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On Isothermal Squeeze Films

1t is shown that squeeze film damping cutoff frequencies can be computed directly-
Jrom the lowest eigenvalue of the Helmholtz equation. A kinematic mode is
proposed and analyzed for the computation of those frequencies and it is
demonstrated that Griffin’s calculations may underestimate considerably those

Jrequencies. New results are given for the squeeze film behavior between rec-
tangular plates, annuli which are not necessarily thin and plate sectors.

Introduction

Some modern seismic accelerometers employ a damping
device consisting of two plates which squeeze a thin film of
gas from between them. This device is particularly useful
when the differential displacement of the elements to be
damped is small.

Griffin et al. [1] calculated damping coefficients and cutoff
frequencies in compressible squeeze films by determining first
the film response to a sudden step change in the film thickness
and then using a well known technique which consists of
applying the principle of superposition combined with the
convolution integral formulation to determine the film
response to any displacement function [2]. Finally they
truncated the infinite series solution which they obtained to
one term only, i.e., retaining only the first harmonic ap-
proximation of their solution, from which they extracted the
damping coefficient and the cutoff frequency of the system.
With this procedure, parallel motion of infinite strips, thin
annuli and circular plates were analyzed. The tilting motion of
thin annuli was also dealt with approximately, by neglecting
circumferential flow of the gas, since they maintained that it is
very difficult to analyze without this assumption.

A close inspection of the Griffin procedure leads to the
immediate conclusion that the cutoff frequency can be ob-
tained directly by calculating the lowest eigenvalue of the
Helmholtz equation with trivial boundary conditions.
Moreover, the damping coefficient can be derived from an
incompressible. formulation since the condition which is
imposed by Griffin and his collaborators that the excitation
frequency be much smaller than the cutoff frequency is
equivalent to requiring that the squeeze number be small. This
stipulation implies nearly incompressible conditions.

In this paper, the physical implication of Griffin’s ap-
proximation is demonstrated. It is then shown that the cutoff
frequencies are derived from the lowest eigenvalue of the
Helmholtz equation. Cutoff frequencies are given for finite
rectangular plates (of which infinite strips are a special case),
circular plates, and annuli which are not necessarily thin and
for plate sectors. The tilting mode of annuli is also analyzed
without requiring that they be thin, and without imposing
Griffin’s assumption that the flow be radial only.
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Some damping coefficients for the incompressible for-
mulation are compared to those obtained by Griffin.

To complete the analysis, a formulation is given in which
no series truncations are needed. Results of this analysis show
that, in some configurations, there exists a considerable error
in the cutoff frequencies as calculated by Griffin.

Analytical Formulation

Consider a compressible fluid which is squeezed between
two plates moving one with respect to the other. The surfaces
of the plates are substantially parallel (small deviations from
parallelity are permissible). The contours of the plates are
arbitrary. It. is assumed that most of the motion is per-
pendicular to the surfaces of the plates, and that the fluid
undergoes an isothermal process during the entire time of the
motion. The equation governing the fluid pressure is the well
known compressible gas-film Reynolds equation [3].

Assume that the motion of the plate is restricted to be small
and therefore the resulting pressure variation from ambient is
also small. Introduce pressure and film thickness perturbation
parameters. The compressible Reynolds gas-film equation can
then be linearized to the form of equation (5) of [1]. This
equation, when written in nondimensional form yields:

ay "81; '
2y — L =g ——
VYo ar . or 0

Griffin et al. determined first the film response to a sudden
step change in the film, i.e., they solved the homogeneous part
of equation (1), which is the Helmholtz equation, resulting in
an infinite series solution in the system eigenvalues. Then, in
order to compute the response due to any displacement
function, they used a procedure which is described in [2],
utilizing superpositions and the convolution integral theorem.
They finally truncated their series to retain only the first
harmonic. Instead, it is proposed here to compute the film
response, right from the outset, to a simple harmonic motion
excitation. '

Assume, therefore, that the variation of the plate spacing is
given by:

e=eycos T o 2)

where e, may vary over the plate surface, but is not a function
of time. Equation (2) is, in nondimensional form:

. e ,
N=¢€ CoS 7, €= = 3)
b
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Equation (1) then becomes:
vzxp—aﬂ-:—aesinf 3)
©ar

Assume the solution has the form:

Y=y c0s T+ y,sin 7 )
i.e., the pressure distribution has a component y; cos 7 which
" is in phase with the film thickness disturbance eycos7, and
a second component which is ‘“‘out of phase” with the film
thickness disturbance, but in phase with the squeeze velocity
eosin7. Another interpretation of equation (5) is that the fluid
film acts as a spring (;) and as a viscous damper (). Insert
equatlon (5) into equation (4) and equate coefficients of cosr
and sinr separately: -

vy — oYy =0; ’ ‘ (6)
v +oYy = —a; ™
with trivial boundary conditions on both ¥, and ¢, .

The cutoff frequency is that frequency where the spring and
damping force amplitudes are equal in magnitude, or, in
terms of our notation;

Jo=/i ®
where f; and f; are the nondimensional damiping and spring
pressure force amplitudes:!

fo= 31, wats fi=- 3 was 6o
Denote:

, Y1+do=0 ©

Eliminate ¢, from equations (6), (7) by means of equation (9):

v254+06—20y = — o€, (10)

v 2y + 06— oYy = — ue 11

with trivial boundary conditions on é.

1 The forces themselves are obtained by multiplying fo and f) by p, 4.

Nomenclature

Now, suppose that at cutoff frequency excitation the spring
and damping pressure distributions are nearly equal. This
would be one way (but, of course, not the only way) to satisfy
equation (8). Then it can be assumed that:

8< <t (12)
Neglecting & with respect to yy in equation (11) leads to:
v 2y — oo = — o€ (13)

The solution for & is decomposed into the particular and
homogeneous solutions:

5=5, + by (14)

It is easﬂy verified by equatlons (10), (13) that a particular
solution is:

oy —\00 s)
The homogeneous part of the solution is governed by
equation (10) which becomes, after using equations (13), (14),
(15):
: v28,+08,=0 (16)

which is the Helmholtz equation. The boundary conditions on
8, are trivial, in view of equations (14), (15).

Now, 8, must be nontrivial (in fact, it is of the order of y,,
in order to satisfy equation (12)). Therefore, ¢ must be an
eigenvalue of equation (16). The decision as to which
eigenvalue it is rests upon the spatial nature of the excitation
amplitude, ¢, as compared to the topographical nature of the
various eigenfunctions. Parallel motion excitation, for
example, implies physically, that the solution be of the nature
of the first eigenfunction. Thus o is the lowest eigenvalue of
equation (16).

Rectangular Plates in Parallel Motion. In this case the
domain is rectangular, of dimensions axb. The squeeze
number is defined as

12 pa?
oO=——>W

17
DPabim?® un

A = plate area
a,b = rectangular plate dimensions

D, = rectangular plate incompressible damping
coefficient

D,y = circular plate incompressible damping coef-
ficient .

D, = rectangular plate compressible damping
coefficient

D, = circular plate compressible damping coefficient
e = film thickness perturbation
e, = film thickness perturbation amplitude
JfiJo = spring and damping nondimensional pressure
forces, respectively ‘
Jfrofn = values of fp and f; for rectangular plates
JSeofe1 = values of f and f; for circular plates
h,, = mean film thickness
dp = film pressure perturbation
D, = ambient pressure
r = radial coordinate
R = circular plate outer radius
R;,,R . = annular plate inner and outer radii, respectively
t = time

B:

b
" = plate aspect ratio
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= nondimensional film thickness perturbatlon

m amplitude
r . . . . '
= R = nondimensional radial coordinate
e . . C o
7= . = nondimensional plate displacement
m
DKS' . . . .
X, D = rectangular plate damping coefficients ratio
0
DCS - . . . .
X, = Do - circular plate damping coefficients ratio
0 )
. u = gas absolute viscosity
R; . .
£E= 2 = annular plate inner to outer radii ratio
Rou
o = squeeze number
g, = cutoff squeeze number
7=wt = nondimensional time
op . L .
y= p_ = nondimensional pressure perturbation
p .
w = excitation frequency

w. = cutoff frequency
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The eigenvalues of equation (16) are:

nZ
2(m? + "BT); m,n=1,2,3,...

The lowest eigenvalue is obtained by setting m, n = 1. Thus,
the squeeze number at cutoff frequency excitation is:

(1 + E) (17a)
Solving for w,., the cutoff frequency is obtained:
T Pahn® ( ! ) ‘
= 18
W=D, 2 (18

If b> >a (infinitely wide plate), Griffin’s result (equation
(21) of [1]) is obtained.

Langlois [4], gives the exact solution for the in- and out-of-
phase forces in infinitely wide plates. Equating those two
forces, results in the transcendental equation:

2sinhk —

~ coshk +cosk”’ k=vo/2 19

the solution of which is k = 2.2510, from which o, =

10.1342, as compared with the value of 72 = 9.8696 which is
predicted by Griffin’s analysis.

Circular Plates in Parallel Motion. Here the domain is
circular, of radius R. The squeeze number is defined by

12[I.R2

Pahm®
The characteristic equation of equation (16) is Jo(f ) = 0,
which involves the Bessel function of zero order. The lowest
root is o, = 5.784 which, when entered into equation (26)
gives a cutoff frequency Wthh is identical to equation (30) of

f].

Annular Plates in Parallel Motion. Griffin et al. used the
results for infinitely wide rectangular plates to analyze thin
annular plates. In the present analysis, no restriction on the
inner to outer plate radius ratio is imposed.

The characteristic equation for an annular domain of i inner
radius R;, and outer radius R, is:

o=

® - (20)

- Ri
Jo(Vo) Yo (§V0) — Yo (Vo) Jo(EV0) =0; £ = R 21

out
This equation involves both kinds of Bessel functions of zero
order. The squeeze number is defined as in equation (26),
where R is replaced by R,,,. The lowest roots of this equation
are tabulated below versus the radii ratio:

& 0.02 0.1 0.2 04 0.6 0.8
0. 8.32 10.96. .14.55 26.86 61.28 246.45

Assuming that & differs only slightly from 1 results, after
asymptotic expansions of equation(21),’in:

7I.2
(1-7?
which is identical to equation (26) of (1).

In Fig. 1, o,, as predicted both by equations (21) and (22) is
plotted versus £. Judgment can be passed on the extent of the
validity of equaton (22).

22)

.=

Annular Plates in a Tilting Mode. Griffin and his
collaborators continuing the assumption that the annuli are
thin, calculated the cutoff frequency under the further
assumption that there is no circumferential flow between the
plates. Here, agam, no restriction is imposed on the radii
ratio.
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Fig.1 Cutoff squeeze number for annuli in parailel and tilting motion

The pressure distribution in the tilting mode would
correspond to the eigenfunctions combination which are
comprised of the Bessel functions of the flrst kind. The
characteristic equation is therefore:

J1(V9) Y1 (8V0) - Y (Vo)J1 (§Vo) =0

giving the followmg roots:

23)

£ 002 01 02 04 06 08
0. 1471 15.52 17.94 29.05 62.88 247.67

For thin annuli, equation (23) reduces to an-equation which
is identical with equation (22), and which is also 1dent1cal to
Griffin’s results (equation (35)) of [1]. ~

In Fig. 1, the tilting mode values of o., as predlcted by.
equation (23) are plotted versus £, and can be compared with
Griffin’s prediction. ‘

Circular Plate Sectors in Parallel Motion. For plates having
a sector angle « and radius R, the characteristic equation is:
Jr/e(W0)=0 (24)

The squeeze number, o, is defined by equation (20). Lowest
roots of this equation for three sector angles are given below:

/a1 2 3
g, 14.68 26.38 40.70

Inserting those values of ¢, into equation (20).gives the cutoff
frequencies for the various angles.
The Complete Solution

The kinematic mode for squeeze films which is dealt with
here renders itself to a complete solution since the solution of
the governing equations (6), (7) is straightforward.

OCTOBER 1983, Vol. 105/ 617



CUT - OFF SQUEEZE
NUMBER , O¢ /
21 /
20 ‘
FOR OTHER
VALUES OF B,
19 - USE
ox(1/8)= B2 (B)

L/

%

10 40—~

0 02 04 06 08 |
INVERSE  ASPECT RATIO, I/ﬁ

Fig. 2 Cutoff squeeze number for translatory motion of rectanguiar
plates

°

Parallel Motion of Rectangular Plates. The solutions of
equations (6), (7) are given in the Appendix.2 The non-
dimensional damping and spring . force amphtudes are ob-
tained by equation (8a):

_ 640¢ m? +(n/B)? )
1= L o (i s i 23)
odd
645%¢ 1
In="5" X Gy (07 + @/ + 272 26)

odd

Equating the force amplitudes gives the following algebraic
equation for the cutoff frequency

»

m,n

m? +(n/B)?
(mn)? ([m?* +(n/B)*]? + /7% )

g
F — _odd , (27)
g (mn)? {[m? + (n/B)?)? + o*/7*)
odd o
28ee also [71.
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Fig. 3 Forces on rectangular plate
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Fig. 4 Damping coefficients ratio for translatory motion of rec-
tangular plates

Equation (27) is solved in an iterative form to yield the cutoff
squeeze number, ¢., from which the cutoff frequency is
calculated. In Fig. 2, ¢, is plotted versus ﬁ and compared
with the approximate analysis results.

If only one term is maintained in the summations of
equation (27), the cutoff squeeze number yields:

=12 (1+1/8%) (28)
which is identical with the prediction of the approximate
analysis.

The nondimensional spring and damping forces are plottgd
in Fig. 3 versus the squeeze number with the plate aspect ratio

Transactions of the ASME
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Fig.5 Squeeze film forces in circular plate

as a parameter. The ratio of the compressible to in-
compressible damping coefficients are plotted in Fig. 4.3

Circular Plates in Parallel Motion. The solutions of
equations (6) and (7) for the circular domain were derived by
Crandall [6].* They involve Kelvin functions and are given in
the Appendix. The nondimensional spring and damping force
amplitudes, are in thiscase:

fL‘O = —J_% [Ac(berlﬁ— bellﬁ)

+ B, (ber, Vo + bei, Vo)le (29)
fu= {1 +J%[Ac(berlﬁ+ bei; Vo)
+B,(ber,Vo —bein/E)]e} (30)

where the constants A., B, are given in the Appendix.
Equating the force amplitudes yields the following trans-
cendental equation in the squeeze number:

azl's(ber\/gbeil\/?—beiﬁberlﬁ) 2 a1

ber?Vo+bei’Vo

which has the solution o, = 6.2333. Introducing this solution
into equation (20) yields, for the cutoff frequency:

Pahm®
We =

~ 1.934R? 32)

3 For the incompressible damping coefficient see, for example, [5].
Interestingly enough, Langlois attributes the solution to G. I. Taylor.
Neither Langlois nor Taylor gave note to Crandall’s solution which appeared in
1917.
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Fig.6 Compressible to incompressible damping coefficients ratio

which is by 7 percent higher than Griffin’s estimate.’

In Fig. S, the spring and damping forces are plotted versus
the squeeze number. Figure 6 illustrates the compressible to
incompressible damping coefficient ratio variation with the
squeeze number.®

The analysis of annuli in parallel motion is performed in a
similar fashion. It will involve two additional kinds of Kelvin
functions. This analysis is disposed with here for the sake of
brevity.

Discussion

The one term approximation to the cutoff frequency is
found to be, in parallel motion, an underestimate of this
frequency. This can be seen in Fig. 2 for rectangular plates,
where the error in the estimate ranges from 2.6 percent (in-
finite strips) to 9 percent (square plates). For circular plates
the one term approximation underestimates this frequency by
7 percent.

The damping coefficient decreases with increasing squeeze
number (or compressibility) as is demonstrated by Figs. 4, 6.
At the cutoff frequency, both circular and rectangular plates,
exhibit a reduction of over 50 percent in their value in a purely
incompressible state.

The damping force reaches its maximum value ap-
proximately (but not exactly) at the cutoff frequency. Ex-
citation above or below this frequency results in a decreasing
damping force, independently of the plate shape. This result is
demonstrated in Figs. 3, 5.

An inspection of Fig. 1 reveals that Griffin’s assumption
that circumferential gas flow can be neglected in annular plate
motion gives very good results for a wide range of inner to
outer radius ratio. The annuli need not necessarily be thin.

3 Griffin gives the number 2,07 in the denominator.
For the incompressible damping coefficient see, for example, [5].
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This range is smaller for the tilting mode than for the
parallel motion mode, and can be expected to be so, since the
circumferential variation of squeeze velocity is expected to
increase the asymmetry in the flow.
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APPENDIX

The pressure distribution components for rectangular
plates in parallel motion are:

Y
Yo=¢ E @y COS MTX cos%; : (A1)
m,n
odd
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nY

Y1 =€, Bppcos maX cOS—B—; (A2)
where "~
m+n
160(-1) * [(mw)2 + ("—;) 2]
A = v ; (A3)
ﬂzmn{[(mr)2+(—ﬂ—> ] +"2}
166%(—1) m;"
Bon = 3 (A4)

emf[om s (5)'] 4]

The pressure distribution components for circular plates in

~ parallel motion are: : :

Yo = [A ber(Vod) + B bei(Vodle;

(A5)
Y1 =[—1+A4,bei(Vod) — B ber(Vadle, (A6)
where
beivo
°~ ToertVo+ bei?Vo) 47
B.= bervo A8)

"~ (ber*Vo +bei*Vo)
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