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1. Introduction

electronic devices whose sizes decrease and reach the nanormeter scale.

event.
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A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum sta-
tistical mechanics is developed in order to describe nonperturbatively the effects of the
electric field on electron-phonon scattering in nondegenerate semiconductors. We derive
an analytic, gauge-invariant model for the spectral density of energy states that accounts
for both intracollisional field effect and collisional broadening simultaneously. A kinetic
equation for the quantum distribution function is derived and solved numerically. The
nonlinear drift velocity versus applied field characteristics is also evaluated numerically.
Many features of our nonlinear theory bear formal resemblance to linear-response theory.

Quantum effects play an important role on the dynamics of charge transport in

The semiclassical description of charge transport phenomena in semiconductors,
whether based on the Boltzmann equation® or on Monte Carlo techniques,? relies
on the Fermi Golden Rule for the calculation of the transition rates. The sharp §-
function appearing in these quantities implies that both energy and momentum are
well-defined observables of the system such that when a particle suffers a collision
with one of the crystal modes, its energy and momentum can only change by an
amount equal to the energy and momentum of the phonon involved in the scattering

As the size of the sample decreases, however, quantummn interference effects may
come into play? since now the charges may maintain their phase coherence over dis-
tances comparable with the characteristic length (e.g., the gate length or a depletion
length) of the device. The uncertainty relations might therefore play an important
role and the broadening of the electron momentum should be considered. Also
the mean collision duration and the mean-free time may not be negligible com-
pared with the transit time through the device and the long-time limit required to
establish the conservation of energy if the Fermi Golden Rule will break down. This
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phenomenon is called “collisional broadening” (CB).* Furthermore, in submicron
devices, ordinary applied voltages lead to very high electric fields, and since colli-
sions cannot be treated as instantaneous, the presence of an electric field further
contributes in modifying the energy difference between the imitial and final states.
This is the “intra-collisional field effect” (ICFE).®

It has been a long-standing problem in the physics of nonequilibrium phenomena,
to construct a first-principles theory of transport which is capable of overcoming
the himitations of the semiclassical approach and of treating arbitrarily strong accel-
erating field. Of the many candidate theories, the nonequilibrium Green’s function
formalism, as developed by Kadanoff and Baym,® and by Keldysh,” has received
considerable attention in the recent past.

The central objects in this theory are the four quantities

G(1,2) = £ (BT, 67(1,2) = 1 ([¥(1), ¥ Q)]2)(tr — 1)
. (1.1)

G>(1,2) = _%(@(1)@7(2» . G1,2) = —([¥(1), ¥HD]£)I(t2 — t)

o

expressing the correlation between the field operator \il(l) of the particle at the
space-time point 1 = (ry, t;) and the conjugate field operator ¥1(2) at another
point 2 = (rg, tp). Here d(z) is the unit step function and the +(—) sign refers
to fermions and anticommutation (boson and commutation). The angular bracket
(...) indicates a thermodynamic average for systems in equilibrium, and an average
over the available states for nonequilibrium distributions. The interactions of the
particles with the crystal are represented by the equivalent self-energy functions®®

©$>(1,2) = G (1,2)D< > (1,2)

(1.2
¥7%1,2) = G™4(1,2)D”(1,2) + G<(1,2)D™*(1,2)
in the Born approximation, for weakly coupled systems, with D indicating the
phonon propagator including the electron-phonon interaction matrix element.
From its definition, G< is proportional to the density of particles, and therefore
has the character of a distribution function. Indeed, the average value (Q) of any

operator QQ that i1s the sum of one-body terms can be expressed immediately in
terms of G< 10

Q) = /dr(\iﬁ(r, HQ(r, )¥(r, t)) = :tih/dr lim Q(r, t)G<(r, t; ', t') ,
r—r!
(1.3)
by virtue of the commutation properties of the field operators.
Another important function is the special density defined as!!

AL, 2) = —([¥(1), ¥1(2)]4) . (1.4)

S| =

A
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When t, = t,, this becomes
A(I‘l, Ty, t) = 6(1‘1 — 1'2) s (15)

as a consequence of the equal-time commutation of the field operators. For homo-
geneous systems A is a function only of the difference of its arguments and Eq. (1.5)
can be Fourier transformed leading to the sum-rule

/OO d“’A(k )=1 (1.6)
— w)=1. .
L 27 ’
It is also easily seen that the summation over all momentum states provides the
density of states
> dk
= —— Ak . 1.7
o) = [ Ak, w) (1.7)
All of these properties make the spectral density an essential quantity to eval-
uate, since it can be clearly interpreted as a weighting function (of total weight
unity) giving the conditional probability that a particle in state k will have energy
fiw.®12 In other words, the electron energy hw and its momentum hk are treated as
independent quantities, related to each other according to a spectral density func-
tion A(k, w) of finite width, rather than through the sharp é-function of the Fermi
Golden Rule. In the semiclassical theory, where the electrons are in plane-wave
states, the spectral density function reduces to

Ak, w) = 27b(hw — e(k)) ,

expressing the fact that there is just one possible energy for each momentum hk.
The definition (1.4) is equivalent t0°

A=i(G” ~G<) =i(G - G*) = -2ImG" | (1.8)

so that A can be determined from the knowledge of the retarded Green’s func-
tion GT. The evaluation of G< and G therefore, allows, a least in principle, to
completely characterize the transport properties of a quantum system.

The equations of motion for the various Green’s function follow directly, and
exactly (provided a self-energy can be defined), from the Schrodinger equation for
the field operators ¥ and ¥'. They can be expressed, by using the matrix notation'3

- Gt —G< hud Et —Z<>
G = Y=
(& Za) (2 =
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(Gi=G<+G", Gi= G< — G°, and analogously for X, ;) as

—

[G3'() - U] G, 2) = 6*1-2)T + /d3§(1, 3)G(3, 2) (1.92)

(G312 - U] G, 2) = 641 - )T + /d3&(1, 3)%(3, 2)
(1.9b)

I is the identity matrix, U the external potential and G;! the operator G5' =
ih% — Hy, with Hy the unperturbed Hamiltonian. Equivalently, we can calculate

G by solving Dyson’s equation

G(1, 2) = Go(1, 2)+/d3G0(1, 3)U(3)G(3, 2)+/d3d4&0(1, 3)%(3, 4)G(4, 2) ,
(1.10)

with (H}O as the free-particle propagator.
These equations are easily solved for homogeneous systems in equilibrium, where
the arguments of the Green’s functions depend only upon the difference of their
arguments: (1, 2) = (1—2). In these cases, the Fourier transforms of these quantities

will be diagonal in both k and w. Equations (1.9) are then just algebraic equations,!?
each leading to the same result!?

Gk, w) = [G7l(k, w) — T (k, w)] ",

G<(k, w) = G"(k, w)I<(k, w)G(k, w) |, (10

or, equivalently®
G<(k, w) = A(k, w)f(k, @) , (1.12a)
[k, w) = L) (1.12b)

C2Imyr(k, w)

directly connecting (through A) G™ to G<.

This is also true in linear response theory, where the low external fields are
treated as a perturbation of the homogeneous system and the quantities involved in
the calculation of the conductivity, turn out to be just equilibrium quantities.!51®

In highly nonequilibrium conditions, we have to consider functions of their sep-
arate arguments, no relation of the type (1.12) holds, and a separate equation of
motion for G< is required.!” Equations (1.9) and (1.10) then, become quite dif-
ficult to solve. First of all, the complicated intertwining of temporal and space
coordinates, that appears when the interactions are modified by the external fields,
make the multiple integrations prohibitively involved. Secondly, the various Green’s
functions (1.1) are now linked to each other in a complicated manner and one must
solve two coupled equations self-consistently. For instance, the equation of motion

[ X4
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for G< (the Kadanoff-Baym-Keldysh (KBK) equation) requires, as input, the re-
tarded function G". The equation for G (Dyson’s equation (DE)) demands, in its
turn, the knowledge of the self-energy L7 which involves G< itself. All this results
in extreme complications whose full consequences have not been analyzed yet in the
literature.

Consequently, many groups!” have studied the equation of motion for the Wigner
function f%, which is related to the correlation function G< via

Mk = / %G«(k, w) (1.13)

with the hope that a more manageable result emerges. This line of attack is not
without problems, however. First, there is no universal agreement about the se-
quence of approximations reducing the full KBK equation to an equation for the
Wigner function (in fact, it is not clear if this can be done, even in principle), and
second, the final equations are so complicated that additional approximations are
needed before numerical work becomes feasible. Not surprisingly, a variety of differ-
ent, and partially contradicting results have been published.!®22 In this review, our
intention is not to take part in this discussion, but rather to present a new scheme
which was recently proposed!423-26 by the author and her collaborators and which,
we believe, is free from the above mentioned difficulties.

The approach is based on the idea that, in order to include both CB and ICFE
simultaneously, scattering events should not be considered as occurring between
states described by the plane waves of a free electron, as was the case of previous
formulations, but between the states of an electron in the external potential. In
order to introduce the proper symmetries of the nonequilibrium system from the
very beginning and maintain them consistently throughout the calculations, how-
ever, these states should be used as a transform basis. In other words, instead of the
usual Fourier transform, one should be define the integral transform which is most
appropriate for the system under consideration, according to the type and form of
the external field.

Finally, one should assure the gauge invariance of the result obtained in this
way because of the explicit gauge dependence that may be introduced by these
transforms.

We have implemented this idea for an electron system under the influence of
an external, uniform electric field theory of arbitrary strength represented through
a scalar potential. In this case, the transform basis is made of Airy functions.
Airy-function based descriptions of high-field transport have been discussed in the
literature before,?”"2° but we believe that the present approach, through the sys-
tematic use of the Airy transform and of the gauge invariant formulation, is the
first where the program has been carried out to completion.

In order to show how this works, in Sec. 2 we present the details of the formalism
and explain with a simple example how an Airy-transformed function can be cast
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into gauge-invariant form. In Sec. 3, we apply the method to derive a model self-
energy for the coupled electron-phonon system at high fields.

In Sec. 4, we solve DE for the retarded Green’s function and determine a spectral
density function model which is consistent with the frequency sum-rule, and include
collisional broadening and intracollisional field effect on equal footing. The density
of states is also calculated in order to show how the concomitance of an external
field and the scattering processes modify the electron energies. We solve the KBK
equations and derive a closed equation for a generalized distribution which contains
information about the nonequilibrium occupation of energy states in Sec. 5.

Finally, in Sec. 6, we relate the function determined in Sec. 5 to experimentally
observable quantities, such as a number densities of nonlinear conductivities. The
consistency of our results with the linearized Boltzmann equation are checked in the
appropriate limit and the quantum distribution function as well as the nonlinear
drift velocity versus applied field characteristics are evaluated numerically.

2. Formalism

2.1. The Airy representation

In order to study the properties of charge transport in a quantum system, we
consider an ensemble of electrons in a semiconductor crystal, coupled to the phonon
gas. We assume carriers do not interact with each other, so that the interaction of
one carrier with the phonon will represent the behavior of the whole electron gas.
The electron band structure is handled in the effective-mass approximation, with a
simple spherical and parabolic band.

The system Hamiltonian is given by
H=H.+ Hp+ Heep + U(2)

where H. = ~h?V?/2m is the term corresponding to an electron in a perfect crystal
with m as the effective mass. Zq ﬁwquIbq describes the free-phonon system, with

B(T] and 5q as the creation and annihilation operators of a phonon mode q. The
expression for the electron-phonon interaction Hamiltonian H._, depends on the
particular scattering mechanism considered. Finally, U(z) is the perturbing, one-
dimensional potential applied along the z-direction of motion. For instance, U(z)
could represent an external field as well as the position-dependent conduction-band
edge found in heterostructures.

In the absence of the scattering processes, the eigenfunctions #(r) of the system
can be factorized as

wkl,s(r) — %eikl-rl¢s(z) ’ (21)

[X}
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with r; and k; being the position and wave vector of the electron in the plane
normal to the field direction, and ¢,(z) determined by

[ 2 h?k?

—%d—z.z"f‘U(Z)“f‘ ] ©s(2) = es(kL)(2) . (2.2)

2m

The index s labels the eigenvalues that can constitute either a discrete or a contin-
uous spectrum.

In the Hilbert space of the eigenfunctions ¢, (z), for any function or operator F,
we can define the transformation

F(ky, 2,2, w) =Y @ (2)Fs (kL w)pa(z) . (2.3)

s, 8!

In the case of a constant electric field, U(z) = eEz and Eq. (2.2) has solutions
represented by the stationary states3°

1 ik,ry 4 - z—S
wkl,,(r)+2ﬂ_Le Az( T ) (2.4)

where Ai(z) is the Airy function of the first kind and L = (h%/2meE)/? the
normalization length defined by the condition

[zei@eo) =86 - 5)

The corresponding eigenvalues are

212

hk
6,(k_L) = 2ml +eEs .

The Airy variable s, defined as s = ¢, /eE, with ¢, the energy eigenvalue in the
direction of the field, has the physical interpretation as the quantum-mechanical
analogue of the classical electron turning point in z. This solution is exact, but
does not include the possibility of Zener tunnelling from one band to another, and
effect that can be significant at very high electric fields, but which we ignore in the
present treatment.

The transformation (2.3) in this case becomes the Airy transform

ds' _ )
F(ky, 2, z"w):/dz—:Ai(st) At (z LS)F(k_L, s, 8", W), (2.5)

.

which connects the two coordinate systems (r,, z, z’') and (ky, s, s'). Thus, work-
ing in the Hilbert space defined by ¥y, ,(r), (i.e., plane waves in the plane perpen-
dicular to the field and Airy functions along the direction of the field) enables us
to define a coordinate system (k, s, s’) for Fourier transforming to momentum in
the transverse directions and “Airy transforming” to s-coordinates along the field.
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Using the s-variable corresponds to a total energy representation where the kinetic
and potential energy of the carriers along the applied field are considered simul-
taneously and indistinguishably. Some useful properties of the Airy transform are
demonstrated in Appendix A.

We can now define the field operators in the interaction picture by

¥(r, t) = / dkidsyu, s(r)ax, (t) , (2.6a)
with an inverse transform

ax, s(t) = / dky dsty, o (r)¥(r, t) . (2.6b)
The creation and annihilation operators satisfy the properties

[, +(8), Lo, (0] = 80ks —K)s(s — )

(2.7)
[, (), @, w(8)] =0,
+
since we are working with normalized basis functions.
The time dependence of the operators is given by
ax, s(t) = dkl,,e_k"(k*)t . (2.8)

As a simple example, let us consider the Airy representation of the free-particle
propagator at zero temperature. This is easily evaluated by using Eqgs. (2.6)—(2.8)
into definition (1.1):

i
Gg(r, ;0" ) = —Edk_LdS/dki]_dsld)kh,(l‘)’lpihs(l")l?(t -t

X <¢0 ¢0>
+

with |®¢) indicating the vacuum state. In (k,, s)-space we immediately obtain the
simple expression

[, o(0), af, ()]

Gro(ky, s, t—t') = —%ﬁ(t — t')e~ Re k(1Y) (2.9)
The spectral densizyiflinction is also immediately derived
Apky, s,w) = —2ImG%(ky, s, w) = 276(hw — &,(kL)) . (2.10)

Notice here that, although both GL(ky, s, t —¢') and Ag(k,, s, w) have forms
analogous to the unperturbed, field-free expressions, yet they contain the full field-
dependence through the eigenvalue e,(k L ).

-
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The very same expressions (2.9) and (2.10), however, although exact, already
pose some questions about the interpretation of the results that can be obtained in
the total-energy (Airy) representation. Indeed, the resulting physical picture could
be dependent on the gauge (scalar) used, as can be understood, for instance, by
comparing (2.10) with its gauge-invariant counterpart!!

Ap(k, w) = éAi (_M‘Ts(k)> , (2.11)

where now (k = kg, ky, k.), e(k) = h?k?/2m and © = eEL. Here, as well as in the
remainder of the paper, an overtilde denotes gauge-invariant functions.

This problems will become even more severe when more complicated functions
will be evaluated because of the possibility that the approximations made could be
gauge dependent, and therefore physically incorrect. The Airy formalism, therefore,
must be improved in order to formulae a gauge-invariant theory of wider and more
general validity.

2.2. Gauge-invariant transform

Let us consider the product g(1, 2) = ¥(1)¥1(2) of field operators. In terms of the
Wigner coordinates

r=r; —ry; T=T — T2
_ri+4rz T+ m
o2 r= 2
it can also be expressed as
g(r, T R,T):@(R+%,T+%)@T (R—%,T~%) : (2.12)

We now want to prove that, for a particle of charge ¢, if # and A are the scalar
and vector potentials, respectively, the function j(k, 7; R, T') defined as

~ \ dl‘ dT iw(w, T r
gk, R, T) = ]\W \/2_776 wnTkr R 7 R, T) (2.13)

1/2

w(w, r, T, k, r, R) = /

d/\{‘r [w +L6R+Ar, T+ ,\T)]
~1/2 h

ke

—r. [k+ iA(R+Ar,T+AT]}
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remains unchanged under the gauge transformation

A—Al(x, 1) = A(x, )+Vx(x, 1), ¢ —¢'(x,1) = (x, W%M

S (219)

where x(x, t) is an arbitrary scalar function. The proof goes as follows.
From elementary quantum mechanics®? we know that the wave function in the
new gauge is related to the wave function in the original gauge by

B(x, 1) = e Rex( Dop(x 1) (2.15)
By substituting this into Eq. (2.12), and Eq. (2.14) into Eq. (2.13), we have

~ dr dr "
g(k, W, R, T) = / W \/—2_71_6“1)

% eiﬁ;x(R%— r/2.T+r/2)e—ihqzx(R—r/2.T— T/Q)g(r, 7, R, T)

veun [ G PG () v

—1/2

(2.16)

-~

=w+ Aw .

In order to obtain a gauge invariant §, Aw must cancel the factor P ReX ~ iRex
in (2.16). Indeed, by remembering, from (2.13), that x = R + Ar and t = T + A7
we can write Aw as the total derivative

1/2
nxx b

Aw=- <%) /:1/2 at
—_ (%) X(R+1/2, T+7/2) —x(R—1/2, T —7/2)],

_and we see that the cancellation occurs.

Thus, we have proved that even though the wave functions and the electro-
magnetic potentials change with the gauge, products like (2.12) and therefore the
various Green’s functions, are independent of the gauge, provided we transform
them by the prescription (2.13). Special cases of (2.13) have been considered by
several authors.!21519.33.34 For ap electron (¢ = —e) in homogeneous, steady-state

fields Eq. (2.13) reduces to

dT : e dl‘ .
~ _ i(w+ $E-R) T —ik-r
ik, w, R, T) = v i / T go(r, 7, R, T)  (2.17)

for g calculated in the scalar-potential gauge (g4) with ¢ = —E - R, and to

~ dr tw dr -1 r
”(“"‘”R’T’:/ Vo / (2mpr2* (k+ £BT) ro (r, 7, R, T) (2.18)

}h__‘, S
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for g calculated in the vector-potential gauge (g4) with A = —cET'. In Appendix
B, we give to simple examples of how (2.17) and (2.18) may be applied.

2.3. The two transformations combined

Assume that s and w be not independent variables and consider functions of the
type (see Sec. 3 for an example of a function of this kind)

E
F(kL,w— e—s,w— £51> .
h
In order to put this function into gauge-invariant form, we have to apply (2.5)
and then (2.17), namely

dw i w-{—eEZ ‘r/
\/27f Var \/27r

dsds'  (Z+4+z/2—5 ) —z/2-4¢
e e e R s

eFE eE
F(kL,w—Ts,w——h—s) , (2.19)

Fky, by, by, 1) = otk (Z42/2)eik, (Z-2/2)

where 2 and 2’ in (2.5) have been replaced by (Z + z/2) and (Z — 2z/2) in the
center-of-mass coordinate space.
By writing

eF eFE
F (k_L,Ld— ?S,Ld— ?Sl>

dt i (w - shﬂs) t dtl —i(w——s-has') !

t 1]
——e e F(ky, t t),
Vor Ve (s )

and using the integral representation (A.2) for the Airy function, Eq. (2.19) reduces
to

) h Kk, Tt Rk, T\ -
F(k =vVorL—F —2 - 2 k, 2.2
(k, 7) iy (kl’ cE T3 eE 2) Ap(ks, 7) (2.20)

with

J(eB)? 3, e(k
AE(kza T) = e [%TEIWTT ¥ _(ﬁ_l‘r]
the Fourier transform of Eq. (2.11). In Eq. (2.20), we notice that hk,/eE can be
regarded as the k,-dependent “center-of-mass” time T'(k,) since hk, is the electron
momentum in the field direction and e E the accelerating force due to the field. Thus,
in our formalism, the unperturbed (absence of scattering), field-dependent spectral
function fiE can be exactly factored out of all the functions (Green’s functions,
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self-energies, correlation functions) we will be dealing with. This bears a formal
analogy with Eq. (2.21) of Ref. 19 for the definition of the “reduced functions”.
In the present case, however, Ag contains information about the motion along the
field direction only. This motion is also described partly (through T(k,)) by the
F-function on the RHS of Eq. (2.20), which also gives us information about the
motion on the plane perpendicular to the field direction.

By the same procedure, a function F{w — eEs/h), of a single (w — eEs/h)
argument, can be put into gauge-invariant form. In this case we have

F(k, 7y = F(ky, 7)Ag(k,, T}, (2:21)
where
F(r):/%e‘inTF(Q)
and

The k,-dependence is now carried only by the unperturbed, field-dependent spectral
density function Ag which also contains an explicit dependence on the electric field.
This is an interesting result: it tells that the transverse and parallel components of
the motion are separated and can be treated independently. Equation (2.21) also
implies that the Fourier transform from 7 to w of Eq. (2.21) is just the convolution
product

Pk, ) = /dQF(kl, Q) Ak, w-10) . (2.22)

This property will be very useful in calculating the quantities of interest. Fur-
thermore, remembering the expression (2.11) for Ag(k,, w), we have

(2.23)

Flk,w) = /dQF(kl, Q)—éAi [m— (A ”5(’“‘))] 4

©

This result states that in order to transform a function f defined in (s, w)-space
into gauge-invariant form, we simply have to take its single Airy transform

f(s) = /dz%Ai <Z;5> £(2)

with L, z and s replaced by 9, A and (fiw — e(k,)) respectively.
We can also establish a connection between Eq. (2.22) and (2.20). Let us take
the average of (2.20) over the k,-dependence of the center-of-mass time T'(k,). This




Nonequitlibrium Green’s Functions ... 3453
means that we only have to average the function F(T(k,)+ 7/2, T(ky) — 7/2):

(F(T(k.)+7/2, T(k,) —7/2)) = / dykz

2z

F(T(k.)+ 7/2, T(k;) —7/2)  (2.24)

where v, = +/2xL is the field-dependent volume-element in (k,, s)-space which
reflects the different metric obeyed by the Airy space. Again, by writing

F(T(k,)+7/2, T(k,)—7/2)

™ T

the above average (2.24) becomes

1l el

(F(T(k,)+7/2, T(k,) — 7/2)) ?F(T) . (2.25)

T
By inserting this in place of F(T'(k;) + /2, T(k,) — 7/2) in Eq. (2.20), we obtain
precisely Eq. (2.21) which is valid for functions diagonal in (w — eEs/h) in s-space.
As a simple example of how the above procedure is employed, let us transform

% given in Eq. (2.9) into gauge-invariant form.
Using the prescription (2.21), and (k) = e(ky ) +€(k,), we immediately obtain

[;EE; 3+ 5%27]

3r(ky, 7) = —%0(r)e_i , (2.26)

in agreement with previous results and, by Fourier-transforming the r variable,

Gy, w) = _% [Gi (.—L@E(I‘D +iAi (—h‘“—‘@@)] , (2.27)

where Gi(x) can be evaluated in terms of Airy functions.3!

3. A Model for the Self-Energy

In order to solve Dyson’s equation for G”, we need a model for the retarded self-
energy %7,
The operator ordering in G< is such that it vanishes as the density goes to zero.
As a result, for a nondegenerate system, the term containing G< in the expression
for ©7, as given in Eq. (1.2), is a negligible correction®1® to that containing G~
and
= DG .

This is a standard approximation which decouples Dyson’s equation for G from
that for G<, thus solving one of the difficulties mentioned in the Introduction.
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Also, at low-particle densities, the electrons are not expected to influence the
phonon states, so we can assume that the phonons remain in equilibrium and are
not affected by the electric field. We therefore use the familiar expression!®

D3 (q,w) = —< Z [Val? <N + ) 8w — nwq) (3.1)
r) +1

for the phonon correlation function. Here q and Nq are the phonon wave vector and

occupation number, respectively, and |Vq| is the electron-phonon interaction matrix

element.® The term with 7 = +1(~1) corresponds to emission (absorption) of a

phonon of frequency fiwg. Within this model, the retarded self-energy in reciprocal
space reads

r _ dq 2 n+1
E (k_L)kakZ’)w)_—Q,’r/(z,’r) Z |V| (N + 2

n=%1

xG(ky—qu, k:— ¢,k —qrw — an) .

(3.2)
By Airy transforming along the z-direction we obtain
dk 1
Tk, s s, w)=—1i la Z|V|2(N +7)+ )
(27 5, 2

dSNdS”I ,
X / Iz ——G (kL —qu, s, " w— an)

dz . z— 8 z—s"
— ptsZ y y
X/Le Az( 7 )Az( T )
s — g
_—qu,z A . 3.3
ST a () e

We consider scattering with nonpolar optical phonons, characterized by a dis-
persion spectrum and a momentum-independent coupling matrix element. Since
scattering is relatively weak in most semiconductors, we also evaluate (3.2) only
in the lowest-order, one-phonon scattering processes by taking G" ~ G%. With

these simplifications, " turns out to be independent of the transverse momentum,
namely

. +1 dz . (z—s fz—5
(s, o w) = —i 3 V] 1 /—
(s, 8", w) zn_il V] (N + 5 ) I Ai 7 Al 7

[ () [ty

This equation is exact in the sense that, within the present physical model, no
mathematical approximations were made to obtain it. Furthermore, X7 is a function
only of the difference, €2, of the w and s variables, as can be easily verified.
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Let us consider the “averaged” self-energy

3\'"? pap [ eE n+1
Iy ! ‘ e P20 2 g -
/dsE(s,s,u)_—<2) o (31/3®>Z’:|V1 (N + )
x/wig(%ﬂw%)
0

$3/2
=37 (Q) (3.5)
where ( = —(hw — eEs — nhwo)/3'/30 and pyp = 7V (2m/h?)N/2 is the Nth di-

mensional free-electron density-of-states factor. Equation (3.5) can be transformed
into gauge-invariant form by the prescription (2.22). The result reads

S(k,, w) = Elvlz (N + "“) F(k,, w)

Re[F(ks, w)] = (gjr’;z@’/? [Ai'({)Bi’({) EAIE) Bi(€) + \/-19(5)] (3.6)

miF(ks, 0)] = — 255017 (A12(E) - £4i%(E)]

where now § = —[hw — £(k,) — nhwy)/21/30. This expression has to be compared
with Eq. (20) of Ref. 28. The two models have a very similar behavior. The model
considered in Ref. 28, however, neglects the real part of the self-energy, which de-
termines the renormahzation of the quasiparticle energies caused by the presence
of the interactions (including the electric field). Also, because of the averaging pro-
cedure over k, 1t ignores the dependence on the electron momentum along the field
direction. Both features are retained in the present model of Eq. (3.6). Further-
more, the above self-energy has the correct limit for vanishing fields. In fact, when

E — 0 (or equivalently, £ — o0), its imaginary part, which the optical theorem
relates to the scattering rate T by

1 2 ,
T(w) = =i ——ﬁImE (W), (3.7

reduces to that obtained by considering one-phonon emission processes in the Born
approximnation:

1
E]1m EImET( w) = 4 p3D Z|V|2 (No + nt 1) Vhw—e(k,) —nhwo . (3.8)

On the other hand, the real part of the self-energy vanishes when E = 0. This
mdicates that our lowest-order approximation fails to describe fully the energy
renormalization caused by collisional broadening alone, but it represents a quite
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Fig. 1. The real and imaginary part of the self-energy for 500 kV/cm (a) and 50 kV/cm (b)
for phonon-emission processes. We use parameters appropriate to Si: and optical-phonon energy
hwo = 64.04meV; deformation potential D; = 11.0 - 10® eV/cm; density p = 2.33g/cm?® and
effective mass m* = .3282m.. The longitudinal momentum k; is taken to be equal to zero.

reasonable model for the ICFE. Figure 1 shows the real and imaginary part of the
self-energy for emission processes as a function of the argument & for two different
values of the field. The oscillatory nature of the self energy has not been seen in
previous treatments of the high-field behavior and is a consequence of the nonper-
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turbative inclusion of the electric field in the problem. These oscillations indicate
the existence of regions in which the electron energy is alternately lowered (negative
values of the self-energy) and raised (positive values of the self-energy), suggesting
the existence of preferred energies for the electron, with every other zero crossing
in the figure representing a quantized level towards which the quasi particle energy
tends to concentrate. In the solution (2.4) the zero crossings would occur asymp-
totically where € = [37(2n — 1/2)/4]*/3. In ReL"(w), on the other hand, because of
the presence of phonons, and of the irrational factor 21/30, the oscillations are in-
commensurate with those occurring in the phonon-decoupled problem. The validity
of the interpretation is reinforced by the step-like oscillations present in Im¥" (w).
Since this quantity is proportional to the scattering rate I'(w), the plateaus, which
occur precisely at the negative values of ReX"(w), are an indication the the quasi-
two-dimensional sub-band tendencies mentioned above. Furthermore, the presence
of the ICFE and of CB is found to generate a tail in T'(w) for £ < 0. The existence
of such a tail to negative energies corresponds to the part with £ > 0 in the Airy
function Ai({), and represents tunnelling into the classically forbidden region. This
smooths out the sharp threshold in energy of the scattering rate, making possible
transitions that cannot occur in the absence of the field.

4. Dyson’s Equation and its Gauge-Invariant Solution

As explained in the Introduction, the calculation of static properties such as the
spectral function and the density of states of the system interacting with the envi-
ronment, requires the solution of the full Dyson’s equation (1.10) for the retarded
Green’s function.

If the electric field 1s applied along the z direction, Dyson’s equation can be
written as

G"(k_L, z, Z’) u) = GrE(k_L, z, ;:'7 w)-{—/dzlezG;g(k_L, z, 21, w)

x X (ky, z1, 20, w)G (k) , 29, 2/, w) . (4.1)

By using the transformation (2.5) and the self-energy model of the previous
section, Eq. (4.1) simplifies to

G'(kyi, s, s, w)=Gxlky, s, w)b(s—s)

+ Gglky, s, Q))/dSQET(S, s, w)G (k) , 52, 8", W) .
(4.2)

The approximation G" =~ G% in X" does not neglect essential physical effects
such as collisional broadening, as one might be led to think, because the retarded
Green’s function must still be determined self-consistently in (4.2) and the presence
of G% introduces high-field effects in the total Green’s function G (see below).
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Due to the singular behavior of the self-energy (3.4) in s-s,, the s, dependence
of the product X7 (s, 59, w)G"(k,, s, s', w) in Eq. (4.2) is dominated by X", and
we can, therefore, move G"(k,, sq, s', w) outside of the integral. This results in
the replacement of the self-energy (3.4) by its average over the variable s, whose
expression is given in Eq. (3.5).

Equation (4.2) can now be solved immediately, and we obtain

5(Q — )

G7(ks, ) = 75— e(ky) — ()

(4.3)

a function diagonal in the §2 variable.
Since the full retarded Green’s function above is only a function of the difference

(w — eEs/h) we can again use Eq. (2.22) to transform it into gauge-invariant form,
namely

GT(k,w) = /dQG’(kl, WAg(k,, w —Q) . (4.4)

The gauge-invariant spectral density can now be immediately calculated, and it
1s given by

Ak, w) = /dQA(kl, W Ag(k,, w — Q) , (4.5)
with

~-2Im E7(92)
(A2 —e(kr) — ReZr(Q)]2 + ImEr(Q)]?

Aky, Q) = —2ImG" = (4.6)

In the absence of an electric field, even if ReX"(Q2) — 0, the above expression
gives a finite width which accounts for collisional broadening (see Eq. (3.8)).

A(k, w) satisfies the normal sum rules because (4.6) does?* and because of the
normalization properties of the Airy functions (see Eq. (2.11)).

The zero-field, zero-scattering limit can also be evaluated. From (4.6) and (3.8)
we have

lim Aky, Q) = V2r8(hQ - e(ky)) |

and from Eq. (2.11)2
lim Ap(k,, w — Q) = V2r8(hw — hQ — e(k.)) ;
therefore,
Afree(k, w) = 2 / dQ6(hSY — e(k1))b(hw — RQ — e(k.))
= 276(hw — e(k)) , (4.7)

as in the semiclassical theory.
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For phonon emission processes, Fig. 2a shows the role of ReZ™() in removing
the semiclassical peak from ¢(k ; ) = A2, and placing it with one closer to the energy
corresponding to the phonon interaction, according to the solutions of

WY —e(ky) —ReX () =0 .

For the given electric field, Re £7(2) plays no essential role when e(k, ) equals the
phonon energy hwg, at least compared with the cases of smaller transverse kinetic
energies, where its increasing important in further distorting A(k,, Q) is evident.

However, even when e(k ) = hwy, a finer scale reveals a more complex behavior
with the electric field (Fig. 2b): the narrow peak is splhit, at Q@ = wy, into a left and
aright peak indicating the role played by the discontinuity of ReX" () at this value
of the total energy (see Fig. 1).

The behavior of A(ky, Q) for e(k.) = hwg, 1s further analyzed in Fig. 3 as
a function of the electric field. At the very small fields, A(k,, Q) reduces to the
half Lorentzian shape caused mainly by CB (Fig. 3a). Increasing the electric field,
the narrow CB peak broadens into the double-peak structure seen in Fig. 2. We
interpret this as an indication of the increased distorsion, caused by the field, in the
momentum-energy relationship. The right peak would describe the probability that
the carrier has of being forward-scattered, and accelerated even during the emission
of a phonon. The electron loses less energy to the phonon and exits the scattering
process with a total-energy change greater than hw,. The left-hand peak, on the
other hand, indicates the possibility for the electron of being decelerated by the

’—‘ e(kJ_):Tmo
E= .1kV/cm
0.004 b
= e(k;)=-5%0,
&
=
e(k;)=0
0.002 | R
0.000 1
-0.5 0.0 0.5 1.0 1.5 2.0
(A-w,)/w,
(a)

Fig. 2. The normalized spectral density function A(k , ) in Airy representation for different
values of the transverse kinetic energy (k).
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Fig. 2. (Continued)
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Fig. 3. The normalized spectral density function A(k;, Q) in Airy representation for different
values of the electric field.

field during the emission process. In this case, the collision ends with an energy
loss greater than hwg. The energy change in the lattice is always just the phonon
energy, but the electron sees a modified energy by virtue of the field acting during
the collision. This interpretation is supported by the fact that, by increasing the field
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Fig. 3. (Continued)

(Fig. 3b), the height of the left-hand peak, relative to the right-hand one, decreases,
and their relative separation increases. At high fields (£ < 10kV/cm) only the right
peak survives in a broad Lorentzian-type spectral density whose shift towards high
energies would, then, indicate the role of high fields in reducing scattering efficiency.

Figure 4 shows the spectral density function /i(k, w) for different values of the
electric field, as a function of the dimensionless variable w/wy. Because of the
approximately equal weight that A(k , ©) and /iE(kz, w — Q) give to the integral
(4.5) at these values of the field, /I(k, w) is not a positive semi-definite quantity,
and its interpretation as a probability function pose some problems. However, at
the very high electric fields (< 500kV /cm), or for higher scattering rates, where
the dominating contribution in (4.5} arises from the broad Lorentzian-type shape
of A(ky, @), the oscillatory behavior of A is characterized by a rather large period,
with the amplitude of the oscillations decaying very slowly as the energy increases
(Fig. 4a). As the field strength is reduced, the oscillations are compressed to a much
smaller range of energies and their amplitude now decreases very rapidly. Finally,
the oscillatory behavior dies out at the very low fields where Ag approaches its 6-
function behavior, and the more familiar®!%3% Lorentzian-type shape of A reappears
(Fig. 4b).

Once the spectral density is known, we can calculate the density of states per
spin as follows;

dk -
27r)3 ) / W/dQA(kL, Q)AE(IC;, w — Q)

9= o
] s

Qpy(w = Q2) (4.8)
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Fig. 4. The normalized spectral density function fi(k, w) as a function of w/wp for different field
values.

where
B dk _pap |7 1 [RQ—ReZ7 ()
p_l_(Q) = / WA(I(J_, Q) = QTDQ [5 + tan [W:H s (49)
and
[ dk, - _pip L L[ Rw-—9Q)
pilw —Q) = / o Aglk,, w—Q) = (2n)? ﬁAz [_T] . (4.10)
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Fig. 5. The density of states py (a) and p; (b) as functions of the dimensionless variable w/wg
and {1/wg respectively.

Figure 5 shows the density of states py. This is the density of states for a one-
dimensional system corresponding to the component of the motion along the field

direction. As the electron energy hw is increased, py oscillates between zero and
twice the free-electron form of the density of states

_ PiD 1
A= 0 e =)
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Explicitly,

/2
. _PiD 1 o2 [Rw -1 =
I P =) = s ey [5 [T tq

On the other hand, at very small energies, namely for vanishing electric fields, p|
does show the free-electron behavior since

PiD 1

2m3 /h(Q - w)

Figure 5 also shows the density of states p, corresponding to the component of
the motion on the plane perpendicular to the field direction. This 1s the density
of states for a two-dimensional system. Here, however, the sharp step-function

behavior, typical of the free-electron system, is smeared by the presence of the
interactions.

}?Lno plw =) = ( V(A — hw) .

0.04 ’— T T R
E=500kV/cm
3
Q
0.02 - B
0.00 : '
-10 0 10 20
W/

(a)

Fig. 6. The gauge-invariant density of states 5 as given in Eq. (4.8) versus w/wq for three different
values of the electric field.

Figure 6 shows the total density of states (4.8) for different values of the electric
fields. Here again, the oscillations denote the existence of preferred energies (rather,
energy subbands) for the electron, caused by the presence of the electric field. These
subbands, however, are compressed to a very small energy range as the electric field
decreases, until they collapse to form a continuous spectrum at E < 5kV/cm. The
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Fig. 6. {Continued)

zero-field behavior is restored at high electron energies. The negative-energy tail,
also present at low fields where the oscillations have already disappeared, on the
other hand, shows the effect of the collisional broadening. All this essentially con-
firms the interpretation given previously to the gauge-invariant self-energy (3.6).
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5. Quantum Kinetic Equations

The ultimate goal is to find a solution for the quantum distribution function, such
as the Wigner function, from which observables like number or current density can
be extracted. There are at least three possible ways to proceed. The first one would
be to construct a joint spectral density, as suggested by Reggiani et al.!® and apply
the quantum Monte Carlo technique.?’ However, the nonpositive definiteness of
the spectral density would require either an approximation scheme, or nonstandard
simulation techniques. Another possibility is to construct a simulation technique
directly in the Airy-coordinate representation (Ref. 37 is an attempt to pursue this
approach). A third method is to apply the techniques explained in Sec. 2, and
directly solve the KBK equations for the correlation function G<. Explicitly, they
read

) [o9)
<lﬁ% - }{) G<(I‘, t, I'/7 tl) = / dtldl'l [Er(r, t, ry, tl)G<(I‘1, tl; I"1 tl)
oo

+Z<(r, t; 11, 6)G(ry, ty; 1, 1)) (5.1a)

e e]
(—iﬁa—aﬁ - H’) G<(r, t;x', ') = / dtidry (G7(x, t; v1, £1)E<(x1, 150/, £)

- 00

+G<(x, t; r1, t1)8%(r1, t1; T, t)] (5.1b)

By Fourier transforming the transverse variable (r — '), and Airy transforming
the longitudinal variables z and z', as well as Fourier transforming to frequency
variable w on both sides of (5.1), these can be written in (k, , s)-space as

ho = sk G (ks 5,7, w) = [ dor [ (s s, 51, )G (ke 51, ')
+5%(ky, s, 51, w)G*(ky1, 81, 8, w)]
[hw —e,(k)]G<(ky, s, s, w) = /d51 [Gr(kh s, 81, w)X<(k_, §1, §', w)
+G<(ky, s, 51, w)X%(ky, s1, ¢, w)] .
This is a vast important over the many integrations one gets by using ordinary
coordinate and momenta. Furthermore, by employing the model (3.5) for the re-

tarded self-energy and, consequently, using Eq. (4.3) for G", the above equations
become the simple multiplicative equations

[hw — e (k)] G<(ke, Q, Q) = T (DG (ky, Q, )+ £X(Q, )G (kL, )
(5.2a)

[hw — (k)]G (ky, Q, Q) =T (kL, DE(Q, Q) +G<(kp, Q, Q)TN .
(5.2b)
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Each of the above equations can be solved for G< independently, and both give
(compare with Eq. (1.11))

G<(ky, Q, Q)= G (ky, QTNQ, Q)G (ky, V) . (5.3)

The same result can be obtained by subtracting the two equations (5.2a) and
(5.2b). Analogously, by adding, instead of subtracting, the two equations, we always
arrive at the same result.'* All this can be proved by simple algebra, and it tells
the equivalence of the two KBK equations.

An important point worth mentioning here is the following. Equation (5.3) relies
on the approximation discussed below Eq. (4.2), which involves only retarded and
advanced functions, but no less-than functions. Now, in Eq. (5.3), £< contains
scattering “in”, but scattering “out” is carried over by G™ and G°. One can then
wonder whether approximating G" and G< in different ways would introduce an
asymmetry between scattering “n” and “out”. In this case, the resulting equation
would be likely to viclate conservation laws such as, for instance, conservation of
particles. To convince ourselves that this is not the case here, we recall that, as
mentioned above, Eq. (5.3) is entirely equivalent to

MR - Q)G<(ky, Q, Q) = [27(Q) - SHQ) G<(kL, Q, Q)
—[GT(ky, Q) — G*(ky, Q) TYQ, @), (5.4)

obtained by subtracting (5.2b) from (5.2a). In (5.4) the first term on the RHS
corresponds to scattering “out”, whereas the second term is the scattering “in”
piece. Written in this way, the (generalized) scattering rates [X7(Q2) — £%(Q2')] and

[G"(ky, ) —~ Gk, )] appear entirely symmetric, and are clearly evaluated on
the same level of approximation.

In order to put Eq. (5.3) into gauge-invariant form, we have to use rule (2.20)
for nondiagonal functions, which we can rewrite as

G<(k, T)= VQWL—h—/ Me—i[T(k,Hg]n’ei[T(k,)-,an
el 27

x G<(ky, Q, V)Ag(k,, 7).

According to Eq. (1.13), the distribution function is obtained by taking the
frequency integral of the correlation function

= dw
fk)y=nh NG

_ ho [ dQdSY ik, ya-a) < /
_\/QWLEE/ e G<(k., Q, ), (5.5)

G<(k, w) = hG<(k, 7 = 0)
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and thus the knowledge of G< in Airy representation suffices to determine the full
f(k). In (5.5) we also observe that the transformation into gauge-invariant form

restores the k,-dependence through the “center-of-mass” time T'(k,) discussed in
Sec. 2.

5.1. Formal properties

Let us now consider some properties of G< in Airy representation. By substituting
the explicit expression (4.3) for G™, Eq. (5.3) can be manipulated to give

G<(ki, Q, Q)= Aky, Wfike, Q, Q) , (5.6a)

with
fl(k_Lv'Qv Ql)

_Go(ky, Q) [E<(97 Q’)] (5.6b)

Gk, Q) hI'(2)
Equations (5.6) satisfy both (5.2a) and (5.2b) as can be verified by substitution.

Expression (5.6a) for G< is quite interesting. It is derived exactly from Eq. (5.3)
and has the same formal structure of the nonequilibrium ansdtze introduced in
many earlier attempts to solve both the high-field and the linear-response-regime
problem.121%18.22,3% Fayation (5.6a) expresses a direct relationship between the
correlation function G< and a quantum mechanical distribution function f;. In the
present. form, however, f; has no practical advantage with respect to G< since it
contains the same number of variables, and we might as well solve (5.6a) directly
for G<, as can be easily realized by recalling expression (1.2) for X<.

The separation given in (5.6), however, is not unique since, by substituting G,
instead of G, we can write

G<(k1, Q, Q)= Ak, Q) fa(ky, Q, Q) ,

folky, Q, Q’) =

G ki, Q) [E<(Q, Q)

Gm(ky, Q) RT(Y)

A unique expression is, however, obtained for the modulus of G<:
|G<(ky, Q, Q) = AkL, Q, V)F(ky, Q, Q) ,

with <0, 9]

no_ s

f(k_L) Q) Q ) - hF(Q, Q') ’

which is now independent of the transverse momentum k, , and

Aky, Q, ) = VAKL, QAL Q) , T(Q, Q)= /T(Q)I ()

the geometric means of the two spectral density functions and scattering rates,
respectively.
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Also the diagonal elements G<(k, ) have a unique factorization

G<(ky, Q) = Ak, D) F(Q), (5.7a)
with £<(9)
Q)= - hF((Q) , (5.7b)

again a momentum-independent function.
By a procedure similar to that leading to Eq. (3.5) for X7(Q), we obtain the
Airy representation of ¥ <, namely

_ _pP 1 2 n+1 d(kyL ~qu)
Q) = —nﬂ’% T ); \4 (NO + T) / @y

o 40, (RO R . ,
x/_oo E/h (W)G (ky —aqu, @+ nwo) .

(5.8)

Therefore, by using Eq. {5.7a}, and performing the momentum integration, f(£2)
defined in (5.7b) satisfy the homogeneous integral equation

7(Q) = /dQ’K(Q, QVF(Y) | (5.9a)

with

V330

At o g { B — BEY ,
X/:?—We @A (=5 ) PLE) (5.9b)

1
K(Q Q)= 22 S v <N0+%)
n

and p, () given in Eq. (4.9) with ¢ = —(AQ' + nhw,)/3'/30. In Eq. (5.9), the
variable Q' always appears as Q' + nwg, and thus represents the total electronic
energy before the scattering events has occurred. "On the other hand, © always
appears as 2 — nwg. The kernel K (Q, '), therefore, acting on the function f(')
calculated before the scattering, transforms it to f(€2) evaluated after the scattering
has occurred. Here we recall that in equilibrium qu (w) = frp(W)Teq(w), and hence,
in this imit, f(Q) reduces to the Fermi-Dirac distribution fpp.5
The function f({2} turns out to play a crucial role in the future development.

6. Average Values

6.1. Density of particles

Once the distribution function f(k) is obtained, the average values of the observables
of interest, can be calculated as its moments.

’

!
|

|
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The number density n, for instance, is obtained as

n:%Zf(k),
k

where V is the crystal volume.
Applying Eq. (5.5), and going to the continuous k-variable, the required k,-
integrations are readily performed and we obtain

n :/(d;(T;/dQGﬂkl, Q) = /deL(Q)f(Q) = /dQn(Q) , (6.1)

where Eq. (5.7a) has been used, and the k, -integration has been performed.

Here we would like to stress that f(k) contains the full, nondiagonal correla-
tion function G<(k_, 2, Q') (a diagonal G< gives no current) and that this was
employed to obtain Eq. (6.1). However, as a result of the k,-integration, one needs
only to explicitly evaluate the simpler diagonal G<(k_, ), or, equivalently, f(£2).

The kernel K(Q, ') in Eq. (5.9b), though quite complicated, is expressed in
terms of standard functions and therefore Eq. (5.9a) is well suited for a numerical
solution. We have solved Eq. (5.9a) iteratively with a Maxwell-Boltzmann distri-
bution as the initial guess. Since Eq. (5.9a) is a homogeneous equation, it requires
a boundary condition. This is provided by Eq. (6.1). Namely, at each iteration
f(2) was normalized so that the density of particles stayed at a constant value of
n = 10%® cm~3. In the numerical work, the truncation of the infinite Q-integral had
to be carefully optimized in order to obtain a convergent distribution function n(£2).
Once the proper (‘converging’) integration interval was identified, the final results
were not sensitive to the choice of the seed of the iteration, and the normalization
procedure described above was carried out to take care of roundoff errors. One
should also note that since we are working with a homogeneous equation, which has
a trivial solution f(£2) = 0, one must also be on guard against a collapse towards
this direction.

Figure 7 shows the function n(Q2) for two different field strengths. For compar-
ison, we also show the corresponding equilibrium function. An important feature
of n(Q2) 1s the pronounced high-energy tail, which is consistent with the results of
Refs. 18 and 20. It suggests that the carriers can increase its kinetic energy even
when 1t emits a phonon because of CB and ICFE. We also find the existence of
particles with negative total energy, as well as a series of preferred energy levels
indicated by the damped oscillations occurring at €2 > 0. The period of the oscilla-
tions exactly scales with the field strength (this feature is also present in the gauge

invariant spectral density function) confirming the sub-bands formation caused by
the field.
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Fig. 7. The local density of particles as a function of the electron energy. \,
|
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6.2. Current density j

|

The electron current density is calculated from the distribution function f(k) as

eh 1

J=—e(v) = —;ka( )

that i1s, by the same procedure as in the previous subsection,

: h? dk dQdQY' _r :
J=—Vor— | —/——_ i v 20 TR <k QL Q)
! 27 E (27{_)3/2 (k_Lr_L + k Z)/ 9 € G ( 1, ) )

-+ = J ¢+ 7,

" with £, and Z the unit vectors along the transverse and longitudinal direction,
respectively.

i The transverse component J vanish identically because of the angular integra-

tion. The longitudinal component, after the variable change k, — T'(k.), can be

l rewritten as

J.=a(EE
generalizing Ohm’s law through the field-dependent, steady-state conductivity

d
QdQ e~ iT(0- Q)G<(kl, Q, Q) (6.2)

m (27r

. o(B) = & [ Gk
l
I
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This expression can be put in a more transparent form by noting that

0 0 n_ [TdT o ira-a) ‘
(- &m0 |- Lo L

oo

and substituting this into (6.2). An integration by parts then, leads to

_ 62 dk_L ] d 8 < 7
og = E —(QW)Z /dQ |:—§ (55 - 39’) G (k_L, Q, Q )]

From this expression we understand why a diagonal G< would lead to a vanishing
current. Indeed (8/9Q — §/9€)) measures how G changes as (2 — Q') varies. For
G< o §(Q2 — ') this variation is precisely zero if one understand 6(2 — Q') as the
limit of symmetric, highly peaked functions. Therefore, while a simpler, diagonal
model for G" can lead to physically meaningful results, the full, nonlocal total —
energy dependence of G< must be retained. The situation is quite analogous to
what is encountered in standard linear-response theory: there, simple forms for G”

suffice, while for the vertex part, the full frequency dependence must be considered.
Using Eq. (5.3)

g 0 < ;
(E)Q_W>G (ky, @, Q)

aQ-qf

Q=0

8 8
= 5q— 5 "(Q, )Gk, O
((‘m 8Q,>C(kl,9)2 (Q, )Gk, )n:nl,

and noting that for the present type of scattering mechanism [(J/0€ — 9/0SY")
<, )]a—a = 0 (see Eq. (3.3) with r —<, and —nwq — +1wq), we have

o 0\ . ,
(6_9_ an> G<(ky, Q, Q)
C[0GT (ki, )

- o0

Q=

oG (ky, )

G s )6 (e, 0 P B e )

Q=

By Eq. (4.3) the derivative of G" and G*® are easily performed and, finally, one

obtains
he? dk | 10ReX"
I P
77 om (27r)2/ [( h 69)
Im ¥ .
+(hQ — e(ky) — ReX") (%al“a—glﬂ x A*(ki, Q)f(Q) .

(6.3)

This expression for the nonlinear conductivity 1s the central analytical result of
our work. Equation (6.3) bears formal similarities to the linear Quantum Boltzmann

Equation derived by Mahan'?'®: some of the mass-renormalization factors have the
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same structure (but recall that there are nonequilibrium quantities), and we also
get the square of the spectral density.
The k_ -integration can also be performed analytically and we obtain

Sy o (1- 325 puair@s@
/dQ(ZirDQ) (1 ;3%; )(ﬁQ—ReZ’)r(Q)G<(Q)

where [r(Q)]”' = —2—1"1—?@2 is the scattering rate and G<(Q2) = Ak, = 0, Q)
S ).

Equation (6.4) effectively reduces the evaluation of the nounlinear current to the
solution of the one-dimensional integral equation (5.9) obeyed by f(£2) and already
discussed in Sec. 6.1.

An important question concerns the relation between our result and the well-
known results in linear-response theory. Taking the linear-response limit of f(2) in
our formulation is not straightforward. We trace the difficulty to the fact that in
the zero-field limit the Airy functions do not approach plane waves uniformly (but
they do in the distribution sense, see Ref. 38). Consequently, we have not been
able to demonstrate in general that the linear limit of our result coincides with
those obtained with, say, the Kubo formula, or the Quantum Boltzmann Equation
of Mahan'?%? and others. However, it is not difficult to demonstrate that the
semiclassical Boltzmann equation resull is contained in our theory. To see this,
note first that in linear response, we can evaluate all the quantities appearing in
Eq. (6.3) in equilibrium. Next, according to the Boltzmann picture, we make the
quasiparticle approximation

[ Saarteten) Jf(m:{f(j((%;;.

Recalling the connection between the relaxation time and the imaginary part of the
Green’s function (3.7), and using expression (6.1) for the number density, we see
that the Boltzmann equation result ¢ = ne?r/m is recovered.

In Fig. 8 we compare the drift velocities obtained with quantum approach, and
semiclassical simulations.*® To our knowledge, this is the first time such a com-
parison has been made. Our quantum-mechanical calculation results in a larger
drift velocity than what is found in the semiclassical case; confirming the predie-
tions of other quantum transport simulations.'®2? Finally, in Fig. 9a, we display
the effect of temperature, and in Fig. 9b calculations corresponding to two differ-
ent values of the deformation-potential constant are shown. The qualitative trends
seen in Figs. 9a and 9b are the same as found in experiment and in the semiclassical
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Fig. 8. The electron drift velocity vs. electric field. S. C. refers to semiclassical cellular automata
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Fig. 9. a) Effect of temperature for quantum drift velocities. b) Effect of coupling constant for

quantum drift velocities.

theory. It would be, however, premature to assign quantitative significance to the
actual numbers of interpret experiments in the light of our model calculations: to do
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so one would also have to consider other scattering mechanisms as well as realistic
band structures.

7. Calculations

We presented a new formulation of the Kadanoff-Baym-Keldysh nonequilibrium
Green’s function methaods to develop a fully quantum mechanical formalism that can
be used for high, homogeneous fields. The aim was to derive a spectral density model
and a quantum kinetic equation which account for both the energy dependence
of the collision rate and the intracollisional field effect in a relatively simple and
Tigorous way.

Spectral density is an object of central interest in theories of interacting many-
body systems. On the other hand, it gives information about the quasi-particle
spectrum of the system, such as densities of states of life-times. On the other
hand, quantum kinetic theories on nonequilibrium Green’s function techniques, of-
ten require the knowledge of the spectral density as a prerequisite. Solutions for
the spectral density for nontrivial systems under highly nonequilibrium conditions,
such as those encountered in many semiconductor microstructures, are scarce, and
in most cases restricted to limiting cases only (e.g. weak fields or weak scattering).

In order to find a spectral density model which treat scattering and field effects
on equal footing, we replaced the usual momentum representation along the field
direction by a representation in terms of a convenient set of variables (‘Airy coor-
dinates’). We have to point out technique differs from the previous ones that have
found solutions in terms of Airy functions. The introduction of the Airy trans-
form, in fact, introduces the proper symmetry of the system from the beginning,
thus yielding mathematically simpler equations with fewer coordinates and convo-
lutions. We have applied this technique to the case of silicon with nonpolar optical
phonon scattering, under a homogeneous electric field of arbitrary strength.

However, the interpretation of results given in Airy coordinates is not straight-
forward because of the explicit gauge dependence. Therefore, we have undertaken
a general analysis of the interrelationship between the Airy coordinate results and
thelr counterparts in a gauge invariant formulation. Our main formal results are
contained in Egs. (2.20) and (2.22), which allow one to transform any function found
in Airy coordinates to a gauge-invariant form. As an illustration of the techniques,
we consider a number of examples, the results for some of which were known previ-
ously. As a nontrivial application, we consider the model electron-phonon system
mentioned above.

The result is tlie appearance of a series of damped oscillations in both the real
and imaginary parts of the electron self-energy. They indicate the existence of
preferred energy levels for the electron, represented by the alternate zero-crossings

of the real part of the self-energy, and reflected in the plateau-structure of the
scattering rate.
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The solution of Dyson’s equation, obtained by making use of the singular nature
of the self-energy function in the Airy representation, preserves the sum rules any
proposal for the spectral density must obey. We have analyzed the resulting spectral
density and density of states as a function of the applied field (Figs. 2-6). We
find a transition from a collision dominated regime for low fields (pure collisional
broadening) to a field dominated regime for high fields.

Next, we applied our techniques to the Kadanoff and Baym quantum kinetic
eqnations in order to derive a gauge-invariant distribution function f(k) and eval-
uate the average values of experimentally accessible quantities.

Our calculations involve neither assumptions of the form of the nonequilibrium
correlation function, nor gradient expansions, as in the case of many older theories.
This represents a significant improvement with respect to previous formulations,
most of which have resulted either in formal results only, or have required non-
standard Monte Carlo techniques for their solution. The only (and in our view,
not essential) approximation was made in the choice of the model for the retarded
self-energy for the electron-phonon interaction. The main consequence of this ap-
proximation is that the retarded and advanced Green functions are diagonal in the
variable 2. Given this property, the KBK equations for the correlation function can
be manipulated analytically without introducing additional approximations.

Nonunique solutions of the KBK equations were obtained in the Airy represen-
tation for the nonlocal correlation function G<(Q2, Q'), whereas a unique solution
could be obtained only for the local G<(Q2) from which, however, a straightforward
evaluation of the current is not possible.

An interesting feature of the Airy representation is existence of the relation
G< = Af which generalizes to high fields the equilibrium relation (1.12). This
relation is the expression of the “fluctuation-dissipation” theorem:*! It relates the
mean-square fluctuation

()it (@) = / dre T (i(1) i (0)) ~ G<(w)

of the field operators (or, more generally, of any appropriate operator) to Im G” (w),
which is often proportional to the dissipation in the system.?? This is a cele-
brated result, and because of its generally it is believed (although debated in the
literature??3®) to hold also for nonequilibrium systems. However, for these cases,
none of the previous approaches has been able to derive an expression that, through
the distribution function, exactly relate the correlation function and the spectral
function. Even in the near-equilibrium gradient approximation only ansatze are
available.

Finally, by employing a gauge-invariant formulation, we have cast nonlinear
quantum transport theory in a form which appears well suited for the numerical
evaluation of the distribution function f(k) An important result of the theory
presented here, however, is that it is not necessary to compute f(k) to extract
the averaged physical quantities: The vastly simpler object f(£2) can be singled
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out as a unique function with a direct connection to physical observables. The
final result for the nonlinear conductivity goes beyond the quasiparticle limit by
including renormalization effects explicitly.

We have not treated inhomogeneous fields. However, we know that by trans-
forming to a basis of states found in the absence of phonon scattering, but with a
nontrivial field included, a simplified form of the KBK equations results.

It remains to be seen how much of the above analysis can be carried over to
less restrictive mechanisms of electron-phonons interaction and/or experimentally
relevant geometries. This will be a topic of future work.
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Appendix A

We define the Airy transform A [a(z)] of a general function a{z) by

o0

A(s) = AJfa(z)] = / dzAi(z — s)a{z) . (A1)

— 00

The problem is to find the inverse transform of the Airy transform. Using the
integral representation®!

S )
Ai(l’):/ Ezd_:ret<53—+xt> 7

— o0

we find that o
/ dzAl(z ~ s)Ai{z ~ s') = 6(s — &) . (A.3)

We can therefore define the inverse of the Airy transform as
oo
a(z) = AJ'A(2)]) = / dz Ai(z — s)A(s) . (A.4)

— 00

The Airy transform is in the form of a convolution and, therefore, the Fourier
transform of the Airy transform is the simple product

Fe[A(s)] = Ai(k)a(k) . (A5)

A function f(z, z’) is translationally invariant if its value depends only on the
variable difference z — 2/, that is

fe =)= fz =, 0)= flz - ).
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A function f(z, 2’) is diagonal if it can be written as

flz,2") = f(2)6(z = 2") .

If f(z,2') is translationally invariant, then it is diagonal in reciprocal space. In
fact,

f(k, &)

dZ —1zzz dZdZ —ik(z=2") i(k—k")z'

:/d(Z—ZI)C_ik(Z_Z’)f(Z—Z/)/6212 i(k—k')z

T

= / d(z —2")f(z = 2")é(k — k)

= f(k)6(k — k') . (A.6)
However, a similar relation does not hold between translational invariance in real

space and diagonality in the Airy coordinate space. Indeed, if a function is trans-
lationally mvariant in z, then it is also translationally invariant in s:

f(s, s") = /dzdz'Ai(z - 5)Ai(z' —s")f(z, )
= /dzdz'Ai(z —s+ YA ) f(z+ ¢, 2+ §)

= /dzdz’Ai[z — (s =AW ) f(z,2') = f(s =5, 0)= f(s—s') .
(A7)

This last property was somehow expected since the s-space has the same nature
of real z-space, but it allows to include nonperturbatively in the problem the proper
symmetry features of an inhomogeneous system.

Appendix B

Example 1. Let us apply the transformation (2.13) to the retarded Green’s
function?

] e¢E
Gy(ky, t1; ko, t2) = —%19(t1 — 1) (k1 —ko+ f(tl - tz))

T (s )

calculated in the scalar potential gauge.
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First, let us Fourier-transform (B.1)

ko ro

dkldkz ikl Sry —
€
(2m)?

i [tz ., '
< & (kl —ky+ %(tl _ tz)) e—xfo dt'e (k1+ Er)

1
Gl 1 ki 1) = —39(0: — ) [

1 dk; ik, e - [k1 + £t - tz)] ‘T2
= ——9(t; — ¢ — n
RUh 2)/(%)36

I (s )

)

or, using the center-of-mass coordinates,

r _ 4 dkl ik, rp —ifE- (R~ £} 7 —"f:dt' k1+eEt’
Gy(r, 7, R, T)__ﬁﬂ(T)/(gﬂ-)ae RE-(R-F)7,7% ( )|

Now we can apply (2.17)

G'k,w, R, T)= T e gE R)T/ dr e"*® TG (e, 7, R, T)
y Wy ) \/2—7|' (27I')3/2 e\t )

/ AT s dklé<k1+_;_rgr_k)e_%f;dt/€+(kl+%,,)

00 o
dr iwre—%fudt'f (kl + %%T + %%t')

h o] \/27I'
_ 1/00 dr eiwre—%frf_jzdt’e (k1 + %%T’)
h 0 vV 2r

Example 2. Let us now transform the Green’s function

7 _x [t L - = ;
Ga(P1, t1, P2y o) = _ﬁﬂ(tl — t2)8(p1 — P2)e gfodt’e [pr - A1)

3

calculated in the vector-potential gauge.
By the same procedure as in Example 1, and applying (2.18), we can write

i [ dr . dr :
et —i(k+ %ET) r
G(k w, R, T)= - i \/_ /(QW)S/Ze

% / dp1/2 eipl : re—%f;f:ﬁd’/‘ (p1 - %Et’)
(2m)3

©0 d . _ T4r/2 e
/ e dP15 (pl k- %ET) FfT T/th ¢ (p1 - $Et')
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] o . 7'/2 1 e ’
:_i/ dr e“”e_%f—Thd“(k_ﬁEt)
0

h V2T
=Gk, w) (B.3)
as in Eq. (B.2).
References
1. E. M. Conwell, High Field Transport in Semiconductors (Academic Press, New York,

10.

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23:
24.
25.
26.
27.
28.
29.
30.
31.

32.

33.

1967).

. For a review on the subject, see C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55,

645 (1983).

D. K. Ferry, Acta Polytech. Scand. 64, 271 (1989).

. J. R. Barker, J. Phys. C6, 2663 (1973).

I. B. Levinson, Sov. Phys. JETP 30, 362 (1970).

. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. J. Benjamin, New
York, 1962).

. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964). (Soviet Phys. -JETP 20, 1018
1965).

. D. C. Langreth and J. W. Wilkins, Phys. Rev. B6, 3189 (1972).

. D.C. Langreth, Linear and Non-Linear Electron Transport in Solids, ed. J. T. Devreese

and E. vanBoren (Plenum, New York, 1976).

A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-
Hill, New York, 1971).

J. H. Davies and J. W. Wilkins, Phys. Rev. B38, 1667 (1988).

G. D. Mahan, Phys. Rep. 110, 321 (1984) and references contained therein.

R. A. Craig, J. Math. Phys. 9, 605 (1968).

R. Bertoncini, A. M. Kriman and D. K. Ferry, J. Phys.: Cond. Matter 2, 5991 (1990).
W. Hansch and G. D. Mahan, Phys. Rev. 28, 1902 (1983).

A review of these techniques is found in J. Rammer and H. Smith, Rev. Mod. Phys.
58, 323 (1986).

For a recent review, see A. P. Jauho, Solid State Electron. 32, 1265 (1989).

. Reggiani, P. Lugli and A. P. Jauho, Phys. Rev. B36, 6602 (1987).

S. Khan, J. H. Davies and J. W. Wilkins, Phys. Rev. B36, 2578 (1987).

. Reggiani, P. Lugli and A. P. Jauho, J. Appl. Phys. 64, 3072 (1988).

Abdolsalami and F. Khan, Phys. Rev. B41, 3493 (1990).

Lipavsky, V. Spicka and B. Velicky, Phys. Rev. B34, 6933 (1986).

Bertoncini, A. M. Kriman and D. K. Ferry, Phys. Rev. B40, 3371 (1989).

. Bertoncini, A. M. Kriman and D. K. Ferry, Phys. Rev. B41, 1390 (1990).

. Bertoncini and A. P. Jauho, Phys. Rev. B44, 3655 (1991).

. Bertoncini and A. P. Jauho, Phys. Rev. Lett. 68, 2826 (1992).

C. Herbert and J. J. Till, J. Phys. C15, 5411 (1982).

. Ziep and R. Keiper, Phys. Stat. Sol. (b) 128, 779 (1985).

. Ziep and R. Keiper, Phys. Stat. Sol (b) 134, 789 (1986).

See, for instance S. Fligge, Pratical Quantum Mechanics (Springer Verlag, 1974).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National
Bureau of Standards, Washington D. C., 1970), Sec. 10.4.

See, for instance, L. D. Landau and E. M. Lifshitz, A Course on Theoretical Physics,
Vol. 3, § 124 (Pergamon Press, 1962).

P. Badziag, Physica 130A, 565 (1985).

CoOURTEITAL T



H
‘ Nonequilibrium Green’s Functions . .. 3481 ‘
j
. i
‘ 34. A. P. Jauho, Phys. Rev. B32, 2248 (1985). "
35. J. M. Ziman, FElectrons and Phonons (Clarendon, Oxford, 1967). |
36. M. V. Fischetti and D. J. DiMaria, Phys. Rev. Lett. 42, 2475 (1979). ;
et 37. P. Poli, L. Rota, L. Reggiani, R. Bertoncini, and D. K. Ferry, Phys. Stat. Sol. (b) 168, i
| K69 (1991). !
| 38. A. P. Jauho and J. W. Wilkins, Phys. Rev. B29, 1919 (1984). t
‘ 39. We remind the reader that even in linear theory, the demonstration of the equivalence :
of a transport equation calculations and a Kubo formula result is a nontrivial task; Il
see L.-Y. Chen and Z.-B. Su, Phys. Rev. B40, 9309 (1989).
40. We are grateful to Klaus Kometer at the Walter Schottky Institute, Garching, FDR, ‘,
for performing the semiclassical simulations.
41. M. Toda, R. Kubo and N. Saito, Statistical Physics (Springer-Verlag, Berlin, 1983). »
42. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). !
! !
| |
- ]
j
| |
i
|
i
!
|
L
|
*




