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a more detailed discussion and are treated in the following section. In
crystals which do have a centre of inversion symmetry, only even-parity
vibrations, whose representations have a subscript g, can be Raman
active and only odd-parity (subscript «) vibrations can be infra-red active.
This fact leads to the important complementary nature of infra-red
absorption and Raman effect measurements. Directly above each
irreducible representation is a matrix which gives the non-vanishing
components of the Raman tensor, ie. of «, , or R%. The different
elements of the matrices are the nine components of the tensor obtained by
allowing both p and o to take on the values z, yand z. Here , y, and zare
the crystal principal axes chosen to be identical with the principal axes @,
x5 and x, defined for all the crystal classes by Nye (1957). The component
1 of the phonon polarization for the case of infra-red-active vibrationsis the
quantity given in brackets after the irreducible representation symbol.
For the unlisted case of triclinic symmetry, the Raman tensor is a general
symmetric tensor.

As discussed in the previous section, the Raman tensor is strictly sym-
metric only when the phonon frequency is neglected in comparison with
the radiation frequencies. Ovander (1960) has considered the form of
the Raman tensor when this approximationisnot made. Inaddition to the
phonon symmetries listed in the table, other types of phonon are now
Raman active and the scattering tensor contains in general an anti-
symmetric part. The additional Raman lines due to these other types of
phonon should be very weak, and we shall assume the Raman tensor to be
symmetric throughout the remainder of this article.

The table is used to calculate Raman scattering efficiencies as follows.
Let the incident and scattered photons have polarizations in the directions
of unit vectors e; and e respectively. The scattering efficiency is given by :
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where A is a constant of proportionality and e and e? are components of
the unit vectors along the principal axes o and p. For two- or three-fold
degenerate phonons the contributions of the two or three matrices given in
the table are added to find the total scattering efficiency. As examples of
the use of the tables, we consider the scattering geometry shown in fig. 5.
For the B phonon symmetry in the C, group, the Raman efficiency for
scattered light polarized in the plane of scattering (i.e. the xz-plane) is:

Sy=A(ee+ed)?cos?y . . . . . . (37)

and for scattered light polarized perpendicular to the plane of scattering
is:
§ =A(efd—e¥c)?, B 1))

where the scattered light has been assumed to be approximately transverse
even for the extraordinary ray. For the ¥,, vibration in the O, group,
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the analogous quantities are:
Sy=Ad(Fsng+ @, . . . .. . (39)
S, = Ad*¢e)2 R R . T

When §==/2 the sum of S and S, contains three terms which are the
same three as occur in (31).

Experimentally it is more common to keep the directions of incident and
scattered light fixed at right-angles to each other and to vary the
orientation of the crystal axes relative to the light directions. A special

Fig. 6

Alternative Raman scattering geometry.

case of this geometry isshown infig. 6. As anexample, consider a phonon
of A, symmetry in the group D, or D;. The scattering efficiencies are :

S,=A[efasind —ebcos 2= A(el)?}(a—b)2sin?2¢, . . (41)
S =Alefaf=Afeta)®, . . . . o ¢ 0 o e . . (49)

where ¢ and e} are the components of e; parallel and perpendicular to the
plane of scattering (the light waves are assumed transverse). These last
equations have been derived and discussed by Poulet (1955).

An important quantity, usually defined for scattering through a right-
angle as in fig. 6, is the depolarization ratio p. This is defined to be the
ratio of the intensity of the component of scattered radiation polarized
parallel to the planc of scattering to the intensity of the component polarized
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perpendicular to the scattering plane. Expressed in terms of scattering
efficiencies :

P= =t w0 e e e e .. . (43)

The depolarization p evidently depends on the angle ¢, and its magnitude
and angular variation provide important information for deciding the
symmetry type of an observed Raman line. Only the A and E symmetry
vibrations in cubic crystals produce scattered light with a depolarization
ratio pindependent of . Saksena (1940) has tabulated theoretical depola-
rization ratios for many crystal symmetries and for three different states of
polarization of the incident light ; he considers both forward (longitudinal)
and right-angle (transverse) scattering. Whereas Saksena’s results are
restricted to light propagated along principal axes, Chandrasekharan
(1963) has calculated the Raman scattering matrix for cubic crystals for any
arbitrary relative orientations of crystal axes, incident-light wave vector
and scattered-light wave vector.

Finally, we mention that Theimer (1955, 1956) in attempting to remove
difficulties in the interpretation of measured intensities and depolarization
ratios in calcite, has proposed that in some cases the appropriate symmetry
group to use is not that of the crystal lattice but only its sub-group of
operations which leave the phonon wave vector k invariant. We feel that
the validity of this approach has not been established.

2.4. Eatensions of the Theory for Piezo-electric Crystals

The theories reviewed so far provide an adequate basis for interpreting
the first-order Raman spectra produced by scattering from non-polar
lattice vibrations. However, extensions of the theory are necessary to
deal with scattering from lattice vibrations which are simultaneously
Raman and infra-red active. Experimentally, this type of scattering was
regarded as anomalous, until its features were explained theoretically by
Poulet (1955). The scattering is ‘anomalous’ in two ways:

(1) More first-order Raman peaks are observed than would be expected
on the basis of a group-theoretical treatment of the symmetries of the
vibrations. This is due to a lifting of the group-theoretical degeneracy of
polar lattice vibrations by long-range electrostatic forces as discussed in
§2.1 and illustrated in figs. 1, 2 and 3. In these figures, the group-
theoretical degeneracy is that existing at - =0, while the phonon frequencies
observed in the Raman effect are those at the right-hand edges of the
figures. In uniaxial crystals, some of the Raman frequencies show an
angular dependence. All these features have been fully discussed in § 2.1.

(2) The experimental magnitudes and angular dependencies of the scat-
tering efficiencies and depolarization ratios are not in agreement with the
theoretical expressions given in §§2.2 and 2.3, even when the lifting of
group-theoretical degeneracies is taken into account. This is again due to
the long-range electric fields associated with the polar vibrations. The
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electric fields give rise to an electron-lattice interaction additional to the
deformation potential type, and this interaction varies with phonon
direction due to the variation in field strength.

In this section we review the theory of these anomalies. It is convenient
to divide the discussion into two parts, for cubic and uniaxial crystals.

(i) Cubic erystals. As discussed in §2.1.1, the threefold Raman and
infra-red-active vibration in a cubic crystal splits into two vibrations, one
transversely and the other longitudinally polarized. Consider, for
example, the F, vibration in a crystal of T; symmetry, a case treated by
Poulet (1955). In the previous section we have calculated the scattering
efficiencies from the analogous vibration in a crystal with inversion sym-
metry (F,, in O,) using the basic eqn. (36). According to this equation the
scattering efficiency is obtained by adding the contributions of the three
matrices given in the table. However, when the threefold degeneracy is
lifted it is necessary to take account of the fact that the three matrices
correspond to polarization components of the phonon along the three
principal axes, and these components can no longer all be chosen to be
unity. It is thus necessary to generalize (36) by introducing a unit vector
€ in the direction of the mechanical polarization of the phonon. The
formula for the scattering efficiency then becomes:

2
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where 7 is given in brackets in the table after the appropriate irreducible
representation symbols. The contributions of the three matrices in the
table for a phonon of given polarization are now summed before taking the
square in (44).

For a threefold degenerate vibration like F,, in O,, (44) gives a result
identical to that given by (36). However, for the T, vibration of T,
assuming the scattering geometry of fig. 5, the longitudinal vibration gives
scattering efficiencies :

St = A'd2(eV sin 34/2)?, R 133

Sl =A'd*ejsing/2)%. . . . . . . . (46)

For the transverse vibration, the contributions to the scattering by phonons
polarized parallel and perpendicular to the scattering plane add to give:

St = Ad?[(e¥ cos 34:[2) + (e sin )*], R Y0

Sf=Ad*efcosyf2)2. . . . . . . . . . (48)

Note that Sf + 8{ =48, given by (39) and 8] + S{ = 8 given by (40) provided

that A=A". Results equivalent to eqns. (45) to (48) have been given

by Ovander (1962 a), who calculated the form of the Raman tensor for this

case by direct expansion of the electronic wave-functions in a power series

in the phonon digplacement coordinates, as is done in the Born theory of
Raman scattering by non-polar lattice vibrations. Ovander has drawn
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attention to the fact that the scattering efficiencies for the transverse and
longitudinal phonons are not symmetrical about y==/2, in contrast to the
scattering efficiency for the threefold degenerate vibration ; the transverse
vibration gives greater scattering in forward directions, and the longitu-
dinal vibration in backward directions. Poulet (1955) has given formulae
for the intensities and depolarization ratios of light Raman scattered
through a right-angle by cubic crystals having various orientations with
respect to the light beams.

The constant of proportionality for scattering by the longitudinal
vibration in (45) and (46) has been distinguished by a prime from the
constant occurring in (47) and (48) for scattering by the transverse vibration.
That the two constants should be different was first noted experimentally
by Couture-Mathieu and Mathieu (1953) and the phenomenon was sub-
sequently explained theoretically by Poulet (1955). It is due to the fact
that the electric field accompanying a polar lattice vibration provides an
additional electron—lattice interaction mechanism. This mechanism is well
known in the realm of electron transport theory in the group I11-V semi-
conductors, where it is known in some cases to lead to a stronger electron-
phonon coupling than the deformation potential interaction (Ehrenreich
1957). In making a calculation of the Raman scattering produced by this
additional mechanism, it is necessary to decide whether the electrons in the
crystal experience the macroscopic field Ep,e or the local field Ejgeal
produced by the polar phonon. The two fields are related by :

4‘
Elocu-l=Ems.c+?rP, soowoowow owoa o (49)

where P is the polarization. It has been shown in § 2.1 that the transverse
phonon has Epae=0, while the longitudinal phonon has Enae given by
(6). Thus if the electrons of importance in the Raman effect experience
Emnac, the additional scattering mechanism occurs only for the longitudinal
phonons. This is the point of view adopted by Ovander (1962a) and
Loudon (1963b) and in the transport theory of polar semiconductors.
However, Poulet (1955) assumes that the electrons experience Ejgean,
which leads to additional scattering for both transverse and longitudinal
phonons. The calculations of Darwin (1934) and Noziéres and Pines (1958)
show that Emgac should be used in ecrystals where the electrons are not
localized on individual atoms (e.g. semiconductors), whereas Ejgea; should
be used for crystals where the electrons are tightly bound to the atoms.
Explicit calculations of the Raman scattering produced by the polar
interaction have been fully carried out only for the phonons in the zinc
blende lattice. There are two methods of calculation corresponding to the
two methods of obtaining the non-polar scattering efficiency described in
§2.2. Poulet (1955) has extended the Born and Bradburn method by
expanding the polarizability «,, in a power series similar to (23), but with
terms in the phonon electric field included, in addition to the terms in the
phonon displacement r. For cubic crystals both the phonon displacement
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and electric field point in the same direction, so that the symmetries of the
scattering produced by the two electron-lattice interactions are identical.
In the expansion of «,,, the term linear in the electric field has as its
coefficient the rate of change of polarizability with applied electric field.
This quantity can be related to the linear electro-optic coefficients of the
crystal (see Nye 1957), for the change in the component ¢,, of the optical
dielectric constant tensor e produced by an electric field E is:

Sem =— z Eewzm_,eﬂEr, o 5 s o (OO
0,0 T
where z_, . is an electro-optic coefficient. The calculation thus leads to an

expression for the polar Raman scattering which depends only on quantities
which can be measured by independent experiments.

A similar result has been derived by Loudon (1963 b), who calculated the
scattering efficiency by third-order perturbation theory using (30) but
with Hy, representing now the polar electron-lattice interaction. The
scattered amplitude can be related to a microscopic expression for the
electro-optic coefficients if the phonon frequency is negligible in comparison
to the light frequencies. For a zine blende type lattice, assuming the scat-
tering geometry of fig. 5 with ¢y = 7/2, and taking the case where the electrons
experience Emgae, the scattering efficiency for the transverse vibration
using unpolarized incident light is obtained from (31), (47) and (48):

_ etV (ny+1)LdQ
" 2BmAd M ctw,
where the difference between the incident and scattered light frequencies

has been ignored. For the longitudinal vibration, the calculation of
Loudon gives a total scattering efficiency :
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where n, is the Bose-Einstein factor for the longitudinal phonons of
frequency w;, and z,, is the electro-optic coefficient for the zinc blende
lattice in condensed notation (see Nye 1957). The calculation of Poulet
(1955) using Ejoca1 gives a result in which both S,and 8, contain a term in z,,
Since RZ, is the only factor in (51) and (52) which cannot be otherwise
measured, it should in principle be possible to determine which electric
field acts on the electrons by measuring the relative intensities of the two
Raman peaks and the incident light. Such an experiment would however
be difficult in practice and there is little or no information in the literature
on the relative intensities of incident and scattered radiation.

A different approach to the calculation of Raman scattering intensities
has been followed by Ovander (1962 b) and the method has been applied to
cubic crystals by Grechko and Ovander (1962). In this method the
crystal is regarded as a collection of interacting molecules and that part of
the interaction between the radiation and the molecules which mixes the
molecular electronic excited states with the ground state is diagonalized.

IBEE & o - ox o« : (BY)
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The resulting eigenstates are mixtures of radiative and electronic excitations
(polaritons). Ovander now considers three terms in the Hamiltonian which
can cause Raman scattering from molecular vibrational levels. The part
of the electron-radiation interaction which mixes two molecular excited
states together is denoted H, and gives a Raman scattering equivalent to
that of § 2.2 when the deformation potential electron-lattice interaction is
inserted. The term arising from the e242/2mc? part of the electron-radiation
interaction (denoted Hy) leads to significant Raman scattering only for
incident radiation in the x-ray region (see Peierls 1955 for a discussion of
this type of scattering), and it is neglected by Ovander. Finally the inter-
molecular interaction term leads to a Raman scattering Hamiltonian H
(called Hy in Ovander’s later papers) ; when H ; arises from the interactions
of the electronic and vibrational dipole moments of all the molecules
in the crystal, the Hamiltonian produces the part of the Raman scattering
due to the polar electron-lattice interaction already discussed in this
section. Grechko and Ovander (1962) show that this method of calculation
leads to the expressions for the angular dependence of the scattering already
given.

When the frequency w; of the incident light approaches one of the
electronic excitation frequencies of the crystal, terms in the Raman
tensor diverge, as is evident from (32). Ovander (1962 b, ¢) has discussed
this so-called resonance Raman scattering in terms of his theory outlined
above. The divergence is removed by a proper consideration of the
electron-radiation interaction in the region of the resonance. Loudon
(1963 b) has treated resonance scattering for a situation where w; is close
to the forbidden energy gap frequency in an insulator. The Raman
tensor is always finite in this case even using (32) without modification,
due to the arrangement of the electronic energy levels in bands.

(ii) Uniawial crystals. As discussed in §2.1.2, a polar uniaxial crystal
having two atoms in the unit cell may have three infra-red-active lattice
vibration branches, two of the branches being degenerate for propagation
parallel to the c-axis, one of these and the remaining branch having a
frequency which depends on-the direction of propagation. The angular
dependence of the Raman scattering efficiences can be calculated using the
results of §2.3 modified to take the effect of the long-range electric forces
into account.

Let us consider the example of a crystal having C,, symmetry. Reference
to the table shows that group theoretically an infra-red and Raman-active
phonon can be non-degenerate of type A, corresponding to lattice displace-
ments parallel to the c-axis or twofold degenerate of type E corresponding
to lattice displacements perpendicular to the c-axis. The long-range
electric forces lift the twofold degeneracy and mix the A, and E symmetry
phonons, so that for a general direction of propagation there are three
non-degenerate types of phonon, two of which have neither purely A, nor
purely Esymmetry. Thusall three A; and E matrices contribute in general
to the Raman scattering efficiency for two of the three phonon branches.
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In addition to this feature, the formula (44) for the scattering efficiency
must be further generalized to take account of the two types of electron—
lattice interaction. In uniaxial crystals the lattice displacement r (parallel
to E), which controls the deformation potential scattering, is not in general
parallel to the electric field E (parallel to k), which controls the polar
scattering. Following the calculation of Poulet (1955), described in part
(i) of this section, in which the Born and Bradburn method is extended
by inclusion of terms in both r and E in the expansion of the polarizability
,,, it is seen that (44) must be generalized to:

S:{ e e‘;Rc;(aE’—}—ﬁl&T)e;}z, P -
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where f is proportional to the electric field strength |[E|. The contributions
of the three matrices in the table corresponding to polarization components
in the z, y and z directions must be summed before taking the square in
(53) (for symmetry groups Dy, Dy, Gy, D and Dy, there are only two matrices
in the table, corresponding to polarization components in the x and y
directions). We may note that (53) contains (44) as a special case. TFor
cubic crystals, where € and k point in the same direction for longitudinal
vibrations, the constant of proportionality is («+ )%, equal to 4" in (45)
and (46) ; for transverse vibrations, where 8 is zero, the constant of propor-
tionality is o2, equal to 4 in (47) and (48). In both cubic and uniaxial
crystals 8 is always zero for exactly transverse branches.

Consider first a crystal of the type discussed in part (i) of § 2.1.2 (electro-
static forces predominant over anisotropy in the short-range interatomic
forces). These crystals have a quasi-longitudinal extraordinary phonon
for which the almost constant electric field E and the atomic displacement
r are approximately collinear. Assuming the geometry of fig. 5, and taking
the scattered light to be approximately transverse, the scattering efficiencies
for this phonon for a crystal of C,, symmetry are:

8, ={efasini/2 cos i+ efe cos/2sin ) (a+B)2, . . (54)
8 | ={eYasin 2} (a+ )% sow @ W @ & w8 we (DBY)

The quasi-transverse extraordinary phonon has negligible electric field,
leading to:

S, ={¢facos|2 cosh—efesinf[2singh Pe®, . . . (56)
S, ={dacos/2}?e®, . . . . . . . . . . (57)
while the transverse ordinary phonon finally gives:
S, ={efesiny}* o?, R (111
8, =0. & % w4 A @ owr & s (B9

For polar uniaxial crystals of the type discussed in part (ii) of §2.1.2
(anisotropy of the short-range interatomic forces predominant over
electrostatic forces), the calculation of the Raman scattering efficiency
from phonons which are infra-red active is a little more complicated.
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For these vibrations, the two extraordinary phonons have a lattice displace-
ment r directed approximately parallel or perpendicular to the c-axis,
while the electric field E is parallel to k, as in (20) and (21). In addition,
these equations show that the electric field strength itself has a strong
angular dependence. These features lead to different angular dependences
for the contributions to the scattering resulting from the deformation poten-
tial and polar electron-lattice interactions. =~ We again assume a crystal
of C,, symmetry with the scattering geometry of fig. 5. Consider first the
extraordinary phonon associated with lattice displacements parallel to the
c-axis, whose frequency and electric field strength are given by (18) and (20),
i.e. the upper branch of fig. 3. The scattering efficiencies are:
8, ={efa [a+ Bsin?ih/2] costh + eef sin /2 cos /2 sin i, . (60)
S, ={elala+Bsin?/21}%, .o P o v o v 61
where the sin /2 dependence of 8 has been dlsplay('d explicitly. This
result (with a cos i factor omitted) has been obtained by Ovander (1962d)
using his method of calculation outlined above. The second extraordinary
phonon has its lattice displacement approximately parallel to the x-axis;
the frequency and electric field of this branch are given by eqns. (19) and
(21). The scattering efficiencies are:
S, ={efaB cos /2 sin /2 cos s — efe[a— P eos? (2] sinf?, . (62)
S, ={daBeosy/2sinyp/2}2. . . . . . . . . . . . (63)
There is a small additional angular variation in these last four equations
due to the dependence of the phonon frequency on angle, since the
equations for S contain this frequency as a factor (cf. the corresponding
eqns. (51) and (52) for the cubic case). Finally, the scattering efficiencies
for the ordinary phonon are the same as those given previously in eqns. (58)
and (59). Ovander (1962d) has also given results for these last two
branches.

Poulet (1955) has derived results for Raman scattering by the phonon
whose lattice displacements are parallel to the c-axis, in the geometry of
fig. 6. Poulet uses again the local field of the lattice vibration, whereas
the results of this section have assumed the macroscopic field to be the
appropriate one. Tho latter assumption gives:

S, ={etala+Bsin?(v/4—$)]}%, v .. (64)
while 8, is rather complicated and will not be written down. In fact,
Poulet’s calculation refers to a C;, symmetry crystal, but the appropriate
tensors have the same symmetry. The corresponding non-polar A,
vibration, in erystal of D, or Dy symmetry, has already been treated in
(41) and (42).

There have been no calculations of the constants of proportionality
occurring in the equations for the scattering efficiency in uniaxial crystals,
analogous to (51) and (52) for cubic erystals. It would not be difficult to
make such a calculation for a specific crystal symmetry. The polar part
of the scattering would again lead to terms proportional to electro-optic
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coefficients when the phonon frequency could be neglected in comparison
with w; and ws.

2.5. Temperature Effects

There have been several experimental studies of the dependence of Raman
spectra on temperature. Both the Raman shifts and linewidths, and also
the scattered intensities vary with temperature.

The variation with temperature of the shifts and widths of Raman lines
has been measured in quartz by Nedungadi (1940), in diamond by Krishnan
(1946a), in calcite and quartz by Narayanaswamy (1947), and in topaz
by Srinivasan (1953). The common features are a broadening of the
Raman lines with increase in temperature accompanied by a shift of the
Stokes lines to higher frequencies. The amount of temperature shift is
different for different Raman lines, being in general larger for the lines of
higher frequency. That is, the phonon frequencies decrease with increasing
temperature, the decrease being larger the smaller the phonon frequency.

These features can be qualitatively understood in terms of the anharmonie
forcesin the crystallattice. The width and temperature shift of the Raman
lines are the same as the phonon width and shift which are observed experi-
mentally in other types of experiment, e.g. neutron scattering or infra-red
absorption by phonons, and theoretical expressions for them can be derived
quantum mechanically. Inclusion of anharmonic forces leads to the
replacement of the total scattering efficiency S, given for example by
(31), by a scattering efficiency S(ws)dws defined in terms of the fractional
number of incident photons converted into scattered photons having their
frequencies in a range dws about ws. This efficiency can be shown to
satisfy the relation:

S(ws) =

S r
=

((.ui—-wo—cug— A]2+ rz’ (83)

The Raman scattered radiation thus has a Lorentzian distribution about the
frequency wi —w,— A with a half-width T'. The total scattering efficiency
is still the quantity S, since

fS(ws)dwg=S. L (68

Quantum-mechanical expressions for the shift A and half-width T due to
third -order anharmonic forces have been given by Maradudin ef al. (1962).
Fourth-order anharmonic forces may also make significant contributions
to I' and A at high temperatures. The expressions for I' and A are too
complicated to be evaluated explicitly except for simplified lattice models.
However, from the form of the expressions it is clear that the magnitudes of
both I'and A should increase with temperature, the dependence on tempera-
ture being linear when k7'/% is much greater than the phonon frequencies.
This agrees with the experimental results, which show a linear dependence
of I"and A on temperature at sufficiently high temperatures. In fact the
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change of phonon frequency with temperature is due not only to the anhax-
monic coupling of the Raman phonons to other vibrations, but also to the
thermal expansion of the lattice (see Maradudin 1962 and Maradudin and
Fein 1962). A complete discussion of A and its temperature variation must
take this factor into account. Viswanathan (1963) has also derived
expressions for the width and temperature shift of Raman lines; his
results do not appear to agree with those of the authors cited above.

The theoretical scattered intensities and efficiences also depend on
temperature, by a factor n,+ 1 for Stokes lines and a factor n, for anti-
Stokes lines. There have been several experimental investigations of the
temperature dependence of the intensities of Stokes lines. Bobovich
and Tulub (1959, 1960) have investigated nine types of erystal, including
quartz, calcite and CaF,, and these last three crystals have been subse-
quently re-studied by Stekhanov and Chisler (1962). Stekhanov (1955) has
measured temperature-dependent intensities in gypsum. The experiments
require care and some of the earlier measurements produced spurious
results (see the criticism of earlier work in Stekhanov and Chisler 1962).
The lines studied have an intensity which either increases at the theoretical
rate or increases more slowly than predicted, except for one of the Raman
lines in quartz which appears to increase more rapidly than the theory
predicts. The falling of the intensity below that expected theoretically
in some cases is not entirely understood. Some of the loss as the sample
is heated may be due to the increasing breadth of the Raman lines which
causes & progressively larger fraction of the line intensity to move out into
the wings of the line and escape detection. Theimer (1956) has suggested
that departures of the temperature dependence from the theoretical
(ny+ 1) factor may be due to more complicated Raman scattering processes
in which an extra step involving the creation and destruction of a virtual
phonon occurs. This type of process is made possible by the existence of
third-order anharmonic forces in the lattice.

2.6. Bxpervmental Results

A list of experimental work is given in a separate group of references at
the end of the article. The list is not completely exhaustive and references
to some of the work on more complex crystals (e.g. sulphates and
hydroxides) has been omitted. In much of this work only a few of the
Raman-active vibrations are observed and no interpretation of the
measurements is possible. Of the work which is listed some of the more
interesting measurements are singled out here for discussion.

2.6.1. Piezo-electric crystols

Mathieu and his collaborators have published a series of papers containing
the results of measurements on piezo-electric crystals, and the theoretical
work of Poulet (1955) reviewed in § 2.4 is based upon some of the earlier
measurements in the series. Couture-Mathieu, Poulet and Mathieu
(1952) have measured the Raman spectra of NaClO, and NaBrO,. These

A.P. ZK
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crystals belong to the cubic symmetry group T, and the longitudinal and
transverse vibrations of type F exhibit values of the depolarization ratio
which can be quite well accounted for by the theory of Poulet, but which
were thought to be anomalous before the important theoretical modifi-
cations required for piezo-electric crystals were fully understood. A
similarly good agreement with theory is obtained for the case of ZnS in the
zince blende structure (Couture-Mathieu and Mathieu 1953). The lattice
has T ; symmetry with single transverse and longitudinal optic vibrations of
F, symmetry, whose measured frequencies (274 cm~! and 349 em—* respec-
tively) are in good agreement with the Lyddane-Sachs-Teller relation
(Poulet 1954, 1955). Recent measurements on CuCl (Mathieu et al. 1960),
which has the same structure, have only resolved a single Raman line,
presumably that of the longitudinal optic branch which in the case of zinc
blende is ten times more intense than the line due to the transverse optie
branch. Thus in both ZnS and CuCl the scattering produced by the
polar electron-lattice interaction appears to dominate that produced by
the deformation potential interaction.

For the case of uniaxial crystals, the theory of § 2.4 has been compared
with the Raman spectrum of lithium perchlorate hydrate measured by
Mathieu and Couture-Mathieu (1952a). The crystal has symmetry class
U, and the vibrations of symmetries A, and E,; are both Raman and infra-
red active. One of the observed Raman peaks exhibits a frequency which
depends on crystal orientation, following a relation similar to (18). This
vibration has thus been assigned to the A; symmetry type by Poulet, who
has also shown that the variation of Raman intensity with orientation
may be represented by an equation similar to (64). One of the other
Raman peaks also has a frequency variation which appears to follow
eqn. (18).

Other measurements in the series by Mathieu and co-workers have
detected angular dependencies of the Raman peaks which can be
interpreted in terms of Poulet’s theory for piezo-electric crystals (see
Mathieu and Couture-Mathieu 1952b, Weil and Mathieu 1954, Mathieu
et al. 1955, Poulet and Mathieu 1956). Haas and Hornig (1959) have
collected together many of the values of transverse and longitudinal
frequencies measured by Mathieu and his co-workers.

2.6.2. Quartz

In the period under review there have been more measurements of the
Raman spectrum of quartz than of any other crystal. Quartz has a strong
Raman spectrum with a number of well-resolved lines. The erystal
symmetry group of a-quartz is D, and there are three SiO, groups in the
unit cell leading to four A, and eight E vibrations which can contribute
to the Raman spectrum. The remaining degrees of freedom are taken up
by the three acoustic modes and four infra-red-active A, vibrations. The
E vibrations are also infra-red active and the resulting angular dependencies
of the frequencies and intensities of some of the E vibrations have been
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observed by Mathieu and Couture-Mathieu (1952b). Arecentre-measure-
ment of the Raman spectrum of quartz has been made by Krishnamurti
(1958). Zubov and Osipova (1961) have made careful measurements of the
widths and shapes of 11 lines in the Raman spectrum of quartz at room
temperature ; they find that all the lines have a shape close to Lorentzian
with widths ranging from 4em-=1 to 21 em~!. The same authors (Zubov
and Osipova 1962) have shown that neutron irradiation of «-quartz
produces shifts and increased breadths of the Raman lines, and Zubov el al.
(1962) have observed small intensity changes in two of the Raman lines
when an electric field is applied to the crystal.

The infra-red lattice bands of x-quartz have been measured by Spitzer
and Kleinman (1961) and the observed E vibrations have been compared
with the same vibrations observed in Raman scattering. These same
authors (Kleinman and Spitzer 1962) have made a theoretical study of the
four A; and four A, optical vibrations, obtaining good agreement with
experiment.

The Raman spectrum of vitreous silica has been measured by Krishnan
(1953) and Flubacher et al. (1959). The two measurements give results
which agree in their general features. The spectrum exhibits broad bands
rather than sharp peaks and its most striking feature is an intense continuum
which extends from shifts of 8 em— to 560 cm—!. The spectrum of vitreous
silica is thus markedly different from that of a-quartz.

2.6.3. Alkaline-carth fluorides

These crystals have recently become important as host lattices for rare
earth ions used in producing laser emission. The spectral lines due to
electronic transitions of rare earth ions in crystals frequently exhibit
side bands, due to transitions in which phonons are simultaneously created
or destroyed, and the displacements of the side bands give information about
the lattice vibration frequencies. The phonon-assisted transitions are
known as vibronics. The fluorides have symmetry group O, with one
group of three atoms in the unit cell, leading to one Raman-active Iy, optic
branch and one infra-red-active F,,, branch. Wood and Kaiser (1962)
have measured the absorption and fluorescence spectra of Sm?+ in CakF,,
Sr¥, and BaF,. For SrF, they find that one of the vibronic side bands
has a shift of 282 em~1, which is close to the shift of 280 em~! of the single
strong line in the Raman spectrum of Sr¥, measured by Richman (1964),
For BaF,, the corresponding vibronic shift is 244 em—1, which compares with
the Raman shift measured by Krishnan and Narayanan (1963) to be
244 cm~!and by Richman (1964) to be 243 em—1. For CaF, the Raman shift
observed by Ananthanarayanan (1962) is 322ecm-!, but Wood and
Kaiser do not see any vibronic shift close to this frequency.

Mention may also be made of the measurements of Richman ef al. (1963),
who have correlated the Raman spectrum of LaCl, with the vibronic
transitions of Pr®+ in LaCl,.

Z2K2
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2.6.4. Wurtzite structure crystals

The wurtzite lattice has Cg, symmetry and is one of the simplest struc-
tures of uniaxial crystal, being obtained from the cubic zine blende (T )
lattice by a rearrangement of the planes of atoms perpendicular to the
(111) axis (Birman 1959). There are four atoms in the unit cell, leading
to single A, and E, optic branches which are both Raman and infra-red
active, two E, branches which are Raman active, and two inactive B
branches in addition to the A; and E, acoustic branches. The Raman
spectra of SiC and ZnS having the wurtzite structure have been measured.
Both these crystals occur also in cubic T, symmetry modifications, and
individual atoms have the same nearest neighbour configuration in both
structures leading to some similarities in the phonon spectra. Merten
(1962) has discussed the modifications in the phonon spectra on changing
from a zine blende to a wurtzite lattice in terms of a halving of the Brillouin
zone dimension in the (111) direction. The main effect of the transition is
then a folding back of the phononbranches at the new zone boundary,
frequencies which previously occurred at the symmetry point L in the zinc
blende Brillouin zone now occurring at the centre of the wurtzite Brillouin
zone. The anisotropy in the interatomic forces for these wurtzite structure
crystalsisverysmall, and the discussion of § 2.1.2, part (i) applies, the angular
dependence of the phonon frequencies being small, as illustrated in fig. 2.

The Raman spectrum of SiC has been measured by Mathieu and Poulet
(1957), but the interpretation which they give must be modified in the light
of a subsequent measurement of the infra-red properties of SiC by Spitzer,
Kleinman and Walsh (1959). The Raman measurements were made with
incident light directed parallel to the c-axis and scattered light viewed at
right angles. The line observed at 797 em ! is close to the ordinary
absorption resonance frequency observed by Spitzer et ¢l. and must have
i, symmetry. The Raman lines observed at 789 ecm~! and 966-969 cm—1
(the doublet nature of this line is not accounted for) are evidently due to the
transverse-like and longitudinal-like phonons of intermediate A,-E,
symmetry. The former frequency is close to the extraordinary ray
resonance frequency observed by Spitzer et al. (for light propagated
perpendicular to the c-axis) and the latter frequency is close to that predicted
by the Lyddane-Sachs-Teller relation. For SiC accordingly, w, is smaller
than o |, opposite to the relative values assumed for fig. 2. The remaining
Raman lines at 335 cm— and 764 cm~! can now be assigned to the two E,
phonons. Spitzer, Kleinman and Frosch (1959) have measured the
ordinary ray resonance frequency in cubic SiC and find it to be equal to
the corresponding frequency in the hezagonel (wurtzite) form of SiC.

Mathieu ef al. (1963) have measured the Raman spectrum of ZnS in the
wurtzite structure. They observed three of the first-order Raman-active
phonons, two of the observed frequencies being equal to the frequencies of
the transverse and longitudinal optic phonons in cubic ZnS, and thus of
A,-E, symmetry. The remaining peak at 217 cm~ is evidently due to a
phonon of E, symmetry.
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2.6.5. Ferro-electric crystals

The Raman spectra of several ferro-electric crystals have been measured.,
Such crystals are particularly interesting for Raman measurements
because the lattice symmetry changes when the crystal is cooled through its
transition temperature, leading to corresponding changes in the spectra.
Thus in Rochelle salt, Stekhanov and Gabrichidze (1963) have observed
changes in Raman shifts and intensities when the crystal passes from
its D,; para-electric state to its C, symmetry ferro-electric state,
although the complexity of the ecrystal structure prevents a complete
interpretation of the observed effects. In crystals of C, symmetry,
all vibrations are Raman active while in D,,; symmetry all except one
of the five vibrational symmetries are Raman active, so that no great
change in the selection rules occurs between the para- and ferro-electric
phases.

For the barium titanate structure however, the para-electric crystal
symmetry is O, with the five atoms in the unit cell all situated at centres
of inversion, leading to four Raman-inactive optic modes, three of F,,
symmetry and one of ¥y, symmetry. In the highest temperature ferro-
electric phase the symmetry reduces to C,, and the optic vibrations become
first-order Raman-active, three of A; symmetry, one of B, symmetry and
four of E symmetry. Barium titanate itself (BaTiO,) has a transition
temperature of 120°c and Bobovich and Bursian (1961) have measured its
Raman spectrum in the ferro-electric tetragonal phase at room temperature.
Only three Raman lines are observed and a complete interpretation is not
possible. Bobovich and Bursian discuss the spectrum in terms of the
normal vibrations of a Ti ion and its six O nearest neighbours. Tkegami
(1964) hasrecently observed alarger number of linesin the Raman spectrum
of BaTiO,. The agreement between these two measurements is not very
good. The Raman spectrum of strontium titanate (SrTiO,) at room
temperature has been measured by Narayanan and Vedam (1961). Stron-
tium titanate may have a ferro-electric transition in the region of 35°k, but
at room temperature it is para-electric with cubic O, symmetry and is not
expected to exhibit a first-order Raman spectrum. The peaks observed
by Narayanan and Vedam must therefore be a second-order Raman
spectrum, although the authors try to interpret their results as a first-order
spectrum.

Of much greater value than either of the above experiments on the
titanates would be a series of measurements of the Raman spectra at various
temperatures above and below the transition temperature. The way in
which a first-order Raman spectrum appears at the transition temperature
could be determined and the variation of its intensity with temperature
in the ferro-electric region would give an indication of the way in which the
distortion of the lattice from its cubic structure varies with temperature.
Above the transition temperature some of the low-frequency vibrations
have a strongly temperature-dependent frequency (Cowley 1962) which
could perhaps be investigated by the second-order Raman effect.
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An attempt to observe effects of this type in NH,HSO, and four other
ferro-electrics has recently been made by Bazhulin ef al. (1964). They
measured Raman spectra at room temperature, and at lower temperatures
in the regions of the ferro-electric transitions, but were unable to detect
any low-frequency vibrations having markedly temperature-dependent
frequencies.

2.6.6. Rutile

Titaninum dioxide in the rutile structure is a fairly simple type of uniaxial
crystal, having symmetry D, with two TiO, groups in the unit cell. The
vibrational symmetries have been calculated by Dayal (1950), who finds
that there are four Raman-active phonons, one each of symmetries
A,,, By, By, and E,.

The Raman spectrum of rutile has been investigated by Narayanan
(1953) and Krishnamurti (1962). The latter author has assigned the four
Raman-active phonon symmetries to four of the measured peaks, and has
interpreted the remaining peaks as a second-order spectrum. This
interpretation does not, however, seem to be altogether firmly established.

2.7. Brillowin Secattering
2.7.1. Theory

All the previous discussion has been concerned with Raman scattering
from optic vibrations of the lattice. Acoustic lattice vibrations can also
give rise to first-order Raman scattering. This effect was predicted by
Brillouin (1922) and is sometimes referred to as Brillouin scattering.
Consider the scattering arrangement shown in fig. 5, where k now refers to
the wave vector of an acoustic phonon. For the Stokes component of
the scattering the fractional shift in the frequency of the light is:

= 912y
i e“’sin%, N (10

wi c
using (28) and energy conservation. Here v is the velocity of the acoustic
phonon, i.e, the appropriate sound velocity. Forthe anti-Stokes component
the sign of the right-hand side is reversed. Since v/c is typically of order
10-3, the Brillouin shifts are very small, of order 2 or 3em= for many
crystals. There are three acoustic branches having different values of
v for a general direction of propagation, leading to three Stokes and three
anti-Stokes components in the Brillouin spectrum. The Stokes and anti-
Stokes peaks for a given branch have almost equal intensity due to the
smallness of the phonon frequency. The main value of measurements of
the Brillouin spectra lies in the fact that the elastic constants of a crystal
can be determined from a knowledge of the acoustic phonon velocities.

The theory of Brillouin scattering can be derived from a classical macro-
scopic standpoint, by considering the elastic deformation produced in a
crystal by a long-wavelength acoustic phonon. A strain e; in the lattice
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produces a change in the component ¢,, of the optical dielectric constant
tensor € given by :

a Epv = - zeg_:l.‘ppn_. ij€uveij’ = & ™ - X 2 (68)
o

where p_, .; is an elasto-optical coefficient (Nye 1957). Thus an acoustic
phonon of frequency w produces a component of the dielectric constant
oscillating with the same frequency, and an incident light wave of frequency
wj causes polarization components in the lattice having frequencies w; + w.
This oscillating polarization re-radiates energy at the frequencies ws=w; + @
of the Brillouin components. The strain components ¢;; associated with an
acoustic vibration are readily calculated and cxpressmns for Brillouin
scattering efficiencies can be obtained in terms of quantities which can be
independently determined. In some respects the calculation of scattering
by acoustic phonons is similar to that for polar scattering by optic phonons
in a piezo-electric erystal. In the former case the optical dielectric constant
eis modulated by a strain wave via the elasto-optic effect, while in the latter
case e is modulated by a long-wavelength electric wave via the electro-
optic effect.

A good account of the macroscopic calculation of the Brillouin scattering
is given by Born and Huang (1954). For scattering by a cubic crystal with
unpolarized incident light and with incident and scattered light along four-
fold axes at right angles to each other, the scattering efficiencies for the three
acoustic phonons are:

4.4
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where p,; and ¢;; are the elasto-optic coefficients and elastic constants in
condensed notation (Nye 1957). It has been assumed that k7> hw,
and the Stokes and anti-Stokes components then have the same intensity.
Note that the subsequent expressions given by Born and Huang on page
381 for scattering of polarized incident light by vibration 3 should be
multiplied by a factor 2.

Tt is also possible to calculate the Brillouin scattering efficiencies using a
microscopic model of the lattice. This has been attempted by Theimer
(1951, 1952), who obtained results in disagreement with the above due to an
error in his caleulation (see the comments on p. 374 of Born and Huang
1954). The Brillouin scattering can also be calculated using a model in
which the electron—lattice interaction is treated in the deformation
potential approximation. This approach has been adopted by Loudon
(1963b) and the calculation is exactly analogous to that for Raman
scattering by optic phonons outlined in §§2.2 and 2.4. The scattering
tensor in the acoustic phonon case can be related to the elasto-optic
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coefficients when the difference between wg and w; is ignored, and the final
results of the calculation are in exact agreement with those of Born and
Huang given in eqns. (69) to (71) above.

2.7.2. Experiment

Measurements of Brillouin spectra have generally been used to check
already-known elastic constants rather than to obtain values of constants
not previously known. An accuracy of about 19, can be achieved in
Brillouin spectra measurements under favourable conditions. The first
observation of this type of spectrum was made by Gross (1930) on quartz.
Among subsequent measurements we may mention those of Krishnan on
diamond (1947 a,b), fused quartz (1953) and LiF, NaCl, KCI, diamond,
a-quartz, caleite (CaCOy), alumina (Al,O,) and barite (BaO . SO,) (1955).
The results of these measurements for the acoustic phonon velocities check
reasonably well with values determined from the known elastic constants.
Fused quartz, being an isotropic substance, possesses only two acoustic
phonon velocities, for longitudinal and transverse sound waves, and should
have two Brillouin peaks on either side of the exciting line. Only the
longitudinal peak was detected by Krishnan (1953), but Flubacher et al.
(1959) have also observed the much weaker transverse peak. Geiger and
Kulp (1960) have reported a failure to observe Brillouin scattering in three
types of quartz glass.

§ 3. SECOND-ORDER RamaN Ev¥rrcr

3.1. Theory of the Scattering Process

The first-order Raman effect is a scattering process in which a single
phonon is either created or destroyed. In the second-order Raman effect,
two phonons participate in the scattering process. They may both be
created (giving a Stokes component in the scattered light) or one may be
created and the other destroyed (giving a Stokes or anti-Stokes component)
or finally both may be destroyed (giving an anti-Stokes component). There
are two types of second-order Raman scattering and they give rise
respectively to a line spectrum and a continuous spectrum.

The second-order line spectrum is due to processes in which light has
suffered two successive first-order Raman scatterings. The process is
illustrated in fig. 7, using the same notation as fig. 4. Figure 7 refers to the
case in which the two phonons, having frequencies w, and ), are created.
It is essential that first-order Raman scattering should be allowed for the
two phonons individually, and the frequency shifts which occur in the
second -order line spectrum are sums and differences of the shifts which oceur
in the first-order spectrum. It is not necessary for energy to be conserved
in the intermediate state marked in fig. 7. However, the total wave
vector in this state must be the same as in the initial state and this conser-
vation law forces the wave vector of the first phonon (w,) to be small and
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leads to the line nature of the resulting Raman spectrum. The second-
order line spectrum provides no information about the phonon frequencies
additional to that provided by the first-order spectrum, and we defer any
further discussion to §3.3.1, where an estimate is made of the relative
intensities of the first and second-order Stokes lines in diamond. Since the
process depends on two successive scattering events, which must both take
place within the crystal volume, the scattering efficiency for the second-
order line spectrum increases with the size of crystal.

Fig. 7
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Elementary scattering process for the second-order line spectrum.

Theremainder of this section is devoted to a discussion of the second -order
continuous spectrum. The continuum is due to a scattering process in
which the light interacts with a pair of phonons in a single event, as
illustrated in fig. 8. We restrict our attention to the case where both

Fig. 8
w’
w; 7 Hg T ~ Her
fxmn.rm_{HER = L Aaunnn'y
S E,I:"”/ wg
mt‘f

Elementary scattering process for the second-order continuous spectrum.

phonons are created. There is now no restriction on the phonon wave
vectors other than the requirement that their sum should balance the
change in wave vector of the scattered photon. Subject to this condition,
the phonon wave vectors can range over the entire Brillouin zone. Since
the photon wave vectors are negligible compared to the Brillouin zone
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dimensions, wave vector conservation in this case requires effectively that
the wave vectors of the two phonons should be equal and opposite. The
continuous frequency distribution displayed by the scattered photons is
thus proportional to a weighted density of lattice states in which two
phonons of equal and opposite wave vector are present. The weighting is
due to the frequency and wave vector dependence of the interactions
involved in the scattering process. The second-order continuous spectrum
results from a single scattering event and the scattering efficiency is
therefore independent of the crystal size, as in the first-order Raman effect.
This fact leads to an experimental means for resolving the second-order
line and continuous spectra in cases where the continuum has sharp
features or where the lines are broad.

The formal theory of the scattering efficiency for the second-order
Raman effect can be tackled by the same methods as the first-order Raman
effect. The first complete theoretical treatment was given by Born and
Bradburn (1947), who applied their method to explain the experimental
spectrum of NaCl. The same method was later applied to diamond by
Smith (1948). The Born and Bradburn calculation of the second-order
Raman effect is exactly analogous to their calculation of the first-order
effect outlined in §2.2. The scattered intensity is related to the electronic
polarizability tensor, which must now be expanded as far as terms
proportional to a product of two nuclear displacement amplitudes, i.e. the
second-order Raman effect results from the term of order #? in (23).
The final result of the general calculation can be cast in a form for the
scattering efficiency at Raman shift w analogous to (29), but with the square
of the polarizability derivative replaced by complicated simultaneous
summations over the squares of the polarizability second derivative
components and over phonon pairs whose frequencies «’ and '’ add to
give w. In the applications of the general theory to NaCl and diamond
it was assumed for simplicity that only products of the nuclear
displacements of nearest neighbours contribute to the second-order term
in the electronic polarizability expansion, and that the dominant
contribution to the density of states arises from the region of the Brillouin
zone close to the centre of the hexagonal face. As a result of these
approximations each pair of phonon branches makes a contribution to the
second-order continuum intensity at frequency shift w equal to the
combined density of states of the two branches at frequency w multiplied
by a proportionality factor which is constant for a given pair of branches.
In this way Born and Bradburn (1947) and Smith (1948) were able to
extract some quantitative results from the general theory and show that
Born’s theory of lattice dynamics is able to account for the main features of
the distribution of intensity in the second-order Raman spectra of NaCl
and diamond.

It would also be possible to calculate the Raman scattering efficiency
by treating the four-step scattering process illustrated in fig. 8 by fourth-
order perturbation theory, similar to the treatment of first-order scattering



