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Summary

The phonon dispersion relations of graphite and first stage alkali metal—
graphite intercalation compounds (KCg) have been calculated using an
angular force model approach. Initially, for graphite, the investigations were
made by considering the interactions up to two neighbours in the plane and
one neighbour between the planes. We present the first calculation of the
phonon dispersion relations of graphite where the recent experimental mea-
surement A,, out of plane mode at 868 cm™! is satisfactorily explained as
output data, whereas earlier workers have presented the phonon spectrum
considering this mode as input data. We have extended the analysis to the
evaluation of the phonon spectrum and elastic constants of first stage
potassium~graphite intercalation compounds. Good agreement has been
observed between theory and the available experimental results. An infer-
ence is drawn that the angular forces play a vital role in explaining the
acoustic modes of the phonon spectra.

Introduction

Graphite intercalation compounds have been the focus of a consider-
able amount of theoretical and experimental research activity during the
past decade [1-10]. Graphite intercalation compounds are formed by
introducing the intercalate between the carbon layers of graphite. Such a
process results in the ordering of the c-axis, known as the staging phenom-
enon. There are n consecutive graphite layers followed by an intercalate
layer for a stage n graphite intercalation compound.

Experimental phonon dispersion curves are now available through
neutron and Raman scattering experiments for (00q) longitudinal phonons
in the case of alkali metal-graphite intercalation compounds [9, 10]. Lattice
dynamic calculations for GICs have been very few. The first calculation for
the first stage alkali-GICs was reported by Horie et al. [4] based on the
Maeda model [11] for the lattice dynamics of pristine graphite. Leung et al.
[5] evaluated the dispersion curves for all GIC stages from those of pristine
graphite by carrying out a k, axis zone folding of the graphite dynamical
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matrix and replacing the appropriate carbon layers with intercalate layers.
Recently Al-Jishi and Dresselhaus [7] have extended Leung’s approach,
incorporating all the experimental information. In these calculations the
phonon dispersion curves for alkali metal-GICs have been investigated by
fitting the various force constants to the experimentally measured phonon
frequencies, causing the model to be biased towards the experimental
phonon spectra.

In our case we have used the de Launey [12] type angular force model
approach to study initially the phonon dispersion curves of graphite. The
central force constants o, &,, and o, are operative for two neighbours in the
plane and one neighbour between the planes, respectively, whereas the
angular force constants «;’, ;' have been considered only up to the first
neghbour in the plane and the first neighbour between the planes. The five
force constants were then reduced to four by taking the relation «; = 5a;’.
This is validated by the fact that the numerical value of o;" will be less than
oy by an order of magnitude in the range of the square of the interatomic
spacing [13]. These four force constants were then evaluated by fitting to
three elastic constants and one experimental frequency only. Using these
four force constants, we have been able to exhibit for the first time the A,,
out of plane mode at 868 cm™ ! satisfactorily.

The above model for graphite has been extended to calculate the
phonon dispersion of stage I potassium-GIC, KCg. The stacking sequence
has been considered to be of the type CaCaCoCo where C represents the
carbon layer and « the intercalate layer. We have incorporated the C-K inter-
layer interactions (8,,8,’) as used by Horie et al. [4]. The interlayer inter-
action C-C has been taken from the above mentioned graphite calculations.
The sum and difference modes analysis [14] has been used for the evaluation
of the eighteen phonon frequencies of KCs. The use of the sum and differ-
ence mode was possible because the carbon layers have the same structure in
GICs. The phonon dispersion and the elastic constants of KCg have been
analysed and very good agreement has been obtained with the available
experimental results [9, 10].

Theory

The dynamical matrix elements have been obtained on the lines of de
Launey [12]. The sum and difference mode analysis [14] interprets the
vibrational spectra from the following dynamical matrices:

For graphite:

Az T—mw? B+D

. =0 (1)
B* + D* A+ T—mw?

where A, B, D and T are 3 X 3 matrices with elements derived as follows:
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A, =P+ 30,(1 -CC') + 2a3
A12=A21=\/§a288'
Ap=P+ay(83—2C"—CC') + 205

Asy=3ay + 204

Bj=—o,'[Q+2RC'] —(a; —«,)[@ + %RC’]
Biz = By = /3i/2(ct; — )RS’

By =—0a,'[Q + 2RC'] —8/2(e; — ;" )RC’
B3;=—ay'[2RC' + Q]

Ty =Ty =—2aC"

T33=—20;C"

A;3=A3=A»3=A43=0

By3=Bj3 =B23=B3 =0

Dy3=Dy3=D3=Dy =Dy3=D3=D;=Dy=D33=0
T1,=Ty=T3=T31=T;3=T3=0

For KCg it will be:

E+F—mw? G+H ItJ
G* + H* K+ F—mw? L+M =0 (2)
I*+ J* L*+ M* Nt u—mw?

where E, F, G, H, I, J, K, L, M, N, u are 3 X 3 matrices with elements given
by:

Ey =P+ 30y(1—CC') + 20"+ 28,

Ep=Ey= \/§a288'
Esp=P+0,(8—2C"—CC') + 20, + 28,

E33 =30, + 20, + 26,

Gy =—0,'[Q+2RC'] — (o —,)[Q + L RC']
G12= Gy = /3i/2(0; — ,')RS'

Gy =—0,'[Q + 2RC'] — 3/2(c; — ;' )RC’
Gi3=—a,'[@ + 2RC']
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Iy =Ip=—28,'C"

I3 =—28,C™

Ky =P+ 30,(1 —CC') + 205’
K= Ky =+/30,88’

K,y =P+ 0,(3—CC'—2C") + 204
Ki3=3a," + 20,4

Ny =Ny =28/

33= 2B,
Fyy=Fp=—205'C"
Fy3=—2a;C"

E\3=E3=Ep=E;»=G35G3=0G;3=G3»=0

In=In=I3=135=13=15=0

Ki3=K31=Ky3=K3=N13=N33=N;3=N3;=Nyp3=N;3;=0

Ly=Lyp=L3=L;p3=Ly=L;3=L3=Ly=L3=0

Fy,=Fy=F;3=F3=Fp=Fyp=H,=Hyp=Hy;3=H;=Hy =0

Hy3=H3y=Hyp=Hyp=Jdy=Jdn=Jd353=J1=J3=J13=J3=0

Ji3=dn=Mpy=My=My=M;=My=M;3=M; =M3;=0
SUp=Us3=Upp = Uy = U3 = U3 =Up=up=0

with

C = cos(m/3aK,), C'=cos(maK,), C"=cos(2maK,)

C" = cos(nK ;¢), C" = cos(nK5c/2)

S =sin(my/3aK,), 8'=sin(maK,), 8" =sin(2maK,)

and

P=3/2(0; + ), Q = exp(2maiK /\/3)

R = exp(—maiK,/A/3)
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Results and discussion

Using the force constants shown in Table 1, the frequencies have been
calculated in the (q00), (0g0) and (00q) directions for graphite and KCjs.
They are shown in Figs. 1 and 2, respectively, wherein our results have been
compared with the experimental results of Nicklow et al. [15] in Fig. 1, and
with those of Zabel et al. [9, 10] in Fig. 2. Excellent agreement may be seen

TABLE 1

Value of force constants

r ’

Force constant 0y a, [« 2} a3 Qa3 [ ﬁll

Value in units of 49.055 9.811 5.642 0.300 0.033 1.000 [4] 0.100 [4]
104 D/em
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Fig. 1. Phonon dispersion in graphite. A heavy line indicates a doublet (two lines merged
into one because of the present scale).

Fig. 2. Phonon dispersion in first stage potassium—graphite intercalation compound.
= a quartet; ———, a doublet; ------ , a single line.
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in each of the Figures, especially in the acoustical branches. For graphite,
however, there is a slight deviation in the TA, branch in the (g00) direction.
The curve exhibits linear behaviour at low wave vectors, whereas the experi-
mental points lie on a quadratic curve. This is attributed to the exclusion of
a,', the angular force constant for the second neighbour interaction. How-
ever, the present analysis shows the A,, out of plane mode at 868 cm™! to be
suitable as output data, a result not explained earlier.

In the case of KCg we have been able to obtain very good agreement in
the cases of the acoustical branches in the (00q) and (g00) directions. Even
for optical branches, wherever the measurements are available, the agreement
is fair. If we compare our theoretical values with those of Al-Jishi [7] and
Horie et al. [4], we find that our calculated modes are similar to those ob-
tained by the workers in question.

Table 2 gives the calculated value of the elastic constants C,; and C5;
along with the available experimental values {9, 10]. Very good agreement
has been obtained in the case of C4. For C,;, a comparison has been made
with the values of Zabel et al. [9], where the agreement is not very satisfac-
tory. It should be mentioned that the C;; values of Zabel et al. were obtained
from the initial slope of the (001) LA branch and not measured directly.

TABLE 2

Value of elastic constants

Elastic constant Caq Ci3

Value obtained in present case 0.292 2.772
in units of 10!! D/ecm?

Experimental value in units 0.282 [10] 4.850 [9]
of 10! D/em?

Conclusion

The general conclusion that can be drawn from the discussion is that in
explaining the vibrational spectra, the non-central force constants play a vital
role. Secondly, the present approach can provide a basis for further study of
the higher stage graphite—alkali metal intercalation compounds.
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