MEMS Reliability
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Microelectromechanical systems (MEMS)
devices are being manufactured in the
hundreds of millions and are widely de-

- ployed for pressure sensor, accelerometer,
display, and printing applications.” This
suggests customer confidence in the long-
term reliability of MEMS {also known as
microsystems or micromachines) under
diverse stringent conditions. However,
reliability-physics aspects of these early
MEMS applications may have been viewed
as a market differentiator, resulting in
limited public dissemination of MEMS-
specific physicai-failure models and ap-
propriate design solutions for long-term
reliability.

This article provides a review of MEMS
reliability-physics issues and MEMS-
specific test methodologies, failure modes,
and solutions. The examples emphasize
electrostatically actizated MEMS and ma-

terials choices deriving from silicon or,

silicon-compatible fabrication technigues
leveraged from the microelectronics in-
dustry. Solutions to reliability issues can be
based on design, materials, or operational
choices. Reliability concepts are potentially
applicable over many MEMS device types,
despite differences in materials cheice,
fabrication technique, or microelectro-
mechanical design.

Designing for Reliability

To ensure built-in reliability, MEMS reli-
ability research has a fourfold mission:
1. To obtain a fundamental understand-
ing of chip-level, MEMS-specific failure
mechanisms;
2. To facilitate the design, packaging,
‘manufacturability, and testing of commer-
cially iriteresting MEMS research and de-
velopment concepts;
3. To preview compliance and qualifica-
tion testing of MEMS deviess; and
4. To ensure the long-term reliability of
MEMS products in the field.

Commercial applications of MEMS that
mandate rapid introduction into the mar-
ketplace can benefit from such a built-in
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reliability paradigm. Specifically, an inter-
dependent relationship and tight feedback

+ loop between all contributors to device,

subsystem, and system design, faBrica-
tion, manufacturing and testing, reliability
physics, and packaging can greatly acceler-
ate time-to-market of emerging MEMS
products (see Figure 1).

Classic reliability-physics methodology,
as applicable to MEMS, begins with an ini-
tial test plan designed to reveal failure

modes or failure mechanisms through the-

application of a series of, for example,
thermal, electrical, mechanical, and optical
environmental applied conditions. A fun-
damental understanding of each observed
failure mode or mechanism is then sought.
Experiments are designed to identify and
isolate each mechanism, and to determine
its fundamental physical characteristics,
root cause, and statistical distribution.
Accelerating factors for each mechanism
are then idenlified to permit more rapid
(ie., time-efficient) experimentation. “Over-
stressing” strategies for accelerating the
faiture of the devices relative to nominai
operating conditions depend on device
design, matérials choices, and intended
operating conditions.” The most straight-
forward accelerated test design results in a
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Figure 1. Graphic representation of
buili-in reliability paradigm based on
inferdependent microslectromechanical
systerns (MEMS) product-development
activities. .
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After the initially high rate of infant

mortality failures has diminished, a rely.
tively small, time-independent failure-rag

characteristic persists. It is attributed tg.
random unexpected external events (g, "
lightning strikes, earthquakes) that ar -

supposed to have an equal probability of

affecting both “strong” and “weak” deviees -
Wear-out is conceptualized as a sudden:
rapid increase in the failure rate aftera

period of useful product life. Wear-out of

MEMS might result from creep {eg., i’ .

metals and polymers); fatigue; formation
and propagation of microcracks; inter-

diffusion (e.g., in metals and semiconduc

tor junctions); compromised barrier layes ©

(e.g., metallization); plasma-induced sur-"
face damage; outgassing, moisture uptake

or creeping of epoxy die attach materials;

dielectric breakdown; corrosion; and many |

other mechanisms, The wear-cut mech

nisms characteristic of a given MEMS
product are specific to the chosen m@l‘er 5
rials system, fabrication techniques, desigh -

packaging, and operating conditions..

Wear-out mechanisms are presumed t6
be present in, and to eventually cause the

failure of, every device. However, builtin
reliability that prevents failure duCrm
wear-out during the intended service i e

is both possible and normative. This P
. vides the motivation for reliabifity-physic

investigations that iteratively identify e
“weak links” (or the most dominant imnt-
mortality or wear-out mechanisms) i ¢
given technology, device, or product
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then redesign the technology or prod-
based on the understanding gained.
onential, fognormal, and Weibull
utions are variously used to predict
es based on experimental results.>?
res in 10¥ hours, known as FiTs or FIT
, are used as a metric for compating
populations. For example, 1 FIT is
ivalent to 1 failure in 10° devices in
D:h, or 1 failure in 10° devices in
000 h. The advantageous statistics of
h-volume manufacturing are readily
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Tiative to large-volume statistical relia-
ty studies, deterministic and predictive
tbods of MEMS reliability investigation
on failure-mechanism modeling have
demonstrated.>
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tan initial MEMS reliability evaluation
teey founded on MIL-HIDBK-217.7 This
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Materials, processing, packaging, and
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$5. Mechanical MEMS-specific testing

al modes complements the standard
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ure 2, Graphic representation of reliability concepf known as the bathtub curve, showing
ard rate versus lime. The relative contributions of infant mioriality, external events, and
ar-out are modeled as independent and additive.

et dynamic, static, or transient opera- -

Custom environmental chambers enable
noninvasive optical (and electrical) moni-
toring of MEMS devices undergoing elec-
trical, mechanical, or thermal cycling, or
static tests in a variety of environments
including ait, vacuum, humid, and inert
ambients.®® Innovations in the use of non-
invasive (nontactile) optical techniques
permit in sifu characterization of MEMS
mechanical performance under both nomi-
nal conditions and accelerated testing
experiments. Scarming laser doppler vi-
brometry is used to quantify dynamic
attributes of periodically actuated MEMS
devices, such as out-of-plane deflections,
resonant mode infegrity, mode coupling,
and deformation.'®-1? In strobed interfer-
ometry, an interferometric video microscope
with strobed illumination synchronized to
a MEMS device’s motion is used to quan-
tify out-of-plane and in-plane, periodic,
step, frequency, static, and transient de-
flections.*-** Other noninvasive optical
techniques for evaluating MEMS dynamics
and system properties include light mi-
croscopy, static interferometry,” machine
vision, and high-speed strobed-image
capture.t

Standard microelectronics techniques

‘and environmental chambers can be used

for noninvasive reliability testing through
electrical monitoring of resistive, capaci-
tive, or electrostatic failure mechanisms
of a MEMS device. Scarming and trans-
mission electron microscopy, scanning

~

probe microscopy (particularly atomic force
microscopy),® focused ion-beam, and
standard surface sciénce techniques have
also proven valuable in investigaiing
MEMS failure modes.”

MEMS Failure Mechanisms,

Root Causes, and Solutions
MEMS-specific reliability issues have

recently been extensively reviewed.

~Additional overviews, as well as detailed

experimental restilts, have been presented
at symposia devoted to MEMS reliability
and related packaging issues. ! A wide
variety of failure mechanisms have been
published for diverse MEMS device de-
signs, materials systems, and field-
deployment conditions. We present here a
nonexhaustive survey representing im-
portant highlights of MEMS reliability
based on MEMS materials issues, failure
mechanisms, root causes, and solutions.

Initial instinctive perceptions of MEMS
devices often include concerns over
fragility and mechanical strength. How-
ever, the excellent mechanical properties
of silicon® and related dielectrics (silicon
dioxide, sificon ritride) provide a robust
materials system in which to build MEMS
devices. Appropriate geometric choices
resulting in high-stifiness (k) and low-
mass (1) MEMS devices further ensure a
mechanically robust MEMS device, since
the resonant frequency, and thus vibration
or shock sensitivity, of a device are pro-
portional to the ratio k/m. Vibration and
shock measurements confirm the excellent
mechanical properties of well-designed
silicon MEMS devices. ™ MEMS fabrica-
tion techniques, device design parameters,
operational modes,® and -operating ervi-
ronments (and hence packaging) can be
simultarieously optimized to afford the
lowest possible initial materials defect
density, stresses, and stress gradients.
This can reduce the incidence of time-
dependent phenomena such as crack ini-
tiation and propagation, fatigue-related
fracture, or mass transfer through glide
and diffusion mechanisms lesulhng n
creep.®

BExperimental test structures to study
the nature of crack initiation and propaga-
fon in polycrystalline silicon reveal the
significant effect of moisture in reducing
the mechanical integrity of MEMS devices
by stress-corrosion cracking.® MEMS de-
viges themselves are increasingly used for

-mechanical “testing” of silicon and poly-

silicon materials properties.®*
Eabrication procedures, desigr: protocols,
and medeling have been developed to en-
gineer and control residual-stress gradi-
ents in thin films used to build MEMS. 4

This enables selective use of both stressed
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and unstressed thin fifms. “Stressy,” or
curling, MEMS devices can be used to do
mechanical work, as in seif-assembly dur-
ing the release process,” or in conjunction
with electrostatic or other actuation forces.
Unstressed, “flat” MEMS siructures more
accurately reflect the “as-drawn” MEMS
design, ensuring higher fabrication yields,
and are extremely important for optical
MEMS applications. Stresses due to co-
efficient of thermal expansion (CTE) mis-

match in multimaterial MEMS devices -

must similarly be engineered.

Mechanical failure mechanisms in MEMS
devices can be separated into bulk, thin-
film, and surface effects. Bulk and thin-
film effects include residual-stress gradients,
thermal mismatch in multicomponent
MEMS, and time-dependent responses to
high stress levels resulting in creep, crack
initiation at defects, and static or dynamic
fatigue. While fatigue-induced crack growth
has been observed for both polyerystalline
and single-crystal silicon test structures,
robust MEMS designs with excellent me-
chanical properties have been realized.
Extensive fabrication, design, and testing
of diverse MEMS devices confirms that
devices whose fabrication, design, and op-
erational attributes including environment
{and thus.packaging) have been optimized
rarely exhibit bulk mechanical failure by
fatigue or fracture.®

Mechanical failure mechanisms due to
contacting, sliding, or rubbing MEMS de-
vice surfaces have been widely reported.
Stiction {static friction, or adhesion)® must
be avoided during both fabrication and
operation. Wet chemical sacrificial-layer
etches are typical of the “release” pracess
in MEMS fabrication. To avoid stiction
during release, fabrication techniques, in-
cluding supercritical CO, drying,* subli-
mation, and self-assembled monolayer
films, have been employed to prevent cap-
illary forces from drawing compliant
MEMS structures into contact with one
another during the drying step. Design
techniques to prevent both “release” and
“in-use” stiction include the use of very
stiff structures, flexure or bending struc-
tures without bearings, and “dimples” or
other surface modifications that reduce
the contact area between two MEMS sur-
faces.” Packaging techniques, including
gettering,™* that limit outgassing and
moisture (or other contaminant gas) ingress
can also be helpful in reducing in-use stic-
tion. Finally, operational choices in con-
junction with MEMS actuator and flexure
design can reduce the incidence of sur-
faces contacting due to vibration, shock,
or electrical overvoltage. Friction and
wear of silicon MEMS surfaces can be re-
duced through the use of low levels of
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humidity,** anti-stiction coatings,® and
selective tungsten ‘coatings.¥ )
Surface.effects play a role-as well in the

- electrical reliability of MEMS. Unpassi-

vated surfaces exposed during the release
step in MEMS fabrication may not be op-
timized. Surface leakage currents or as-
sociated anodic oxidation® may result in
MEMS reliability issues such as shorting,
open circuifs, and capacitance changes.
Surface charge trapping: or generation®
can result in short- or long-term mechani-
cal drift of electrostatically actuated MEMS
devices. Surface roughness or asperities

.nay enhance the probability of electrical-

field concentration, arcing, and related
surface electrical breakdown.

Bulk or thin-film electrical-reliability
issues of MEMS devices include radiation-
induced dielectric degradation™ electric-
field-induced dielectric  breakdown;
electrostatic discharge (ESD) and associ-
ated conductor melt, conductor fusion, or
stiction;” electromigration (less significant
for electrostatic than for electromagnetic
actuation); and bulk or thin-film charge
trapping and generation.

MEMS failure mechanisms based on
thermal sensitivity may include CTE mis-
match and associated delamination, cur-
vature, deformation, or residual-stress
relaxation; optical-wavelength absorp-
tion™* and associated degradation of re-
flecting surfaces through grain growth,
deformation, or melting; and time-
dependent deformation due to creep or
fatigue. :

Summary

Microelectromechanical systems con-
cepts have already been widely deployed
across diverse market sectors, with vary-

‘ing stringent reliability requirements. As

MEMS concepts continue to exhibit enor-
mous potential in emerging market apphi-
cations, rapid commercialization can be
facilitated by a design-for-reliability. or
buili-in-reliability mindset.

An effective MEMS reliability research
program must identify and characterize
chip-level, MEMS-specific, - reljability-

_ physics phenomena; extract and implement

experiments based on accelerating factors;
estimate lifetimes; and most important,
iterate this process in tight concert with
other areas of MEMS component, pack-
age, subsystem, and system development.
. This article has presented examples of
MEMS infant mortality and fong-termt
wear-out reliability phenomena that can be
addressed through a-combination of mate-

 rials choices, manufacturing practice, MEMS

mechanical design, fabrication, packaging,
and device-performance protocols.

-
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