB/m, so that the Landau levels depend linearly on the field, in
contrast to the monolayer where they show /B dependence. Also, the Landau level
spacing (i.e. the dependence on n) shows that the levels are nearly equally spaced,
apart from the lowest few where the deviation of /[n|(Jn] — 1) from equal spacing is
not small. The eightfold degeneracy in the ¢ =0 Landau levels is unusual amongst
two-dimensional systems, and suggests that electron—electron interactions in a
bilayer could give rise to a number of strongly correlated quantum Hall states.
We defer its discussion until Section 3.4.5.

A more complete picture of the behavior of the Landau levels in bilayer graphene
is given by the full four-band tight-binding model. In this case, the Hamiltonian in
the same basis as used previously, i.e. where the wave function component orders are
swapped between the K and K’ valleys is [190]

Uy—£&U/2 0 0 gyr!
H— 0 Uy +&U/2 Evrr 0
- 0 gvrl Uy +&U/2 Yi ’

gvn 0 n o Uy—&Up2
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Figure 38. (a) The low-energy Landau levels as a function of level index n for zero and finite
gap U at B=10 Tesla. The lifted valley degeneracy is manifest for finite gap. (b) The first eight
Landau levels as a function of magnetic field for zero and finite gap U in the K valley only.
The gap causes additional level crossings at small magnetic field, and it is clear that the n=0
level is constant as a function of field. The inset shows the LL spectrum for low magnetic field,
displaying the additional crossings induced by the interlayer asymmetry. We have taken
y1=0.4eV, v=1.0 x 10°ms™" and Uy=0 throughout.

where U, is the average potential of the two layers, U is the total energy difference
between the two layers, and as before, m =p,+ed,+i(p,+ed,). The eigenvalues
associated with this Hamiltonian are the solutions of the quartic polynomial

[(Ep(n. B) — Uy + £U/2)*—(n + Dw?|[(Ep(n, B) — Uy — £U/2)*—nw?|
— [(Ep(n, B) — Uy)* — U* /4]yt =0,

where w = \/ihv/lB. Solutions to this equation cannot be written in a simple form
(as they could for E? in the zero magnetic field case), so we present numerical
evaluations of the eigenvalues in Figure 38. In this case, the labels of the Landau
levels are defined as follows. The conduction and valence band each have their own
ladder of levels, with indices n=0,1,.... To distinguish one band from another,
we use the label b=c¢,v for the conduction and valence bands, respectively. The
presence of a potential difference between the two layers gives rise to the splitting
of the zero energy LL. The Mexican hat structure of the zero-field energy relation
is replicated in the Landau level spectrum at low fields [175] by the fan of levels
which cross each other in a complicated pattern (see the inset to Figure 38b). Pereira
et al. [190] display a comparison of these levels with those derived from the two band
approximation discussed above. They find that the two-band theory underestimates
the Landau level energy at moderate field, but that the qualitative features of the
levels are the same.

Some particular cases of this equation are easy to evaluate. Firstly, the U =0 case
yields the exact eigenvalues

2 D242 2 h2y2 N2 950201202
Ey(n,B) =+ W+7/li\/(v+)ﬁ> +M

I 2-V\4 2 o
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Figure 39. The (a) moderate- and (b,c) high-energy LLs of bilayer graphene at B=10 Tesla.
Density of states of bilayer graphene for B=10 Tesla at (d) low, (¢) moderate and (f') high
energies (Reprinted figure with permission from Y.H. Lai et al., Physical Review B, 77,
085426, 2008 [193]. Copyright © (2008) by the American Physical Society.).

where b= ¢ corresponds to the leading positive sign, and b =v to the negative sign.
This expression readily reduces to FEp(0,B) =0, & ,/m»2/5+y?/2 for the n=0
levels. In the symmetric case (i.e. when U=0), both bands have E(0,B)=0 as
a solution, restoring the doubly degenerate lowest Landau level.

The Hofstadter butterflies for bilayer graphene have been examined by Nemec
et al. [191], and transport properties in the case where the chemical potential exceeds
y1 has been investigated by Nakamura et al. [192].

The Landau level spectrum for the high-energy bands of bilayer graphene
was investigated by Lai er al. [193]. They used the tight-binding model without
the continuum limit to explicitly diagonalize Hamiltonians corresponding to finite-
sized bilayer graphene flakes in a magnetic field. They focused on three energy
regions: the low-energy region where the results of analytical solutions of the
continuum limit of the model were recovered; the high-energy limit where the
Landau levels are composed of electrons originating from the split bands at zero
field (Figure 39b and c) and the intermediate regime (Figure 39a). The intermedi-
ate regime corresponds to the region where the LL density is largest (Figure 39d-f),
where a phenomenological broadening of I'=0.5meV has been included) because
the zero-field density of states is highest at the M point of the Brillouin zone. The
non-uniformity of the LLs is due to the unequal spacing of LLs in this energy range
(not captured in the low-energy approximation to the tight-binding model described
above), and is enhanced by the presence of the second group of LLs arising from the
split bands. This analysis also includes the interlayer couplings parametrized by y;
and yy, and the intralayer next-nearest neighbor hop 7.
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3.4.3. Magneto-optical properties of bilayer graphene

The magneto-optical properties of bilayer graphene were first discussed theoretically
by Abergel and Falko [151] who took the non-interacting picture of electrons
in bilayer graphene and calculated the selection rules and optical strengths for
inter-Landau level transitions.

The selection rules derived within the two-band low-energy effective theory
(with Landau levels labelled by ne{..., —2,0, 1, +2,...} as explained in the
Endnote 6) are stated as follows: transitions between levels for which the magnitude
of the LL index differ by one are allowed. For circularly polarized light with right-
handed orientation (such that Z@ o by — 1£y) the allowed transitions increase the
magnitude of the Landau level index. For left-handed polarization (Ze x Z + 16 ),
allowed transitions decrease the Landau level index by one. This is illustrated in
Figure 40(a), where arrows represent transitions corresponding to the absorption of
radiation by the graphene flake. The associated absorption spectrum and a
comparison with the monolayer spectrum is shown in Figure 40(b). Several points
bear discussion, the first of which being that the LL spectrum is denser in the bilayer,
so that the transition energies are smaller and the spectrum of peaks more tightly
packed. This is a direct manifestation of the finite zero-field density of states at the
charge-neutrality point in bilayer graphene. Secondly, the peak height shows a
different pattern from the monolayer. Apart from a significantly larger lowest-energy
peak, all peaks have the same height, in contrast to the monolayer peaks which
steadily decrease in height. These selection rules also make it possible to distinguish
experimentally between two possible ground states of the half-filled quantum Hall
system. If the splitting 7ifw. between the n=0 and n=1 levels is smaller than the
Zeeman energy, then the arrangement of electrons between these two levels depends
on the details of the correlations between them.” It is possible to imagine two model
scenarios: first, if the interaction between spins and the magnetic field is strong

n
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Figure 40. (a) Selection rules for inter-Landau level transitions in bilayer graphene. Allowed
transitions in £g-polarized light increase the magnitude of the LL index by one, £o-polarized
light allow transitions which reduce the magnitude of the LL index by one. (b) Monolayer
(top) and bilayer (bottom) far infra-red absorption spectra in {4 and fg polarizations
for B=10 Tesla and filling factor v=0. Dashed and solid lines describe absorption by ferro-
and antiferromagnetic states, respectively. The energy normalization is with respect to
wi = ~/2hv/l, (from [151]).
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enough to overcome the gap between the levels, it will be energetically favorable for
electrons to align their spins and fill half the states of both levels. This state is labelled
‘ferromagnetic’ as a description of the spin ordering. Second, if the correlations or
other interactions force the n = 0 level to be filled and the n =1 level to be empty,
then we label the state ‘antiferromagnetic’. The lowest absorption peak is determined
by the 2— — 1 and the 1 — 2+ transitions, so the relative shape of this peak in the
two polarizations acts as a probe of the electron ordering of these states. If the
antiferromagnetic state is formed, there are electrons in only the n =10 level,
so the 1— 2+ transition is not accessible and the peak in the {4 polarization
in absent. On the other hand, if the ferromagnetic state is formed, the n =1 is
half-filled, so that both transitions are allowed. Therefore there are peaks in the
absorption spectra of both polarizations. Additionally, the very low-energy peak
corresponding to the 0 — 1 transition is only present in the £ polarization.

The optical transitions in bilayer graphene were also examined within the four-
band model in the single particle approximation by Pereira et al. [190] as a function
of the asymmetry gap and magnetic field. They give analytical expressions for the
oscillator strength for transitions, and show the dependence of the transition energy
on the magnetic field (Figure 41a). The transition energies are only weakly dependent
on the field strength for B < 5Tesla, in contrast with both the monolayer
and unbiased bilayer cases. Oscillator strengths for the same transitions are shown
in Figure 41(b). There is an asymmetry between the conduction and valence band
intra-band transition energies, which increases as the gap size increases, as shown
in Figure 41(c). The oscillator strengths also are strongly effected by the gap, as
shown in Figure 41(d).

The cyclotron resonance absorption has been studied experimentally, firstly by
Sadowski et al. [34] who found signatures of the monolayer single particle
description in few-layer epitaxial graphene samples, and more recently by
Henriksen et al. [194]. In the latter work, infra-red spectroscopy was used to
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Figure 41. (Colour online) (a) Transition energies in a biased (U= 100 meV) graphene bilayer,
as a function of the magnetic field B for the dipole-allowed transitions: 0 +— 1+ (black
dashed line), 1+ — 2+ (blue dotted line), 1— — 2— (black solid line), and 1— — 2+ (red solid
line), and we use the four-band notation to label the Landau levels. (b) Oscillator strengths as
a function of magnetic field for the transitions described in (a). (c) Transition energies as a
function of the gap for 1+ — 2+ (blue solid line), and 1— — 2— (red dashed line) transitions
for B=20 Tesla, and 1+ — 2+ (green solid line) and 1— — 2— (black dotted line) for B=10
Tesla. (d) Oscillator strengths for dipole-allowed transitions in a graphene bilayer as a
function of the interlayer potential difference at B=>5 Tesla.
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Electrons in filled Landau levels

100

T T T T T
_035 F @ 1 ©
— = L_']
RN L s — - } g0 B
LI o s =
—= n =3
g -045F — o0+ ] B P z : =
I 1- & I I 160 3
EB -05r - Tk \\\ -1 : o 9’3!
NI /A ] B
§ ossp e = 5 — u=Ydlg B
G & =
_06 1 Il 1 1 1 1 1 L 1 1 _] 78 ra - 1 £ 1 " it
5 10 15 20 25 2 4 6 8 10 5 10 15 20
Magnetic field (T) Magnetic field (T) Magnetic field (T)

Figure 42. (a) Energy shift per electron of filled LLs. (b) The absolute energy per electron
of filled LLs showing the crossing between the n =0+ degenerate level and the higher LLs
in the valence band. In both plots, U=0. (c) Electron—hole asymmetry in the inter-LL
optical transition energy. The experimental data (represented as points) are taken from [194,
Figure 2]. The authors take y; =0.4eV, and v=0.95 x 10°ms~" (from [195]).

measure the absorption spectrum of bilayer graphene and several significant differ-
ences were found between the expected results detailed above and the experimental
data. Firstly, a significant (=20%) electron—hole asymmetry was found for inter-
band transitions. The authors speculated that this asymmetry was either intrinsic,
or caused by residual charged impurities. Next, while the transition energies between
higher levels follow a roughly +/B dependence, those involving the lowest Landau
levels were linear in B. Additionally, the authors could not get their data to fit the
single particle predictions using a single set of fitting parameters (y; and v).

Several attempts have been made to explain these puzzling data. Firstly, Abergel
and Chakraborty [195] used an exact diagonalization scheme [72] to point out that
the long-range part of the electron—electron interaction is important in this system.
They claim that the shift in the energy of a filled LL is significantly higher for the
zero-energy LLs than for the higher energy LLs, as shown in Figure 42(a) and (b).
This induces a large asymmetry in the energies of transitions that start in the zero-
energy levels compared to those that finish in those levels. As shown in Figure 42(c),
a single set of fitting parameters (y; =0.4eV, v=0.95x 10°ms™") describe the
transitions involving the n =0, 1 levels well. Mucha-Kruczynski et al. [196] calculated
the single-particle transition energies including the self-consistent screening, and
found that finite zero-bias asymmetry (i.e. Uy#0), combined with the screening
could account for the electron—hole asymmetry in higher Landau levels. Huang
et al. [197] studied wide bilayer nanoribbons numerically, finding Landau levels
and optical spectra with many of the same features as the bulk system. Kusminskiy
et al. [198] also included screening via the Thomas—Fermi approximation as a
correction to the Hartree—-Fock renormalized Landau levels, and found similar
agreement between the experimental data and their theory. It is therefore clear that
interlayer screening and many body effects are crucial in this system.

3.4.4. The effect of trigonal warping on the Landau level spectrum

The effects of the next-nearest neighbor hops characterized by y; can be ignored
for hi/lg > vsm [139], however, for a weak magnetic field, the trigonal warping and



07: 48 23 August 2010

Downl oaded By: [CAS Chi nese Acadeny of Sciences] At:

Advances in Physics 331

associated Lifshitz transition (Section 3.2.2) adds significant complexity to the
low-lying Landau levels. Strong y3 coupling makes Landau levels with |n| > 3 gain
energy, while the |n| =2 levels approach zero in energy [I51]. The coupling
also allows additional inter-Landau level transitions for the low-lying electrons, with
transitions between states for which |n| = || +2 and |n| = || £ 4 now permitted,
but with reduced optical strength (vymlg/f)>. This is reflected in the trace of the
absorption spectrum. For example, the new peak present at w/w. corresponds to
transitions 3— — 1 and 1 — 3+.

3.4.5. Electron—electron interactions in the zero-mode Landau levels

The zero-mode Landau levels are those described in the two-band model by the
indices 1 = 0 and n = 1. This model gives their energies as

1 1
Eg=36U. and Ei=36U(1-2ho/y).

where, as before, U is a phenomenological parameter which denotes the
interlayer gap. The splitting of these two levels due to the kinetic term is 274w U/
(2y1)~8.2 x 107 UB. Ezawa [199,200] has predicted that the Coulomb interactions
will split the eight-fold degeneracy into four two-fold degenerate bands, which are
further split by Ising QH ferromagnetism at v==+1, £3. Therefore, the step in the
QHE at zero density will be split into eight plateaus. Misumi et al. [201] study
the effect of an in-plane electric field on the quartet of states which is split into the
positive energy range by the layer asymmetry. In this case, a field-dependent
gap a)c\/(U/yl)2 + 2(el,E; /w,)* 1s opened between the (0, K, £) and (1, K, %) levels, which
may be detectable in QHE measurements. As the in-plane field strength is increased,
the contribution to the dielectric constant and electric susceptibility from these levels
enhance those functions around v=2. The low-energy excitations and intra-Landau
level cyclotron resonance were studied by Barlas et al. [202] within the Hartree—Fock
approximation. They give Hund’s rules for the filling of the octet of levels defined by
the n =0+ states, where for high field and relatively small gap, the filling order goes
such that real spin polarization is maximized, followed by valley pseudospin
(which in the n=04 levels is the same as a which-layer pseudospin because of the
form of the electron wave functions), followed by the LL pseudospin. This process
gives rise to a finite LL pseudospin polarization at any odd-integer filling factor.
Within the Hartree-Fock approximation, the low-energy collective modes show
a roton minimum at g/zp~2.3, there is no contribution to the exciton gap from
electron—electron interactions at ¢g=0, and the band splitting approaches the
Hartree—Fock theory result as ¢ — co. At odd-integer filling factors, there are intra-
Landau level cyclotron resonance modes with frequency wy 1 = 2iv?U/(Izy,)* which
may lead to QHE plateaus forming at these filling factors if w7 > 1.

Abergel and Chakraborty [195] studied the effects of the long-range Coulomb
interaction between electrons in the zero-mode octet within an exact diagonalization
scheme [72] which allowed exact evaluation of the Coulomb matrix elements and
inclusion of exchange and correlation effects. They found finite valley polarization
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Figure 43. The total spin of the ground state of the (a) v=—2 and (b) v=—06 systems. The
lines show the crossing points of the single-particle states. The graining is due to the finite
interval between data points. (¢c) The occupancy of the single electron states in the interacting
many body ground state for each region of the plot in (a).

at v=—2, —6 over a wide range of gap sizes and magnetic fields. Also, as shown
in Figure 43, there is finite spin polarization for certain ranges of fields,
corresponding to the interplay between the exchange energy and the splitting of
the Landau levels as influenced by the size of the asymmetry gap. The filling
of electron states within the octet explains the appearance of the spin polarization.
In region 2 (the darker shaded areas), the pairing of electrons within the same
Landau level is incomplete, allowing the exchange interaction to minimize the total
energy by aligning the unpaired electrons’ spins. In regions 1 and 3, all electrons
are paired, so the exchange interaction is unable to rearrange the electrons’ spins
in this way.

Misumi and Shizuya [201,203] discussed the ground state and collective
excitations of the zero modes, and their effects on the electronic susceptibility
and dielectric constant. Ando [204] analyzed the coupling of electrons in LLs to
optical phonon modes and investigated the shift in energy and mode broadening
due to this coupling.

Another manifestation of the electron—electron interactions in the zero energy
LLs is the gradual lifting of the eight-fold degeneracy as the magnetic field is
increased. Transport measurements have shown that in suspended bilayer graphene
[205] and exfoliated bilayer graphene on an SiO, substrate [206], quantum
Hall plateaus appear for every integer value of the filling factor. The higher
mobility of electrons in suspended bilayer graphene (Feldman er al. report
uw=15x10"cm*V~'s™' at electron density of n=2—3x10'""cm™? compared
to the exfoliated samples of Zhao et al. who measure u=1x 10*ecm’V~'s™! at
n=4x10""cm™?) mean that the degeneracy lifting happens at smaller magnetic
field than in the exfoliated flakes. The heirarchy of degeneracy lifting is shown
in Figure 44, where a schematic representation of the evolution of the Landau
level degeneracy is given. We have marked the approximate fields at which each new
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Figure 44. The order of Landau level degeneracy removal as magnetic field strength increases.
The thickness of the line marking the Landau level indicates the degeneracy. The dotted lines
mark the splitting of degenerate Landau levels. The magnetic field labels refer to the beginning
of the emergence of each regime in the suspended case [205] (lower) and exfoliated case [206]
(upper).

regime begins to present itself in the two experiments. Both authors note that
disorder and Zeeman splitting are unlikely mechanisms for lifting the degeneracy
(since the energy scales of these two effects are much smaller than the energy gaps),
and interaction with charged impurities is unlikely because the effect is more
apparent in the suspended samples. The authors of both papers therefore claim
that it is electron—electron interactions which are responsible for this lifting of the
degeneracy.

3.5. Electron—electron interactions in bilayer graphene

Although the electron—electron interactions do not seem to play an important role
in the transport measurements conducted on bilayer graphene, they may have a
significant effect on other physical properties of this system, especially the magnetism
of the ground state. We therefore review the theoretical work on this topic. A variety
of analytical techniques have been applied to this problem, and the key issue which
discriminates between them is the role of screening. Screening is always more
important in the bilayer than the monolayer, because there is a finite density of states
at the K point, but in the gapped bilayer, the density of states shows a square-root
divergence at the band edge, meaning that screening is particularly efficient in this
case. Therefore, on-site Hubbard models have been considered for the biased bilayer,
while the Hartree—Fock approximation, the RPA and variational techniques have
been applied to the ungapped bilayer.

Nilsson et al. [207] were the first to examine the possibility of a magnetic ground
state in bilayer graphene. Using a variational method, they found that a trial ground
state with finite-spin polarization at half filling produced a lower total energy than
the unpolarized system when the exchange energy associated with the long-range
Coulomb interaction was taken into account. The parameter Q describes the ‘size’
of the electron or hole pockets in the density, and is taken to be the variational
parameter. If the variational state is assumed to be such that there is one electron
pocket in the up-spin channel, and one hole pocket in the down-spin channel at
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each K point, then n;4(p)=60(Q —p), n;,, =0 on the first layer, and n, =1,
ny, =1—6(Q —p) on the second layer. The authors demonstrate that the optimal Q
1S Qmin = 0.05y4, and that the system favors the formation of spin polarized electron
and hole pockets. This calculation does not include the exchange interaction between
electrons in opposite K points. Adding this energy favors a state with net
ferromagnetism, and lifts the degeneracy between trial ground states with and
without the Z, symmetry. The induced ferromagnetism is predicted to be up to the
order of 107> g per carbon atom. Short-range interactions were also considered
in a Hubbard model, and c-axis antiferromagnetism is predicted.

Hwang et al. [208] applied the RPA to ungapped bilayer graphene to derive the
polarization function, and hence discuss the dielectric properties and associated
screening, the Kohn anomaly, Friedel oscillations and the RKKY interaction.
Using the two band model, intrinsic (i.e. undoped) bilayer graphene is shown to
have a constant polarization function IT%(g) =%"log4 (where g=4 is the band
degeneracy factor, and m is the effective mass) so that the dielectric function is
e(g)=1 +g’:;2 log4. Also, this constant polarization function means that the
Coulomb potential has no oscillatory terms (i.e. no Friedel oscillations), in contrast
to the monolayer and traditional 2DES. The asymptotic radial dependence is 1/,
as opposed to 1/r in the monolayer.

In extrinsic bilayer graphene, there are contributions to the polarizability from
both the intra- and inter-band transitions. This quantity is plotted in Figure 45,
where the intra-band, inter-band, and total polarizations are shown separately.
In the bilayer, the polarizability is constant for ¢ < kg, but for ¢ > kg the
cancellation between the intra- and inter-band contributions is not exact due to
the enhanced backscattering associated with the inter-band transitions. Therefore,
the polarization function increases up to g =2kg. At this point, the chirality-induced
enhancement to the wide angle scattering generates a cusp (with discontinuous first
derivative): behavior which is in line with the 2DES, but sharply opposed to that
of the SLG. In the large momentum limit, the polarization converges to the constant
£21log4 because the inter-band processes dominate over the intra-band ones. This is
again different from the 2DES, where the polarizability falls as 1/¢. The cusp at
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Figure 45. Calculated (a) intraband, (b) interband, and (c) total static polarizability of bilayer
graphene. For comparison, the single-layer polarizabilities are shown. In (c), the authors also
show the regular 2D static polarizability (dashed line) (Reprinted figure with permission from
E.H. Hwang and S. Das Sarma, Physical Review Letters, 101, 156802, 2008 [208]. Copyright
© (2008) by the American Physical Society.).
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q =2k leads to Friedel oscillations and a strong Kohn anomaly (Section 3.6).
Finally, the authors discussed the RKKY interaction between two magnetic
impurities. For an intrinsic bilayer, the magnetic moments are not correlated due
to the constant polarization function, and there is no net magnetic moment. In doped
BLG, the singularity at ¢=2kg restores the oscillatory term in the RKKY
interaction, and behavior very similar to the 2DES is recovered.

In the case of the biased bilayer, the presence of the non-trivial Fermi surface at
low density causes behaviour which departs from the standard Fermi liquid type.
Stauber et al. [209] investigated this regime using the first-order correction to the
electron self energy which renormalizes the band parameters such that

e’ & Ak
E(k) ~ Ay — ok + 1KY A=A _e_OAk, s =a+4_eog’

32k — k3

) max min
A = A — ———max__Tmin

6de, ki

where Ak =kpax — Kmin, and ky =kpakmin and A, «, and A are the bare band
parameters. The momenta k,,;, and k,,,, are the lower and upper extent of the Fermi
ring. This renormalization means that for A; <0, the spectrum is unbounded and
an instability may occur in the non-interacting system. To examine this possibility,
the authors include the exchange part of the Coulomb interaction between electrons.
When this contribution is considered with the bare band parameters, it is found that
the Fermi ring is unstable with respect to ferromagnetism, with a second-order
transition. When the renormalization due to the self-energy corrections is included,
this tendency is reduced, (although there is a critical density at which the phase
transition will occur) and the magnetization is saturated at n > 5 x 10" cm™2. At low
densities, the ferromagnetic ordering is not affected by the self-energy corrections
and will be present at 7=0. The authors also examined the polarization function in
the Mexican hat regime, and it was found that the electron gas in the biased bilayer
deviates from the standard Landau Fermi liquid theory for intermediate energies,
and at low energies, the Fermi liquid result is obtained except at wave numbers which
directly connect two parallel parts of the Fermi surface. The presence of two Fermi
lines implies that the Friedel oscillations have period 7/b (Where 2b = k. — kinin)-
Finally, the plasmon spectrum shows features typical of a 2DES, although the energy
scale is larger than the traditional systems by virtue of the low electron mass.

The logarithmic divergences which appear within the Hartree—Fock approxima-
tion of the band parameter renormalization can be removed by adding Thomas—
Fermi screening to the calculation [198]. When this screening is taken into account,
the renormalized bands disperse more slowly than in the Hartree—Fock case.

Ferromagnetism has been investigated in the Hubbard model near the band edge
by Castro et al. [210]. They claim that the high density of states at the band edge, and
resulting screening of the long-range part of the Coulomb interaction makes this
model applicable in this context. There is a critical value of the gap, U. above which
the ferromagnetism becomes unavoidable because of the change in band parameters
for the up-spin and down-spin bands. To illustrate this, Figure 46(a) shows the
Hartree—Fock bands for three different values of the gap U. In the case U < U,, there
is no splitting between the different spin bands and the magnetization m and
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Figure 46. (a) Hartree-Fock bands for 1 (solid lines) and | (dashed lines) spin polarizations.
(b) The U vs én phase diagram at T=0: symbols are inferred from (c) and signal a first-order
transition; lines stand for the second-order transition. (c) The 7'=0 solution for magnetiza-
tion. (d) The T=0 solution for the layer difference in magnetization. In (¢) and (d), the
successive lines represent different layer asymmetry in the electron density, with the lowest
magnetization corresponding to the smallest density imbalance (Reprinted with permission
from E.V. Castro et al., Physical Review Letters, 100, 187803, 2008 [210]. Copyright © (2008)
by the American Physical Society.).

interlayer magnetization difference Am are both trivially zero. When the gap is a little
above the critical value (U 2 U,), the degeneracy of the spin states in the conduction
band is lifted which gives rise to a finite magnetization, m # 0. That the degeneracy
in the valence band is not lifted means that Am ~ m, as shown in Figure 46(c) and (d).
When U > U,, the valence band does become non-degenerate, and the magnetization
is opposite in the two layers, so that Am > m. Finite temperature does not change
this picture to any great extent. Also, it is clear that [dn| < |An| implying that the
electron density is above the Dirac point in one plane, and below it in the other.
This is natural, since the tight-binding model shows that valence band states are
located mainly in the layer at low potential, and conduction band states are located
mainly in the layer at high potential. Finally, Figure 46(b) illustrates a comparison
of the self-consistent analysis (lines with dots) and the approximate analytical
estimates assuming a second-order transition. It is clear that the ferromagnetic-
paramagnetic transition in this system is actually first order.

The electron compressibility is a physically measurable quantity which reveals
much information about the interaction effects in electron gases. The compressibility
of the bilayer has been calculated within the Hartree-Fock approximation by
Kusminskiy et al. [211]. At very small doping, compressibility is negative and
divergent, as in a 2DES. The inter-band contribution tends to move the region
of negative compressibility to smaller densities, so that this contribution reduces
compressibility. However, similar calculations for the compressibility of the
monolayer [212] produce a 10-15% renormalization of the electron velocity, similar
to that found in experiment [213].
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Table 2. Table of phonon frequencies.

I'-point mode Yan et al. [215] Saha et al. [214]

E, 1587 1594.1
E, 1592 1598.9
E,= E*(low) 35.0
Ag= A*(low) 76.8
A= A*(high) 900.8
Aay, 903.3
K-point mode

E 1318

Note: Units are cm™' throughout.

For more details on the nature of plasmon dispersion and compressibility in
monolayer and bilayer graphene, see Section 4.

3.6. Phonon anomalies and electron—phonon coupling

Phonons and the electron—phonon coupling are important topics because of the
intimate links that the subject has with Raman spectroscopy, a key experimental tool
in the study of graphene.

First-principles studies of phonons in mono-, bi- and few-layer graphenes have
been carried out [214,215]. Saha et al. [214] determine the dependence of the energy
of various low-momentum phonon modes on the number of layers and find strong
layer dependence for out-of-plane modes, and relatively weak layer dependence
for in-plane modes. In Table 2, we summarize the available data for the frequency
of the phonon modes discussed. Yan et al. [215] show how the E,, peak splits into
two modes which are split by approximately 5cm™".

Various authors have discussed phonon anomalies in bilayer graphene, so a brief
outline of the physics is in order. For reference, the original description of phonon
anomalies in monolayer graphene was given by Piscanec ez al. [216], but in this
section we describe the phonons in bilayer graphene only. Yan et al. [217] show
the change of phonon frequency w,;, as a function of the Fermi energy (Figure 47d),
with the anomaly occurring when the inter-band electron—hole excitation is in
resonance with the phonon mode. The change of phonon frequency with the tuning
of the Fermi energy is given by

2Ee—/1

2,2 _ 2
h wph Ee—h

2| Eg|
1 — Z=F!
h

o

~ Aln

)

2IE, |
heo gy (Eg) — hwg, (0) ~ — /0 dE,_;

where A is the electron—phonon coupling parameter. This anomaly was observed
experimentally by Das et al. (Figure 48a), whereas it has not yet been observed
in the monolayer. Yan et al. speculate that the reason for this is the intrinsic
charge inhomogeneity in graphene causes a larger variation in the Fermi energy in the
monolayer than it does in the bilayer, and to be qualitative about this idea, the authors
show the evolution of the anomaly size as a function of charge non-uniformity. This
anomaly was not seen by later experiments [218], and this is probably due to the large
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Figure 47. Phonon modes in bilayer graphene where the grey arrows represent the direction
of vibration of each atom. (a) The antisymmetric G band mode is a distortion of the zigzag
lines where the layers are out of phase. (b) The symmetric G band mode is a distortion of the
zigzag lines where the layers are in phase. (c) Vertical (¢ =0) inter-band electron—hole pair
transitions in a gapless 2D semiconductor with three different Fermi levels. Shaded regions are
filled with electrons, and the transition indicated by the arrow is the resonance with the long-
wavelength optical phonon (From [217]). (d) Predicted change of phonon energy as a function
of the Fermi energy. The two phonon anomalies show up at Ex==+/iw,,/2 (Reprinted figure
with permission from J. Yan et al., Physical Review Letters, 101, 136804, 2008 [217].
Copyright © (2008) by the American Physical Society.).

©

Change of @y,

(o) 1600}, BLG R
- %
(x 10%%cm?) [ I rl
(@ 8 6 4 2 0 -2 -4 -6 § 18M7 « i
: H 5 T G 1502 e ji |
-~ : ! o @ L]
TE 1584 ® * %+_;_.. 12§ & 1588} S. /
B 1 + i: : 1584 % |
] : ® 192 o
S 1582 $ zié:__..,h“’ﬁ -% . = = ou
£ 11 ﬁ il el 2w
- AR S 5w
¢ AR L s
-------- RS | [RETER B g 3
1580 s . . . = 6 ™
-100 50 _ 0_ . 50 100 T 4
V_ (V) -02 00 02 04

Fermi energy (eV)

Figure 48. (a) Experimental energy and linewidth of the G band. Two phonon anomalies
are clearly resolved in the phonon energy (Reprinted figure with permission from J. Yan et al.,
Physical Review Letters, 101, 136804, 2008 [217]. Copyright © (2008) by the American
Physical Society.). (b) The position of the G peak, and its full width at half-maximum
plotted as a function of Fermi energy (Reprinted figure with permission from A. Das et al.,
Physical Review B, 79, 155417, (2009) [219]. Copyright © (2009) by the American Physical
Society.).
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charge non-uniformity, and because these experiments were carried out at room
temperature. Malard et al. measured the phonon frequency shift when a finite
interlayer asymmetry potential is applied. The breaking of the layer symmetry allows
the antisymmetric mode to become active in Raman spectra, causing the G band to
split into two peaks (see schematic representation of the displacements associated with
each phonon mode in Figure 47a and b). Frequency differences of ~15cm™" are
observed between the two modes for large negative bias, and comparison with
theoretical predictions shows that the measured shift of the symmetric phonon is
significantly larger than predicted, while the shift of the antisymmetric phonon is in
line with predictions. Symmetry analysis of bilayer graphene phonons in the presence
of an external electric field [219] reproduces the qualitative features. Castro Neto et al.
[220] have used a simple one-loop calculation within the tight-binding model to
compute the electronic susceptibility of bilayer graphene, and related it to the
frequency shift of the phonon mode due to the electron—phonon coupling. They find
that the shift is linear in the electron density 7, and negative:

bil > n
bog (3[) Mca)Qﬂy1 '

where M is the mass of a carbon atom, / is the lattice constant, with
dt/dl~6.4eV A7', and w- is the frequency of a phonon with wave vector Q.

On the other hand, Das et al. [221] report that the G peak frequency is renormalized
as a function of doping, outside of a the range —0.1e¢V < Er < 0.1¢V, which
corresponds to the 7iwg/2 anomaly discussed above. There is also a kink at Exr~0.4¢V.
These results are explained with reference to the doping and dynamic effects, and the
presence of the kink is related to the Fermi energy moving to the split band. This
phonon anomaly has also been discussed theoretically by Ando [204] within the one-
loop approximation for the phonon self energy. The logarithmic singularity in the
frequency shift is derived for the symmetric G mode when the interlayer potential is
zero, but a finite-disorder potential curtails the singularity and broadens the phonon
mode. On the other hand, the antisymmetric G mode does not display the singularity
and the broadening is significantly reduced for Er < y; because inter-band transitions
are suppressed. In the case of finite-interlayer bias, the screening is taken into account
self-consistently by Ando [222]. The presence of the band gap modifies the phonon
renormalization, the symmetric and antisymmetric G modes mix strongly, and an
asymmetry between the phonon frequencies at positive and negative electron
concentrations is induced. This asymmetry becomes considerable when the gap size
is of the order of the phonon frequency, and in this case, resonant inter-band
contributions between the two low-energy bands and the frequency of the low-
frequency mode (dominantly symmetric) are reduced strongly, and broadened.

3.7. Device proposals utilizing bilayer graphene

In this section we outline some of the devices that have been proposed which utilize
bilayer graphene in their operation. Transistor and current switching devices were
discussed in Section 3.3, so we do not repeat that material here. We shall describe
two proposals for valleytronic devices (utilizing the valley quantum number as a



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

340 D.S.L. Abergel et al.

-V +V

Figure 49. Side view of a gated bilayer graphene configuration with the voltage kink. The
region where the interlayer voltage changes sign (the channel) supports bands of chiral
zero modes (dashed line). The conventional (non-topological) confinement would correspond
to the same polarity of bias on both sides of the channel (Reprinted figure with permission
from I. Martin ez al., Physical Review Letters, 100, 036804, 2008 [223]. Copyright © (2008) by
the American Physical Society.).

controllable two-state system), and two for employing the pseudospin (i.e. the
sublattice index) in the same way.

Martin et al. [223] describe a device which utilizes a split gating arrangement
to confine electrons in zero modes in a 1D channel (Figure 49). These electrons are
chiral in the valley index, so that their direction of propagation is determined by
which valley they are in. A valley filter may be observed by applying a potential
difference along the voltage kink, since the resulting current would consist of only
one valley species. A valley valve can be implemented by placing two such filters
in series. If the polarity of the filters is the same then current will pass, if it is opposite
then current will not flow. The polarity of each valve can be reversed by swapping
the orientation of the bias potentials on each side of the channel.

Abergel and Chakraborty [224] demonstrated that irradiating gated bilayer
graphene with intense, circularly polarized, terahertz frequency light leads to the
creation of valley polarized dynamical states in the gapped region of the spectrum.
By passing an arbitrary current through these states, the current is polarized into
the valley in which the states reside. Swapping the polarization of the top gate, or the
orientation of the circular polarization of the light causes the valley in which
the dynamical states form to be swapped also. Currents of the order of a tenth of a
pico-Amp, and valley polarizations above 99% are predicted to be obtained. These
devices can be used individually to generate valley polarized currents, or in series to
implement switching devices. The valley-polarized currents exist in the bulk of the
bilayer graphene (rather than localized at a sample edge, or in a narrow channel),
and may be used as an analogue of spin-polarized currents in spintronics. The fact
that this device relies on a bulk effect also gives it the distinct advantage that the
details of the edges make no difference to its operation, which makes the device
significantly easier to fabricate than those that utilize specific properties of certain
edge geometries in their operation.

San-Jose et al. [225] propose a pseudospin valve employing gapped bilayer
graphene. Their device consists of two-gated regions which are biased so that there is
a finite gap at the charge-neutrality point which induces an out-of-plane component
of the pseudospin. If the two regions have opposite polarity and the distance between
the two regions is small enough, then electron will be unable to rotate its pseudospin
quickly enough to allow it to penetrate the region of opposite polarization and
reflection will occur at the interface between the two regions. Conversely, if the two
regions are arranged with the same polarity, no such reflection will take place.
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Pseudo-magnetoresistance of approximately 100% were suggested for optimal device
dimensions of a pseudospin transistor.

Min et al. [226] proposed pseudospin ferromagnetism in gated bilayer graphene,
which may have analogous applications to the real spin in spintronic systems. They
demonstrated that high-gate voltage polarizes the pseudospin, and speculate that
pseudospin-transfer torques, and easy switching behavior can be accomplished.

4. Many-body and optical properties of graphene

In this section, we discuss some of the novel electronic properties of graphene, where
the electron—electron interactions traditionally play an important role. We begin
in Section 4.1 with a discussion of the measurement of compressibility in monolayer
graphene [213] and the reported theoretical studies [227] to understand the
experimental results. In Section 4.2 we discuss the theoretical studies of plasmon
dispersion in monolayer and bilayer graphene. We also review the properties
of graphene in an intense electromagnetic field (EMF) in Section 4.3.

4.1. Electronic compressibility

In an interacting electron system of uniform density, the (inverse) electronic
compressibility ' oc du/on (where w is the chemical potential and # is the electron
density) is a fundamental physical quantity that is intimately related to the strength
of inter-electron interactions [228,229]. First measured for a two-dimensional
electron gas in 1992 [230], the compressibility provides valuable information about
the nature of the interacting ground state, particularly in the strong coupling regime
where (in addition to the exchange energy) the Coulomb interaction is known to play
a dominant role. In this section, we begin by reviewing the surprising experimental
results by Martin et al. [213] for the compressibility of monolayer graphene, and
continue to describe attempts to understand them from a theoretical point of view.
We then review the same physics in the bilayer material, highlighting the intriguing
differences between these two systems.

4.1.1. Monolayer graphene

A recent report on the measurement of electronic compressibility in monolayer
graphene revealed behavior which was totally unexpected [213]. In this work,
scanning single-electron transistor microscopy was used to measure the change of
local electrostatic potential (and thereby change in local chemical potential) of a
graphene sample when the carrier density was modulated [213]. The observed results
for the local inverse compressibility were found to be quantitatively described by
the kinetic energy alone (with the electron velocity renormalized by 10-15%) and the
authors speculated that the exchange and correlation energy contributions to the
compressibility either cancel each other out or are negligibly small. This interesting
puzzle has remained unsolved because the approximate theoretical schemes adopted
by various authors to investigate electron correlations in graphene [231,232] do not
find any such cancellations. Similarly, the recently reported Hartree-Fock studies
of compressibility [211,212] in monolayer and bilayer graphene do not consider
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electron correlations at all, although they do correctly predict the velocity
renormalization.

Abergel et al. [227] investigated the role of electron correlations in monolayer and
bilayer graphene. They showed how in monolayer graphene, two fundamental
properties of the system, namely, the linear energy dispersion and chirality conspire
to allow complete cancellation of exchange and correlation contributions just as
was observed in the experiment [213]. On the other hand, in bilayer graphene where
the low-energy quasiparticles are massive chiral fermions, the parabolic dispersion
does not allow this cancellation of the two energies, and the kinetic energy retains
a dependence on the electron correlation function which manifests in the electron
compressibility.

As discussed elsewhere in this review (Sections 1.2 and 5.2), the low-energy
charge carriers in monolayer graphene behave as massless Dirac fermions described
by a single-particle Hamiltonian which is linear in momentum p. The eigenstates of
the Hamiltonian are uniquely labelled by quantum numbers representing the wave
vector ¢ = p/h, the band (conduction/valence) b, valley (pseudospin) & and the
z-component of the real electron spin o. The wave functions are of the form,
Y(r) = ¢7y, where x is, in the most general case, an eight-component spinor [3].
The wave function can be written in an abbreviated basis by ignoring the spin,
and swapping the order of the sublattice components in the two valleys to recover the
Hamiltonian given in Section 1.2.

A full analytical study of the many-electron system in graphene is clearly an
impossible task. However, most of the clues to the puzzle involving the measured
compressibility described above can be found at the level of two electrons, which is
amenable to a fully analytic solution. One could therefore start with a two-electron
system where the electrons occupy the states v, and ¥z with « and f corresponding
to the full sets of quantum numbers ((}a’ﬁ,ba,ﬂ,éa,ﬂ,oa,ﬂ). Let us denote by ¢ the
antisymmetric non-interacting two-electron wave function

0F1172) = [P ) = Ul ) 47

where the subscript labels refer to the independent coordinates of the two electrons.
The correlations due to the mutual Coulomb interaction are introduced by
multiplying the free-particle wave function by a generic correlation factor F as

U = F(r1, )e(F1, ). (48)

At this stage, a precise definition of F is not necessary. The only requirements are
that it should be a real function, and to preserve the antisymmetry of the correlated
wave function W it is assumed to be symmetric with respect to exchange of the
particle coordinates, i.e. F(7|,7) = F(i, F1).

In order to evaluate the two-particle energy we have to normalize the wave
function W. A straightforward calculation gives

Y o o 1
W] = (VW) = /drl dr, F(rl,rz)z{l — 585@[1 + bybpgcos(By — 95)] cos Q},

where Q = (¢g — Go) - (F1 — 1) and 6, 4 are the polar angles of the momenta g g.
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Evaluation of the expectation value of the kinetic part of the non-interacting
two-body Hamiltonian leads us to

I Lo L - .
™t =S hvg / dr dr, F{le%(,ﬁa&gﬂ [e'QZ;ﬁ(l + babpe™ @ 0))

+¢9Z (1 + babpe %) 4 79 Z} (1 + bybpe %)

—ig 2 —i(0y—04
+ €072 (1 + babpe ) |

. oF oF . oF . oF .
—1bﬂ(COSQﬁT‘CI+COSQ/§a—XZ+Sln@lga%—slngﬂE—F2lq/gF>
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— iby| c0SBOy— 4+ cos by — + sin B, — + sin O, — + 2ig F ) ¢,
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where we use the shorthand

; - o OF . o~ OF i
Z,5 = (bpe' + bye™%) i i(bge — bye™™) F 1(1,3F<b5 + bae‘(e"“’“)).
Xj Vi

Due to the linearity of the single-particle Hamiltonians in the momentum
operators, only first-order derivatives appear in the integrand. Terms in 7 of the form

. JOF 1 _ 0
/dr,»F—:—/dr,—F2,
’ 3)6]' 2 3X,

clearly vanish due to the antisymmetry of the integrand. Most of the terms left after
the volume integration cancel each other as a consequence of the spinor structure of
the single-particle wave functions. The only surviving terms sum to

Tt = hVF(btha + bﬁQﬁ)H‘I’Hz,

that is, the kinetic energy expectation value (7™°") is simply the sum of the single
free-particle kinetic energies,

Tmon (el ™" |g)
= hvp(baqo + bpgp) = Ty = W

( mon> _

= p (49)

and does not depend on the correlation function F at all. Similar cancellations are
expected for higher electron numbers, although analytical expressions become
intractable even at the level of three electrons. This is a very interesting result since
complete cancellation of correlation contributions to the kinetic energy has never
been observed in conventional electron systems. It creates an unusual situation with
interesting consequences, as described in [227]. In the thermodynamic limit, the
potential energy (per particle) V is usually expressed in the form

W =n / 7L g() — 1V cou(,



07: 48 23 August 2010

Downl oaded By: [CAS Chi nese Acadeny of Sciences] At:

344 D.S.L. Abergel et al.

where 7 is the single particle number density, Vcoy is the Coulomb potential and g(r)
is the pair correlation function which, for ¥ = ¥ — », is given by

g(Ir]) _W/dﬁ ARy WL o Fas o N,
where N is the total number of electrons. The energy (per particle) functional £m°"
is now

gmon _ o+ V) =1 +n/d7[g(i’) - l]VCoul(r)» (50)

where o= Ty/N is the kinetic energy per particle. Its variation with respect to g(r)
(an essential step in determining the optimal g(r) and hence the optimal F) would
yield an unusual Euler—Lagrange equation, Vcou(r) =0, which is clearly not the case
in graphene [233]. To resolve this dilemma, Abergel er al. noted that the energy
functional £™°" is actually not bounded below: one can choose correlations such that
the potential energy takes arbitrarily large negative values. This implies that to
determine the optimal g(r), the energy functional derived above is not sufficient and
additional physical constraints, for example, that g(r) should correspond to the
correct number of states in the bands would be necessary®. Clearly, determination
of the optimal pair-correlation function for massless Dirac fermions in graphene is
a challenging problem [234]. However, the expression for the functional £7°" is of the
correct form, i.e. once the correct pair-distribution function g(r) is found, one could
evaluate the correct energy from the above form of the energy functional.

Let us now turn our attention to the electron compressibility. To that end, we
first evaluate the variation §,£™°" of £™°" with respect to n [227]:

ot - - )
§,EM" = a—’;)én +én /dr [g(r) — 1TVcou(r) +n /dr Veoul %(Sn

From this we can read the derivative as

agmon )
om  on

N )
4 f A7) — 1V eou + 1 f 07 Voo 20,

The compressibility will then be proportional to

rE™n P Sg(r - 8(8g(r)/én
2 = n 20 /dr VCoul i() nfdr VCouI (g(&z/ )

Deriving the functional dependence of g(r) on n in a closed form is an almost
impossible task. Extensive studies of conventional two-dimensional electron systems
have indicated that g(r) varies only slightly as a function of density [229], except
at very low densities where it starts to develop a prominent peak as a precursor to
Wigner crystallization [235]. Since in graphene the Wigner crystallization is not a
possibility (in the absence of an external magnetic field) [236], and no other phase
transitions expected at the density range of interest, we expect the variation §g(r)/én
to vanish or to be negligibly small. Alternatively, we could consider a slightly less
stringent condition [ dr Veeu % g(’) =0, which implies that the interaction energy
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depends linearly on the density of Dirac electrons. The compressibility is then
described entirely by the kinetic energy

K—l _ 825m0n _ @

on? on?’
in accordance with the experimental observation [213]. In arriving at this striking
result, there are two basic properties of monolayer graphene that play crucial roles:

the linear energy dispersion and chirality of massless Dirac electrons [227].

This immediately invites the question: what happens in bilayer graphene, where
the low-energy charge carriers behave as massive chiral fermions and as such the
Hamiltonian is quadratic in momentum operators near the charge neutrality point?

4.1.2. Bilayer graphene

In bilayer graphene, as discussed above, there are four atoms per unit cell, so in
principle the basis employed in the tight binding model should be doubled in size.
However, a low-energy effective theory is employed which considers only the atomic
sites which are not involved in the inter-layer dimer bond, and so reduce the basis to
only eight components. The authors of [227] used the effective two band model
detailed in Section 3.2.3 and obtained from the Hamiltonian corresponding to the
first term of Equation (42). The wave functions associated with this Hamiltonian are

cid 7 [ o2t
llfa(’_):m< ) )

With these basis states, an intermediate expression for the kinetic energy looks as
follows:

|
Tbl = E(ea + 5/3)
I S oF
- /drldrz %Fe’lQ{lqﬂacos 6 + cos(26, — 6p)] e
. . oF . oF
+ [sinOp + sin(26, — 6p)] E) + 1qa<[cos 6o + cos(0 — 26p)] e
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axl

o
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+ [sin 6y — sin(6, — 26p)] —) + iqﬁ<[cos 6 + cos(26, — 6p)] r
1

F
8X2
F
+ [sin 0, + sin(26, — 65)] ;7) I
2

where terms containing second derivatives of F which are identically zero on
integration, and those which trivially sum to zero are already excluded. The integrals
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of terms with single derivatives of F are finite:

AR
L

IR F
/drl dry ei‘QF;—

dry din e9F — = Fi(qpx — qu
/ R et OF T Fi(gpr — Gax) ™

and similarly for terms containing derivatives with respect to y. After some lengthy
algebra, one gets [227]

h2 A2F2 s s

%TCOS(% — Qﬂ){(qa + qﬂ) cos (0 — 6p) — 2qaq,3}. (51)

When compared with the kinetic energy in monolayer graphene (Equation (49)), the
non-cancellation exhibited in Equation (51) is a feature of the sublattice structure of
the electronic wave function in bilayer graphene, resulting from the quadratic nature
of the low-energy dispersion relation. On evaluation of the remaining integrals and
after some elementary algebra, the energy functional is found to be

S
T =2 (eu+ep) +

2 2

gbi:t0+<v>+h

%WCOS(QX - 6,3)[(615 + %23) coS(Oy — Op) — z%qﬂ]’ (52)

where F is the Fourier transform of the correlation function. Comparing the case of
monolayer graphene, Equation (50), one can easily see that there is a non-zero
contribution of electron correlations to the kinetic energy in the above functional
(Equation (52)), and therefore taking the derivatives with respect to n yield a
compressibility which depends non-trivially on them. It is clear that this additional
term will also be present in the many-body energy, as its integral over momentum is
manifestly finite. It is also expected that for bilayer graphene where the excess
electron density is high enough that the Fermi energy is in the energy range where the
linearity of the spectrum is restored, the effect of the correlations in the energy
functional will again be suppressed. Quantitative computation of this term requires
precise knowledge of the radial dependence of F, and the relation between F(r) and
g(r) (where several choices of approximate schemes are available in the literature
e.g. [237]). Most importantly, however, an experimental observation of a shift
in compressibility from the pure kinetic energy contribution (unlike what was
observed for monolayer graphene) would provide a way to directly determine the
strength of electron correlations in that system.

4.2. Plasmon dispersion in graphene

In this section, we discuss the Coulomb screening properties and collective
excitations in monolayer and bilayer graphene. We focus on the work of Wang
and Chakraborty [238,239], although some parts of their results were previously
calculated by Wunsch et al. [240]. Later papers which contain analytical results for
the plasmon spectrum and other dynamical properties of graphene include references
[208,209,241-246].

4.2.1. Monolayer graphene

In the pseudospin space, the zero-magnetic-field Hamiltonian of a spin-up electron
which experiences a non-negligable SOI that is parameterized by a momentum
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7 = lik measured from the K point is [238,247,248] H = vpp -0+ A0 with
0 = (0y,0,,0.) the Pauli matrices. Here A,, is the strength of the SOI’. The
eigenstates of the Schrédinger equation are readily obtained as

WA = k7 1 TI—Asin(al; + Am/2) ’
k —e'% cos(a + Am/2)

with energy E% = A /AL + 12v2k? for A=+1 denoting the conduction band and
A= —1 the valance band. Here tan ¢, =k,/k,, tan a; =hvek/Ay, and k = [k2 + k2.

The RPA Coulomb interaction in the Fourier space U(g, w) obeys the equation
[250,251]

U(g. @) = vo + volo(¢, @) U(g, ) (53)
with the electron—hole propagator

f [Eg'ﬂ;] -f [Eg]
—%+W

A _ A (=312
Mog.0) =4} 17 @F
Lk fet

(54)
q
as illustrated by the Feynmann diagram in Figure 50. Here vy =¢/(2¢p€x) is the
two-dimensional Coulomb interaction (in Fourier space) with the high-frequency
dielectric constant [252] ;=1 and g@’”([j) is the interaction vertex.

The factor of four in Equation (5k4) comes from combined degeneracy of the spin
(two-fold) and valley (also two-fold) quantum numbers; the vertex factor reads

1+ A) cos @, -Cosap + AA sin s sinaz(k + g cos 6)
2|k + g

with 6 being the angle between k and g. Since the chiral property of the system
prohibits the intra-band backward scattering at ¢ = 2k and the inter-band vertical
transition at g=0 under the Coulomb interaction, we have |g~*(0)> =
| g (2k)|* = 0. The collective excitation spectrum is obtained by ﬁndingk the zeros
ofk the real part of the dielectric function é(¢q,w) = 1 — vo(q)flo(q, ).

In the presence of the SOI, an energy gap opens between the conduction and
valence bands and the semimetal electronic system is converted into a narrow gap
semiconductor system. At the same time, a gap is opened between its intraband

single-particle continuum w < wy = iviq and its interband single-particle continuum

w > wy =2,/ AL + 12vEq? /4. However, the system differs from a normal narrow gap

semiconductor due to its peculiar chiral property. Here we have chosen the
magnitude of the SOI strength to be around 0.08-0.1 meV [247,253]. The result

ktq.1 pqd) k+ad'  pad kied i pPq.4,
= --{ + -
== > e
kA e
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Figure 50. Diagrammatic illustration of the RPA dressed Coulomb interaction.
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Figure 51. Plasmon spectrum (thick curve) of an electron gas in intrinsic graphene (E»=0) at
temperature 7=1.42 K with Ago=0.08 meV. Intra- (dark shaded) and inter- (light shaded)
band single-particle continuums are also shown. w; and wy are the lower and upper borders
separating the white (EHC gap) and shaded areas, respectively (see also [240]).

can be easily applied to Dirac gases with different Ay, by scaling the energy and
wavevector in units of Ay, and kg, = Ao /(AivE), respectively.

At zero temperature or for 7< A, the intraband transition is negligible and
€, > 0. There is no plasmon mode in the system. With an increase in the temperature,
holes appear in the valence band and electrons in the conduction band. The
intraband transitions are enhanced and contribute to the electron—hole propagator
of Equation (54) and a dip in ¢, at the intra-band electron-hole excitation continuum
(EHC) edge w; .. This dip in ¢, results in plasmon modes above wy . For Ay, =0 where
wy =wy, the intraband (interband) single-particle continuum occupies the lower
(upper) part of the w—¢q space below w; (above w;) and the plasmon mode are
Landau damped. In the presence of the SOI, i.e. for Ay, #0, a gap of width wy — ey,
is opened between the intra- and interband single-particle continuum and an
undamped plasmon can exist in this gap, as shown in Figure 51. This plasmon mode
may perhaps be observed in experiments.

The appearance of the undamped plasmon mode in the presence of the SOI is a
result of the interplay between the intra- and inter-band correlations which can be
adjusted by varying the temperature of the system in experiments. To show the
temperature range in which an undamped plasmon mode exists, Figure 52 shows
€(wr) (dotted curve) and €.(wy) (solid curve) as functions in the temperature 7 at
g=0.05x 10’ em~'. For Ay, =0.08 meV, an increase of the temperature from 7=0
leads to an increase in the ratio of the intra- to the inter-band correlation while ¢,
in the EHC gap (v <w <wy) decreases and crosses zero. There is no undamped
plasmon mode when the inter-band correlation dominates at 7< 1.1 K and when the
intra-band correlation dominates at 7>3.3K. In the temperature regime 1.1
K<T<33K or T~2A,, when the intra- and inter-band correlations match,
however, €.(wp) < 0 while €.(wy) > 0 and one undamped plasmon mode exists.

Therefore, the SOI converts the Dirac electronic system into a narrow gap
semiconductor with chiral properties. As a result, an undamped collective excitation
was found to exist in the spectral gap of the single-particle continuum and is perhaps
observable in the experiments. There have been a steady flow of reports in the
literature on the electronic properties of graphene. Interestingly, the SOI-dependent
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Figure 52. Temperature dependence of the real part of the dielectric function at the edges
of the intra- and intersubband single-particle continuum w; (dotted curve) and wy (solid
curve) at ¢=0.05 x 10°cm™".

dielectric function derived in [238] was employed by other authors to explore the
possibility of Wigner crystallization in graphene [236].

After Wang and Chakraborty [238] reported their study of Coulomb screening
and plasmon spectrum in monolayer graphene with zero or finite gap and doping at
zero or finite temperature, a series of works have been reported on the many-body
effects in graphene. Analytical results for dynamical polarization of graphene were
reported within the RPA [240,241]. Instead of considering only the spin-orbit
introduced energy gap, Qaiumzadeh and Asgari [242] assumed an unspecified energy
gap of arbitrary width for doped monolayer graphene and studied the corresponding
ground-state properties in the RPA. They concluded that the conductance and the
charge compressibility decrease with the band gap. Almost during the same time,
Pyatkovskiy [243] also derived analytically the dielectric function of gapped
graphene at zero temperature and repeated the plasmon spectrum result of Wang
and Chakraborty. In addition, the effect of plasmons on the energy band in graphene
has been estimated and compared with the experimental result [254-256]. Hill,
Mikhailov and Ziegler [246] have recently reported results on the dielectric function
and plasmon dispersion based on the tight-binding band structure and take the non-
Dirac effect of graphene dispersion band into account, including the anisotropy and
the nonlinearity of the energy band. Those effects influence the plasmon spectrum, in
terms of the anisotropic plasmon spectrum and extra plasmon mode. Coulomb
screening and collective excitations spectrum in monolayer graphene using the RPA
was also reported by other authors [257,258]. The magneto-optical excitations in
monolayer graphene has also been investigated [259]. Finally, a THz source has been
proposed based on the stimulated plasmon emission in graphene [260] and the
absorption of THz electromagnetic radiation in gapped graphene has been
estimated [261].

4.2.2. Bilayer graphene

While monolayer graphene has quasiparticles described by a chiral Dirac gas, bilayer
graphene is best thought of as a chiral Fermi gas near the K points [139,140,207,262]
(Section 3). Consequently, a comparison of their physical properties would offer new
understanding and provide interesting predictions about the different behaviors
between these two fundamental systems. Wang and Chakraborty [239] were the first
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to employ the RPA to address some of the interesting properties of the Coulomb
screening and the collective excitations in bilayer graphene.

In the effective-mass approximation [139,262], the electrons in the K valley are
described by a Hamiltonian with a mixture of linear and quadratic terms in the wave
vector k (see the first two terms of Equation (42) in Section 3.2.3). The eigenfunction
of the above Hamiltonian is WA(U (ce“”d) with the energy E’\

hzk\/k2 2kokcos3¢ +k3/2m and the pseudospm angle A¢p. Here ¢= arg(k+)
¢~ = arg(ke*M — koe'?) with arg(z) being the argument 6 of a complex z=|z|e",
~ 10%/+/3m~" is the wave vector difference between the central pocket and any
of the three ‘leg pockets in the same valley (Section 3.2.2.), and A=1(—1) for the
conduction (valence) band.

Just as for the case of the monolayer graphene [238] and other spin systems [251],
we find that the dielectric matrix of a graphene bilayer is a unit matrix multiplied by
a dielectric function

(g, ) = 1 — v, T1o(q, w), (55)

with the bare Coulomb interaction v, = ¢*/(2e0q) and the electron—hole propagator is
written explicitly in Equation (54). Near the central Dirac point at k=0, the
intraband backward scattering and interband vertical Coulomb scattering are
forbidden and |g ~0))> = |gk M- 2k)|2 = 0. The same rules also hold for the three

satellite Dirac pomts For a large k (k> ko), Ig- H0))> = |gq M= 2k)|2 =0, but

| g“( 2k)|2 =1, i.e. the intraband backward transmon is allowed but both the
inferband backward and vertical transitions are forbidden. The above selection rules
together with the energy dispersion of the carriers indicate that the electrons (holes)
close to the bottom (top) of the conduction (valence) band have very different
behaviors from those away from the bottom (top).

The Coulomb screening is dictated by the response of the electron liquid to a
pertubation. The static dielectric function at zero temperature versus ¢ is plotted in
Figure 53(a). Its long wavelength limit is given by the properties of the four pockets
around each of the Dirac points. The central point has an isotropic velocity vy = 7iko/
(2m)=10"ms™" (with energy Ey = °k}/2m = 3.9 meV) while the satellite ones have
the elliptic form of equi-energy lines with a minimum velocity equal to vy along their
radial direction and a maximum of 3v, along the azimuthal direction. The static
dielectric constant at ¢ =0 is estimated to be gg=1+ 3e2/(880hv0) ~ 105. This value
is much bigger than that of the monolayer graphene (4.5) [238]. This means that the
long-range Coulomb interaction is much more strongly screened for the bilayer
system, using a much bigger density of states near the Fermi energy in a bilayer
graphene.

Another characteristic of bilayer graphene is its screening anisotropy, especially
for scattering at a distance range of about 10 nm. This is shown by the difference
between the solid and the dotted curves in Figure 53(a) and (b), corresponding to
the directions of ¢ pointing to any satellite from the central Dirac points (¢ =0) or
connecting any two satellites (¢ = 7/6). Here « is the angle between ¢ and the x-axis.
At g = +/3ko = 105m™", the wavevector distance between any two satellite Dirac
points, the anisotropy of &, reaches its maximum with a mismatch of 20% along the
different directions. The shoulder near ¢=ky=0.58 x 10*m~" in the solid curve
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Figure 53. (a) The static dielectric function &, versus the wavevector ¢ along the direction
a =0 (solid) and 7/6 (dotted) at T=0. (b) The same as (a) but at 7=4.2 K. (c) The real part of
the dielectric function ¢, versus frequency w at T=0 (dotted) and at T=4.2 K (solid). (d) The
imaginary part of the dielectric function ¢; versus w at 7=0 (dotted) and at T=4.2K (solid).
In (¢) and (d), ¢=0.005x 10°m~" and «=0. In the limit @ — oo, ¢, gradually approaches
to one while ¢; approaches to zero.

reflects the strong scattering between the carriers in the central and the ¢ = 0 satellite
Dirac points. At a finite temperature, the energy pockets near the Dirac points
are partially occupied and the intraband scattering strength is greatly enhanced.
As a result, the static dielectric function near ¢ =0 increases rapidly, as shown in
Figure 53(b) at 7=4.2 K. The effect of finite temperature is shown in Figure 53(c)
and (d) for ¢=0.005 along « =0, at T=0, 4.2 K.

For w > Ey/2, the dielectric function of bilayer graphene is similar to that of a
normal Fermi gas and its temperature dependence is weak. The step of ¢, and the
peak of &; near w=FEy/2=2meV correspond to the single-particle excitations
coupling states with vanishing group velocity and wavevectors equal to half of
the vector from the central pocket to a satellite pocket. For small w, however, the
dielectric function becomes more sensitive to the temperature and shows character-
istics of the Dirac gas. One sign of the Dirac gas is the lack of Coulomb screening
(¢~ 1) in the energy window between 1 and 2 meV. Another sign is that a low-energy
plasmon mode appears only at a finite temperature. As shown in Figure 53 (c),
¢, has no negative value for the energy w < Ey/2 at T=0 but evolves into a deep
negative dip at a finite temperature 77=4.2 K, when the energy pockets near the
Dirac points are partially occupied. As a result, one observes a weakly Landau
damped plasmon mode of dispersion w ~ /g at T=0 and a couple at finite
temperatures.

The collective excitations of the electronic liquid in bilayer graphene are also
a subject of interest. Figure 54(a) shows the plasmon spectrum of intrinsic bilayer
graphene (Er=0). The dispersion of the weakly Landau-damped mode is indicated
by the thick curve and has /g dependence. Interestingly, the plasmon mode exists
only at energy higher than Ey/2, i.e. double the depth of the energy pockets in the
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Figure 54. The plasmon spectrum of an undoped bilayer graphene at 7=0 (a) and at
T=4.2K (b). The thick curves indicate the weakly Landau damped modes while the thin
curves represent the strongly damped modes.

Dirac points. At a finite temperature 7=4.2 K, another weakly damped plasmon
mode shows up at the energy lower than Ey/2 and also has a dispersion of /g near
q=0, as illustrated in Figure 54(b). The plasmon mode of higher energy that exists
at T=0 is not sensitive to the temperature. This temperature dependence of the
low- and high-energy plasmon spectra represents a marked difference between
electron gases having linear (without the collective excitations) and quadratic (with
the collective excitations) energy dispersion at 7'=0. The electronic states in bilayer
graphene are similar to the Fermi type at high energies but revert to Dirac type
at low-energy.

The carrier density of the system can be changed by doping [140]. For a typical
doping density of 10'? cm™? [140,262], the Fermi energy is high enough above the
bottom of the conduction band that the linear & term in the Hamiltonian can be
neglected. The electrons then have quadratic dispersion but with chirality and
¢=—2¢. Near ¢=0, the plasmon dispersion in doped bilayer graphene has /g
dependence, as shown by the solid curve in Figure 55, and shares the same dispersion
a)ﬁD = [neezq/Zeom]% with a normal two-dimensional Fermi gas. To see the effect of
the chirality, for comparison we plot as a dotted curve the plasmon dispersion of a
normal two-dimensional Fermi gas with two valleys. The two curves overlap for the
small ¢ but separate as ¢ increases. The maximum difference in the dispersion
appears near ¢ = \/ko when k and k + g form a right angle in the Fermi plane and
the corresponding transition is forbidden in the bilayer graphene due to the chiral
scattering properties.

The bilayer plasmon frequency is smaller than that of the monolayer because the
dielectric properties of the monolayer are weaker. Hwang and Das Sarma [208]
derived analytical expression of static dielectric function for bilayer graphene with
moderate doping when the linear Hamiltonian term can be neglected. With the
analytical expression, they could estimate the screened static Coulomb potential
and show the Kohn anomaly near ¢ =ky/2, the Friedel oscillation and the form
of RKKY interaction in bilayer graphene. See Section 3.5 for a description of
this work.
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Figure 55. The plasmon szpectrum of a doped bilayer graphene (solid curve) with a
typical carrier density of 10'2em™2. Correspondingly, Er=36.3meV and kp=1.77 x 10*m~".
The plasmon spectrum in the same system but without chirality is plotted as a dotted curve
for comparison. Intra- (dark shaded) and inter- (light shaded) band single-particle continuums
are also shown.

The magneto-plasmons in bilayer graphene were considered in a self-consistent
analytical framework by Tahir et al. [263]. They derived expressions for the plasmon
frequency, and compared their results to those for monolayer graphene and
traditional 2DESs. The light effective mass of the electrons in the bilayer, and the
relatively weak dielectric properties of graphene ensures that the plasmon frequency
is approximately two times higher than that of, for example, GaAs—AlGaAs
heterojunctions. The magnetoplasmon and Weiss oscillation has been studied in
mono- and bilayer graphene [264,265]. The Boltzman equation has been used to
study the electronic transport in bilayer graphene [266]. Then the effects of site
dilution disorder on the electronic properties, such as self-energies, the density of
states, the spectral functions and both DC and AC transport properties, in graphene
multilayers have also been studied [267].

Theoretical approaches described in this section were recently employed by Wang
and Chakraborty to investigate the Coulomb screening and plasmon spectrum in a
bilayer graphene under a perpendicular electric bias [268]. The potential bias applied
between the two graphene layers opens a gap in the single-particle energy spectrum
and makes the semimetal bilayer graphene into a semiconductor. As a result, the
dielectric function for the Coulomb interaction and the propagator function were
found to be modified significantly [268]. The potential bias also opens a gap in the
single-particle excitation spectrum and softens the collective modes. This may result
in undamped collective modes that are observable in experiments. Experimental
observation of plasmon modes with long lifetime might prove to be beneficial for
future device applications.

4.3. Graphene in a strong electromagnetic field

Graphene also displays unique and intriguing properties when it is irradiated by
strong electromagnetic fields (EMFs), such as laser light. Floquet theory (the
temporal analogue of Bloch theory) has been applied [224,269] to determine the
quasienergy spectrum and dynamical density of states, in this situation.

The time-periodic EMF is represented by a vector potential, and the minimal
coupling substitution made in the Hamiltonian. The Floquet theory is then applied,
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so that the overall wave function of Floquet state « is written as W (f) = e “=/® (1)
where @, (t+ T)= P,(1), with T=27/Q2. The Floquet Hamiltonian may be diago-
nalized numerically to produce the spectrum of quasienergies e, and the wave
functions ®,(¢), which may then be used to calculate physical quantities such as the
density of states, or the electronic current. As an example, Oka et al. [269] showed
that an intense, circularly polarized EMF parametrized by frequency 2 and intensity
F generates spectral gaps at w ==4/2, and at the Dirac point. The gap at the Dirac
point is initially quadratic in the intensity: 2« ~2A4%/Q, but takes the asymptotic
behavior 2k ~24 — Q. Here A=F/Q, where F is the field strength (intensity).
This gap exists both in bulk monolayer graphene, and in graphene nanoribbons.
The authors then use the Keldysh approach to calculate the current through a finite-
sized, irradiated monolayer graphene sample and find that a dc Hall current
in induced in the ribbon.

Fistul ez al. [270] have shown that an intense EMF may mitigate the Klein effect
in a n-p junction and allow electrostatic confinement of electrons. It does this by
creating a dynamical band gap, which forbids the tunnelling of quasiparticles
through the potential barrier via hole states, as in the Klein effect. Instead, electrons
may only tunnel via interband processes which are strongly suppressed. The size of
the gap is dependent on the intensity and frequency of the radiation, so the authors
claim that structures such as QDs or n—p-—n transistors may be engineered by this
technique. Photon-assisted tunnelling was also considered in the context of bilayer
graphene by Shafranjuk [271]. Lopez-Rodriguez and Naumis describe analytical
results within the Floquet formalism [272] and Wright et al. [273] have shown that
bilayer ribbons show enhanced optical conductivity in the terahertz and far infra-red
frequency ranges.

Abergel and Chakraborty [224] considered irradiated bilayer graphene, both
with and without the gap-generating bias potential. When the bilayer was unbiased,
a similar picture was found to that of the monolayer, with dynamical gaps
being generated at the charge-neutrality point, and at w = +n2/2, with n an integer.
These gaps are manifest in the density of states, as shown in Figure 56. In the case
when there is a finite gap at zero energy (evidenced by the low density of states), the
radiation may cause dynamical states to be created in the gapped region (see, e.g. the
finite density of states for w < 5meV in the K valley for F=5kV/cm in Figure
56(a)). The most fascinating observation to be made from Figure 56 is that for U #0,
the density of states is not the same in each valley, since the orientation of the
circular polarization of the irradiating field couples more strongly to electrons in one
valley than in the other. If the polarization of the radiation is reversed, or the
direction of the bias potential U is swapped, then the strong and weak couplings are
also reversed. In particular, the radiation-induced density of states in the gapped
region is, in some cases, only present in one valley. For example, for F=1kVcm™
and U=10meV, there is finite density of states in the K valley for v < U/2, but not
in the K’ valley. The authors go on to show how irradiated bilayer graphene may be
used as a valley filter for an electron current. By irradiating one part of a graphene
flake, and attempting to pass current through this section, electrons will only pass if
there is a finite density of states through which they can propagate. Therefore, tuning
the radiation so that the density of states is in one valley or the other immediately
yields a valley-polarized current. This effect was demonstrated theoretically by
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Figure 56. (a) Density of states in irradiated bilayer graphene for three field intensities and
three gap sizes. (b) The total current, and (c) the valley polarization of electron transport
through an irradiated bilayer graphene device. In (b) and (c), U=20meV, and the transverse
(current-driving) bias is 12meV. The white contours denote the region of simultaneous high
valley polarization (>98%) and significant current flow (>0.08 pA).

computing the current through the device via a tunnelling approach. The two
graphitic ‘leads’ are described by appropriate Hamiltonian for unirradiated bilayer
graphene. The central (irradiated) region is linked to the leads via coupling
Hamiltonians which assume that the momentum and energy of the electron must be
conserved at the boundary. The valley component of the charge current in the right-
hand (outgoing) lead is J¢ = —(dNi /di), where N¢ stand for the number operator of
&-valley electrons in the right lead. A nonequilibrium Green’s function method is
used to compute the current of electrons in the & valley, which is

Ji=— h (2 . ZTr [T, SG (B} [ fe( Ea) — fr(Ed)],

where f. r is the occupation of electrons in the central region or right-hand lead, G" is
the full retarded Green’s function in the central region, I contains the inter-region
coupling parameters, « labels the Floquet states, E is the energy of an electron in the
lead and Tr denotes the trace over the matrix structure (designated by the overbar).
The Green’s function is calculated using the Floquet states, and includes the self
energy due to the two graphitic leads.

This filter device can produce electrons in either valley, simply by reversing the
polarity of the incident light, or the sign of the bias potential U. In Figure 56(b)
and (c), the total current through irradiated bilayer graphene is shown, along
with the simultaneous valley polarization. The area where the polarization is
greater than 98%, and the current is greater than 0.08 pA is shown by the white
contour.
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5. Zero-field transport in graphene

Transport properties in graphene and bilayer graphene are among the most exciting
observations in these new materials. What is so special about them? First of all,
graphene is a genuine two-dimensional electronic system. Second, it is a semimetal at
the charge neutrality point and a metal away from the charge neutrality point. This
means that the Fermi surface, responsible for transport at low temperatures, consists
either of two (slightly deformed) circles away from the charge neutrality point which
shrink to two Dirac points exactly at charge neutrality. Moreover, the fact that
graphene has two bands, touching each other only at the two Dirac points (Section
1), provides intra- and interband scattering, where the latter leads to a number of
interesting features such as Klein tunnelling and a constant optical conductivity.

Transport processes can be distinguished by the type of scattering of the (quasi)
electrons in the material. First of all, the electrons are scattered by the honeycomb
lattice, which leads to the formation of Bloch states if the lattice is perfectly periodic.
This case is also known as ballistic transport, in which the boundary conditions play
a crucial role. Then there can be scattering by non-periodic structures (impurities,
lattice defects and lattice deformations). This leads to diffusion of the electrons,
under certain conditions also to Anderson localization. And finally, there is
scattering between the electrons themselves due to Coulomb interaction and
electron—phonon interaction.

The basis for calculating quantum transport properties is either the linear
response theory (Kubo formalism) or the evaluation of transmission coefficients
(Landauer—Biittiker formalism). Both approaches have been used frequently for
graphene and gave the same results for comparable quantities. In the following,
we will employ the Kubo formalism because it provides more flexibility for
calculating general physical properties such as thermal effects and optical conduc-
tivities. Away from the neutrality point a classical (Boltzmann) approach was
successful [274-276] and will be discussed briefly.

5.1. Basic experimental facts

Already the first experiments on graphene by Novoselov et al. [17] and Zhang et al.
[85] revealed very characteristic transport properties in graphene. Graphene as well
as a stack of two graphene sheets (i.e. a graphene bilayer) are semimetals with
remarkably good conducting properties [1,17,85]. These materials have been
experimentally realized with external gates, which allow a continuous change of
charge carriers.

Besides the quantum Hall effect (Section 2), it was found that the longitudinal
conductivity changes linearly as a function of gate voltage V, with a negative
slope for holes and a positive slope for electrons. There is a minimal conductivity
omin Near the charge neutrality point (cf. Figure 57). The latter has attracted some
attention because its value seems to be very robust in terms of sample quality and
temperature [1,27,277,278]. More recent experiments by Du et al. [26] on
suspended graphene, however, indicated that below 7'~ 150 K the minimal conduc-
tivity decreases linearly with decreasing 7 and reaches the extrapolated value
Omin = 2¢%/h at T=0. A similar result was found by Danneau et al. [279]. This clearly



07: 48 23 August 2010

[ CAS Chi nese Acadeny of Sciences] At:

Downl oaded By:

Advances in Physics 357

35 = Scaled
Ballistic
—_—
— K
20K
£ —a
2_ . 1 DOK
= K| &
] E
= B 02} 02
14 @
E
5
-
100 200 300
0L : ; : . e e o0
-100 -50 0 50 100 : '

12 -2
v, V) n(107°ecm™)

Figure 57. Measured conductivities in graphene. The linear behavior of the conductivity as
a function of the gate voltage is shown for graphene on a substrate at fixed temperature
T=10K (left panel) (Reprinted figure with permission from K.S. Novoselov et al., Nature,
438, p. 197, 2005 [17]. Copyright © (2005) Nature Publishing Group.) and for suspended
graphene at several temperatures (right panel) (Reprinted figure with permission from X. Du
et al., Nature Nanotechnology, 3, p. 491, 2008 [26]. Copyright © (2008) Nature Publishing
Group). The inset on the right panel shows the behavior of the minimal conductivity.

indicates that the main mechanism of transport in graphene at the NP is diffusion,
possibly with a very large mean-free path. Away from the NP the linear behavior has
not always been observed but also a sublinear behavior. One possible reason is that
the linear behavior is due to long-range scattering by charged impurities, which may
not be present in suspended graphene [26].

Role of disorder — Disorder might play an important role in the physics
of graphene. First of all, a two-dimensional lattice is thermodynamically unstable.
It is known that this is the origin of the strong corrugations in graphene in the form of
ripples. Another source of disorder are (charged) impurities in the substrate, which
probably affect the transport properties substantially. Recent experiments on
suspended graphene have been able to eliminate this type of disorder. Experimental
evidence of strong effects of disorder comes from the observation of puddles of
electrons and holes at the charge neutrality point [213]. In a recent experiment with
hydrogenated graphene (graphane), disorder is added by an inhomogeneous coverage
by hydrogen atoms. This leads to the formation of localized states which causes a non-
metallic behavior characterized by a variable-range hopping conductivity [280].

Role of electron—electron interaction — There is no clear evidence for an effect of
electron—electron interaction on transport properties. This is supported by recent
theoretical findings, based on perturbative renormalization group calculations
[232,281,282], that Coulomb interaction provides only a correction of 1-2% for the
optical conductivity [283]. This is in good agreement with the experiments on the
optical transparency of graphene [146,284].

Role of electron—phonon interaction — Although there is a remarkable electron—
phonon interaction [217,285,286] in graphene, its effect on transport properties
has not been investigated in detail. Some experimental findings of a gap opening
was associated with electron—phonon interaction [287] but in most samples the
conductivity is explained by non-interacting particles. The optical conductivity
might be affected by the electron—phonon interaction of gated graphene before
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interband scattering can dominate transport (i.e. when the frequency w is less than
Ex/h) [284].

5.2. Low-energy approximation and random fluctuations

The linear approximation of the tight-binding model for monolayer graphene was
introduced in Section 1.2. Here we focus on the low-energy properties near the nodes
of neutral graphene, taking into account also random scattering caused by ripples
and impurities. Moreover, a random gap can appear. The reason in the case of
monolayer graphene is that fluctuations appear in the coverage of the monolayer
graphene by additional non-carbon atoms [280,288]. In the case of bilayer graphene
with a dual gate [140,185] the random gap is caused by the fact that the graphene
sheets are not planar but create ripples [24,289,290]. As a result, electrons experience
a randomly varying gap along each graphene sheet.

The two bands in monolayer graphene and the two low-energy bands in bilayer
graphene represent a spinor-1/2 wave function. This allows us to expand the
corresponding Hamiltonians in terms of Pauli matrices o; as

3
H=ho, +ho,+ ) vo. (56)
=0

Near each node the coefficients /; read in low-energy approximation [291]

h; =1V, (monolayer graphene), (57a)

hy = V% — V%, hy =2V,V, (bilayer graphene), (57b)

where (Vy,V,) is the 2D gradient, v, is a random scalar potential, v,3 the two
components of a random vector potential and v3 a random gap. This is a gradient
expansion of the monolayer graphene and bilayer graphene tight-binding
Hamiltonians around the nodes K and K'.

It is assumed here that randomness scatters only at small momentum such that
intervalley scattering, which requires a large momentum at least near the nodes [292],
is not relevant and can be treated as a perturbation. Then each valley contributes
separately to the density of states and to the conductivity, and the contribution of the
two valleys is additive. This allows us to consider the low-energy Hamiltonian in
Equations (56), (57) for each valley separately, even in the presence of randomness.
Within this approximation the gap term v3;=m is a random variable with mean value
(m,) = m and variance ((m, —m)(m, —m)) = g6, .. The following analytic calcula-
tions will be based entirely on the Hamiltonian of Equations (56) and (57). In
particular, the average Hamiltonian (H) can be diagonalized by Fourier transfor-
mation and is

(H) = p,0 + pr0, + 1oy (38)

for monolayer graphene with eigenvalues E, = + m? + p?. For bilayer graphene,
the average Hamiltonian is

(H),, = (P} — P20 + 2p1p,0, + 103, (59)
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Figure 58. Density of states for monolayer graphene and bilayer graphene with a uniform gap
(from [293]). Bilayer graphene has a singularity at the gap edge.

with eigenvalues £, =+ m* + p*. In order to apply results from these calculations
to monolayer graphene or bilayer graphene we must include a degeneracy factor
y =4, referring to the two valleys K and K’ and the two-fold spin degeneracy of the
electrons.

5.2.1. Density of states

Transport properties at temperature 7=0 are connected to the density of states
p(Er) at the Fermi level Er and the diffusion coefficient D through the Einstein
relation for the conductivity:

o(w = 0) o< Dp(Ey). (60)

In the absence of disorder, the density of states of 2D Dirac fermions opens a gap,
as soon as a nonzero term m appears in the Hamiltonian of Equation (56), since
the low- energy dispersion is E, = +y/m? + p?> for monolayer graphene and
E, = +y/m? + p* for bilayer graphene (cf Figure 58). At low energies, the density
of states of monolayer graphene is

p(E) = |E|O(|E] — m), (61)
where ©(x) is the Heaviside function. For bilayer graphene the density of states is
PE) = ———6(1E| —m) (©)
2V E? — m?

The density of states for both cases are shown in Figure 58. Random fluctuations of
m can fill the gap with states by band broadening and by the development of Lifshitz
tails, as shown in Figure 59.

5.3. Theory of transport

Transport properties, such as electric and thermal conductivities, can be calculated
within either the classical Boltzmann or within the Kubo formalism. The former is
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Figure 59. The density of states calculated numerically at the neutrality point for Gaussian
random gap for a 200x200 honeycomb lattice for g:0.92, 1, 1.1%, 1.2% and 1.3? from bottom
to top after 400 averages. The symbols denote the numerical data, solid lines are fits using
a exp(—bm ). The inset shows the obtained exponents, ¢, as a function of g, which is close
to 1.5 (from [293]).

very successful for providing results away from the nodes. At the nodes quantum
effects are crucial, so the Boltzmann approach fails and the Kubo formalism must be
employed. An alternative to the Kubo formalism is the Landauer formalism.
Both formalisms, however, lead to similar results [294]. Therefore, we will restrict the
subsequent study on the Kubo formalism after a brief discussion of the Boltzmann
approach.

5.3.1. Boltzmann approach

From the classical Boltzmann theory, where quantum effects are included by
choosing a Fermi distribution for the otherwise classical electrons [229], we get for
the conductivity the expression

|
o =3B, (63)
where 7 is the scattering time and vg the Fermi velocity. This relation is very similar
to the Einstein relation of Equation (60). In the case of Dirac fermions (H = vgp - 6),
where the density of states is linear in Ep, we obtain
2
e  Ext
o=2—". 64
n (64)
The scattering time t is determined by the distribution of random scatterers. Thus a
major problem of calculating transport properties is to evaluate 7, and one possible
way to do that is provided by the Boltzmann approach. The latter, based on the
classical Boltzmann equation, has been a very successful concept for the discussion
of transport in solid-state physics. It is more difficult to apply in graphene, however,
as we will discuss next.
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When 7 is roughly a constant with respect to Ep, as in normal metals, the
conductivity in Equation (64) would change linearly with Er. The latter, on the other
hand, is related to the density of charge carriers n as Ep o« /n, as a consequence
of the linear density of states:

EF EF
no / o(E)dE ~ / EdE = EL/2.
0 0

Therefore, o would change with /n for monolayer graphene. This is not in
agreement with experimental observations on gated graphene on a substrate, where
it was found that o changes linearly with n [17]. For bilayer graphene the density
of states is constant near the nodes, which is a consequence of the parabolic
dispersion. Then we have n o« Ef, and a constant t leads to a linear behavior in gated
bilayer graphene, in agreement with the experimental observations [27]. From this
point of view, bilayer graphene has a more conventional transport behavior than
monolayer graphene.

To get a linear behavior also for monolayer graphene, the assumption of a
constant T must be replaced by a density-dependent t that changes linearly with
Er:t~kg. Such a behavior was obtained from the Born approximation of t by
assuming V ~ fiver/2kg [98]. However, two problems remain within this result: one
is the vanishing minimal conductivity, in contrast to the experimental observation
of a minimal conductivity at the neutrality points [17]. The other is the absence of a
finite offset (i.e. the linear conductivity curves of the holes and the electrons do not
meet at Ex =0). This behavior was observed in the experimental curves [278].

At the nodes the Fermi surface are just points and the density of states
of monolayer graphene vanishes (i.e. there are no states at the Fermi energy). This
implies that a statistical concept, which uses the distribution of charges, may
experience some difficulties. Nevertheless, the Boltzmann approach can be applied
away from the Dirac point and then the Dirac point is approached at the end.
Perturbation theory with short-range scatterers gives for the scattering time
[274-276]

T X k;l ~ 0. (65)

According to Equation (64), including the Dirac dispersion Eg kg, this leads to
a constant nonzero conductivity. Thus, the Boltzmann approach gives us a nonzero
minimal conductivity when we consider short-range scatterers. Unfortunately,
a divergent scattering time at the Dirac point does not describe a realistic situation
because quasiparticles are scattered, e.g. by the ripples or charge inhomogeneities.
Moreover, the conductivity is constant also away from the nodes Er =0 because
the wavevectors kg always cancel each other. Unfortunately, this is again in
disagreement with the linearly increasing conductivity of the experiment [17].

In conclusion, the classical Boltzmann approach describes the transport
properties qualitatively correct. However, it needs two different types of scatter-
ing to obtain the conductivity near the Dirac point and away from the Dirac
point properly. The divergent scattering time at the Dirac point cannot be correct
though, at least for strong disorder. The subsequent discussion focuses on a more
microscopic approach, based on the Kubo formula for linear response to an external



07: 48 23 August 2010

Downl oaded By: [CAS Chi nese Acadeny of Sciences] At:

362 D.S.L. Abergel et al.

electric field, where we start from the Hamiltonian in Equation (56). This will allow
us to recover the Einstein relation Equation (60) with a disorder dependent diffusion
coefficient D, a non-divergent scattering time and the robustness of the minimal
conductivity.

5.3.2. Kubo formalism

A quantum approach to transport starts from a Hamiltonian H (here for
independent electrons) and the corresponding current operator

-]k = _ie[H, Vk],

where 7, is a component of the position operator of the electron. The average
current, induced by a weak external electric field E, is obtained in terms of linear
response as Ohm’s law

( /k> = Uk/E/,

with conductivity o, The general form of the conductivity in the Kubo formalism
can be expressed as a product of one-particle Green’s functions G(z) =(H +z)~ ' at
different energies z [295]. In the following, we exclude an external magnetic field.
This leads to a vanishing Hall conductivity o, =0 for k # /. Following the notation
of [296], there are two contributions to the real part of the longitudinal conductivity
as o =o' + o' with

e’ ,
Gék(w) = —ﬂa)/Z(rk — rk)2

X Re{<Tr2 |:Grr, (%w —€— i8> G,J,( - %a) —€— iS)]>}Kﬁ(e)de

e’ ,
o (w) = ﬂw/Z(rk — )’

X Re{<Tr2 I:G”,, (%w —€— iS)G,,,r( - %a) —€e+ ié)]>}/<ﬁ(e)de

Kp(€) = fyle + @/2) — fyle — @/2)

and with the Fermi distribution function fg(x) = (1 + P11 at temperature T=1/
kgB. The brackets (...) refer to disorder average and w is the frequency of the
external electric field. The spinor structure of monolayer graphene and bilayer
graphene is taken into account by the trace Tr, over 2 x 2 matrices.

The expressions of the conductivity are rather complicated which make them
difficult to handle. Therefore, for practical calculations it is useful to study certain
limits and to apply approximations.

and

with
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DC conductivity: the standard approach to the DC conductivity (i.e. w — 0) is to
neglect o’, since for this expression the poles of the Green’s functions are in the
same half plane. Therefore, any amount of disorder will lead to an exponential
decaying Green’s functions. Then the summation over the lattice sites r is finite and
the prefactor w gives a vanishing DC limit w — 0. This allows us to write

62(1)

~ A~ _
Ok ™~ Okk =72

fC’(e, w)k g(€)de, (66)
where C'(e, w) is the real part of

Cle,w) = lim Y RHTOIG(,0; € — 0/2 = 18)G(r, 0; e + 02+ 1)) (47)

A substantial simplification is possible in the zero-temperature limit 7=0 which
restricts the integration over particle energies € to a small interval, given by the
frequency w:

2 wtw/2
oy =2 / C'(e. w)de. (68)
LR S

A further simplification comes from the approximation by pulling out the integrand
at e=pu:

2

O~ =570 C (. 0). (69)

This expression can be directly compared with the result of the Boltzmann approach
in Equation (63).

We begin with a clean sample by ignoring the disorder average in Equation (67)
and introduce the pure two-particle Green’s function (2PGF)

Co(p, w) = %1_1)1}) Z r,z(Trz[G(r, 0; 0 —w/2 —18)G(r,0; u + w/2 +18)], (70)

which is for Dirac fermions without scattering and with infinite cutoff [297]

1 1 —4u?/0®, (14 2u/w)
Colt, ) = __[§+ AAG) ln(( + “/w)zﬂ. (1)
8o | W (1—2u/w)
This becomes at the Dirac point u =0 the simple expression
Co(0, w) = =2 /7w’ (72)

and with Equation (69) we obtain the well-known DC result [298-300] for the
conductivity:

1
O = ——.

ek T h
AC conductivity: for @ >0 and 7 > 0 the conductivity is a function of w/T.

Therefore, we must keep 7 finite for the AC conductivity. Moreover, now we
must take into account also o’. This gives for Dirac fermions, where we ignore

(73)
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the additional factor 4 that comes from the valley and from the spin degeneracy, the
expression [301,302]
" e sinh(Bw/2)
k8 h cosh(Bw/2) + cosh(Bu)

Here the frequency w is restricted to the bandwidth of the underlying lattice
Hamiltonian. For Bu < Bw~ oo this becomes a frequency-independent expression
[301,303-306]:

7 e

Ok R
Including the spin and valley degeneracy, this agrees with the experimentally

observed plateau of the optical conductivity of 7e?/2h [146,284]. There is a correction
factor due to Coulomb interaction [281-283]

T
1 +aln(i/w)/4’

where A is the cut-off of the Dirac spectrum and «=¢/ivaz2.2 is the effective
fine structure constant. The numerical coefficient ¢; has been debated in a number
papers, where the most recent value is ¢; =0.0125 [283] that agrees with the previous
result in [282].

Another possible correction is due to disorder, always present in realistic
graphene samples in the form of ripples and impurities. Disorder leads to an effective
scattering of the quasiparticles that can be characterized as a scattering rate.
A conventional way of including scattering by random impurities is to introduce
a scattering rate n in the form of an imaginary term in through the substitution
o — w4+ 2in in Cy(, w) such that

(1, @) ~ Colpt, @ + 2in). (74)

There are several options to determine the phenomenological parameter 5 (scattering
rate or inverse scattering time), for instance, by the Born approximation [229]
or the self-consistent Born approximation [229,262,275,276,307-309] which will be
discussed in Section 5.5.1. It implies that

. 1 2 o’ — 4’
C}(0,  + 2in) = —2Re(_2> =2 -7 (75)
(e + 2in) 7T (w? + 4n?)
and with Equation (69) we obtain the following for the conductivity:
62 wZ(wZ _ 4772)
O~ (76)

Ch (@ 44y

This is the well-known DC result e?/7h only when the scattering rate n is much
smaller than the frequency, i.e. in the weak-disorder limit. The reason for this
behavior is simply related to the fact that for any n >0 the 2PGF decays
exponentially on the scale 1/n, always leading to a vanishing DC conductivity.
It is not caused by Anderson localization but just by the incorrect evaluation of the
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2PGF. This can be cured by introducing an accurate description of the average
2PGF in Equation (67) instead of the product of two averaged one-particle
Green’s functions.'’

In the following we will discuss in more detail the effect of disorder on the
transport properties, since this is important for applying the theory to the physics
of realistic graphene samples. Moreover, in this field there are number of open
questions which might be a challange for future studies.

5.4. Perturbation theory for disorder

The fact that for weak disorder (i.e. for n << w) the semiclassical approximation in
Equation (76) gives reasonable values for the conductivity suggests that transport
properties can be evaluated in terms of perturbation theory with respect to disorder.
Since the scattering rate n vanishes with vanishing disorder, this quantity might also
be available in perturbation theory. Here we use the low-energy Hamiltonian of
Equation (56) and treat the random variables v; as perturbations. A simple case is
uncorrelated Gaussian randomness with zero mean and variance

(V00) = €058, (/=0,....3).

The perturbation theory is studied for a finite system of size L and a smallest scale /
(e.g. lattice constant or mean free path). Then the change of the perturbed system
under a change of the scale £ =1In(L//) can be calculated, for instance, in terms of a
one-loop approximation. This perturbative renormalization group (PRG) has been
employed for two-dimensional random Dirac fermions of Equation (56) in a large
number of papers [298,310-312]. For instance, the solution of the PRG equations for
a random gap (g3 > 0, go=g; =g»=0) indicates that the variance of the random
variable and its averaged value m = (m) scale to zero, whereas the energy € is running
away on large scales &:

_ 83 _ my _
R sy Qe m(§) = FEervT €§) =€y 1+ (g/2mE. (77)

Therefore, the one-loop PRG breaks down on a length scale
L. ~ &%, (78)

which has also been discussed in the literature [299,313]. Nevertheless, the PRG
result can give us some useful insight in the transport properties if we restrict the

system to a size L smaller than L.. For instance, the density of states is then obtained
as [314]

p(E) ~ "1 4 2 g ) In(i /),
Thus the density of states always vanishes linearly at the Dirac point £ =0, no matter
how strong the disorder is. However, the slope of the linear behavior increases with
system size L logarithmically. The normalization of the density of states implies that
this one-loop result can only be valid for system sizes L up to L.. It can be shown
that this characteristic length scale, which appears here only as a limiting case for the
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calculational method, also plays an important (physical) role for the scattering rate:
The scattering rate vanishes for systems smaller than L.

Transport properties have been studied within this PRG scheme for all g; > 0
[311]. The transport quantities can either be expressed in terms of the length scale L,
like the density of states above, or in terms of the wavevector k, representing an
inverse length scale. The wavevector is proportional to the energy and inversely
proportional to the wavelength A through the Dirac dispersion E=vgk o vpA ™.
Therefore, the one-loop PRG breaks down for wavelengths larger than A ~ L. which
implies for energies £ smaller than the critical energy scale

Ey~ ein/‘gf’l,

where g is the bare variance of the random scalar potential and ¢ is the hopping rate.
Then for |E| > E, the conductivity reads [311]

8e?
o(E) = Eln(lEl/Eo)- (79

The diffusion coefficient D and the scattering rate n are

SO n(|El/E). 0= 7g,p(E).

D =
2n

where g, is essentially the variance of the random scalar potential go. These results
satisfy the Einstein relation o o Dp.

The one-loop PRG calculation of random Dirac fermions was also extended to
include Coulomb interaction [312]. These calculations indicate a run-away RG flow
from the unperturbed fixed point. The search for new fixed points has not been
successful yet. Earlier hopes that a specific conformal-invariant field theory could
control all the physics of the random Dirac fermions near £~ 0 have also not been
fulfilled so far.

The perturbative approach can be extended by the summation over infinitely
many subdiagrams for the 2PGF [315]. The result is known as weak localization and
describes diffusion in disordered systems. A related idea is the 1/N expansion of the
2PGF [316]. This concept has also been applied to graphene [307]. It is a flexible
approach that also allows us to study the effect of inter-valley scattering. According
to the weak-localization studies by Suzuura and Ando [292], scattering between
different valleys (i.e. different nodes of the low-energy spectrum) has a strong effect
on the transport properties. The behavior changes from anti-localization, when only
intra-valley scattering is included, to localization for inter-valley scattering. This
means that, at least for weak disorder, the conductivity is reduced in comparison to
the pure system. However, this does not necessarily mean that this type of disorder
leads to Anderson localization.

A closer inspection of the weak-localization approaches reveals that these
self-consistent results approaches have a deeper physical meaning, namely the
appearance of diffusion due to spontaneous symmetry breaking. Therefore, it is
easier to start directly from the symmetry analysis and to avoid the complicated
diagrammatic calculations, as we will discussion in the next section.
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The summation over infinitely many subdiagrams is not only useful for disorder
but can also be applied to a perturbation theory for electron—electron [257] or to
electron—phonon interaction [305]. It provides self-consistent equations of the
Hartree—Fock—Bogoliubov type (i.e. it represents the best fit of the many-body
problem by single-particle approximations). Such approximations usually lead to a
gap opening, just as in the BCS theory, for arbitrarily weak interaction. It remains a
question, however, whether these gaps are real or just artifacts of the single-particle
approximation. This problem has been studied in great detail in the case of strongly
correlated systems [317].

5.5. Self-consistent approach: scattering rate and diffusion

The evaluation of the scattering rate in the self-consistent Born approximation
(SCBA) reads as the self-consistent equation

n = 2ig((H) + z + i), (80)

where 1 can be interpreted as the imaginary part of the self-energy (cf. [309]).
A similar equation can be derived from the saddle-point approximation of the
average 2PGF [296,318]. This approach avoids the unphysical behavior of the
factorized 2PGF in Equation (75) for w < 2n. As a consequence, instead of the single
scalar parameter 7, the corresponding self-consistent equation determines a 4 x 4
matrix Q:

0 = g((H) +z — 2,0, v 1)

where y;=diag(c;,0,), and H = diag(H,H) is a 4 x 4 block diagonal Hamiltonian.
j=01is for a random scalar potential, j=1, 2 for a random vector potential and j=3
for a random gap potential. A special solution of Equation (81) could be of the form

~

0y =iz, (82)

where 7 is the scattering rate, since it shifts the energy in the Green’s function
((H) +2)~" by in, like in the semiclassical approach of Section 5.3.2. Now we can
insert our special solution in Equation (81) and multiply it by y;. This reduces the
matrix equation to a scalar equation (80), the equation of the SCBA. It should be
noticed that this equation is the same for all types of randomness, the model specific
properties have dropped out. This is a first hint that the reduced equation is not
sufficient to describe the physics of disordered monolayer graphene or bilayer
graphene. The reason is that with the special ansatz (82) we have completely lost the
4 x 4 matrix structure of the equation. A more careful inspection of Equation (81)
reveals that H is invariant under a continuous transformation for j=1, 2,3 (but not
for j=0), depending on the type of randomness [296,318]. A consequence of these
symmetries is that for z=0 the saddle-point equation is invariant under the global
symmetry transfognatlon and the transformation creates a whole manifold of
solutions Q with Q" = —n?y,/4 (o is the 4 x 4 unit matrix). This is the origin of the
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nonlinear sigma model, which describes diffusion of particles. We will briefly return
to this point in the discussion of the average 2PGF in Section 5.5.1.

It is crucial to notice that the manifold collapses to a single solution if n=0.
Such a vanishing solution exists, for instance, for a finite monolayer graphene if its
linear size L is too small, namely L < LM

5.5.1. Scaling relation of the two-particle Green’s function

After integration over the manifold of saddle-point solutions, both for monolayer
graphene and bilayer graphene, the average 2PGF

Ky(q.2) =) e lim(Tro[G(r, 0; —z/2 = i8)G(r, 0; 2/2 + i9))),

which is related to C(e, w) in Equation (67) for e =0 by

82 Kg(qa w)]
q=0

C0,w) = —[ 3t1,2€

can also be evaluated. For instance, for a random gap with variance g there is a
simple relation between the 2PGF of the pure system

Ko(g:2) = Y ¢ im TralGo(r, 05 —2/2 = i9)Go(r, 0 /2 + i8)),

with the one-particle Green’s function Gy(z) =((H)+2)"", and the average 2PGF
as [318]

2in)’ , ,
Ky (0, ) = MKO(O, w4 2in) = w2 Fo + 2in). (83)
w
The right-hand side does not depend on the disorder strength g explicitly, only
through the scattering rate n. This is a scaling relation for K,(0,w), where we
have pulled out the divergent term w > and introduced the scaling function
F(z) =2°Ky(0, z) with z=w+ 2in. The expression for the conductivity in Equation

(69) then reads

2
e
/ i 84
o 2hF(a)+21n), (84)

where F'(z) is the real part of F(z). Thus, the conductivity depends only on the
variable w + 2in through the scaling function. This is a generalization of the classical
Drude formula, where the scaling function of the latter would be Fp,uqe o i/z .

The relation in Equation (83) can be compared with the semiclassical approx-
imation in Equation (74). They do not agree except for the trivial case n =0 due to
the prefactor (w -+ 2in)?/w?, obtained from the integration over the saddle-point
manifold. For n > 0 it is important to notice that the average 2PGF always diverges
like w2, whereas the pure 2PGF is finite for > 0. This cures the problem which we
have had with the expression in Equation (76) if o < .
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5.6. Numerical simulations

Analytic calculations are limited because they are either based on a truncated
perturbation series or they employ an approximative scheme. Therefore, it is
important to use numerical calculations of finite systems as a complementary
approach. There are a number of works in which the transport properties have been
studied numerically, usually based on the transfer-matrix (or Landauer) approach
[321,322]. An interesting result is that the conductivity increases with the system size
in the presence of a single valley and potential disorder [323,324]:

262
o(L) ~ = ~[oy +sIn(L/8)], (85)

with o and s of the order of unity. This logarithmic behavior agrees remarkably well
with the one-loop PRG calculation in Equation (79). From the numerical results it is
not clear whether or not the logarithmic increase of the conductivity saturates at
some finite value, as it is suggested by the breakdown of the PRG, or increases
asymptotically. Since it is obvious from the PRG that the behavior must change
qualitatively beyond the scale L., it cannot be ruled out that this scale has not been
reached in the numerical calculations.

In contrast to the growing behavior of the conductivity, a random gap term
instead of the potential disorder gives a size-independent conductivity [325]

12
L)y=-—
o(L) Th’

for any strength of the random gap fluctuations but with vanishing average gap.
For any non-zero gap, however, the conductivity decays with increasing size L.
Moreover, the conductivity increases with the strength of the random gap
fluctuations for fixed L and fixed average gap. This indicates that the unusual
behavior is not related to conventional Anderson localization, since for the latter we
expect a decreasing localization length for increasing random fluctuations.

Additionally, Schomerus [326] considered the impact of the leads on transport
through weakly doped graphene. He showed that graphitic leads and quantum wires
give qualitatively the same transport properties, which can be characterized by a
single parameter which is determined by the measurement of the conductance and
shot noise of a rectangular undoped graphene strip. This duality is the result of the
mode selection mechanism originating from the conical points of undoped graphene,
and holds even though the different types of wire support different numbers of
propagating modes.

(86)

5.7. Metal-insulator transition

Recent experiments on hydrogenated graphene (graphane) (Section 8.2.3) have
revealed that a gap is opened by the adsorption of hydrogen such that graphene
can undergo a transition from metallic to insulating behavior [280,288]. The gap
opening by hydrogen adsorption is also supported by density-functional calculations
[327]. An interesting question in this context is how the transport properties change
when we add gradually hydrogen to graphene [280], creating randomly gaps in the
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graphene sheet [140,185]. The random gap is characterized by two parameters, the
average gap m and the variance g of the spatial gap fluctuations. If we begin with
weak disorder, i.e. ,/g < m, the minimal conductivity oy,;, will be zero because there
are either no states at the node £=0 or these states are localized. Thus the system is
insulating with a vanishing conductivity at low temperatures. The spatial gap
fluctuations around the mean value m have two effects: First, they can close the
effective gap by broadening the particle and hole bands and, second, they can create
new states inside the gap, such as midgap states [328-330]. Those states are either
localized for large m (e.g. Lifshitz tails) [280,288,293] or delocalized for small 72 [318].
As we increase the spatial fluctuations of §m, local regions are formed in which
dm~0 with reasonable probability. Increasing g further, these local regions with
dm=~0 start to form a percolating network. It is not necessary to close these gaps
completely, since a local gap only reduces the local density of states. Therefore,
a quantum percolation transition can take place in the presence of sufficiently large
fluctuations of ém. This is similar to the percolating network picture of charged
puddles [331]. A perturbative renormalization-group analysis supports such a
transition indirectly. Starting from Equation (77), the term m always flows to zero
under renormalization. The corresponding fixed point is a free massless Dirac
Hamiltonian with DC conductivity e?/Az. In other words, the system always flows to
a clean metal for sufficiently large system size. However, this renormalization-group
analysis is only valid for weak disorder. In case of strong disorder another behavior
may appear in which the gap can survive.

More detailed analytic and numerical studies of the metal-insulator transition
due to a random gap have revealed that for a vanishing average gap graphene is
always metallic [318,325,332]. However, the situation is less clear for a nonzero m.
First, we have the result of the perturbative renormalization group that indicates a
metallic behavior, at least for small g, and no metal-insulator transition. Moreover,
the scaling relation of Equation (84) allows us to obtain the conductivity from the
pure 2PGF, where the latter gives the scaling function as

2a  7* y
Fz) = ;m(“)(mc —m’)

with ¢ =1 (a=2) for monolayer graphene (bilayer graphene). Thus the conductivity
vanishes when the average gap m exceeds a critical value m.. Here m. depends
on whether we consider monolayer graphene or bilayer graphene. Its value for
a given variance g is much smaller for monolayer graphene than for bilayer
graphene [318]:

2 De~T/g
~ (monolayer graphene)

m, = { IWeX/s —1 [ . (87)

C

g/2 (bilayer graphene)

The scattering rate »n is obtained from Equation (80) for both, monolayer graphene
and bilayer graphene, as [318]:

7’ = (m2 —i?)Om: —m?)/4. (88)
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Inserting these results into the expression for the DC conductivity of Equation (84)
gives us a simple power law

2
T h m?

2 =2

o= (1 _n )@(mg—n‘az). (89)

The factor a=2 of the bilayer may be connected to the fact that the conductivity
doubles for the bilayer graphene because of the two conducting sheets. However, in
our approach it is related to spectral properties at low energies (linear vs. parabolic).
Experiments do not show this doubling in the DC limit but indicate that the minimal
conductivity of bilayer graphene is more sensitive to temperature (i.e. it increases
strongly with temperature), whereas the minimal conductivity of monolayer
graphene is almost independent of temperature [27] or changes linearly with 7 [26].
The results in Equations (87) and (88) indicate that the effect of disorder is much
stronger in bilayer graphene. For monolayer graphene as well as for bilayer
graphene, the critical gap value m, increases with disorder. Thus, a random gap
allows diffusive motion of the electrons, provided that the average gap is not too
large. This reflects the percolation picture, as mentioned at the beginning of this
section. The corresponding phase diagram includes two gapped phases (one for
m > m_ and one for m < — m_) and an intermediate diffusive (metallic) phase with
a nonzero minimal conductivity o, [318] (cf. Figure 60). These results are in
qualitative agreement with the numerical simulations for related network models by
Cho and Fisher [333] and by Chalker et al. [334]. However, more recent numerical
simulations by Bardarson et al. [325] have questioned the power law in Equation (89)
for monolayer graphene: although the prefactor ¢?/mh agrees very well, the critical
value m, is smaller than the one calculated in Equation (87). Since the latter is a
result for an infinite graphene sample, we have also calculated i, for finite samples
and found qualitatively the same finite-size behavior such as the decay of o(L) with
increasing size L [332]. Nevertheless, the actual value of my for different types
disorder remains an open problem. Moreover, the simple power law in Equation (89)
may have a different exponent because the seclf-consistent evaluation of the

Diffusive phase

Insulator I Insulator IT

0 m

Figure 60. Schematic phase diagram of random-gap Dirac fermions (monolayer graphene)
for average gap m and disorder strength g, obtained from numerical and analytic calculations
[318,325,333,334]. There are two gapped phases for m < —m,. and for m > m. with an
intermediate metallic phase. According to Equation (87) the vertical line has a width of
2m.=2e~"/¢ which is too small to be visible in this plot. The metallic phase for large g has
not been observed in recent numerical simulations [325] because 1. was smaller than the value
obtained in Equation (87).



