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Figure 23. Schematic diagrams for (al,a2) first-order and (b1-b4) one-phonon second-order, (c1,c2)
two-phonon second-order, resonance Raman spectral processes for which the top diagrams refer to inci-
dent photon resonance conditions and the bottom diagrams refer to the scattered resonance conditions. For
one-phonon, second-order transitions, one of the two scattering events is an elastic scattering event (dashed
line). Resonance points are shown as solid circles [104,207-209]. Adapted with permission from R. Saito et
al., New Journal of Physics 5, p. 157, 2003 [209]. Copyright © (2003) by the Institute of Physics.

intermediate state back to k (see Figure 23(b) and (c)) [209]. This two-scattering amplitude process
is expressed by perturbation theory in which the numerator of the resulting term consist of four
scattering matrix elements (two for photon absorption and emission, and two for phonon emission
or absorption), while the denominator of this term consists of three energy difference factors. If
two of the three energy difference factors becomes zero, the scattering intensity becomes strongly
enhanced by each of these factors. We call a process containing two resonance denominators
double resonance (DR) Raman scattering [104,174,207,210,211]. The G’-band of mono-layer
graphene represents a resonance Raman spectral feature for an iTO phonon mode near the K point
which is resonant for each of the three scattering processes.

2.8.5. Dispersive behavior of the phonon energy in DR Raman processes

An important aspect of the DR Raman spectra is that the observed phonon energy changes by
changing the laser excitation energy, which gives rise to a dispersive behavior of the scattered
phonon. Since the electronic energy dispersion of the 7 and 7z* bands is linear in k as measured
from the K (K’) point in the 2D BZ of graphene, a special k value is selected on an equi-energy
line for a given laser energy (Ejaser)- In order to satisfy energy—momentum conservation for the
DR scattering from k to k — g and from k — q to k, the phonon momentum q is selected by the
circles near the K point shown in Fig. 23(c). When we calculate the phonon density of states for
this DR process, the DR wave vector qpr = 2k for a phonon frequency w(q) is selected [104,207].
Thus by changing the photon energy, we can probe the phonon energy along the phonon energy
dispersion [174,210,212]. The D- (G’-) band frequency is 1350 (2700) cm~? for Ejaer = 2.41eV
and the D-(G’)-band frequency increases by 53 (106) cm~! by changing Ejasser by 1V [213]. Inthe
case of SWNTSs, the selection of gpr becomes more selective because of the 1D character of qpr,
which is the reason why a sharp D-band spectral feature occurs in the case of SWNTSs [210,211].
The pioneering work on the variation of the G’-band peak frequency with laser excitation energy
was first studied by Vidano et al. [214,215] and by Baranov et al. [207].
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Figure 24. (a) The schematic diagram shows the light-induced e-h formation and the one electron-one
phonon scattering event taking place in the DR process with two different excitation laser energies (associated
with phonon wave vectors gy and qp, respectively), which are indicated by the gray and black arrows,
respectively. The two events in the DR process can occur in either order in time. (b) The phonon dispersion in
graphene is shown where the phonon wavevector q that fulfills the DR requirements for each Ejser Value in
(a) isalso indicated in terms of the phonon wavevectors q; and g (see text). Reprinted figure with permission
from A. Jorio et al. Spectroscopy in Graphene Related Systems, 2010 [1]. Copyright © Wiley—VCH Verlag
GombH & Co. KGaA.

2.8.6. The inter-valley double resonance Raman scattering processes

When a photon with a given energy is incident on mono-layer graphene, it will excite an electron
from the valence band to the conduction band vertically in momentum space (vertical arrows in
Figure 24(a)). Since the graphene energy band does not have an energy gap, we always have
an electron with wavevector k for any E,; Value which satisfies energy conservation Ejzser =
EC(k) — EY(k). In the single-resonance Raman process, a zone center (g = 0) phonon is created
or destroyed by coupling with the excited electron or hole, and the e-h recombination generates
the Raman shifted photon.

In contrast, the photo-excited electron at k can be scattered by emitting a phonon with wave
vector ( to a state at k — g, as shown by the quasi-horizontal arrows in Figure 24(a). The phonon
emission in Figure 24(a) corresponds to an inter-valley scattering process in which the phonon
g vector connects two energy bands at the K and K’ points of the BZ. If there is a phonon in
the vibrational structure of graphene with the wavevector g and phonon energy Eq so that this
photon can connect the two conduction electronic states, then this phonon scattering process will
be resonant. The DR process (involving both electron—photon and el-ph scattering, shown in
Figure 24(a)) will then take place.

2.8.7. Forward and backward scattering

The slope of the energy dispersion 9E /oK is called the group velocity. When we consider only the
direction of the group velocity for the initial k, there are two possibilities for the scattered k — g
states, as shown in Figure 25, where each of the inter-valley (a,b) and intra-valley (c,d) scattering
processes correspond to backward (a,c) and forward (b,d) scattering. Here the backward (forward)
scattering means that the direction of the group velocity does (does not) change after scattering.
The corresponding g vectors for inter-valley scattering are given by (see Figure 26)

g=K+gor =K+ k+k ~K+2k (backward scattering), (11)
q=K+gor =K +k -k ~ K (forward scattering), (12)

where K is the magnitude of the reciprocal lattice vector that connects K and K’, and k (k") here
is measured from the K (K’) point, which means that the double resonance wave vector gpg is the
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Figure 25. The full DR Stokes Raman processes for inter-valley (a,b) and intra-valley (c,d) scattering. Here
(a,c) relates to the backward scattering process with qpr = k + k" and (b,d) relates to the forward scattering
process with gpr = k — k/, with k and k” measured from the K point. The reciprocal lattice vector K is the
distance between the K and K’ points, k (k") is the distance of the resonant states from K (K’), as defined in
(a). Reprinted figure with permission from A. Jorio et al. Spectroscopy in Graphene Related Systems, 2010
[1]. Copyright © Wiley—VCH Verlag GombH & Co. KGaA.

Figure 26.One of the possible DR Stokes Raman processes involving the emission of a phonon with wavevec-
tor —q. The set of all phonon wavevectors g which are related to transitions from points on the two circles
around K and K’ gives rise to the collection of small circles around the K” point obeying the vector sum rule
g = K — k + k’ (here we neglect the trigonal warping effect). Note that this collection of circles is confined
to a region between the two circles with radii gpr = k + k' ~ 2k and gpr = k — k’ ~ 0. The differences
between the radii of the circles around K and K’ and thus the radius of the inner circle around K” are actually
small in magnitude and are here artificially enlarged for clarity in presenting the concepts of the double res-
onance process. Adapted with permission from L.G. Cancado et al., Physical Review B 66, p. 35415, 2002
[216]. Copyright © (2002) by the American Physical Society.
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phonon wavevector distance linking the K and K’ points. In the case of intra-valley scattering, we
just put K = 0 into Equations (11) and (12). Since the phonon energy is usually small compared
to the excited electronic energy levels, k ~ k', these two double resonance conditions approach
Oor = 2k and gpr = 0 (as is commonly used in the literature [114,172,210]).

2.8.8. DR qcircles in 2D graphene

The picture discussed up to now is not the full story because graphene is a 2D material. For a given
laser energy, not only is the e-h excitation process shown in Figure 24 resonant, but any similar
process on a circle in these cones defined by E . (See Figure 26) is also resonant. Furthermore,
the mechanism of DR is actually satisfied by any phonon whose wavevector connects two points
on two circles around the K and K’ points, as shown in Figure 26 [216]. (In constructing this
figure, we neglect the trigonal warping effect of the constant energy surface of graphene for
simplicity). A phonon with wavevector g connects two points along the circles with radii k and
k’ around the K and K’ points, respectively, where the difference between k and k" (for k # k')
comes from the energy loss from the electron to the phonon.'® By translating the vector g to
the T point, and considering all possible initial and final states around the K and K’ points, the
doughnut-like figure shown in Figure 26 is generated [216]. Therefore, there is a large set of g
vectors fulfilling the DR condition. However, there is also a high density of phonon wavevectors
q satisfying the DR mechanism for which the end points of the wavevectors measured from the I’
point are on the inner and outer circles of the “doughnut” in Figure 26. Therefore, the radii of the
inner and outer circles around K” (see Figure 26) are, respectively, k — k’ and k + k’. Exactly as
given by the 1D model (Equations (11) and (12)), these wavevectors correspond to the phonons
associated with the singularities in the density of q vectors that fulfill the DR requirements, and
these special wavevectors in Figure 26 are expected to make a significantly larger contribution to
the second-order Raman scattering process. However, for a full description and lineshape analysis,
it is important to consider the 2D model, which seems to generate the asymmetric lineshape that
is observed for the 2450 cm~! G’-band feature.

Finally, Figure 24 shows that, if Ej5sr is changed, then the specific wavevector g and phonon
energy Eq that will fulfill the DR conditions will also change. This effect gives rise to the dispersive
nature of the G’-band, which comes from an inter-valley DR Raman process involving an electron
with wave vector k in the vicinity of the K point and two iTO phonons with wave vectors qpr = 2K,
where both k and qpg are measured from the K point.

To analyze experimental data for graphene in Figure 27 one has to consider the electron
and phonon dispersion of a graphene mono-layer. Near the K point, the electron and phonon
dispersions can be approximated by the linear relations E (k) = fvgk and E(0pr) = AVphQpr,
respectively, where ve = dE(k)/dk and vp, = dE(q)/aq are the electron and phonon velocities
near the K point, respectively (in which v is usually called the Fermi velocity, ve ~ 10° m/s) for
graphene. We denote the electron (phonon) wave vector by k (gpr) Which is measured with respect
to the K point, so that the conditions for the DR Raman effect are given by [1]

Elaser = 2VFk,
Eph = VpnObr, (13)
Oor =k £ K/,

where Ejaser and Egp are, respectively, the laser and phonon energies, and k” is the scattered electron
wave vector near the K’ point in the graphene BZ. It is important to remember that we are dealing
here with combination modes, so that the observed Ep, has to reflect this combination. For example,
for the G’-band, the observed G'-band energy is given by Ec: = 2Ep, where Ep, is the energy for
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the iTO phonon mode at qpg.*® Making another commonly used approximation in Equation (13),
i.e., gpr = k + k’ =~ 2k, then Eg' can be written as [1]

Vph
EG’ = 2LElaser- (14)
VF

A drawback in using the DR Raman features to define the electron and phonon dispersion relations
is that the measured values depend on both vy, and vg, and one has to be known in order to obtain
the other. In addition to this problem, the physics of the phonon dispersion for graphene near
the K point is rather complex due to the Kohn anomaly, and the KA also occurs for phonons at
g — K (see Section 2.7). The high frequency of the iTO phonon when combined with the KA
near the K point are together responsible for the strong dispersive behavior observed for wg . The
exact values for vyn and ve are still under debate since they also depend on the complex physics
of many-body effects [112,194,217-220]. This is one area where more work for future research
is needed.

2.8.9. Dispersive behavior of the G’- and G*-band

Since both G* and G’ features in Figure 27 are due to double resonance processes, both Raman
features show dispersion with Ej,sr, but with quite different characteristics. So far, we explained
that there are two possibilities for selecting g while satisfying the double resonance condition:
Opr A~ 2k and 0. The condition for qpr =~ 0 will or no selecta phonon frequency at g = 0 measured
from the K point, and these gpr show weak dispersion even though the signal is due to a DR Raman
spectra. Figure 27(a) shows the Raman spectra in the region of both the G* (~ 2450 cm~!) and
G’ (~ 2700 cm~1) bands for different laser excitation energies. Also the G*-band can either be
explained by the q ~ 0 DR relation [221] or by the q ~ 2k relation applied to an inter-valley
process [213], but involving two different phonons in each case. Figure 27(b) shows the G’ and G*
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Figure 27. (a) Raman spectra of the G’ and the G*-bands of mono-layer graphene for 1.92, 2.18, 2.41, 2.54
and 2.71eV laser excitation energy. (b) Dependence of wg' and wg+ on Ejaser. The circles correspond to
the graphene data and the lozenges correspond to data for turbostratic graphite. Adapted with permission
from D. Mafra et al., Physical Review B, 76, p. 233407, 2007 [213]. Copyright © (2007) by the American
Physical Society.


http://link.aps.org/abstract/PRB/v76/p233407

Downloaded by [Shenzhen University Town] at 19:33 15 August 2011

462 R. Saito et al.

frequencies wg' and wg- as a function of E,sr for graphene and turbostratic graphite (for which
the stacking between graphene layers is random). The G’-band in Figure 27 exhibits a highly
dispersive behavior with (dwg' /IEaser) =~ 88 cm~1/eV for mono-layer graphene, 95 cm~1/eV for
turbostratic graphite [213] and 106 cm~1/eV for carbon nanotubes (see Figure 27 and [222]). The
G*-band feature exhibits a much less pronounced dispersion than the G’-band, and of opposite
sign, with (dwg-/dEjaser) ~ —10 to —20 cm~/eV for both mono-layer and turbostratic graphite
[208,213], and no dispersion is reported for carbon nanotubes [221]. It should be noted that a
different interpretation to the origin of the G*-band is given in [131,223], which together with
[221] identified the origin of the 2450 cm~! peak with the overtone of the 1225cm~! feature
which has a peak in the phonon density of states for two phonons [223], while [224,225] assigned
this feature to the combination modes iTA + iTO. As already stated, the qpr ~ 2k wavevector
gives rise to the G’-band, while the qpr ~ 0 wavevector gives rise to a DR feature coming from
the iTO phonon very close to the K point. The gpr ~ 0 processes are expected to be less intense
than the gpr ~ 2k processes because the destructive interference condition is exactly satisfied for
dor = 0 [208].

2.8.10. Double resonance, overtone and combination modes

The sp? carbons exhibit several combination modes and overtones, which are shown in Figure 28
for graphite whiskers as a function of frequency up to 7000 cm~! [226]. Basically all the branches
in the phonon dispersion can be seen to have a combination and overtone Raman features which
obey the DR condition [104,210]. Many of the peaks observed in the spectra of Figure 28 below
1650 cm~! are actually one-phonon bands activated by defects (see Section 4.3). Above 1650 cm~2,
the observed Raman features are all multiple-order combination modes and overtones, and here
too some of the features in Figure 28 are also activated by defects.

As shown in Figure 28, the DR peaks change frequency with changing Ejasr, and they can be
fitted onto the phonon dispersion diagram shown in Figure 29 using DR theory. The data points
displayed in Figure 29 all stand for the qpr ~ 2k DR backward resonance condition, those near
" and K coming from intra-valley and inter-valley scattering processes, respectively. Actually,
in the Raman spectra there are no characteristic features distinguishing peaks associated with
the intra-valley scattering process from those associated with inter-valley scattering processes,
or even features that distinguish between the gpr ~ 2k or gpr ~ 0 resonance conditions. All we
have in hand in analyzing actual Raman spectra is the E|qsr dependence of each peak. Here, each
peak has to fulfill one of the DR processes and to fit the predicted phonon dispersion relations.
For example, the data points near the K point in Figure 29 that are assigned as the iTO+LA
combination mode (TO+LA) could alternatively be assigned to a gpr &~ 0 process, since this
combination mode is weakly dispersive [221]. Supporting this assignment is the asymmetric (DR
phonon-density-of-states-like shape) observed for this peak, and against this identification is the
destructive interference working towards DR Raman processes at exactly g = K [208]. The debate
abouttheiTO + LA combination mode assignment near the K point remains for future clarification.
Near the " point, the dispersive behavior is more clear and the assignment of the observed Raman
features is on a more solid foundation [227].

29. Summary

The power of Raman spectroscopy for studying carbon nanotubes is in particular revealed through
exploitation of the resonance Raman effect, which is greatly enhanced by the singular density
of electronic states of SWNTSs and the resonant effect comes from the 1D confinement of the
electronic states due to the small diameters of carbon nanotubes. Soon after the discovery of the
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Figure 28. Raman spectra of graphite whiskers obtained at three different laser wavelengths (excitation
energies) [226]. Note that some phonon frequencies vary with Ejaser and some do not. Above 1650 cm—1 the
observed Raman features are all multiple-order combination modes and overtones (see Figure 29), though
some of the peaks observed below 1650 cm~! are actually one-phonon bands activated by defects. The inset to
(c) shows details of the peaks labeled by L1 and L. The L1 and L> peaks, which are dispersive, are explained
theoretically by the defect activation of double-resonance one-phonon processes (see Section 2.8.10) involv-
ing the acoustic iTA and LA branches, respectively, as discussed in Ref. [210]. Adapted figure with permission
from P.H. Tan et al., Physical Review B 64, p. 214301, 2001 [226]. Copyright © (2001) by the American
Physical Society.

resonance Raman effect in SWNTSs [103], it was found that the resonance lineshape could be used
to identify the nanotube structure, i.e., the chiral indices (n, m) [111], and to distinguish metallic
from semiconducting SWNTSs [128,228]. It is clear that most of the results achieved up to now
have been developed for SWNTSs, while the optics of graphene and nanoribbons is still at an early
stage. This is the way it happened historically, and the knowledge developed in carbon nanotube
science is now fostering an amazingly fast development of graphene photo-physics. It is expected
that graphene photo-physics will follow a similar path of development that will reveal much new
physics as this very fundamental field develops such as the understanding of the KA which helped
to elucidate the phonon dispersion relation of graphite and all related sp? carbons.
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Figure 29. Two-phonon dispersion of graphite based on second-order double-resonance peaks in the Raman
spectra (dark circles). Solid lines are dispersion curves from ab initio calculations considering combination
modes and overtones associated with totally symmetric irreducible representations. Adapted figure with
permission from J. Maultzsch et al., Physical Review B 70, p. 155403, 2004 [208]. Copyright © (2004) by
the American Physical Society.

3. Calculation method of resonance Raman spectra

Within the tight-binding approximation methods, we can calculate the Raman spectra and the
Raman excitation profile of an (n,m) nanotube by considering the electron—photon, el-ph,
exciton—photon and exciton—phonon interactions. In this section, the (n, m) dependence of the
RBM and G-band intensities, spectral width and resonance window are directly compared with
experiment. The exciton energy calculations can reproduce the Ej energy within high accuracy.
In Section 3, however, we do not mention the environmental effects (see Section 5.2.1) which are
here comparatively considered here by experiment [229,230] and theory [231,232]. The electron—
electron interaction and elastic scattering matrix elements [233] need to be developed further for
obtaining the asymmetric shape of the BWF lines and the D- (G’-) band spectra, respectively.
Using the established computer library, we can extend these calculations to consideration of the
coherent phonon response of a nanotube [165]. In this section, we do not mention the polariza-
tion dependence of the Raman spectra, in which the screening effect (the so-called depolarization
effect [234]) is important.

3.1. Overview of calculations reviewed in this section

In Section 3, we review the theoretical calculation of the resonance Raman spectra and exciton
energy states for carbon nanotubes. The method used here for carbon nanotube calculations can
also be applied to graphene Raman spectra, though we do not need to consider exciton states for
graphene. Most of the quantitative comparisons are made in Section 3 with regard to resonance
energy, Raman frequencies and spectral linewidths. In order to obtain the Raman intensity, we
review the calculations of the excitonic (electronic) interaction matrix element for nanotubes
(graphene). Since the derivations consist of many topics, each topic is first briefly mentioned in
this subsection and is then described in more detail in the following subsections.
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3.1.1. Raman scattering and phonon energy dispersion

In Raman spectroscopy studies of solids, we generally observe the phonon frequency at the center
of the BZ (zone-center phonon). Other inelastic scattering techniques, such as inelastic neutron
scattering [235,236], or inelastic X-ray scattering [208] or electron energy loss spectroscopy
[237,238] provide measurements of the phonon dispersion inside the BZ, which we can reproduce
theoretically [235,239] either by fitting force-constant calculations to experimental data or by first-
principles calculations [32,240,241]. Graphene-related systems have a special electronic structure
which allows the observation of phonons in the interior of the BZ by DR Raman spectroscopy. In
Section 3.2, we mention how to obtain the phonon dispersion relations by force-constant models.

3.1.2. Electronic energy bands

Optical processes can be studied by Raman spectroscopy as well as by other techniques. If there is
either a photo-absorption or a photo-emission process that couples the ground state to an excited
state of an electron, then the amplitude of the phonon scattering process is greatly enhanced if the
excited state is a real electronic state. This resonant process is known as resonance Raman spec-
troscopy. In order to obtain the resonance condition by which a given laser energy Ejsser matches
the transition energy of the actual electronic states, the electronic energy bands are calculated
by a simple tight-binding method in Section 3.3 or by an extension of this method as given in
Section 3.3.1 using the so-called extended tight-binding model. Angle-resolved photo-electron
spectroscopy (ARPES) experiments [123-126] are especially relevant for providing information
about the occupied electronic energy bands in graphene.

3.1.3. The double resonance process

While the most usual first-order Raman processes measure only zone center phonon modes,
excited electron scattering processes may also take place involving phonons in the interior of the
BZ. Such processes can become Raman allowed either by two phonon scattering processes, thus
conserving momentum, or in the presence of a lattice defect, where the momentum conservation
requirement can be broken. However, these are generally low probability processes. In graphene-
related systems, however, such DR scattering processes become highly probable because of the
so-called DR phenomenain graphene [104,207,210]. One resonant phenomenon is light absorption
or emission, and the other resonant phenomenon is the scattering of the excited electron (or hole)
by phonons. Here “resonant” means that the phonon brings the electron from one real state to
another real state, which matches the energy and momentum transfer required for momentum and
energy conservation.

3.1.4. Electron—photon and electron—phonon interactions

To obtain good agreement with experiment, it is necessary to include el-ph and electron—photon
interactions in such calculations of the Raman intensity as a function of E,as,. In this connection,
we here discuss the calculation of the electron—photon matrix elements (Sections 3.4 and 3.4.1)
and of the el-ph matrix elements (Section 3.4.3), which are the matrix elements that appear in the
numerator of the perturbation calculation of the Raman scattering amplitude (Section 3.6). Cal-
culation of the Raman excitation profile (Section 3.6.3) in which the Raman intensity is observed
as a function of E.s, is of great interest for obtaining the Raman intensity at resonance which is
the quantity of greatest interest for experimental studies. Many experimental Raman studies that
are found in the literature are actually not carried out under fully resonance conditions, but only
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within the resonance window, so care must be exercised in making proper comparisons between
experiment and theory.

3.1.5. Excitons

In the case of carbon nanotubes, the exciton binding energy is much larger (up to 1eV)
[120-122,147,242] than that for Si (which is in the meV range). The exciton, which is
formed from a photo-excited electron and the hole that is left behind, is especially impor-
tant and dominates the observed optical processes in carbon nanotubes which are 1D systems
where excitonic effects are exceedingly strong. Even at room temperature, the excitoni-
cally mixed electronic states are specified by a wavevector k so as to form a spatially
localized state. In order to obtain excitonic states and their corresponding wavefunctions,
the Bethe—Salpeter equation for s electrons is used here within the tight-binding method
(Section 3.5). Using excitonic wavefunctions, we can calculate the relevant exciton—photon
(Section 3.6) and exciton—phonon (Section 3.6.3) matrix elements. Two-photon absorption or
time-dependent Raman spectroscopy have also been used to observe many specific exciton-related
phenomena.

3.1.6. Resonance window and the Kohn Anomaly

Since the photo-excited electron (or hole) has a finite lifetime (less than 1ps), the transition
energy of an exciton has an energy uncertainty which is observed as an energy width in the
measurement of the Raman excitation profile, which we also call the resonance window. A typical
value for the experimentally reported resonance windows is 100 meV and the origin of the finite
lifetime of the photo-excited carriers lies in the exciton—phonon scattering process, which depends
on the metallicity, chiral angle and diameter of the SWNT. In the case of metallic nanotubes,
phonons typically couple to an e-h pair excitation by the el-ph (or more precisely the exciton—
phonon) interaction. Second-order perturbation theory for the phonon energy gives values for the
energy shifts and spectral broadening that arise through the el-ph interaction, and we call these
energy shifts and broadening effects the KA [127,194,197-199,243]. This topic is discussed in
Section 3.6.5. The KA is observed experimentally in the G-band of graphene (Section 2.7.1) and
in both the G-band and the RBM features for metallic nanotubes in gating or electro-chemical
doping experiments Section 2.7.3 [196,203-205].

3.2. Tight-binding calculation for phonons

The phonon energy dispersion can be calculated by using a force constant tensor which connects the
relevant motion of nearest-neighbor atoms through these theoretical calculations. The equations
of motion are given by

Mili; = ZK(”)(Uj —u), (=1...,N), 1)
j

where M; and u; are, respectively, the mass and the vibrational amplitude of the ith atom and K @
represents a 3 x 3 force constant tensor which connects ith and jth atoms. The summation on j is
taken over the jth nearest neighbor atoms so as to reproduce the phonon energy dispersion relation
(see Figure 30). The K terms are obtained by fitting to experimentally obtained phonon disper-
sion relations, such as are determined from neutron or X-ray inelastic scattering measurements
[208,235,239]. The fitting procedure to the experimental phonon dispersion is possible even if the
KA effect is included. However, the broadening of the phonon dispersion due to the finite lifetime
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Figure 30. Phonon dispersion of graphene in the 2D BZ. The symbols are experimental data obtained by
inelastic X-ray scattering [244] and the lines are fitted to the experimental phonon data using up to 14th
nearest-neighbor interactions [245].

of phonon cannot be expressed by the present method and the self-energy for the phonon should
then be calculated as discussed below [196,205,219,220,246].

Since the lattice is periodic, each displacement u; in the unit cell can be expressed by a wave
with a phonon wavevector k and frequency w as follows:

u? —

1
=L

i(k~Ri7w’[)ui, (16)

where the sum is taken over all N, lattice vectors R; in the crystal for the ith atom in the unit cell.
The equation for u,((') (i=1,...,N), where N is the number of atoms in the unit cell, is given by

[32]

D KB — M0l [u =Y KPekaRiyd — o (17)
i i

in which | is a 3 x 3 unit matrix and AR;; = Rj — R; denotes the relative coordinate of the ith
atom with respect to the jth atom. The simultaneous equations implied by Equation (17) with 3N
unknown variables ux = t(u, u?, ..., uM), for a given k vector, can be solved by a diagonal-
ization of the 3N x 3N matrix in brackets, which we call the dynamical matrix. By diagonalizing
the dynamical matrix for each k, we get the phonon frequencies and corresponding amplitudes
as a function of k, w (k) and uy, respectively, which are the eigenvalues and eigenfunctions of the
dynamical matrix.

In Figure 30, the phonon dispersion relations of graphene are plotted in the 2D BZ. Lines
are fitted for the calculated phonon energy dispersion to the experimental data for inelastic X-ray
scattering (symbols) by a set of force constants that includes force constants up to 14th nearest
neighbors [245]. This force constant set is obtained by minimizing the square of the difference
between experiment and theory for each experimental data point. In order to get good convergence
for the nonlinear fitting, we must start with a small number of nearest neighbors and we then
increase the number of neighbors one by one. Further, in order to get the required zero value for
the acoustic phonon modes at the I" point, we should consider the relationships between the force
constant set, known as the force constant set sum rule [217]. Degenerate in-plane optical phonon
modes around 1600 cm~! at the I" point are known by symmetry requirements to correspond to the
Raman-active phonon mode (G-band), while the out-of-plane optical (0TO) phonon mode around
860cm! at the I' point is an infrared-active phonon mode. The acoustic modes are discussed
in [247].
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The phonon modes near the K point and I'" point can be observed by defect-induced or
two-phonon derived features in the Raman spectra. The phonon modes along the phonon dis-
persion relation can be observed by studying phonon modes arising from DR Raman processes
(see Section 2.8.6) [210]. The LO phonon mode (the highest frequency mode) of graphene has
a local minimum at the I" point and the phonon energy increases with increasing k by a pro-
cess which we call “over-bending”. The “over-bending” can be reproduced using force constants
going beyond the fifth nearest neighbor. Both the in-plane optic phonon modes near the I point
and the iTO phonon mode near the K point show phonon softening phenomena for graphene and
metallic SWNTSs and the resulting phonon frequency down-shifts are known as the KA effect
[127,194,196-199,205,219,220,243,246] (see Section 3.6.5). When we calculate phonon disper-
sion by first principles [248-250], the effect of the Kohn anomalies should be taken into account
when calculating a force constant set, while in the simple tight-binding method, we just obtain
a force constant set either by fitting to the experimental results [208,244,251,252] or by first-
principles calculation in which the Kohn anomalies are taken into account. When we obtain a
force constant set by the atomic potential as a function of the C—C bond distance, such as by the
extended tight-binding method [253,254], we should consider the additional effect of the KA in
the calculation.

Interlayer force constants of multi-layer graphene are much weaker than the intralayer force
constant set. Each phonon mode of a graphene sheet is split into symmetric and anti-symmetric
vibrational modes with respect to the inversion or mirror symmetry of multi-layers, depending on
whether the multilayer graphene consists of an even or odd number of graphene layers, respectively.
It is important that some phonon modes (0TO, oTA, LO) become Raman active (or inactive) by
the interlayer interaction [4].

3.3. Simpletight-binding calculation for the electronic structure

Tight-binding calculations of the electronic energy bands for sp? carbons are useful for understand-
ing the physics of sp? carbons and for saving computational time. The tight-binding wavefunction
W;(k), where j denotes the energy band index, is given by a linear combination of a small number
of tight-binding Bloch wave functions ®j

N
vik,P) =Y Cp®dpk,fH (=1,...,N), (18)
i'=1

where ij/(R) are coefficients to be determined and N the number of atomic orbitals in the unit
cell. When we consider 7 orbitals for n-layer graphene, then N = 2n. Here ®; denotes the Bloch
function for an atomic orbital ¢; which is given by

Ny - o
Zei RgF—R) (=1,...,N), (19)

R

1
VN

where the summation takes place over N, lattice vectors R in the crystals. When we put
Equation (18) into the Schrédinger equation #W; = EW; for a Hamiltonian #, we get

N N
Y Hy®)Cy =Eik) Y SpCyj  (i=1,...,N). (20)

j'=1 =1
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Here HH/(E) and Sjj/(R) are the Hamiltonian, and the overlap matrices are defined by

Hjj (k) = (D) H|Dy), Sk = (®j]95) (. =1,...,N). (21)
By defining a column vector C; as
Ci1
Ci=| : [, (22)
Cin

then Equation (20) is expressed by the eigenvalue equation
HCi = Ei(K)SCi. (23)

By diagonalization of a given  and S for each k vector, we get the energy eigenvalues Ei(E) and
eigenfunctions C;(k).
The ij matrix element of H is given by

- 1 ; ,
Hi(k) = = > e“C R pi(r — RO HIgi(r —R)
U RR

=Y e R (gi(r — AR)[H|g;(r)),

AR

(24)

where AR =R — R’ and in the second of line of Equation (24), we use the fact that the tight-
binding parameter (¢;(r — R")|H|g;(r — R)) only depends on AR. Similarly, the matrix elements
of S are given by

Sjk) = > e AR gi(r — AR)|g;(1)). (25)
AR

The tight-binding parameters (¢;(r — AR)|H|¢j(r)) and (¢i(r — AR)|g;(r)) are obtained by:
(1) integrating the matrix elements using the atomic orbitals ¢;(r) [247] or (2) fitting them so as
to reproduce experimentally obtained energy dispersion measurements. Values for a typical fitted
parameter set (TBP) are listed in Table 1.

As seen in Table 1, tight-binding parameters are listed for up to the third nearest neighbor
(3NN) within a layer (upper half) and for interlayer interactions between graphene layers (lower
half) [255]. In Figure 31, we show a definition of the tight-binding parameters listed in Table 1 for
the Hamiltonian for pairs of carbon atoms separated by their corresponding distances AR [255].
The notation used for the parameters y; follows that of Slonczewski and Weiss [257], while yg and
sj (j =1,2,3) denote the in-plane parameters with the jth nearest neighbors up to the 3rd nearest
neighbor (3NN). As far as we consider transport properties near the K point of the first BZ, the
in-plane nearest-neighbor parameter y is sufficient. However, when we consider optical transition
phenomena around the K point, it is necessary to include the parameters yZ and 2 which are
indicated explicitly in Figure 31 [256]. The parameters y1, y3 and y, denote interactions between
carbon atoms in the nearest-neighbor layers, while the parameters y, and y5 couple carbon atoms
in next nearest-neighbor layers. The parameters y3 and y, introduce a k-dependent interlayer
interaction and y, sensitively determines a small energy dispersion along the KH direction in the
3D BZ for energy bands near the Fermi energy of graphite (see [5, Fig. 1f]) which gives rise to
the semi-metallic nature of 3D graphite.

The overlap tight-binding parameters, Sq, S; and s,, are essential for describing the asymmetry
between the valence and conduction energy bands relative to the Fermi energy. The energy band
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Table 1. Third nearest-neighbor tight-binding (3NN TB) parameters for few-layer

graphene and graphite.

TBP  3NNTB-GW? 3NN TB-LDA? EXPP 3NN TB-LDA® AR, paird
v —3.4416 —3.0121 513 —2.79 a/+/3,AB
e —0.7544 —0.6346 1.70 -0.68 a, AA and BB
v —0.4246 —0.3628 —0.418 —-0.30 2a/+/3,AB
S0 0.2671 0.2499 —0.148 0.30 a/+/3, AB
s 0.0494 0.0390 —0.0948 0.046 a, AA and BB
S 0.0345 0.0322 0.0743 0.039 2a/~/3, AB
” 0.3513 0.3077 - - c, AA

72 —0.0105 —0.0077 - - 2c, BB

V3 0.2973 0.2583 - - (a/+/3,c), BB
V4 0.1954 0.1735 - - (a/~/3.0), AA
s 0.0187 0.0147 - - 2¢, AA

ES —2.2624 —1.9037 - —2.03

Af 0.05409 0.0214 - -

2Fits to LDA and GW calculations [255].

bFit to ARPES experiments by Rotenberg et al. [124].

CFit to LDA calculations by Reich et al. [256].

dIn-plane and out-of-plane distances between a pair of A and B atoms.

€The energy position of 7 orbitals relative to the vacuum level.
fDifference of the diagonal term between A and B atoms for multi-layer graphene.
9The impurity doping level is adjusted in order to reproduce the experimental value of A in graphite.

All values are in eV except the dimensionless overlap parameters of so-s,. The parameters of fits to LDA and
GW calculations are shown. The 3NN Hamiltonian is valid over the whole 2-D (3-D) BZ of graphite (graphene
layers) [255]. Mopac93 and Gaussian 9 software packages were used for implementing Gaussian and other
software applications.

Figure 31. Identification of the various Slonczewski—\Weiss parameters for the tight-binding parameters for
a pair of carbon atoms separated by a distance AR. Adapted figure with permission from A. Grineis et al.,
Physical Review B 78, p. 205425, 2008 [255]. Copyright © (2008) by the American Physical Society.

width of the conduction band is larger than that of the valence band when using this set of tight-
binding parameters [32], thereby inducing asymmetry between the electrons and holes in few layer
graphene. Further, depending on whether the number of graphene layers is odd (even), the linear
(quadratic) k energy dispersion behavior appears near the K point. Koshino and Ando [258] have
explained analytically the reason for the odd-even dependence of the electronic structure of few

layer graphene on the number of graphene layers by the tight-binding method.
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3.3.1. Extended tight-binding calculation for the graphene electronic structure

The simple tight-binding parameters obtained in Section 3.3 are only for sz orbitals in graphene.
When we consider SWNTS, the curvature of the cylindrical tube surface should be considered.
The curvature effect mixes 7 orbitals with o orbitals (2py, 2py and 2s). Furthermore, when we
consider the geometrical optimization of the lattice, we need to calculate tight-binding parameters
as a function of the actual C—C bonds.

The extended tight-binding (ETB) calculation is a tight-binding calculation for 7, o and 2s
orbitals, in which the tight-binding parameters for a pair of orbitals are given as a function of the
C-C bond lengths and bond angles. The basic treatment of the mixing between 7 and o orbitals
uses a formalism known as the Slater—Koster method in which p orbitals can be projected on to
a chemical bond [259]. Values for the ETB parameters as a function of the C-C bond length are
given by first-principles calculations for several sp?> molecules or solids. For carbon systems, the
tight-binding parameters as a function of the C-C bond length have been calculated by Porezag
[253], and the optimized structure of SWNTs using ETB parameters reproduced well the transition
energy separation E;; especially for SWNTs with diameters smaller than 1 nm [254].

In quantum chemistry calculations, great effort has been given to ETB-like calculations for
reproducing the energy levels for many different molecules, which are known as semi-empirical
methods. MNDO, MINDO, AM3 and PM5 are names of the parameter sets for popular semi-
empirical methods, which are used in many chemistry molecular level calculations, such as
MOPAC [260] and Gaussian [261], etc. An advantage of the ETB or the semi-empirical methods
is that the calculation is fast and small in size. This calculational approach is suitable for the
calculation of SWNTSs since a SWNT has a large number of carbon atoms in the unit cell.

3.4. Calculations of matrix e ements

Using the electronic and phonon eigenfunctions, we can calculate the matrix elements for the
electron—photon and el-ph interactions.

3.4.1. The electron—photon matrix element

Using the simple tight-binding wavefunction, the electron—photon matrix element is calculated
within the dipole approximation. The perturbation Hamiltonian of the optical dipole transition is
given by

ieh
Hopt = WA(I) -V, (26)

where A is the vector potential. When we adopt the Coulomb gauge V - A(t) = 0, the electric field
of the light is given by E = iwA. Hereafter, we consider only a linear polarization of the light, and
thus the vector potential A is given by

I
A= —_ | —exp(ziot)P, (27)
w \ Ceg

where P is the unit vector (polarization vector) which specifies the direction of E, | the intensity
of the light in W/m? and ¢, the dielectric constant for the vacuum in Sl units. The “£” sign
corresponds to the emission (“+) or absorption (*—") of a photon with frequency w. Here, we
can assume that the wavevector k of an electron does not change during the transition (vertical
transition). Then the matrix element for optical transitions from an initial state W' (k) to a final
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state W' (k) at k is defined by
M re(K) = (W' (K)[Hope| W' (K)). (28)

The electron—photon matrix element between initial and final states in Equation (28) is calculated

by
Mflt(k) — eh I_/Jei(mp—wliw)thl(k) .P (29)
op Mw, \ Ce

where the weak spatial dependence of the vector potential A is neglected and D' (k) is the dipole
vector defined by the matrix element

D" (k) = (W' (k)| V¥ (k)). (30)

For a given polarization, P, the optical absorption (or stimulated emission) becomes large (absent)
when D is parallel (perpendicular) to P.

3.4.2. Electric dipole vector for graphene

When we expand W in Equation (30) into atomic orbitals ¢;(F — f{) (Equation (19)), the dipole
vector D can be expressed by the atomic dipole vector (; (f — R’ |V]gj(F — R)).The optical dipole
transition of an electron from a 7 (2p,) band to an unoccupied * band within an atom (R’ = R)
is forbidden in the case of graphene, which is understood by the mirror symmetry occurring at
z = 0. However, the optical transition between a = and a 7=* energy band is possible when the
optical transition between nearest-neighbor interaction is allowed, as shown below.

Here, we consider the electric dipole vector for graphene [262]. The wavefunction in
Equation (18) with N = 2 is given by W (k) = Co®a(k,r) + Cgdg(Kk,r), in which & is the
Bloch wavefunction for 2p, atomic orbitals for the A and B sites of graphene. If we neglect the
next nearest-neighbor interaction between the A and A atoms (or the B and B atoms), the electric
dipole vector D' (kg, k,) for graphene is given by,

D" (ke, k,) = Cg (Ke)Ca (K,) (Pa(Ke, )| V|Da(K,, 1)) e
+ Ci (ke)Ch (k) (Pa(Ke, D)V [Dp(K,,T)).

Since both the 2p, orbital and the 3/9z component of V have odd symmetry with respect to the z
mirror plane, the z component of D becomes zero. Thus, we conclude that the dipole vector lies
in the xy plane.

When we expand W into atomic orbitals, the leading term of (®a(Kg, r)|V|®g(k,, 1)) is the
atomic matrix element my; between nearest neighbor atoms given by

Mopt = <¢ (r — Rm)

0
a—x‘qxr)), (32)

where Ry, is the lattice vector between nearest-neighbor C atoms along the x-axis.
When we use a linear approximation for the coefficients C5 and Cg for a k point around the
corner point of the 2D BZ K = (0, —4x/(3a)) for the valence (v) and conduction (c) bands, we
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Figure 32. (a) The normalized dipole vector DV (k) is plotted as a function of k over the 2D BZ. (b)
The oscillator strength in units of the atomic matrix element mop is plotted as a function of k over
the 2D BZ. The separation between two adjacent contour lines is 0.4 mgp. The darker areas have a
larger value for the oscillator strength. Reprinted figure with permission from A. Griineis et al., Physical
Review B 67, pp. 165402-165407, 2003 [262]. Copyright © (2003) by the American Physical Society.

write [32]
1 ky — ik
Ci(K+k)=—, CYUK+k =2L—=.
Al ) NA B( ) N -
1 —ky + iky
CS(K+k)=—=, CSK+k =L
The electric dipole vector coupling the valence and conduction bands is then given by
DY(K + k) = (WS(K + K)|V|¥'(K +k)) = %(k , —ky, 0). (34)

In Figure 32(a) we plot the normalized directions of the normalized dipole vector D% (k) as arrows
over the 2D BZ of graphene [262]. Around the K points, the arrows show a vortex behavior. Note
also that the rotational directions of D% (k) around the K and K’ points are opposite to each other
in Figure 32(a). In Figure 32(b) we plot the values of the magnitude of the oscillator strength O(k)
in units of mgp; 0n a contour plot. Here O% (k) is defined by

0%(k) = /D™ (k) - DV(K). (35)

As shown in Figure 32(b), the oscillator strength O% (k) has a maximum at the M points and a
minimum at the I pointin the 2D BZ. The k dependent O (k) will be relevant to the calculation for
the type-dependent photoluminescence (PL) intensity of a single wall S-SWNT [263] in which the
PL of type | (mod(2n + m, 3) = 1) is stronger than for type Il (mod(2n + m, 3) = 2) S-SWNTSs,
though we need to consider the electric dipole vector for each carbon nanotube individually in
terms of its diameter and chiral angle [262,264,265].

The optical absorption intensity is given by the inner product D% (k) - P up to linear terms in
ky and ky for a given polarization vector P = (py, py, pz)

3m
P-DY(K + k) = £ (pyky — puky). (36)

Equation (36) shows that the line pyky — pxky = 0 in the 2D BZ denotes the conditions for the
occurrence of a node in the optical absorption for a given polarization vector P = (py, py). In
the case of graphene, however, the optical transition events take place along equi-energy contours
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around the K points, and we cannot see the nodes. This phenomena might be observed in graphene
nanoribbons inwhich a 1D k value is specially selected. The polarization dependence of the optical
absorption relative to the edge of graphene nanoribbon is now an interesting problem. In the case
of a normal semiconductor, since the dipole vector is not a linear function of k, we cannot get a
node in such cases.

3.4.3. Calculation of the electron—phonon interaction

The el-ph interaction which is the focus of this section is expressed by a modification to the tight-
binding parameters that are pertinent to describing the lattice vibrations. In most theoretical works
on the el-ph interaction, modification to the electron transfer energy as a function of the C-C
bond length is considered for only the nearest neighbor C—-C bonds as a parameter [219,220,266].
Here we calculated the el-ph interaction not only for long distance C-C bonds, but also for the
so-called on-site el-ph interaction in which the site energy is modified by the vibration [267,268].
Their values are obtained by using the wavefunction and atomic potential as a function of the C-C
distance [253].

Here, we rewrite the wavefunctions appearing in Equations (18) and (19) using a different
notation, which is suitable for calculating the el-ph matrix elements [268]. We then write the
Bloch functions

1

VN,

where s = A and B is an index denoting the two carbon atoms in the unit cell, and R; denotes the
equilibrium atom positions relative to the origin. ¢, denotes the atomic wave functions for the
orbitals 0 = 2s, 2py, 2py and 2p; at Ry, which are real functions (with no imaginary components).

The potential energy of the lattice V can be expressed by the atomic potentials v(r — R;) at
Rt,

Wak(r) = ——= Y " Cso(a k) Y e gy o(r — Ry, (37)
s,0 Rt

V=Y v(r—Ry, (38)
R¢

where v in Equation (38) is given by the first-principles calculation for the Kohn—-Sham potential
of a neutral pseudo-atom [253]. The matrix element for the potential energy between the two
different states W; = Wy and Wy = W, ¢ is then written as

1

(W (D [Ware(N) = 1= 3 D CJ (@, K)Cso(@ k)

s,0" s,0

X Z Z ei(fk 'Ru"s’*’k'RU,S)m(t/, 0/, t, O), (39)
u u

with the matrix element m for the atomic potential given by

m = / 50 (T —Re) 1 Y v —Ru) ¢ ¢so(r — Ry dr. (40)

Ry

The atomic matrix element m thus comes from an integration over three centers of atoms, R;,
Ry and Ry». We neglect m for the cases for which the three centers t, t" and t” are different from
one another. When we consider only two center integrals, m consists, respectively, of off-site and
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on-site matrix elements m, and m,,_as follows:

my = /‘Ps’,o’(r — R){V(r — Ry) +v(r — Rp)}gso(r — Ry dr,
(41)

Ry #R¢

m, = /¢s’,o’(r - Rt) l Z V(I‘ - Rt’)] ¢s’,0(r - Rt) dr.

The potential v(r — R;) is vibrating within an adiabatic approximation with a phonon amplitude
S(Ry). Then the potential modification §V due to a lattice vibration is given by

8V =) VIr =Rt — S(R)] —v(r = Ry)
Rt

A — Z W(r — Ry) - S(Ry).

Ry

(42)

Since the potential modification §V breaks the periodicity of the lattice, the wavevector for an
electron is no longer a good quantum number and thus the scattering of an electron by the el-ph
interaction occurs. If we consider 8§V as a perturbation, then the el-ph matrix element is defined
on the basis of perturbation theory: as [139,267-270]

Ma,kaa’,k’ = (‘Ija’,k’ (r)|sv |‘I"a,k (r)

1 1 !
= G @ K)Csola k) YK R Rt o o), )
u

s,0' S0 u,u

where Sm(t’, 0/, t, 0) is the atomic deformation potential which consists of the off-site and on-site
deformation potentials §m, and §m,_given by

smy = /¢s’,0’(r — Ru){VV(r —Ry) - S(Ry) + VV(r = Ry) - S(Ry)} x ¢so(r — Ry) dr,

5M, = SRR, / 50 (r —Ry) { 3" WU —Ru) - SRe) | gsor — Ry dr. (44)

Ry #Ry

It is noted that both terms sm,, and 8m;, are of the same order of magnitude and that they work in
a different way for each phonon mode [271].

The atomic deformation potential for any orbitals and for any vibration can be expressed by a
small number of terms which are defined by the bonding or force constants between atoms along
or perpendicular to the two atoms by using the Slater—Koster scheme [32,253]. The atomic el-ph
matrix elements (¢|Vv|¢) are thus defined for four fundamental hopping and overlap integrals
denoted by (ss), (o), (co) and (rr), which are defined as a function of the C—C distance [253,
268] as follows:

ap(7) = /%(f)VV(F)%(F — 1) dr = op(0)i (),
(45)
Ap(T) = [¢u(f)VV(F — D) (N dr = Ay (0)1 (),

which are, respectively, denoted by a,(r) and Xp(r) for the off-site and on-site deformation
potentials. Here i(ap) and f(xp) are unit vectors describing the direction of the off-site and on-site
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Figure 33. (a) The nine non-zero off-site deformation potential vectors ap. The dashed curves represent
the atomic potentials. (b) The six non-zero on-site deformation potential vectors Xp. The dashed curves
represent the atomic potentials. For Ass, oo and Az, the two same orbitals are illustrated by shifting
them with respect to each other. Reprinted figure with permission from J. Jiang et al., Physical Review B
72, pp. 235408-235411, 2005 [268]. Copyright © (2005) by the American Physical Society.
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Figure 34. (a) The off-site deformation potential &p and (b) the on-site deformation potential Xp as
a function of inter-atomic distance. The vertical line corresponds to 1.42A which is the C-C dis-
tance in graphite Reprinted figure with permission from J. Jiang et al., Physical Review B 72, pp. 235408—
235411, 2005 [268]. Copyright © (2005) by the American Physical Society.

deformation potential vectors &, and Xp, respectively [271], and p = uv as given in Equation (45).
The 2p orbital ¢,, (¢,) is along or perpendicular to the bond connecting the two carbon atoms and
7 is the distance between the twoqatoms.17 In Figure 33, we show the non-zero matrix elements for
the (a) off-site a;, and (b) on-site 1, atomic deformation potentials for 2s, o and = atomic orbitals.
In Figure 34, the calculated values of a, and 7\p are plotted as a function of inter-atomic
distance between two carbon atoms [268]. At r = 1.42 A, which is the bond length between a
carbon atom and one of its nearest neighbors, we have o, ~ 3.2eV/A, and |A,.| ~ 7.8eV/A, and
lozo | 2 24.9€V/A. Inorder to calculate the el-ph matrix element of Equation (43) for each phonon
mode, the amplitude of the atomic vibration S(R;) for the phonon mode (v, q) is calculated by

S(Ry) = A, (Q)y/Ni, (@€’ (Rye*ie @, (46)
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Here =+ is for phonon emission (+) and absorption (—), respectively, and A, i, e and w are the
zero-point phonon amplitude, number, eigenvector, and frequency, respectively. At equilibrium,
the phonon number in Equation (46) is determined by the Bose—Einstein distribution function
n,(q) for phonon v:

n,(q) = eholkeT — 1" (47)
Here, T = 300 K is the lattice temperature at room temperature and kg is the Boltzmann constant.
For phonon emission, the phonon number is i = n + 1, while for phonon absorption, i = n. The
amplitude of the zero-point phonon vibration is

h
A = Mo @ (48)

where Mc is the mass of a carbon atom and the phonon eigenvector €’ (R;) is given by diagonalizing
the dynamical matrix Eq. (17)*.

3.5. Calculation of excitonic states

In order to calculate the excitonic states, we first introduce in section 3.5.1 the Bethe—Salpeter
equation Equation (49) which makes a localized wavefunction in real space. Using the exciton
wavefunction, we show how to obtain the exciton—photon matrix element in Section 3.5.2 and the
exciton—phonon matrix element in Section 3.5.3 within the tight-binding method.

3.5.1. The Bethe-Salpeter equation for exciton states

The exciton is a photo-excited electron and hole pair that is bonded by an attractive Coulomb
interaction. In a SWNT, because of its 1D properties, the e-h binding energy becomes as large as
1eV, so that exciton effects can be observed even at room temperature. Thus excitons are essential
for explaining optical processes in SWNTSs, such as optical absorption, photoluminescence and
resonance Raman spectroscopy. The localization of the wavefunction can be obtained by mixing
different k states with one another. The equation for making localized wavefunctions is called the
Bethe—Salpeter equation.

Here, we show the Bethe—Salpeter equation for the tight-binding method in order to calculate
the exciton energy 2, and the corresponding wavefunction " [120,147,148,272,273]. Since
the exciton wavefunction is localized in real space by a Coulomb interaction, the wavevector
of an electron (k¢) or a hole (ky) is not a good quantum number any more, and thus the exciton
wavefunction W, for the nth exciton energy 2, is given by a linear combination of Bloch functions
at many k. and k, wavevectors. In the case of carbon nanotubes, since the range of the Coulomb
interaction is larger than the nanotube diameter, the mixed k’s are selected near the kj; point on one
cutting line of the 1D BZ [148]. The mixing of different wavevectors by the Coulomb interaction
is obtained by the Bethe—Salpeter equation [147]

> HEKe) — E(K) I8k, i, + K (Kek(, keki)}W"(keky) = Q00" (kek)), (49)
keky

where E(k;) and E(k,) are the quasi-electron and quasi-hole energies, respectively (see
Equation (52)). Here “quasi-particle” means that the particle has a finite lifetime in an excited
state because of the Coulomb interaction. Equation (49) is solved by a matrix that includes many
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k; and k{, points. The mixing term of Equation (49) which we call the kernel, K(k .k, kcKy), is
given by

K (KK, keky) = —KO(KLK), Keky) + 285K*(KLK., keky) (50)

c v c v c v

with s = 1 for spin singlet states and O for spin triplet states [167]. The direct and exchange
interaction kernels K9 and K* are, respectively, given by [274]

K9 (kLK keky) = W (KLke, KL Ky)

= /dr/drl//lfé(r’)l//kc(rf)w(r’,r)wkrv(r)lpffv(r), (51)
K*(keky, keky) = /dr/drw;‘é(r’)wk;(r/)V(r’,r)wkc(r)w.i‘v(r),

where the functions w and v are the screened and bare Coulomb potentials, respectively, and v
denotes the quasi-particle wavefunction. The quasi-particle energies are the sum of the single
particle energy (e(k)) and the self-energy (= (k)),

Eki) = ek + Z(ki) (i=c,v), (52)

where the self-energy = (k) is expressed by

T(ke) == D WKe(k + Q. (K + q)vko),
q

(53)
Z(ky) = =) W(ky(K + Ay, (K + A)vky).
q

In order to determine the kernel and self-energy, the single particle Bloch wavefunction v (r)
and the screening potential W are evaluated by either a first-principles calculation [147] or by using
an extended tight-binding wavefunction within a random phase approximation (RPA) calculation
[148]. In the RPA, the static screened Coulomb interaction for r electrons is expressed by

Vv
W=—-, 54
ke(q) 4)

with a static dielectric constant « and a dielectric function €(q) = 1 + v(q)I1(q). For describing
the exciton energy and exciton wavefunction it is essential to select a reasonable function for the
unscreened Coulomb potential v(q) [120,148]. For 1D materials, the Ohno potential is commonly
used for the unscreened Coulomb potential v(q) for 7z orbitals [275] at two sites, Rys and Ros, (u:
unit cell, s: atom position) with

U
J((4reo/e5)UIRus — Rog D2 +1'

V(|Rys — Rosl) = (55)

where U is the energy cost to place two electrons on a single site (|Rys — Rog| = 0) and this energy
cost is taken as U = Uy, ;. .-, = 11.3eV for & orbitals [275]. The Ohno potential works well in
reproducing the ground state and low-energy electronic excitations [276].
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3.5.2. Exciton—photon matrix element

The exciton—photon matrix element Mey-op is given by a linear combination of the electron—photon
matrix element Dy at k, weighted by ZgZ,

Mex—op = (W8|Hel-0p|0> = Z Dkzﬂékv, (56)
k

where W is the exciton wavefunction with a g = 0 center of mass momentum. Since the center
of mass momentum is conserved before and after an optical transition, only q = 0 excitons can
be excited.

In the case of a SWNT, since the lattice structure is symmetric under a C, rotation around an
axis which is perpendicular to the nanotube axis and goes through the center of a C-C bond, the
C, exchange operation between A and B carbon atoms in the hexagonal lattice is equivalent to
the exchange of k and —k states. Since the exciton wavefunction of a carbon nanotube should
transform as an irreducible representation of the C, symmetry operation, we can get A;, Ay, E
and E* symmetry excitons [142]. For example, the A; and A, exciton wavefunctions which are,
respectively, symmetric and antisymmetric under a C, rotation, are given by

1
%6 (A12) = —> > Zi (Gl F €Ly Ci)0), (57)
k

where k and —k are located around the K and K’ points, respectively, and —(+) in 5 corresponds
to an A; (A;) exciton.*® When we use the relation D, = D_y, the excitonic-optical (ex-op) matrix
elements for the A; and A, excitons are given by

Mex-op (AT) = 0,

% 58
Mex-op(AS) = ‘/52 DkZl?c,kV' (58)
k

Equation (58) directly indicates that A; excitons are dark and only A, excitons are bright, which is
consistent with the predictions by group theory [277]. Because of the spatially localized exciton
wavefunction, the exciton—photon matrix elements are greatly enhanced (on the order of 100
times) compared with the corresponding electron—photon matrix elements [273].

3.5.3. The exciton—phonon interaction

The exciton—-phonon interaction is given by a linear combination of el-ph interactions weighted
by the exciton wavefunction. Using creation and annihilation operators, the el-ph interaction for
a phonon mode (q, v) is given by

Hel—ph = Z[Mi,k+q(c)c&+q)cckc - Mi,k+q(v)0&+q)vckv](bqv + ba—\,)y (59)
kqv

where M (c) (M(v)) denotes the el-ph matrix element for the conduction (valence) band, and barv
(bgy) i1saphonon creation (annihilation) operator for the vth phonon mode at g. From Equation (59),
we obtain the exciton—phonon matrix element between the initial state |\Ifg}) and afinal state |\Ifg§),
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by writing
Mex—ph = (Wg3|Hetpn| ¥a1)

v 2% 1 v 2% 1
= Z[Mk,km(C)Z£+q,k—q1zl?,k—q1 — Mkt W ZeE ok Zk s qakrals (60)
K

with g = g, — ¢, accounting for momentum conservation. Since the electron—phonon interaction
smoothly changes as a function of k for the region of the exciton wavefunction, the value of the
exciton—phonon interaction is similar to the electron—phonon interaction [273].

3.6. Theresonance Raman process
3.6.1. Matrix elements for the resonance Raman process

Combining all the matrix elements discussed above, we can formulate the first-order Stokes Raman
intensity of graphene by time dependent perturbation theory as

2
: (61)

1 D2[Meppn(k = K, €) — Mgpn(k — Kk, v
loy = Z k[Met-pn( ) — Meipn( )]

L 4~ [E — Ecy(k) + iy ][E — Ecy(K) — Epn + iy ]

k

where y is the width of the resonance Raman window (Section 3.6.3) [278]. The y value is
essential in determining lg as a function of laser excitation energy (Raman excitation profile).
When we use the exciton—photon and exciton—phonon interactions, we apply the formula to the
Raman intensity of SWNTSs as follows:

2

lex =

1 Z Mex—op(a)Mex—ph @a— b)Mex—op(b)
L (E—Ea+i)/)(E—Ea—Eph+iy)

a

(62)

1 Z Mex—op(a)zMex—ph(a — a)

L

a

In the second line of Equation (62), we assume that the virtual state b can be approximated by
the real state a.?° In the case of a first-order Raman process, since g = 0, the matrix element of
Equation (60) is simplified as

Mexph = _[My4(€) — My, (W)]1Zuk . (63)
k
When we consider the second-order Raman intensity, we should consider g £ 0 phonon scat-
tering. In this case, the exciton—phonon interaction between an A, exciton state and an E exciton
state is important, in particular, for the case where the E exciton state consists of an electron near
the K point and a hole near the K’ point and vice versa. Here the inter-valley exciton—-phonon
interaction is generally large.

3.6.2. Matrix elements for double resonance Raman scattering

The two-phonon process is described in quantum mechanical terms by using fourth-order, time-
dependent perturbation theory and the scattering intensity can be calculated using:

2

I (@, Ejaser) o Z Z v me (01, w2)| (64)

i lm',m” w0,
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in which the summation is taken over two intermediate electronic states m and m” and the cor-
responding phonon frequencies w; and w, with phonon wavevectors —q; and —qy, respectively,
and for the initial states i, after taking the square of the scattering amplitude, Jn, .y that is given by

Mex-op (im”) Mex-ph (m//m/) Mex-ph (m/m) Ivlex-op (ml)

- - —, 65
(AEwi — hwy — hwy — iy)(AEwi — hwy — iy) (AEy — iy) (69)

Jm’,m” (w1, w2) =

where AEn = Ejaser — (Em — Ei) and Mey.qp (i) denote the optical transition from i to m states,
etc. In general, energy and momentum conservation for the incident (i) and scattered (s) electrons
requires:

Es = Ei + Eq1 + Eqo, (66)
ks = ki F 01 F 02, (67)

where + (—) in Equation (66) and — (+) in Equation (67) correspond to phonon absorption and
emission with the wavevectors ¢; and g,. By considering ks ~ k; (see Section 1.5), momen-
tum conservation requires g, ~ —q; for satisfying the DR condition for two of the three energy
denominators in Equation (65).

3.6.3. Resonance window width

The resonance width, or y in eV, of the Raman excitation profile is related by the uncertainty
relation in quantum mechanics and to the lifetime of the photo-excited carriers. Usually, the
dominant contribution to the lifetime of the carriers in the Raman spectra is in an inelastic scattering
process by the emission or absorption of phonons. The Raman spectral width, T" in cm~, in the
Raman spectra, on the other hand, which has a different physical value from vy, is related to
the phonon lifetime. I is determined by the elastic (or inelastic) scattering of a phonon due to
defects, anharmonicity or by the electron—phonon interaction. The carrier transition rate = (=h/y),
[139,263,267,278] is estimated by the Fermi Golden rule for the electron—phonon matrix elements
[268,269]. For metallic systems (graphene and M-SWNTSs), an additional interaction of phonons
with free electrons can shorten the lifetime (broaden the y values) significantly, and this additional
interaction is known as the Kohn anomaly (KA) (Section 3.6.5).

The transition rate 1/t or the scattering rate per unit time of an excited electron from an initial
state k to all possible final states k’ by the vth phonon mode is given by [263]

1
— =W
Ty k
__S 1Dy (k. KO [dEG' k)™
~ 87 Md; oK' = k) dk’ (68)
Sok) ok —o,K —k)  Sk) -k + ok k)
x eBho,(K—k) _ 1 + 1 _ g Pho,(K—K) '

where S, M, d;, 8 and u’, respectively, denote the area of the graphene unit cell, the mass of a
carbon atom, the diameter of a SWNT, 1/kgT (where kg is the Boltzmann constant), and the
cutting line indices of the final state. Here D, (k, k") denotes a matrix for scattering an electron
from k to k’ by the vth phonon mode. The relaxation process is restricted to 24 possible phonon
scattering processes satisfying energy—momentum conservation [267]. The two terms in braces
in Equation (68), respectively, represent the absorption and emission processes of the vth phonon
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mode with energy hw, (k" — k). The calculation of the transition rates as in Equation (68) have
been considered by the Ferrari group using another approach [151,219].

For the result, in the case of S-SWNTS, we can obtain calculated y values in agreement with
experiments by just considering the electron—phonon coupling model [278]. The calculated y value
shows a strong dependence on chirality and diameter for S-SSWNTs. However, the calculated
value for M-SWNTSs is much smaller than the experimental y value which shows the presence of

(a) < I6 3 (b)
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‘é > g LO
= ¢ 2 3—]4’0) (13.2)
= (11,6) é | > 24 (11,6 (10,8)
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Figure 35. (a) The calculated G-band spectra for S-SWNTSs with the same family number p = 2n + m = 28.
(b) The calculated electron—phonon matrix elements vs. chiral angle 6 for the LO and TO phonons and
for two different 2n 4+ m family numbers (22 and 28). (c) Plot of y vs. & for members of p = 28. (d)
Plot of ®R vs. 6 for three 2n + m families of M-SWNTSs. (e) The angle ®r between the circumferential
vector Ky and the cutting line for the polar coordinate of a k vector at the van Hove singular point. (f)
The angle ¢ between the tube axis and the phonon eigenvector direction for a (12,6) SWNT. The calcu-
lated angles ¢ vs. 6 for the TO phonons (g) and the LO phonons. (h) For the results for the LO phonons
as a function of 6 (fitted by the function of Equation (70) (see text)). Reprinted with permission from
J.S. Park et al., Physical Review B 80, p. 81402, 2009 [86]. Copyright © (2009) by the American Physical
Society.
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an additional scattering path associated with the charge carriers in M-SWNTSs. Such a scattering
path might come from the electron—electron interaction, but this theory is not yet well described.

3.6.4. G-band intensity for semiconducting SWNTs

Next, we consider the G-band Raman intensity as a function of (n, m) [86]. Figure 35(a) shows the
calculated resonance Raman spectra for the G-band for type | S-SWNTSs [86] with family number
p=2n+m = 28. The (n,m) SWNTs with the same family number p have a similar diameter
and E;; value to one another. In this figure, values for E, and y (see Figure 35(c)) are taken from
ES, for each (n,m) SWNT. The chiral angle can vary from 6 = 0° to § ~ 30°. The intensity of
the G~ peak (TO) is always smaller than that of the G* peak (LO), because ME-© > METO for
the electron—phonon matrix elements, as shown in Figure 35(b), in which the above notation R
indicates Raman scattering. In particular, the intensity of the G~ peak vanishes for a (14,0) SWNT,
since Mg for zigzag SWNTS is zero, as shown in Figure 35(b). Here M, is calculated for
the phonon amplitude at 300 K. These calculated G-band Raman spectra can be compared with
previous experimental results which show only one peak in the G-band spectra of (n,m) SWNTSs
with smaller chiral angles [193,279].

In order to explain the chiral angle dependence of the el-ph matrix elements for the LO and
TO phonons, we obtain the analytical formulae for the el-ph matrix element within the effective
mass approximation [196]

Me-© = (e(k), wio|Heple(k)) = gucos Or(K),

69

METO = (e(k), wro|Heple(k)) = —gussin Or(k), 9
respectively, where g is the el-ph coupling constant, u the phonon amplitude and ®g (k) is defined
by an angle between the k vector from the K point of the 2D BZ to the van Hove singular point, ki;,
and the circumferential direction vector, K1, [32,136,177] as shown in Figure 35(d). The values of
g are consistent with the work by Basko et al. [151,219]. Since ®©g (k) is zero for all zigzag SWNTSs
(k || K1), we obtain MZT = 0, while M0 has a maximum value [196]. The meaning of ®r
vs. 6 for SWNTs with the same family number p is shown in Figure 35(¢). For the TO phonon
mode, the magnitude of the matrix element M, for SWNTSs with a similar 6 value increases with
decreasing d; because of the diameter dependence in the circumferential direction [86] as shown
in Figure 35(b). The angle ¢ between the SWNT- axis and the phonon eigenvector for the LO
and TO phonons [280] is essential for determining the value of the el-ph matrix element. In fact,
when we consider ¢, then Equation (69) is modified and becomes

(e(k), wLol|Heple(k)) = gucos(Or(K) + @),

70

(e(k), wro|Heple(k)) = —gusin(Or(k) + ¢). (70)

Figure 35(g) and (h) show that the calculated angle ¢ here changes smoothly as a function of 6

[86]. The sum ¢ o + ¢ro for a general chiral angle 6 always becomes 7 /2, because of symmetry.

The angle ¢ vs. 6 for the LO and TO phonons can be fitted by the chiral angle dependence

(A + B + Ch?)sin(60), where A, B and C are fitting parameters and @ is the chiral angle in units

of degrees (°). Values obtained for A, B and C for ¢ o, are A = 26.9,B = —76.3 and C = 84.5,

respectively, and for ¢ro, the corresponding values are A = —26.7,B = 75.4, and C = —83.2.

The units for the fitting parameters are degree (°). This ¢ dependence of ¢ o and ¢ro should be
taken into account when carrying out Raman spectral calculations.
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3.6.5. G-band intensity for metallic SWNTSs: The Kohn Anomaly

In the case of metallic SWNTSs, the G-band spectra become soft and broad and they are represented
by the Breit-Wigner—Fano (BWF) lineshape [128]. The BWF lineshape has been widely observed
for graphite intercalation compounds as a function of doping concentration and also as a function
of carrier density [281]. The phonon softening phenomena for metallic SWNTS is understood
by the electron—phonon interaction between phonons and free electrons at the Fermi energy,
(Ef), and these phenomena are known as the KA effect [127] which has been widely discussed
[151,193,194,197-199,243]

The phonon frequency » of the LO and TO phonon modes at the " point for M-SWNTSs is
modified by the KA effect, which we understand by second-order perturbation theory. The phonon
energy hw becomes ho = hw® + ho®, where »© is the original phonon frequency without the
el—ph interaction, and »® is the quantum correction to »© which is given by [196]

|(eh (k)| Hep|w @) |2
@ _ i
ho' =2 Xk: hiw©® — [Ee(K) — Ep(K)] + il (71)

x {f[Ee(k) — Er] — f[En(k) — Eel},

in which the factor 2 comes from spin degeneracy, and E¢ (k) [En(K)] denotes the electron (hole)
energy as a function of wave vector k, while (eh(K)|Hep|w'@) represents the el-ph matrix element
for creating an e-h pair with wave number k by the el-ph interaction H¢, and f (E) is the Fermi
distribution function. The G-band spectral width is given by the decay width I in Equation (71),
which is calculated self-consistently by evaluating I' = —Im(hw®) [196,205]. The electron—
phonon interaction is used, too, for defining the »© and thus we should be careful about not
double counting the constituents of this interaction [198].

Figure 36(a) shows the calculated Raman spectra for the G-band of M-SWNTs with family
number p = 30 and Er=0. The E, and y values (see Figure 36(c)) are taken from E} for each
(n,m) SWNT. The G~ peak intensity is larger than that of the G™ peak, because the G~ (G*) peak
corresponds to the LO (TO) phonon due to the LO phonon softening, in which M&° > MRTO
for any 6 value, as shown in Figure 36(b). The relative intensities of the two peaks, G* and G~,
are affected by the Raman spectral width which relates to the phonon lifetime, I". For the (10,10)
armchair SWNT, the G* (TO) peak width is significantly smaller than those for the G~ (LO) peak
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Figure 36. (a) The calculated G-band spectra of M-SWNTSs with the same family number p = 30 and Ex=0.
(b) el-ph matrix elements vs. 6 for the LO and TO phonons and for two different 2n + m family numbers.
Open-circles indicate the Mep values for the family number p = 30. (c) y vs. 6 for members of p = 30.
Reprinted with permission from J.S. Park et al., Physical Review B 80, p. 81402, 2009 [86]. Copyright ©
(2009) by the American Physical Society.
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Figure 37.The calculated G-band spectra for three M-SWNTSs with different chiral angles taken by changing
the Fermi energy from EF = —0.2eV t0 0.2¢eV. (a) (10,10). (b) (11,8) and (c) (15,0). Reprinted with permis-
sion from J.S. Park et al., Physical Review B 80, p. 81402, 2009 [86]. Copyright © (2009) by the American
Physical Society.

and of the G™ peaks for the other chiral tubes. Therefore, the G* peak intensity of the (10,10) tube
becomes large compared with the other chiral SWNTSs, even though the MEp'TO for the armchair
tube has a smaller value than that for the other chiral tubes. Since the Raman peak intensity is large
for large Mg, and small T" values, the chiral angle dependence of these values gives an irregular
behavior to the G* /G~ spectra as a function of (n, m), as seen in Figure 36.

For a zigzag SWNT ((15, 0)), only the G* peak appears, because MEp'TO vanishes for zigzag
nanotubes as seen in Equation (69). The other chiral tubes in thisp = 2n + m > 30 family, (11,8),
(12,6), (13,4) and (14,2), show various intermediate intensity ratios. In Figure 36(c), we show that
y decreases monotonically with increasing 6. Because of the small difference between the y and
the el-ph coupling for the LO phonon as compared to that for the TO phonon as a function of 6,
the G~ peak intensity does not show a large change for the different chiral SWNTSs. These results
show that the G-band intensity for both the G* and G~ components depends on 8, but the Raman
intensity is more sensitive to the Er position, especially for M-SWNTs.

This effect is shown more clearly by varying the Fermi Level, as shown in Figure 37(a), where
the calculated G-band spectra is plotted vs. Er at 300K for a (10,10) armchair SWNT. Here
neither are the changes in the C—C bond nor the changes in the E;; transition energy by doping
with electrons or holes considered [86].

In Figure 37, the positive (negative) Fermi energy +Er (—Eg) corresponds to electron (hole)
doping. When Eg is changed from Er = 0, the G~ peak shows a frequency shift and a sharpening
of the spectral width, while the G* peak does not show any change in intensity or width. The el-ph
interaction for the photo-excited electron does not couple to the TO phonon for armchair SWNTSs
[196]. For the chiral M-SWNT (11,8) as shown in Figure 37(b), both the LO and TO phonons
couple to the intermediate e-h pair state, which is excited by a lower energy phonon. The TO
phonon becomes harder for Er = 0 eV, since the intermediate state of an e-h pair for E < hwto
contributes to a TO phonon hardening [196]. In the case of the (15,0) SWNT, the G* peak always
vanishes because of a vanishing M§;™ (See Figure 36(b)).

The matrix element MKXA for the KA effect in Equation (71) is given by [196
ep

MEPEO = (eh(K)|HeplwLo) = igussin Oka (K),

(72)
MEATO = (eh(K)[Heplwro) = —igu cos Oka (K),
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Figure 38.(a,c,e) Experimental G-band Raman spectrawhich are given by the electro-chemical doping effect.
(@) Vg =1.5t0-1.5V.(c) Vg = 1.9t0 —1.3V. () Vg = 1.3t0 —1.3V with the traces taken at uniform changes
in Vg. (b,d,f) Calculated G-band Raman spectra taken by changing the Fermi energy Er in equal steps (b) 0.45
to —0.45eV, (d) 0.60 to —0.42 eV and (f) 0.39 to —0.39 eV. The tube chiralities are: (a,b) (11,11), (c,d) (24,4)
and (e,f) (12,0). Reprinted with permission from J.S. Park et al., Physical Review B 80, p. 81402, 2009 [86].
Copyright © (2009) by the American Physical Society.

where @ya (k) is defined as the angle between the k point taken on a cutting line?! for two-linear
metallic sub-bands and the nanotube circumferential direction of a unit vector, K 1. For the armchair
nanotube, the cutting line for the two-linear metallic bands lies on the nanotube axis direction unit
vector, and then Oka is /2 (—m/2), which gives a vanishing MEPA'TO. For a chiral nanotube,
Oxa is not zero, since the cutting line for the two-linear metallic bands deviates from the K point
due to the curvature effect, and then the KA effect appears in both the LO and TO modes. For the
zigzag M-SWNT (15,0), only the G~ peak that is related to the LO phonon appears, since the el-ph
matrix element for the Raman scattering process for iTO phonon has a zero value for a zigzag
tube, as shown in Figure 36(b). Thus, only an LO phonon softening is measured experimentally,
even though a TO phonon hardening was expected theoretically.

The calculated G-band Raman spectra vs. Eg can be directly compared with the experimental G-
band Raman spectra which are obtained for electro-chemically doped individual SWNTSs, as seen
inFigure 38 [86]. Here, we assume AEF=0.3 AV according to Sasaki et al. [196]. The experimental
Raman spectra are shown in Figure 38(a,c,e), and the corresponding calculated Raman spectra
are shown in Figure 38(b,d,f). In Figure 38(a), the experimental Raman spectra show only a LO
phonon softening, and a TO phonon frequency shift does not occur. As mentioned above, for the
armchair SWNT, the TO phonon frequency shift does not appear and only LO phonon softening
appears. Therefore, we can predict that Figure 38(a) shows an armchair-type behavior by changing
the gate voltage. The RBM peak for these experimental Raman spectra appears at 161 cm~* with
E. = 1.72eV. Then we can select possible (n, m) values for a tube by using a simple tight-binding
(STB) model with yy = 2.9 eV for simplicity and by using the relation between the RBM frequency
and diameter, wggm (cm™1) = 248/d;(nm)??, the possible for identifying the possible (n, m) values
for SWNTSs we obtain these (n, m) values as (19,1), (18,3), (14,8) and (11,11). If our prediction
is correct, Figure 38(a) can be assigned as an (11,11) armchair SWNT. Figure 38(c) and (e) are
assigned as chiral (24,4) and zigzag (12,0) SWNTSs, respectively, from the possible (n, m) values,
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{(21,6),(22,4), (23,2)} and {(10, 4), (11, 2), (12, 0)}. For the chiral M-SWNTSs, not only is there
a LO phonon softening, but there is also a TO phonon hardening that appears in the calculation
of the G-band Raman spectra vs. Er. However, in Figure 38, the TO peak is too small to see on
the intensity scale of the figure. Figure 38(e) shows that the zigzag SWNT has only a G~ peak
and thus only the LO phonon softening appears by changing Eg, experimentally. Brown et al.
[128] and others [282,283] pointed out that asymmetric line shapes appear in the G~ band Raman
spectrum for metallic tubes, which is related to the Fano resonance (Breit-Wigner—Fano, BWF line
shape) lines. Recently, Farhat et al. showed that this asymmetry is sensitive to the relative position
of the scattered light energy relative to Ei(iM), suggesting that the electron—electron interaction is
important for understanding BWF lineshapes [206].

4, Raman spectra of graphene

In the family of sp? carbon systems, mono-layer graphene is the simplest crystal structure (see
Figure 2), having the highest symmetry and, consequently, the simplest Raman spectra (see
Figure 39). The big rush into graphene research started in 2004 [7,55,61]. The large research
community that had become knowledgeable about the Raman spectroscopy associated with other
nano-carbon systems was ready for a quick appreciation of the Raman spectra in mono-layer
graphene as a perfect prototype spectra for the study and characterization of sp? carbons more
generally [112,114,250]. For example, the detailed study of effects of inter-layer coupling on
the electronic structure was carried out using the dispersion of the G’-band when changing the
excitation laser energy in bi-layer graphene [284]. Strain[285-287], charge transfer and disorder
effects due to doping, top gates and different types of substrates were addressed using the G and
G’-bands of graphene [151,191,192,195,284-291]. Actually, graphene provides an ideal system
to study defects using light as a probe because there are no aspects related to the penetration
depth [3,65,292]. Interestingly, most of these findings in graphene are helping our basic under-
standing of long standing experimental results on carbon nanotubes and other nanocarbon systems
[151,191,192,195,288,289,293]. Another important aspect that is peculiar to graphene is the fact
that the G-band phonons (energy of 0.2 eV) can promote electrons from the valence band to the
conduction band. This happens because graphene is a zero gap semiconductor, and the linear E (k)
dispersion relation centered around the Dirac cones for the valence and conduction bands (see
Figure 9(a)) near the Fermi level makes the effect especially interesting, and it gives rise to a
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Figure 39. Raman spectrum of single-layer graphene in comparison to graphite measured with a
Ejaser = 2.41eV (514 nm) laser. The two most intense features are named the G and G’-bands. The Raman
spectrum of pristine mono-layer graphene is unique among sp? carbons, i.e., the second-order G’ feature is
very intense when compared to the first-order G-band feature (see discussion in Section 4.1) [112,250].
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renormalization of the electronic and phonon energies, including a sensitive dependence of the
electronic structure on electron or hole doping [195]. Raman imaging can be used to define the
number of layers in different locations of a given graphene flake by measuring the dependence
of the Raman spectra (e.g., for the G-band intensity) on the number of scattering graphene layers
[294]. It is true that such information has to be analyzed with care since doping and other phys-
ical phenomena perturb the graphene Raman spectra. The effect of environmental interactions
on few-layer graphene samples have also been studied using Raman spectroscopy, including the
epitaxial growth of graphene on a substrate [295]. In this brief survey a number of important topics
are reviewed, including the spectra of mono-layer graphene, the layer number dependence in few
layer graphene, disorder-related phenomena, edge phonon phenomena, polarization effects and
the effects of doping.

4.1. TheG-band and G’-band intensity ratio

The first intriguing result that was observed when the Raman spectrum from single layers of
graphene was measured was the unusual G’ to G intensity ratio lg//lg. While the second-order
G’ Raman band in 3D graphite has a much smaller intensity than the first-order Raman-allowed
G-band, in single-layer graphene the G’-band intensity is much stronger, reaching 4 times the
G-band intensity. In principle, the G’ to G intensity ratio can be used to determine the number of
layers in a few layer graphene sample, since lg /I is reduced by increasing the number of layers.
However, it is also true that this ratio is sensitive to doping [220,291] and disorder [130], and
the intermixing of information (doping vs. number of layers) makes it complicated to use Raman
spectroscopy to determine the number of layers in few-layer graphene samples accurately, unless
the parameters for the environmental effects are clearly delineated.

Basko [219,296] argues that the special Raman spectrum of mono-layer graphene (1-LG) is an
indication that the very strong G’-band comes from a fully resonant scattering process where both
the el—-ph absorption and emission are resonant, as well as the el-ph and hole—phonon scattering
processes, so that the absorption and recombination occur at different Dirac cones. The very strong
G’-band intensity could also be related to different el-ph matrix elements near the K point (for the
G’-band) and near the T" point (for the G-band) phonons [218-220]. The fully resonant process
should, in principle, be much more probable than the other processes which exhibit a virtual
(non-resonant) state. However, this can only happen if the electron and hole electronic dispersion
relations are symmetric within the phonon uncertainty and if the electron and hole scattering by
phonons is equally probable. Since the electron wave function overlap in graphene results in a
different normalization for the valence and conduction bands, an e-h dispersion asymmetry is
introduced, and for this reason the two processes could select double resonance phonons with
somewhat different q vectors. This asymmetry is relatively small and is generally neglected in
common descriptions of the electronic structure of graphene in terms of mirror band cones. More
theoretical and experimental work is required to fully understand the differences in the el—-ph vs.
hole—phonon scattering, including the differences in the matrix elements for these two processes.

4.2. Layer number dependence of G’-band
4.2.1. The number of graphene layers with AB stacking

Because of its dependence on the layer number, the Raman G’-band has been used to characterize
the number of layers in few layer graphene samples and the stacking order between these layers,
as shown in Figure 40. The Raman spectra for highly ordered pyrolytic graphite (HOPG) and
for turbostratic graphite (which has random inter-layer stacking) are also shown in Figure 40 for
comparison. To explain this observed behavior, we first remind the reader about the dispersive
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Figure 40. The differences in the G’ Raman band for (a) 1-LG, (b) 2-LG, (c) 3-LG, (d) 4-LG, (e) HOPG

and (f) turbostratic graphite. All spectra are measured with Ejaser = 2.41 eV. The original work was done by
Ferrari et al. [112] and is summarized in the review article of Malard et al. [5].

behavior discussed in connection with Figures 24 and 27. Then we turn to a discussion of the elec-
tronic properties of bi-layer graphene with AB Bernal layer stacking (as also occurs in graphite),
since the band structure change from mono-Ilayer to bi-layer graphene is the most striking and both
mono-layer and bi-layer graphene have been probed by Raman scattering [284]. The change in the
electronic structure of graphene due to layer stacking can be probed in some detail by the DR Raman
features (see Section 3.1.3), and most sensitively by the detailed lineshape of the G’-band [112].
Bi-layer graphene has a 4-peak G’-band spectrum (Figure 40(b)) while mono-layer has a 1-peak
G’-band (Figure 40(a)), and this fact is explained by the special electronic structure of bi-layer
graphene, which consists of two conduction and two valence bands [112], as discussed below.
Figure 41(a) shows the dispersion (peak frequency as a function of E ) of each one of the four
peaks in Figure 40(b), which comprises the G’-band for bi-layer graphene with AB stacking. The
double Raman resonance processes for bi-layer graphene are shown in Figure 41(b)—(e), where the
diagrams show the possible DR Raman processes that give rise to the four G’ peaks in Figure 41(a).
The processes are labeled by Pj; (i,] = 1, 2) [284], where the states with energy E; in the valence
band and E; in the conduction band are connected in the photon absorption process using laser
energy Ej.ser. The highest frequency G’ peak for a given Ejuser €nergy is associated with the Py;
process, since the Py; process has the largest wave vector (gy1) and the iTO phonon along the
KM direction in the BZ increases its frequency with increasing wave vector q (see Figure 40(b)
and Figure 41). The lowest frequency G’-band peak is associated with the process P,,, which
gives rise to the smallest phonon wave vector q,. Processes P1, and P,; shown in Figure 41(b)
give rise to the two intermediate frequency peaks of the G’-band [112,284,297]. This DR Raman
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model has been used to relate the electronic and phonon dispersion of bi-layer graphene with the
experimental dependence of wg' 0N Ejser [284].

Tri-layer graphene has 15 possible DR processes [1,4], but the frequency spacings between
these peaks are not large enough to allow identification of each of the 15 scattering events
(Figure 40(c)). Increasing the number of layers increases the number of possibilities for the
G’-band DR scattering processes, and an in depth analysis would get more and more complicated
for N-layer graphene (N > 3). However, experimentally the G’-band spectra at a typical Ejager
energy (e.g., 2.41eV) actually gets simpler in appearance when the number of layers increases
(see, for example Figure 40(d) for 4-LG). The spectra of increasing N converge to the two-peak
structure observed in HOPG, where N — oo, as shown in Figure 40(e). The two-peak structure of
HOPG (Figure 40(e)) is the result of a 3D electron and phonon dispersion, as discussed in [298],
which can be seen as a convolution of an infinite number of allowed DR processes along the third
dimension of N — oo graphite.

4.2.2. Characterization of the graphene stacking order by the G’ spectra

The use of G’-band Raman spectroscopy to assign the number of layers has to be a cautious
procedure, because the G’-band lineshape is related not only to the number of layers, but also to
the stacking order of these layers. The G’-band has actually been used to quantify the structural
ordering along the c- axis in graphite [299-301] much before the rise of the graphene field in 2004.
The change from one peak to two peaks in the G’-band profile observed in the Raman spectra from
polycrystalline to crystalline graphite was shown in the late 1970s [223,302]. Raman spectroscopy
studies of carbon materials heat treated at different temperatures Ty>> show that, by increasing
The, the G’-band changes from a one-peak to a two-peak structure (see Figure 40(e,f)) [299,300].
Lespade et al. [299] associated this evolution with the degree of graphitization of the samples,
suggesting that the origin of the two-peak structure of the G’-band in crystalline graphite was
related to the stacking order occurring along the c- axis. Finally, the evolution from the 2D to 3D
aspect (from one to two peaks [303]) has been quantitatively systematized (see also Section 4.2.1).
Barros et al. have used the G’-band to identify three G’-band peaks due to the coexistence of 2D
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Figure 41. (a) Plot of the frequency of the four Raman G’-band peaks vs. Ejaser Observed in
bi-layer graphene. These four peaks arise from the four processes shown in (b)—(e) which com-
prise the G’-band scattering processes that are expected for the phonon frequencies in bi-layer
(2-LG) graphene plotted in (a) as a function of laser energy Ejaser. Reprinted with permission from
L.M. Malard et al., Physical Review B 76, p. 201401, 2007 [284]. Copyright © (2007) by the American
Physical Society.
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and 3D graphite phases in more complicated carbon-based materials, such as pitch-based graphitic
foams [101].

The differences between stacked and non-stacked graphene layers became even more clear
when the G-band Raman spectra of AB stacked and misoriented folded bi-layer graphene were
compared [4,295,304]. While the AB stacked bi-layer graphene shows a four-peak structure, as
illustrated in Figure 40(b), the G-band spectra of misoriented bi-layer graphene shows a one-peak
profile, with an upshift of ~14 cm~L. This result is generally consistent with the observations
for turbostratic graphite shown in Figure 40 and it was explained as due to changes in the Fermi
velocity of graphene due to interlayer interactions in AB-stacked samples [295]. These aspects
also explain why a broadened single G’ peak is observed for regions of a sample that contains
domains of mono-layer or bi-layer graphene. For example, CVD-grown graphene often shows
such domains of mono-layer and bi-layer graphene and furthermore the stacking of the layers is
often not AB Bernal stacking [85,305,306]. Using a similar path of reasoning as was followed
to understand the difference in the G’-band lineshape between mono-layer graphene and bi-layer
graphene with AB stacking, it is easy to understand that the G’ lineshape will be different for
ABC and ABA trilayer graphene stacking. Recently, Liu et al. [307] showed that the G’-band can
indeed be used to distinguish between ABC versus ABA stacking in trilayer graphene samples.
The G’-band for ABC stacked samples is generally broader than that for ABA, and by mapping
the G’ width, Liu et al. showed that these two types of stacking order coexist in trilayer graphene
samples. By mapping several samples, they showed that about 15% of the samples generated by
the mechanical exfoliation of HOPG are ABC-stacking-like, and this value for the mixed stacking
order is in very good agreement with X-ray studies on HOPG [9].

4.3. D-band and G-band intensity ratio and other disorder effects

Graphene provides an ideal structure to study the effect of disorder on a Raman spectrum, because
in a mono-layer 2D structure one does not have to worry about cascade effects and the penetration
depth of the light [3,65,292]. Here we discuss the effect of disorder caused by low energy Ar™
bombardment [3].

4.3.1. Ar" ion bombardment on graphene

Raman spectroscopy is one of the most sensitive techniques that can be used to characterize disorder
in the sp? network of carbon materials [308]. It is widely used to identify disorder in diamond-
like carbon, amorphous carbon, nanostructured carbon, carbon nanofibers, carbon nanotubes and
carbon nanohorns [2,174]. Just as Raman spectroscopy has been used for the characterization of
defects through the observation of symmetry-breaking features in the Raman spectra, point defects
have been used as a characteristic defect that can be readily reproduced [308] and the uses of ion
implantation to create these point defects has been widely adopted.

The first-order Raman spectra of crystalline graphene is shown in Figure 42(a), where the
presence of the Raman-allowed G-band is observed. When graphene is bombarded by Art ions
(starting with a low dose, 10'* Ar*/cm? in Figure 42(b)), point defects are formed and the Raman
spectra of the disordered graphene exhibit two new sharp features, named by D and D', appear-
ing at 1345cm~* and 1626 cm™?, respectively, for Ejser = 2.41 €V (Figure 42(b)). The D and
D’ labels indicate that these Raman bands are induced by disorder [102]. Both of these bands
are dispersive and change frequency when changing Eja.ser = 2.41eV. Actually, the DR process
discussed for the symmetry-allowed G’-band was developed to explain the dispersive behavior of
the D-band [104]. Instead of electron scattering by two phonons with momentum g and —q, the
breaking of the translational symmetry of crystals can be activated by introducing defects into the
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lattice. Introducing disorder breaks down the momentum conservation requirement, and phonons
at interior k points of the BZ can contribute to the Raman scattering process. Similar to the case
of the G’-band, those scattering processes due to point defects which fulfill the DR process are
privileged in the disorder-induced Raman scattering process discussed in this section.

Finally, if the periodic structure of graphene is largely disordered, for example from a high
defect density caused by applying a large ion dose bombardment, such as 10'® Art/cm?, the
Raman spectrum evolves into a phonon DOS-like profile, where most of the higher-energy optical
phonon branch would be contributing to the spectra, rather than solely the special phonons fulfilling
the DR process (see Figure 42(c)) [3]. Of course in a fully disordered material, not only are all
phonons activated, but also changes in the structure, bonding and strain fields change the vibrational
frequencies and lineshapes.

4.3.2. The D to G intensity ratio and the Lp dependence

Mono-layer graphene samples were bombarded with Art ions and consecutive Raman spectra
were performed to study the evolution of the disorder-induced Raman peaks [3]. Figure 43 shows
the Raman spectra of a graphene mono-layer sample subjected to the ion bombardment procedure
that is described in the beginning of Section 4.3.5. From the pristine sample (bottom spectrum
in Figure 43) to the lowest bombardment dose in Figure 43 (10! Art/cm?), the D-band process
is activated, showing a very small D-band intensity relative to the G peak which is symmetry-
allowed. Within the bombardment dose range 10%*-10'® Art/cm?, the intensities of the disorder
induced peaks increase. A second disorder-induced peak around ~1620 cm~! (the D’-band) also
becomes clearly evident at a dose of 101 Art/cm?, but we do not focus on this feature here.
The Raman spectra start to broaden significantly above 10* Art/cm?, and the spectra end up
exhibiting the graphene phonon density of states-like spectrum, corresponding to Figure 42(c)).
From 10 Art+/cm? (top spectrum in Figure 43) and above, the Raman scattering shows a lineshape
broadening with no measurable change in the peak frequencies of these broad features.

Intensity

1200 1500 1800

Raman shift (cm™)

Figure 42. The Raman spectrum of (a) crystalline graphene, (b) defective graphene, (c) and fully disordered
single-layer graphene. These spectra were obtained with Ejaser = 2.41 €V and the graphenes are deposited
on a SiO» substrate using the mechanical exfoliation method (scotch-tape). Reprinted with permission from
A. Jorio et al., Journal of Physics: Condensed Matter 22, p. 334204, 2010 [309]. Copyright © (2010) by the
Institute of Physics.
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The development of disorder in sp? carbon nano-crystallites is conveniently described by
plotting the Ip /I ratio as a function of crystallite size [102]. Here we perform a similar analysis,
but plotting the Ip/Ig ratio as a function of the average distance Lp between defects, as shown
in Figure 44. Note that the I/l ratio has a non-monotonic dependence on Lp. The Ip/Ig ratio
is here seen to increase initially with increasing Lp, up to Lp ~ 3.5nm, and then it decreases
for Lp > 3.5nm, consistent with the proposed amorphization trajectory for sp? carbon nano-
crystallites [131]. Such a behavior indicates the existence of two competing mechanisms that
contribute to the Raman D-band, as described below.

4.3.3. The D to G intensity ratio: the “local activation” model

The impact of a single ion on a graphene sheet causes modifications on two length scales, which
we denote here by ra and rs. These two length scales represent, respectively, the radii of two
circular areas measured from the impact point, as shown in Figure 45. Structural disorder from the
impact position occurs within the shorter radius rs, where the subscript S stands for structurally
disordered. For distances larger than rg but shorter than rp, the lattice structure is preserved but
a break-down of the selection rule is caused by the proximity to the structurally disordered area
(S-region), thus leading to a local enhancement of the Raman D-band. We call this the A-region,
where A stands for activated. When the Raman scattering process occurs at distances larger than
£y = ra — rs from the defective region, only the G-band is active. The Ip/Ig ratio is then given
as a function of the average distance between two defects, Lp, by [3]:

|
i(LD) o Ip(Lp) = Cafa(lp) + Csfs(Lp). (73)
The intensity Ig remains constant, independent of Lp, while fa and fs are the fractions of the A

and S areas in the sheet, respectively, with respect to the total area. Both the A and S regions
break momentum conservation and give rise to a D-band. However, the A-regions will contribute

+
10"Ar /cm 2
w
®
c
3 13,5 .. 2
= 10"Ar /cm
>
2 .
& 10'"%Ar fem?
=
ﬁ +
10 10'"'Ar /em 2
0 , ] 104, 5. o 2
1200 1400 1600 107Ar/cm

Raman shift (cm™)

Figure 43. Evolution of the first-order Raman spectra using a A = 514 nm laser (Ejaser = 2.41€V) to investi-
gate a graphene mono-layer sample deposited on an SiO» substrate, and subjected to Ar* ion bombardment.
The ArT ion doses from the bottom trace to the top trace are: zero (pristine), 1011, 1012, 1013 and 1014
Art/cm? for 90eV ions. The spectra in this figure are also displaced vertically for clarity. Reprinted From
Carbon 48(5), M.M. Lucchese et al., pp. 1592-1597 [3]. Copyright © (2010) Elsevier.
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Figure 44.The Ip/lg data points from three different mono-layer graphene samples as a function of the aver-
age distance Lp between defects, induced by the Art ion bombardment procedure described in Section 4.3.2.
The solid line is a modeling of the experimental data with Equation (73). The inset shows a plot of Ip/Ig Vvs.
Lp on a log scale for two samples: (i) a ~50-layer graphene sample; (ii) a 2 mm-thick HOPG sample, whose
measured values are here scaled by (Ip/lg) x3.5. Reprinted From Carbon 48(5), M.M. Lucchese et al., pp.
1592-1597 [3]. Copyright © (2010) Elsevier.

Figure 45. (a) Definition of the “activated” A-region (darkest gray) and “structurally disordered” S-region
(dark gray). The radii rs and ra are measured from the impact point which is chosen randomly in this
simulation. (b—e) show 55 nm x 55 nm portions of the graphene simulation cell, with snapshots of the structural
evolution of the graphene sheet for different defect concentrations: (b) 1011 Art/cmZ; (c) 1012 Art /em?;
(d) 1013 Art /cm? and (e) 101 Art /em?, as in Figure 43. Reprinted From Carbon 48(5), M.M. Lucchese et
al., pp. 1592-1597 [3]. Copyright © (2010) Elsevier.

most strongly to the D-band, while the S-regions will make less contribution to the D-band due
to the break-down of the lattice structure itself. These two different scattering cross sections for
the disorder-induced processes will give rise to the non-monotonic behavior observed in the Lp
dependence of the Ip/Ig ratio, as shown in Figure 44.

The structurally disordered (S) region and the activated (A) region are shown in Figure 45(a) by
light and dark gray regions, respectively. The evolution of the S and A regions for a graphene sheet
under ion bombardment was simulated by randomly choosing a sequence of impact positions on
a graphene sheet. As the number of impacts increase, the activated A-region increases, leading to
a decrease in Lp and an increase of the D-band intensity 1. When the graphene is fully covered
with A-regions, an increase in ion bombardment fluence causes the structurally disordered S-
regions to take over from the A-regions, thus leading to a decrease of the D-band intensity Ip
(see Figure 45(b—e)). This model is the basis for the evolution of 15/l based on Equation (73)
which, with the parameters Ca = 4.56, Cs = 0.86, ra = 3nm and rs = 1 nm, give the line curve
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in Figure 44 that fully describes the experimental evolution of Ip/Ig, shown by the black bullets
in Figure 44 [3].

For low defect concentrations (large Lp values), Ip/lg = (102 + 2) /L3, which means the total
area contributing to scattering is proportional to the number of defects. This regime is valid for
Lp > 2ra, while below this limit for Lp, the activated regions start to overlap (see Figure 45(¢)),
thus changing the simple Ip /1 L52 dependence. The D-band intensity then reaches a maximum
and a further increase in the defect concentration decreases the D-band intensity because the
graphene sheet starts to be dominated by the structurally disordered areas (S-region).

The rs = 1 nm value is in agreement with the average size of the disordered structures seen
in the STM images [3,130]. This is not a universal parameter, but is a parameter that is actually
specific to the ion bombardment process. The £, = ra — rs = 2nm value represents the Raman
relaxation length for the defect-induced resonant Raman scattering in graphene. This value is valid
for the laser excitation energy 2.41 eV and room temperature, and may change with changing Ejaser
and temperature. Be aware that this is the relaxation length for the excited electrons, which should
not be confused with the relaxation length for the phonons. The value Ca = 4.56 is in rough
agreement with the ratio between the electron—phonon coupling for the iTO phonons evaluated
between the I" and the K points in the BZ [218-220], which is consistent with the expectation that
the Ca parameter should be related to the electron—phonon matrix elements. The Cs parameter is
related to the size of the highly disordered area, and there is no theoretical work yet available on
this matter.

Itis important to have an equation relating I /I to Lp that can be used by researchers looking
for a Raman characterization of the defect density present in a specific graphene sample. The
entire regime (0 — Lp — o0) can be fitted using [3]:

Ip ra —r2 (—nr§> (—n(ri—ré)) <—nr§)
— =Cao————=|ex —ex —_— C 1-— s 74
b~ [P Pl 1z +Cs 2 (74)

which comes from solving rate equations for the bombardment process. Fitting the data in Figure 44
with Equation (74) gives Ca = (4.2 £ 0.1),Cs = (0.87 £ 0.05),ra = (3.00 £ 0.03) nmand rs =
(1.00 £ 0.04) nm. This equation represent the results very well, since the fitting obtained with
Equation (74) is also in very good agreement with experiment and the fitting parameters are fully
consistent with the parameters obtained by computational modeling using Equation (73) [3].

4.3.4. The Local Activation Model and the Raman Integrated Areas

The dependence of the intensity ratio Ip/lg on Lp was found to accurately follow an analytical
formula (Equation (74)), as described above, and this result is useful for practical applications and
for inter-laboratory comparisons. However, the physics behind this effect has to take into account
that both Ip and Ig vary when Lp is changed. As discussed in Section 1.4.5, the evolution of the
Raman profile can be discussed as related to the peak intensity or to the integrated peak area.
In this section, we choose to use the same model as was used to derive Equation (74) when we
analyze the evolution of the intensity and integrated area of the many Raman peaks that vary with
increasing structural disorder, by normalizing each of them to the G-band integrated area (see
Figure 46). As shown in the inset to Figure 46 (top-right panel), the integrated area of the G-band
does not show any simple evolution with disorder [130].

The lower-left panels of Figure 46 show that this analytical expression fits the quantities
Ap/Ac and Ap /A nearly perfectly, where A refers to the integrated area. For the D-band, the
fitting parameters are rs = 2.6nm, ra = 4.1nm, Cs = 2.4 and Cp = 3.6, whereas for the D’-
band the fitting parameters are rs = 2.6 nm, ra = 3.8nm, Cs = 0.28 and Ca = 0.19. Note that
we obtain close to the same value of rs for both the D and D’ modes, indicating that indeed rs
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Figure 46. Normalized intensities (upper panel) and areas (lower panel) of the Raman D-, D’-, G-
and G’-bands as a function of Lp. All quantities are normalized by the area of the G-band (see
the as-measured Ag in the inset to the upper-right panel). The solid lines in the lower panel are
theoretical results based on the model described in Section 4.3.4. Reprinted figure with permission
from E.H. Martins Ferreira et al., Physical Review B 82, p. 125429, 2010 [130]. Copyright © (2010) by the
American Physical Society.

is a geometrical, structure-related length. Also, we find 1.5 and 1.3 nm for the spatial extent of
the Raman processes ra — rs, which is of the same order of magnitude as the rough estimates
Ve/wp = 4.3nm and Vi /wp = 3.6 nm. We remind the reader that the distance ra — rs is a rough
measure of the length traveled over the lifetime of the e-h pair, Ve /wyx, Where Vg is the graphene
Fermi velocity of the electron and hole carriers and wy is the frequency of any X phonon mode
[130]. More interestingly, the ratio between rp — rs for the D- and D’-bands matches very closely
to the ratio of the inverse frequencies wp /wp =~ 1.2.

Similar ideas can be applied to a discussion of the Ag ' /Ag ratio, but in this case, since the G-
band is already active for pristine graphene, the intensity ratio is only affected by the disruption
of the hexagonal network, leading to a decrease in the Ag//Ag ratio as a function of increasing
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disorder described by the simple formula [130]

2

(Lp) = ﬁ-‘i(oo) _B [1 —exp (—”L—Zsﬂ , (75)

D

Ag
Ac

where Ag' /Ag(00) is the area ratio for pristine graphene while Ag' /Ag(Lp) is the area ratio for
an actual sample characterized by its Lp value. The fitting of the experimental data, shown in
the lower-right panel of Figure 46, gives in this case rs = 2.5 nm, which is also similar to the
structural damage length obtained for the D- and D’-band spectra. This result is in accordance
with the typical defect-size estimates found independently from the STM analysis [3,130]. In
Section 4.3.5, we describe what happens to the frequency and linewidth of the Raman peaks as a
result of ion implantation-induced structural damage.

4.3.5. Modeling disorder effects in the Raman linewidths and frequency shifts: the spatial
correlation model for defects

Disorder introduced by a random distribution of defects causes a broadening and a shifting of
the Raman mode frequencies and increases in the asymmetry of both the Raman-allowed and
the newly disorder-activated Raman bands discussed in Section 4.3.4. Here, we use the so-called
“spatial-correlation model” introduced by Capaz and Moutinho in [130] to describe these effects
in graphene. Other work on this topic that should also be referred to is in Refs. [65,292],

As described in Section 1.4.6, a random distribution of point defects will scatter phonons and it
will also add a contribution to the FWHM by an el-ph coupling of phonons with wave vectors qq
and go + §9. Inthe limit of low levels of disorder, the Raman intensity for the disordered graphene
I (w) can be calculated by Equation (7). With this model, we can calculate the full lineshape of | (w)
and from that we can extract the disorder-induced peak shifts Awq, (Figure 47, lower panel) and
the increases in the FWHM AT, (Figure 48, lower panel). Since we use experimentally available
dispersion relations w(q), the only fitting elements in this model are: (1) the relationship between
the coherence length L and the typical inter-defect distance Lp, and (2) the weighting function
W (q) in Equation (7).

We now describe in more detail the application of the above model to the different Raman bands
considered in graphene, including the G-band, the D’-band, the D-band and the G’-band [130].

A. G-band-The G-band in perfect graphene is associated with phonons at the I"'-point, i.e., qo =
0 phonons. We consider that disorder mixes equally the I'-point phonons with nearby phonons in
both the LO and iTO phonon branches. We find that the best agreement with experiment is obtained
by using a constant weighting function (which is equivalent to not use a weighting function at all).
For the LO and TO phonon dispersions, we take

wLo(q) = we + 181q — 230.29¢7,
wito(q) = w — 135.42q, (76)

where wn () isincm— (n=LOoriTO) and wg = 1580 cm~ is the experimental G-band frequency
for pristine graphene used in this work. Here ¢ is measured from the I"-point in units of A=, These
dispersions are taken from the work of Maultzsch et al. [208] by interpolating the frequencies at
high-symmetry points and by averaging the dispersions between the I'-K and I'-M directions.
Also, since the main contribution to the integral in Equation (7) will come from q vectors near the
I" point, the BZ can be safely approximated by a circular disk and the integral will be considered
explicitly in the radial coordinate only. Taking all these considerations into account, Equation (7)
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Figure 47.The upper panel shows peak frequencies of the D, G, D’ and G’-bands as a function of Lp denoting
a typical distance between defects. The inset compares the frequency of the D-band and the G’-band divided
by two, showing that we always have wg'/2 < wp, in agreement wtih Ref. [216]. The lower panel shows
frequency shifts with respect to the zero-disorder limit. Dots are experimental points and solid lines are theo-
retical results based on the model described in the text. Experimental error bars are 2cm~1. Reprinted figure
with permission from E.H. Martins Ferreira et al., Physical Review B 82, p. 125429, 2010 [130]. Copyright
© (2010) by the American Physical Society.

becomes [130]

exp[—g*L?/4]
le(@) o) [ e e 70

in which the sum is over the two (LO and iTO) phonon branches.

B. D’-band — The D’-band arises from intra-valley phonons with a linear wavevector intensity
dependence with respect to the laser energy. Since the D’-band has been assigned to LO phonons,
only this branch is considered in calculations of the D’-band intensity using Equation (7). We
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Figure 48. (a) FWHM intensity of the D-, G-, D’- and G’-bands as a function of Lp, denoting the typical
distance between defects. (b) Disorder contribution to the peak widths, AT, for the D, G, D’ and G’-bands.
Points denote are experiments and solid lines are theoretical results based on the model described in the text.
Reprinted figure with permission from E.H. Martins Ferreira et al., Physical Review B 82, p. 125429, 2010
[130]. Copyright © (2010) by the American Physical Society.

average over all possible directions 6 of the wavevector qo and, similarly to the case of the G-
band, there is no need to introduce a g-dependent weighing function W (q). Then, the D’-band
intensity becomes [130]:

exp[—(q — Go)?L?/4]

. 7
w — wLo(®))? + [To/2]1? (78)

lp (w) oc/qdqde[

For the laser energy of 2.41 eV, the value for || in Equation (78) is found to be |go| = 0.42 A1
measured from the T" point.

C. D-band — The D-band arises from inter-valley phonons which also show a linear wavevector
dependence with respect to the laser energy. In fact, for the laser energy of 2.41 eV, we also find
Iqo] = 0.42 A1 for the D-band, but now ¢ is measured from the K point. Since the D-band
has been assigned to iTO phonons along the K—M direction in the BZ, we choose qqg along this
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direction and the weighting function W (q) is also restricted to be non-zero only along the same
direction. Mathematically, W (q) = (6 — 6k_m)f (0), Where 6x_\ indicates the K—M direction
and f(q) = 1+ a(go — ) is a function that linearizes the radial dependence of the electron—
phonon coupling along the K—M direction near qo. With these conditions, the D-band intensity
becomes [130]

f (0) exp[—(q — o)?L?/4]

| x [ d . 79
o) / q [@ — wiTo(q)]? + [[o/2]? (79)
For the iTO phonon dispersion along the K—M direction, we use [244]:

wito(q) = wk + 589.35q — 485.4607, (80)

where wito is in cm~ and q is measured from the K point in units of A1,

D. G’-band — The G’-band is related to a DR process associated with the same inter-valley
phonons as the D-band. For this reason, the expression for the intensity becomes more complicated
and itinvolves a double integral over the forward (q) and backward (q’) phonon wavevectors. Using
the same considerations for the el-ph matrix elements, which essentially select phonons in the
K-M direction, we have

f(@)f (@) exp [(—[(@ — do)® + (@ — do)?IL?) /4]
[w — wiTo(q) — wiTo(q)]% + [[o/2]

lo () o /dq dg’ (81)
where f(q) is the same linear function as in the D-band case and gy is also the same. We also
impose the condition that the same relation between L (the disorder-induced phonon coherence
length) and L (the average distance between defects) must be valid for the D and G’-bands.

In Figures 47 and 48, we see the results for the frequency and linewidth as a function of
the typical distance Lp between defects for the data fitting of the frequency shifts and widths,
respectively, as described above. Note that the general agreement is good, especially for large
values of Lp. Indeed, this spatial correlation model, because of its perturbation character, is not
expected to be valid in the highly disordered regime. In Figures 47 and 48, the best relationships
between L and Lp in each case are shown (as obtained by the fits between the model and the
experimental data). It is physically reasonable to see that L and Lp are similar to each other. This
condition was not imposed, but it comes automatically from the fitting procedure. This means that
the disordered-induced phonon coherence length L is of the same order of magnitude as the typical
inter-defect distance Lp, which is physically reasonable. There is no reason to expect that the same
relation between L and L should be found for the different phonon modes, since different modes
should have different defect scattering cross-sections. From the results shown here, it seems that
the D’ modes are the most affected by point defect disorder, showing a smaller coherence length
than the other modes for the same amount of disorder. Finally, the model allows us to explain the
greater increase in the FWHM for each of the modes near the K point relative to the modes near
the T" point as being simply a consequence of the larger magnitude of the phonon dispersions near
the K point.

4.3.6. Evolution of overtone and combination modes

In Figure 49, we present the spectral evolution of the G’-band and other second-order processes in
mono-layer graphene for three different ion dose levels. The G’ and G”-band intensities decrease
as the line widths increase for increasing ion dose. The defect-related combination modes D +
G at 2930cm~! and G + D’ at 3190cm~! can be observed at higher ion bombardment doses
(103 Art/cm?), but the G”-band is too weak to be seen in these measurements. At a dose of
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Figure 49. Evolution of the G’-band (at 2670 cm—1) and other second-order peaks, the (D + G) at 2930 cm 1,
the (D’ + G) at 3190cm™—1, and the G” (2D’ in the figure) at 3220 cm~1 with increasing ion doses. The
intensities of the two lower graphs are multiplied by a factor of 10 for the sake of readability [130]. Here the
notation 2D’ is used instead of G”, as has also been used in the literature by other authors. Reprinted figure
with permission from E.H. Martins Ferreira et al., Physical Review B 82, p. 125429, 2010 [130]. Copyright
© (2010) by the American Physical Society.

10* Ar+/cm? the results show a frequency downshift for all DR features, in agreement with the
results of Section 4.3.5.

4.3.7. Disorder and the number of layers

The Ip/lg results for ion bombarded graphene depend on the number of graphene layers N [130]
in the case of low energy ions (90eV). Because of the low ion energy, the ion bombardment
process is limited generally to one defect per bombarding ion, so that the Ip/lg scales with N.
For many-layer graphene (~ 50 and higher), a monotonic evolution of Ip/lg with increasing ion
fluence is seen because in this case there are always more unperturbed graphene layers available
to be bombarded.

4.4. Edge phonon Raman spectroscopy

The disorder-induced Raman bands should also depend on the type of defect structure, and not
only on the number of defects. This dependence has been demonstrated for graphene and graphite
edges, where the orientation of the carbon hexagons with respect to the edge axis was determined
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experimentally, thereby distinguishing the so-called zigzag edge from the armchair or random
atomic edge structures [170]. The armchair/random vs. zigzag edge structure can be identified
spectroscopically by the presence vs. absence of the D-band, and this effect results from the
momentum requirements of the DR model, as discussed below.

The defect associated with a step edge has a 1D character, which means that it is able to transfer
momentum solely in the direction perpendicular to the edge. In this sense, the wave vectors of
the defects associated with zigzag and armchair edges are represented in Figure 50(a) by da (a
for armchair) and d, (z for zigzag) edges. When we translate these vectors into reciprocal space,
we see that different selection rules apply for the electron scattering by phonons for each of these
edge types. This is illustrated in Figure 50(b), where the first BZ of 2D graphite (graphene) is
shown, oriented in accordance with the real space directions shown in Figure 50(a).

Light-induced e-h pairs will be created on an equi-energy circle around points K’ and K (here
neglecting the trigonal warping effect for simplicity), which has a radius that is defined by Easer, as
shown in Figure 50(b). Note that for inter-valley electron-defect scattering, which connects K to
K’ points, only the d, vector for armchair edges can connect points belonging to circles centered at
two inequivalent K and K’ points. In contrast the zigzag d, vector to connect inequivalent points,
which means that inter-valley scattering is not allowed for zigzag edges. This therefore means that
the inter-valley DR process, which is the process responsible for the observation of the D-band in
graphitic materials, is not allowed for a perfect zigzag edge [170]. The D-band phonon connects
two inequivalent K and K’ points, and along the zigzag edge there will be no defect able to connect
those points to achieve momentum conservation in the final process.

Onthe other hand, intra-valley electron-defect scattering can occur for both zigzag and armchair
edges (see Figure 50(b)). Therefore, intra-valley scattering processes induced by phonons can
achieve final momentum conservation using both d, and d, vectors. Another well-known defect-
induced band is the so-called the D’-band, which appears at around 1620 cm~?, and it is related
to intra-valley el-ph processes. For this reason, the D’-band observation should be independent of
the zigzag vs. armchair structure of the edges, in agreement with experimental observation.

Another selection rule aspect refers to the D-band intensity dependence on the polarization
direction of the light with respect to the edge orientation. The D-band intensity has a maximum
value when the light is polarized along the edge, and should give a null value when the light is
polarized perpendicular to the edge. The physics behind this selection rule is the optical absorption
(emission) anisotropy around the K (K”) point in 2D graphite, which can be represented by [262]

Wabs,ems o “3 X R'|2 (82)

Here the polarization of the incident (scattered) light for the absorption (emission) process is
represented by P, while the wave vector of the electron measured from the K point is given by k.

These selection rules were first observed for graphite edges, as reported in [170], and similar
results have been observed later in mono-layer graphene [151,311]. However, only edge-dependent
variations in the D-band intensity consistent with the selection rules have been reported. Raman-
based indications for the high crystallinity of zigzag edges have indeed been observed by Krauss
et al. [312], although the complete absence of the D-band together with the observation of the
D’-band, which is expected for a zigzag edge structure, has never been reported, which might
imply that, up to now, no perfect zigzag structure has been measured by Raman spectroscopy. In
general, the polarization direction dependence for the D-band intensity, as given by Equation (82),
together with the zigzag vs. armchair dependence, can be used for an identification of the edge
orientation and structure. Raman spectroscopy is, therefore, a valuable tool for the development
of our understanding of edge structures, important for the science of graphene ribbons, and more.
The results reported here represent an effort to improve our understanding of the influence of



