View Online / Journal Homepage / Table of Contentsfor thisissue
Dynamic Article Links°

Lab on a Chip

Cite this: Lab Chip, 2012, 12, 2903-2908

PAPER

www.rsc.org/loc

Force driven separation of drops by deterministic lateral displacement

Timothy Bowman, Joelle Frechette* and German Drazer*

Received 6th March 2012, Accepted 18th April 2012
DOI: 10.1039/c21c40234c

We investigate the separation of drops in force-driven deterministic lateral displacement (f~DLD), a
promising high-throughput continuous separation method in microfluidics. We perform scaled-up
macroscopic experiments in which drops settle through a square array of cylindrical obstacles. These
experiments demonstrate the separation capabilities—and provide insight for the design—of f~-DLD
for drops of multiple sizes, including drops that are larger than the gaps between cylinders and exhibit
substantial deformation as they move through the array. We show that for any orientation of the
driving force relative to the array of obstacles, the trajectories of the drops follow selected locking
directions in the lattice. We also found that a simple collision model accurately describes the average
migration angles of the drops for the entire range of sizes investigated here, and for all forcing
directions. In addition, we found a difference of approximately 20° between the critical angles at
which the smallest and largest drops first move across a line of obstacles (column) in the array, a
promising result in terms of potential size resolution of this method. Finally, we demonstrate that a
single line of cylindrical obstacles rotated with respect to the driving force is capable of performing
binary separations. The critical angles obtained in such single line experiments, moreover, agree with
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those obtained using the full array, thus validating the assumption in which the trajectory (and
average migration angle) of the drops is calculated from individual obstacle-drop collisions.

1. Introduction

The quest to separate and analyse chemical species with higher
resolution, sensitivity, and throughput has been central to the
development of microfluidics systems since their origin.'?
Separation systems are also a unit operation that is at the core
not only of micro-total-analysis systems®— (u-TAS) but also for
lab-on-a-chip integration efforts in general.® In fact, a number of
different separation strategies have been developed in recent
years for microdevices with a variety of applications.” In the
design of separation schemes, continuous flow systems are
favoured, both for integration purposes and because they
typically offer higher throughput.®!! Deterministic lateral
displacement (DLD) is a separation method with these
capabilities that has shown great potential for the fractionation
of suspended particles in different biological areas, ranging from
tissue-engineering to diagnostics.'>! In DLD, a suspension is
driven though an array of obstacles and the different compo-
nents move in locked-in trajectories, migrating at different
angles. Interestingly, higher velocities show sharper size resolu-
tion, which suggests that this method operates in a deterministic
fashion, and is therefore compatible with higher throughput
than comparable stochastic methods.'>*? In addition, the two-
dimensional nature of DLD offers the possibility of improved
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spatial resolution, compared to traditional one-dimensional
methods. Another important advantage of DLD is that the
suspension is fractionated without altering the native state of the
different species.”® Finally, DLD is a passive or fluidic-only
technique, in that it simply relies on the geometry of the
stationary media and the properties of the flow to separate the
sample, without the need of external fields.?*

In the original DLD work, the geometry consisted of a square
array of cylindrical obstacles rotated with respect to the flow
direction.'? The authors observed two types of motion for
suspended particles: a displacement or bumping mode in which
relatively large particles would stay in the same lane between
columns of obstacles and therefore move at an average angle o =
0° with respect to the array; and a zigzag or streamline mode in
which smaller particles followed the flow direction on average,
crossing a column of obstacles every 10 rows. (Analogous results
were reported using an oblique lattice with the angle of the lattice
being the same as the rotation angle above.?’) Recent work has
shown that in fact there could be multiple sorting directions
(mixed motion), which is advantageous for separation pur-
poses.’*® We have observed analogous behaviour in macro-
scopic experiments, using a scaled-up version of a DLD device,
when the particles are driven through the array of obstacles by a
constant force®® (f-DLD). The particles also exhibit directional
locking, on average migrating at selected lattice directions.
Directional-locking is also observed in the motion of a particle
through a square lattice of repulsive centres.** Our macroscopic
experiments not only established the deterministic nature of the
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observed directional locking, but also showed the importance of
irreversible particle-obstacle interactions as the underlying
mechanism leading to migration angles that are different from
the driving direction. Recently, scaled-up experiments were also
used to investigate the performance of DLD devices at large
particle volume fractions.*!

One of the driving forces in the development of microfluidic
separation systems is the growing interest in lab-on-a-chip
devices for cell manipulation and analysis.''"?* The progress
and potential of droplet-based microfluidics,*>** has motivated
the investigation of different techniques for the separation of
drops and multiphase fluids. **7 However, in contrast to the
case of colloidal particles, the motion of deformable components
in DLD devices has not been investigated in detail.'**%% A
recent study reported, for the first time, good size-separation of a
binary sample of 30 um and 11 pm (water based) droplets in
oil," and simulation of elastic capsules yielded similar results®.
Beyond lab-on-a-chip technologies, the separation of the
different components in multiphase flows is at the heart of a
number of engineering applications, ranging from enhanced oil
production to emulsions.

Here, we first demonstrate the separation capabilities of
f-DLD for several drop sizes, from relatively small ones that
easily move through the device, to large drops that exhibit
substantial deformation as they move through the array. We
investigate the entire range of forcing angles and establish the
presence of directional locking analogous to that observed for
rigid particles. In fact, for the entire range of forcing directions
and for all drop sizes a simple collision model developed to
describe the motion of rigid particles accurately describes the
locking observed in the average migration angle of drops. We
also demonstrate that differences in the average velocities of
different size drops can be employed, along with the lateral
displacement, to enhance the separation capabilities of f~DLD.
Finally, and for the first time, we show that a single line of
cylindrical obstacles, slanted with respect to the driving force, is
capable of performing binary separations, and that the results
can be predicted based on the array experiments and vice versa.
Our large data set indicates that the first critical angle, at which a
given drop size becomes unlocked from moving down a single
column (see Fig. 1), depends linearly on size. In addition, we
observe a window of approximately 20° for the first critical
angles for the drops considered here, a promising result in terms
of the potential drop-size resolution of /~-DLD.

2. Experimental results and discussion
2.1 Experimental setup and characteristic parameters

The deterministic character of DLD allows us to investigate the
separation of drops by means of experiments in a scaled-up
macroscopic device (Pe > 1). Specifically, we use an array of
obstacles created with cylindrical LEGO®) pegs positioned in a
square lattice on a LEGO® board (Fig. 1). The array is
immersed in a transparent tank filled with oil and aligned
vertically such that gravity is in the plane of the array. A
continuous train of monodisperse water drops is created using a
syringe and introduced from the top of the tank, such that they
move through the array as they settle under gravity. The forcing
angle is controlled by rotating the LEGO® board. We measure

both the forcing angle (0) and the migration angle () relative to
one of the principal axis of the array, say the y-axis, as shown in
Fig. 1. Then, 6 = 0° for example, corresponds to the y-axis
aligned with the direction of gravity. Note that due to the high
symmetry of the square array all the forcing directions are
covered with 6 = 0°-45°. Fig. 1 presents two different trajectories
showing the separation of 7.5 mm and 5.3 mm drops.

To scale up the microfluidic DLD devices, possible inertia
effects are reduced using a viscous oil (1 ~ 6 x 107> Pas, y &
3 x 1002 N m ") and the Reynolds number ranges from
Re ~ 0.1 to Re & 2, the latter calculated for the largest drops
(a ~ 6 mm) and using their largest settling velocity (U ~ 20 mm
s ! for 0 ~ 0°). The capillary numbers are also small in all the
experiments presented here, with Ca < 5 x 1072 which is
consistent with microfluidics.*>*' The ratio between the diameter
of the obstacles (2R = 7.8 mm) and the lattice spacing (/ =
16 mm) is 2 = 2R/I = 0.49. We normalize the drop radius with the
obstacle radius, f = @/R. In the experiments discussed here, f§
ranges from 0.47 to 1.5. Finally, it is also important to compare
the size of the drop with the gap between pegs, A = [ — 2R,
which, when normalized by the diameter of the obstacles,
becomes, d = A/2R = /.~ — 1=1.05. Therefore, for p>d6=1.05
the drops do not fit through the gap between the pegs unless they
deform.

2.2 Migration experiments

In Fig. 2 we plot the average migration angle, o, as a function of
the forcing angle, 0, for drops that easily fit through the gap
between obstacles (f ~ 0.50) to large drops that show significant
deformations as they move through the array (f ~ 1.50). The
dependence of the migration angle on the forcing angle resembles
that observed for solid particles, with regions of constant
migration angle followed by sharp transitions between them.
These ‘Devil’s staircases’ are a characteristic feature of systems
exhibiting directional locking.** The locking directions (plateaus
of constant migration angle) correspond to lattice directions of
the array. For example, the smallest drops are the first to
transition from the locking direction [0,1] to the [1,3] lattice
direction. When locked into the [0,1] direction, the falling drop
settles along a single column of the array, on average moving
only in the y-axis. The [1,3] locking direction corresponds to a
more complex motion in which the drops change column every
3 rows. The fact that, for a given forcing direction, the migration
angles of different size drops are in general different indicates
that a mixture of drops would spontaneously separate as they
move through the device. Although the results presented in
Fig. 1 mostly indicate the possibility of binary separation, in that
drops of different size would be separated into two groups
settling at two different migration angles, there is a small window
of forcing angles, 6 ~ 30°, for which three migration angles are
observed simultaneously, corresponding to the [0,1], [1,2], and
[1,1] lattice directions.

More importantly, and also consistent with our observations
in the case of solid particles, the first critical angle 0. shows the
strongest dependence on size,?’ with a range of nearly 20° for the
range of drops sizes considered here. Interestingly, the first
critical angle exhibits a linear dependence on the drop size over
the entire range, including the large, deforming drops (see
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Fig. 1 Picture of the experimental setup showing the LEGO® board
and the cylindrical pegs forming a square array rotated at an angle 6 =
18 with respect to gravity. We also overlaid the trajectory followed by
two types of drops, 3.75 mm (shown in red) and 2.65 mm drops (shown in
black). Clearly, the larger drops are locked in the [0,1] direction, and
sediment along a single column in the array, whereas the smaller drops
are able to change columns and move in a direction closer to the force,
with o = 18.4°, corresponding to the [1,3] direction.
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Fig. 2 Migration angle o as a function of the forcing angle 0 for drops
of different size. The open (solid) symbols correspond to drops of sizes
f < 0 (f > 9). The solid lines correspond to the model, with b, obtained
from the first transition.

Fig. 3). This linear dependence would be particularly useful in
the design of obstacle arrays for separation devices as it adds
predictability and facilitates calibration. On the other hand, this
is an empirical observation that would need to be validated for
different materials and in the actual microdevices.

In Fig. 4 we present the average settling velocity of the drops
as a function of the forcing direction. It is clear that, for a given
forcing angle 6, drops of different sizes settle at different
velocities, and a mixture of them will also separate even if they
move in the same direction. For example, consider a forcing
angle 0 = 23° and a mixture of 3.7 mm, 6.3 mm, 8.1 mm and
10.2 mm drops. The two smallest drops will move in the [1,2]
direction, but the velocity of the 6.3 mm would be nearly twice
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Fig. 3 First critical angle as a function of drop size. The solid symbols
correspond to the first critical angle measured in the LEGO®) system.
The open squares (triangles) correspond to a single arrow of obstacles
with separation / (2]).

that of the 3.7 mm drops. Similarly, the two largest drops would
still be locked into the [0,1] direction, but the 10.2 mm drops will
move substantially faster than the 8.1 mm ones. It is also clear
from Fig. 4 that the settling velocity of the drops decreases
significantly as the forcing direction approaches the transition
angles, in agreement with simulation results obtained for solid
particles when particle-obstacle hydrodynamic interactions are
included.® In fact, the lubrication forces that reduce the mobility
of a solid particle close to the obstacles are also present in the
case of a drop moving close to a solid surface. We note that the
variations in settling velocity may result, for some orientation
angles, in smaller drops settling faster than larger ones. The
settling speed is also affected by the aspect ratio between the
drop size and the open gap between obstacles, f3/0. In fact, we see
that the settling velocity at zero forcing angle is clearly not
monotonic. In the inset of Fig. 4 we plot the settling velocity as a
function of the forcing direction shifted by the first critical angle,
(60-0.). Tt is clear that the dependence of the settling velocity on
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Fig. 4 Drops velocity along the forcing direction as a function of the
forcing angle. The symbols are the same as in Fig. 2. The inset shows the
same data but plotted around the critical angle for each drop.
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this shifted forcing angle is similar for all drop sizes, with a
critical slowdown as the forcing direction approaches 0.

2.3 Dilute limit model of deterministic lateral displacement

In our previous work, we demonstrated that the motion of
suspended solid particles in periodic systems could be described
from the motion of a single particle past a fixed obstacle, which
we referred to as a particle—obstacle collision.?>** Moreover, our
previous experimental results were in excellent agreement with a
simple particle-obstacle collision model in which the effect of all
irreversible forces is represented by a hard-core repulsion with
range (1 + ¢) a, where ¢ can be considered as an effective
roughness.” In this model there are only two type of collisions:
(1) simple, hydrodynamic collisions, in which the distance
between the particle and the obstacle is never smaller than ea,
and (ii) touching collisions, in which the particle reaches the
minimum separation ¢a during the approaching part of the
trajectory and the hard-core repulsion prevents the particle from
getting closer to the obstacle. The hydrodynamic collisions are
reversible in the absence of inertia (and deformation) and, as a
result, there is no net lateral displacement. In other words, the
initial offset, or incoming impact parameter b;,, is the same as
the outgoing impact parameter b,,. The impact parameter is
defined as the distance between the asymptotic line of motion of
the particle and the parallel line that goes through the centre of
the obstacle (see Fig. 5). In the case of touching collisions the
hard-core repulsion prevents the approaching particles from
getting closer than (1 + ¢)a but has no effect as they move apart
and, as a result, the trajectories are not symmetrical and lead to a
net lateral displacement. This lateral displacement experienced at
each particle-obstacle touching collision accumulates as the
particle moves through the periodic array and leads to the
observed difference between the forcing and migration angles.
Touching collisions result whenever the incoming impact
parameter (b;,) is smaller than a critical value, b., which
corresponds to the impact parameter that leads to a minimum
particle-obstacle gap equal to ea, in the absence of the repulsive
interaction. Examples of both hydrodynamic and touching
collisions are schematically shown in Fig. 5. All the touching
collisions collapse into a single outgoing trajectory with by = b.
In a separate study we showed that the lateral displacement

experienced by an individual particle as it moves around a
cylindrical obstacle is in excellent agreement with such a simple
model.** In addition, we showed that, even for relatively small
separation between the obstacles, a model in which the trajectory
is approximated by a series of independent particle-obstacle
collisions with asymptotic by, and by, values (dilute-limit
approximation for the obstacles), is fairly accurate.** This
approximation implies that for a given b, it is also possible to
calculate the effective migration angle () not only for all forcing
directions (0), but also for any type of lattice or spacing between
the obstacles.

For the motion of the drops considered in this work, and as a
first approximation motivated by the small Ca numbers, we shall
assume that there is no deformation upon the collisions, and use
the model described above. In fact, independent of the behaviour
of the drops at small separations with the obstacles and their
possible deformation, our basic assumption is that collisions can
be classified into hydrodynamic ones (no lateral displacement)
and touching ones (byu = b.). A second approximation is that
consecutive collisions can be treated in the dilute-limit approx-
imation. In Fig. 2 we show that this simple model accurately
describes the average migration angle of the drops as a function
of the forcing direction for all drops with f < §. To obtain these
theoretical curves we simply calculate b. from the first critical
angle using the relation b, = /sin(0.). This equation is obtained by
comparing the horizontal displacement (or shift) between
obstacles located in successive rows of the array due to the
rotation of the device, with the lateral displacement experienced
by a drop as a result of a touching collision (see Fig. 6). As
shown in Fig. 6, for 6 < 6, the drop is clearly locked in the [0,1]
direction, falling down a single column of the array. Only when
for 0 > 0. does the drop finally move across a column in the
device, as shown in Fig. 6b. In terms of the model, all locking
directions observed at higher forcing angles, as well as the
transition angles between these locking directions, can be
predicted from this first transition angle.

The motion of drops that are larger than the separation
between cylindrical pegs cannot be described as a series of
individual collisions with a single obstacle at a time, and the
proposed model is not valid in this case. The dependence of the
migration angle on the forcing angle exhibited by such large
drops, however, is similar to that observed in the case of smaller

Fig. 5 Schematic view of the trajectory followed by a suspended particle during two different particle-obstacle collisions for f = 1. A symmetric

hydrodynamic collision (trajectory #1) with by, > b, and by =

bin, and a touching collision (trajectory #2) with b;, < b, and by = be.
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Fig. 6 Schematic view of the single column experiments, showing the
settling of a train of drops in a case (a) when the rotation of the board is
below and the drops are continuously displaced and (b) an angle higher
than the critical value for which b, < Isin(0,.) and the train of drops goes
through the column.

drops, showing directional locking and sharp transitions of the
migration angle between locking directions. The 9.3 mm drops
(which are larger than the gap between obstacles, f = 1.19) still
show an intermediate locking direction (between [0,1] and [1,1]),
that is for 6 =~ 30° the migration angle is o = 26.56°,
corresponding to the [1,2] direction. Also, in agreement with
the results for smaller drops, the larger drops display increasing
values of the first critical angle with drop size. This shows that,
as expected, it is increasingly difficult for a drop to move across a
column of obstacles in the device for > J.

2.4 Single line experiments

An interesting test for the validity of the proposed model based
on the dilute-limit approximation is that it predicts that a single
line of obstacles would be sufficient to perform a binary
fractionation of a mixture of drops. Specifically, a line of
obstacles separated by the same distance / as in the array and
oriented at some angle 0 with respect to the forcing direction
would deflect all those drops for which 0. > 6, but let smaller
drops with 6. < 0 go through, as represented in Fig. 6 (Note that
Fig. 6 shows the behaviour of a given drop size for two different
forcing angles but it is analogous to the case of a given forcing
angle and two drop sizes.) In certain situations, it could be
advantageous to use a single line of obstacles instead of the entire
array. For example, it would be straightforward to create a series
of individual lines at different orientations to perform more
complex fractionations. More importantly, if the dilute-limit
approximation is valid we could then predict the migration angle
of a drop for any geometrical arrangement of the obstacles
(periodic or not), solely based on the measured value of the first

critical angle. In that case, it would be possible to optimize the
pattern in which the obstacles are positioned for each sample
to be fractionated using simple geometrical considerations.
Therefore, to test our model, we performed single line experi-
ments in which only one line of obstacles is used from the
original square lattice. In these experiments we rotate the device
starting from 6 = 0° and measure the first angle at which the
drops go through the line of obstacles. According to the
proposed model this angle should be equal to the critical angle
0. measured in the array. The critical angles measured using a
single line of obstacles are shown in Fig. 3. They clearly agree
with the critical angles measured using the square array of
obstacles. Surprisingly, there is good agreement even in the case
of large drops, where one could have expected the two cases
(single line vs. array) to have different critical angle, due to the
interaction of the drop with multiple obstacles simultaneously.
In addition, the fact that different drop sizes have different
critical angles implies that a single line of obstacles can be
employed for binary separation.

The experiments discussed above demonstrates that the critical
angle for drops moving past a single column of obstacles is the
same as the critical angle for the full array. However, there could
be a dependence of the critical angle on the separation between
the obstacles. In particular, it would be natural to expect such a
dependence of the critical angle on the separation between
obstacles in the case of relatively large drops, when their size is
similar to the gap between pegs. Therefore, to further test the
limitations of the dilute approximation we performed a separate
set of single line experiments in which we doubled the separation
between obstacles to 2/. As shown in Fig. 3 the critical angles are
different in this case, compared to those obtained in the original
array. This is expected, given that the critical angle is not a local
quantity but depends on the geometry of the array (e.g. on the
distance and relative position of the obstacles.) On the other
hand, the critical impact parameter should only depend on the
drop-obstacle pair and not on the location of other obstacles. In
fact, when we plot the corresponding critical impact parameter,
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Fig. 7 Critical impact parameter as a function of drop diameter. The
solid symbols correspond to the measurements in the array and the open
squares (triangles) correspond to single row experiments with separation /
(21) between the pegs. The solid line is a linear fit b, = 1.5 + 1.25 (d/2),
with a correlation coefficient R = 0.991.
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b. in Fig. 7, we observe excellent agreement for all three sets of
experiments. Again, the observed agreement extends well beyond
the range of drop sizes for which a dilute approximation is valid.
We also show that a linear dependence is a good approximation
for the critical impact parameter as a function of the drop size.

3. Conclusions

We have shown that force-driven deterministic lateral displace-
ment (/~-DLD) is a promising technique for the separation of
drops. We performed macroscopic experiments using a scaled-up
microfluidic device consisting of a square array of cylindrical
obstacles. We investigated the average migration angle of a wide
range of drops sizes, including large ones that deform
considerably as they move through the array. The results
presented here were performed in the deterministic limit, and
at small Reynolds and capillary numbers, which makes them a
suitable model for microfluidic devices. In all cases we observe
the presence of directional locking, in which the drops migrate at
selected lattice directions, analogous to the motion observed with
solid particles. We showed that a simple model based on
individual obstacle-drop collisions, in which the first critical
angle is the only fitting parameter, accurately described the
observed locking behaviour for all forcing angles. From these
experiments we obtained important design criteria for the
fabrication of /~-DLD devices for drop separation. Firstly, the
large window in forcing angles observed (approximately 20°)
makes the first transition the best suited for separation purposes.
Secondly, the considerable reduction in the average velocity that
the drops experience when the forcing direction is close to any of
the critical angles suggests that the average velocity itself can be
used to enhance separation resolution and capacity. Thirdly, we
demonstrated that it is possible to use a single line of cylindrical
obstacles to perform binary separations. Finally, the agreement
between the critical angles measured with a single line of
obstacles with those determined using the full array allows for
the selection of the optimal lattice structure and spacing solely
based on geometrical considerations. Increasing the spacing
between obstacles, for instance, would provide a straightforward
strategy to reduce the occurrence of clogging in the microdevices.
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