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The Raman Effect in Crystals

By R. Loupon
Royal Radar Establishment, Malvern, Wores.

ABSTRACT

A review is given of progress in the theoretical and experimental study of the
Raman effect in crystals during the past ten years. Attention is given to the
theory of those properties of long-wavelength lattice vibrations in both cubie
and uniaxial erystals which can be studied by Raman scattering. In partic-
ular the phenomena observed in the Raman scattering from crystals which
lack a centre of inversion are related to the theory. The angular variations
of the scattering by any type of lattice vibration in a erystal having any
symmetry can be easily calculated using a complete tabulation of the Raman
tensor. Recent measurements of first-order lattice vibration spectra are
listed. A discussion of Brillouin scattering is included. The relation of
second-order Raman spectra to critical points in the lattice vibration density
of states is discussed, and measurements of the second-order spectra of
diamond and the alkali halides are reviewed.

The theory and experimental results for Raman scattering by electronic
levels of ions in erystals are examined, and proposals for Raman scattering
by spin waves, electronic excitations across the superconductive gap and by
plasmons are collected together.

Finally, the prospects for applying lasers as sources for Raman spectroscopy .
are discussed, and progress in the new technique of stimulated Raman scatter-
ing is reviewed.
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§ 1. INTRODUCTION

THE measurement of the Raman spectrum of a crystal is one of the main
methods for obtaining information about its lattice vibration frequencies.
The general explanation of the Raman effect has of course been known fora
long time; incident light of angular frequency w; can interact with the
crystal to create or destroy one or more lattice vibration quanta (phonons)
and the energy fiw gained or lost by the lattice is compensated by a decrease
or increase in the frequency ws of the scattered light (ws=wi T w). How-
ever, some of the more subtle effects observed in Raman scattering have
only been fully understood within the past ten years with the advent
of a more complete knowledge of the properties of lattice vibrations. The
purpose of the present article is to review progress in the theory and
measurement of the Raman effect during the past decade. For references
to earlier work the review article by Menzies (1953) can be consulted.
We shall ourselves refer to some of the earlier experimental work, but only
where the measurements have been clarified by more recent theoretical
analysis or where they are the only measurements on a particularly impor-
tant substance. Other articles covering particular aspects of the subject
have been written during the period under review by Bhagavantam (1953),
Mathieu (1956, 1962), and Mitra (1962).

Although many new measurements of Raman spectra have been made
during the past ten years, the most striking advances have been in the
interpretation of measured spectra in terms of the theory of lattice vibra-
tions, and for this reason a large part of the article is concerned with the
theoretical aspects of the subject. Asfar as the experiments are concerned,
most attention is given to the Raman spectra of those crystals whose
structure is relatively simple, where theory and experiment can be most
easily compared. We shall however give references to measurements on
the more complex crystals, although organic crystals are completely
excluded. Consideration of the ordinary Raman effect is conveniently
divided into two parts; in §2 we discuss the first-order Raman effect, in
which a single phonon is created or destroyed in the scattering process,
while §3 is devoted to the second-order Raman effect, in which two
phonons areinvolved. Raman scattering by excitations of the crystal other
than lattice vibrations, e.g. plasmons, spin waves, etc., is dealt with in §4.
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Some falling off in experimental activity is apparent when the work of
the past ten years is compared with that in the decade prior to Menzies’
review article. Most of the crystals easily obtainable in sufficiently good
quality and size, and having strong Raman spectra, were studied in the
earlier years and the rate of progress has necessarily slowed down with the
more difficult crystals left for investigation. It seems, however, that a new
impetus will be given to Raman spectroscopy by the development of the
optical maser, or laser. These devices provide powerful collimated beams
of monochromatic radiation and appear to be ideal sources for Raman
effect measurements. The frequencies of the outputs of presently available
lasers extend well below the frequencies of the gas discharge emission lines
of sufficient intensity for Raman work, leading to the possibility of measuring
the Raman spectra of crystals (e.g. semiconductors) with electronic energy
gap smaller than the present minimum of a little over 2ev. Indeed, lasers
may even prove to be more satisfactory sources than gas discharge lamps
for all types of crystal. The use of lasers in Raman spectroscopy is
discussed in §5.

§ 2. Firsr-orDER Ravan EvrEcT
2.1. Properties of Long-wavelength Lattice Vibrations

The lattice vibrations of the majority of erystals have a maximum wave-
number which varies between about 100ecm~* and 1000cm=! or higher,
and first-order Raman spectra occupy a range of this extent on either side
of the exciting frequency. The part of the scattered light of lower
frequency than the incident light is called the Stokes component, while the
part of the scattered light with higher frequency is called the anti-Stokes
component. Both optic and acoustic phonons give rise to first-order
Raman scattering ; we consider first the optic phonons, leaving the acoustic
phonons until §2.7. Only lattice vibrations having certain types of
symmetry give rise to Raman scattering ; such vibrations are said to be
Raman active. The phonon wave vector can take on any value lying in the
Brillouin zone, the maximum value being of order #/d, where d is the lattice
constant. This maximum is typically of order 3 x 108c¢m—1. Incident
light with a wavenumber of 20 000 em—* has a wave vector inside the crystal
of order 2 x 10°cm~" (wave vector =27 x refractive index x wavenumber)
and for scattering of the light through 90°, wave vector conservation
requires the wave vector of the phonon created or destroyed to be
~4/2x2x10%cm~1. This is small compared to =/d, and the phonons of
importance in the first-order Raman effect thus have wavelengths very
long compared to the lattice constant.

The smallness of the wave vector k of the first-order Raman-active
phonons leads to a great simplification in the discussion of their properties.
There is an important distinction between those lattice vibrations which do
or do not, produce an electric dipole moment in the lattice, and are thus
active or inactive respectively in first-order infra-red absorption. The
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frequencies of infra-red-inactive phonons are determined mainly by short-
range forces in the lattice ; phonons with wavelength long compared to the
lattice constant are not influenced by the dispersive effects of these forces
and have essentially the same frequency as infinite wavelength phonons.
The Raman shifts thus measure the phonon frequencies at k=0, and no
variation in the Raman shift is produced by variation of the scattering
angle or of the relative orientation of the light beams and the crystal axes.
However, for infra-red-active phonons, the accompanying long-range
electric fields lead to shifts of the frequencies of some of the Raman-active
phonons away from their k=0 values, to a lifting of some of the phonon
branch degenecracies, to a variation of frequency with the direction of the
phonon wave vector k in non-cubic crystals, and to other effects which
are considered in later sections. A phonon can be simultaneously Raman
and infra-red-active only in crystal structures which lack a centre of
inversion, i.e. piezo-electric crystals. It is convenient to divide up the
discussion of the properties of long-wavelength infra-red-active phonons
into three parts corresponding to the three main tiypes of erystal symmetry.

2.1.1. Cubic crystals

Huang (1951) has treated the properties of the long-wavelength optic
vibrations of a polar diatomic lattice having cubic symmetry (see also
Bornand Huang 1954). Heshows thatin the presence of an optic vibration
of the lattice having frequency w, the electric field E and relative
displacement r of the positive and negative sub-lattices are related by the
macroscopic equations :

¥ o\u2
Wgule= (m) (P—wE, . ... (1)
M M2 E
P=(m) ("= Pagrt(e=1) =, . . . ()

where P.is the polarization, w, is the lattice dispersion frequency, e and
€” are the optical and static dielectric constants, V is the crystal volume
and M is thereduced mass of the two sub-lattices. Theeffect ofanharmonic
damping is not included in (1) and (2), and in order for these equations to
be valid the inverse phonon relaxation times due to anharmonicity must
be small compared to the frequencies of the phonons and the separations
between adjacent phonon branches. If the vibration is assumed to have
plane-wave form with spatial dependence exp(ik.R), then Maxwell’s
equations impose the requirement:
—4n[k(k . P)— w?P[c?]

E= Fore WA

All the properties of the long-wavelength optic excitations of the crystal
can be derived from (1), (2) and (3). For the transverse solutions,
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k.P=0, and elimination of r, E and P from the equations gives:
kc*  wlel—w?e
e E e s e e e e e . (4)
w OJO_'(R)
For the longitudinal solution k.P =P, leading to:
&0\ 12
w=wu(—) =w; say. P -

€

The schematic form of the w versus k curves is illustrated in fig. 1, where
the numbers in parentheses indicate the branch degeneracy, and L and T
denote longitudinal and transverse polarizations. In the region where

Fig. 1
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Phonon dispersion curves at small wave vector in a cubic diatomic lattice.
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both w< ~2w, and k< ~2wy(e’)¥%/c, the transverse vibrations are a
mixture of lattice oscillation and electromagnetic wave, i.e. the modes are
part phonon and part photon. Outside this region, for w > ~ 2w, the trans-
verse vibrations are purely photons (modified to some extent by the higher
frequency electronic states of the crystal), while the transverse excitations
having w=w, are purely mechanical oscillations of the lattice having no
photon component. Since the phonons which cause right-angle Raman
scattering typically have a wave vector k of order 3 x105¢m~ and an
angular frequency w of order 2 x 10sec—!, k and w satisfy the inequality
k>wle. The phonons of interest thus lie off the right-hand edge of fig. 1
in the region where the transverse phonons have the constant frequency
w,. Both the longitudinal and transverse phonons can be Raman active,
leading in general to two Stokes and two anti-Stokes peaks in the Raman
spectrum, separated from the exciting frequency by amounts of magnitude
w; and wy.  The frequencies w; and o, are related by (5), a well-known
relation first derived by Lyddane ef al. (1941). At k=0 the optic branches
have a threefold degeneracy with frequency w,, although for a finite crystal
of dimension L the effect of the long-range electric fields interacting with
the sample boundaries may perturb the frequencies of the phonons having
wave vector of order, and smaller than 1/L, and fig. 1 is unreliable in this
region.

The electric field strengths associated with the Raman-active phonons
can be obtained by substituting the appropriate values of w into (1). TFor
the transverse phonons, w=w, and E=0; for the longitudinal phonons

w=w, and
dnM\12 (1 1\12
E=-—(—-—-V ) w!(—e—;‘) r. 5 W o5 oW ow A

The mean square amplitude of the relative sub-lattice displacement r due
to a lattice vibration of frequency w is:

(Y= (2n+1)k2Mw, R R

where % is the number of phonons contributing to the vibration ; in thermal
equilibrium :

n=[exp (hw/ksT)—1]7, Wos w5 wm e (B)
where ky is Boltzmann’s constant and 7' is the temperature.

The above theory applies directly to a polar diatomic lattice; the zinc
blende structure is an example of a crystal with two atoms in the unit
cell whose optic vibrations are both Raman and infra-red active. For
crystals with more than two atoms in the unit cell but still having only one
infra-red-active vibration (e.g. Cal,), the results continue to hold, but
where more than one vibration is infra-red active the theory must be
extended. We do not pursue this case in any detail, except to quote an
extension of the Liyddane-Sachs-Teller relation (5) due to Cochran and
Cowley (1962). This applies in its most general form to a crystal of any
symmetry having any number of infra-red-active branches. For a cubic
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crystal having N infra-red-active vibrations with longitudinal and trans-
verse frequencies wy (j) and wq(j) (j=1,2,...NN) the generalization of (5)is:

ﬁ[%(j) 2 g

wT(j)=_E........(9)

j=1
2.1.2. Uniawial crystals

Merten (1960) and Loudon (1963 a) have treated some of the properties
of long-wavelength lattice vibrations in uniaxial erystals. The freatment
is based on a generalization of Huang’s equations for a cubic crystal
given in the previous sub-gection. We consider a uniaxial crystal in which
only one group of three lattice vibration branches is infra-red active, for
example the wurtzite structure. Due to the anisotropy of the crystal,
in the absence of long-range electric forces the vibration in which the atoms
are displaced parallel to the c-axis has a frequency w, which is different
to the frequency w , of the two degenerate vibrations in which the atomic
displacements lie perpendicular to the ¢-axis, in the ab-plane. The number
of high and low frequency dielectric constants is correspondingly doubled.
The phonon spectrum is obtained by writing down pairs of equations
similar to (1) and (2) for the components of oscillation parallel and perpen-
dicular to the ¢-axis. Equation (3) continues to hold since it is derived
directly from Maxwell’s equations, with no assumptions about the crystal
structure ; it can be divided into two equations for the components of E
parallel and perpendicular to the c-axis. This gives a total of six equations,
enabling elimination of the two components each of r, P and E. For
any relative orientation of the phonon wave vector k and the c-axis, the
equations have a solution in which E and P are perpendicular to both k
and the c-axis. This corresponds to the ordinary wave, and leads to:

k2c?  w?e) —w?
— = Leéﬂ (ordinary wave). ... (0)

The other solutions correspond to the extraordinary waves, and E and P
do not in general have any simple orientation relative to k and the ¢-axis
(although the displacement D is perpendicular to k). The frequencies of
the extraordinary waves depend on the angle 6 between k and the c-axis:

2.0 .2 2.0 _ 2
whE w €“ w; EJ_ w EJ_
k2c? of —w? w? —w?
2T Foled —w? 2.0 _ 2
& PHETT 7€ | os20 4| LLEL TP €L | ginag
wff —w? w; —w?
(extraordinary waves). ;= QL)

Notice that for =0 (propagation parallel to the c-axis) (11) reduces to
(10), and that (11) reduces to (4) when the distinction between | and |
quantities is removed.

It is convenient to define two frequencies:

el \ 12 0\ 112
wﬁ=w"(i) and in:wJ_(—i) w % o s H12)

E” EJ_
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analogous to w, defined by (5) for cubic crystals. Reference to (10) and
(11) shows that for k=0 the phonon frequencies are wf (singlet) and
w! (doublet). The Raman-active vibrations have &> w/c as before, and
(10) and (11) show that the Raman frequencies are given by :

and w=w, (ordinary phonon), . . (18)

20 g 2.0 __ 2
[M] cos® 6+ I:c—ui—e-;:——w—ff] sin?f0=0 (extraordinary phonons).
(14)

i —w
Equation (14) is a quadratic for w?, having in general two distinct roots,
and the ordinary and extraordinary phonons together contribute three
Stokes (and three anti-Stokes) lines to the Raman spectrum, except
for certain special orientations of the crystal. If w} and wj are the two
roots of (14), it is easy to show that they satisfy a modified Liyddane-Sachs-
Teller relation:

2ok < cos?04 0 gint
wiwy €} cos?0+ ) sin®0

wiw] B g cos’0+ ¢, sin®f ’ )
The electric field strength associated with a Raman-active phonon is given
by the generalizations of (1) with the appropriate value of w substituted.
The ordinary phonon has zero electric vector and so also does an extra-
ordinary phonon when # is such as to make its frequency either w or w,
(this can occur only for #=0 or 90°). Equation (3) shows that E is parallel
to k for the extraordinary phonons (when &> w/c).

Rather than discuss (14) for general values of the frequencies and
dielectric constants, it is more convenient to consider two limiting cases
which correspond to many crystals of experimental interest.

(i) foy—o,|<wf—w, and o} —w,. In this case, the difference in
frequency of vibrations parallel and perpendicular to the c-axis, caused by
anisotropy of the force constants, is small compared to the difference between
the frequencies with and without the ! superscript, which is caused by
electrostatic forces. Hexagonal ZnO and SiC are examples of crystals
where this limit holds (see §2.6). For §=0 the two solutions of (14) are
w, and of, while for #=90° the solutions are w; and w{. For general
values of 0, one root of (14) lies in the vicinity of w, and w ; while the second
root is close to wfand w{. Using the assumed inequalities satisfied by the
characteristic frequencies and assuming, in addition that the percentage
difference between ¢, and ¢, is small, the two solutions of (14) are
approximately :

w?=wfsin?f+wicos?d . . . . . . (16)
and

w?=whcos?f+ofsin®g. . . . . . . (17)

The complete dispersion curves in this limit are plotted in fig. 2 for three
directions of propagation. The relative values of the frequencies and
dielectric constants have been chosen arbitrarily for a negative uniaxial
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crystal. The frequencies of the Raman-active phonons given by (13) and
(14), and approximately by (16) and (17), are associated with the phonons
at the right-hand edges of the graphs where the branches are flat. The
extraordinary branches have strictly no simple polarization except for
6=0and 90°. However the predominance of electrostatic forces over the
anisotropy in the interatomic forces ensures that the departures of the upper
phonon branch from longitudinal polarization, and of the lower branch
from transverse polarization, are small. The electric field associated with
the upper branch is of the same order as that in cubic crystals given by
(6), while the electric field associated with the lower branch is much smaller,
roughly by a factor [(wf—w?)/(wf —w?)]. The anisotropy in the infra-
red properties of this type of erystal is small.

(i) |oy—o, [>of—w, and w!—w,. For this case, one solution of
(14) always lies in the vicinity of w and w] and the other solution always
lies in the vicinity of w, and w!. Approximate solutions of (14), obtained
as before, are:

w*=owisin®f+wfcos?d, . . . . . . (18)
w?=w!cos?f+olsin®g. . . . . . . (19)

Dispersion curves in this limit for three directions of propagation are
plotted in fig. 3. As 6 is increased from 0 to 90°, the upper extraordinary
branch changes from longitudinal to transverse polarization, while the
lower branch changes from transverse to longitudinal. For intermediate
values of 8 the extraordinary branches have strictly no simple polarization,
although the predominance of the anisotropy in the interatomic forces over
the long-range electric forces causes the relative sub-lattice displacement
r in the upper phonon branch to be almost parallel to the ¢-axis, with the
displacement in the lower branch approximately perpendicular to the ¢c-axis,
for all values of §.  Since only a transversely polarized phonon can be infra-
red active, there is considerable anisotropy in the infra-red properties of
this type of erystal.

Formulae equivalent to (18) and (19) were first derived by Poulet (1952,
1955), and Ketelaar ef al. (1954) have given a theory of the variation with 6
of the intensity and frequency of the reflection from a uniaxial crystal.
Observations of the variation with 6 of the frequency of the maximum of a
reflection band have been made by Couture-Mathieu ef al. (1952a,b) on
crystals of quartz, lithium perchlorate (LiClO,.3H,0) and iodic acid
(IO;H). All these crystals appear to satisfy the frequency inequality
assumed in this sub-section, although the inequality is only weakly satisfied
in the case of quartz. In any case, the maximum in the reflection band
does not occur exactly at the phonon frequency w, so that the above
measurements cannot be closely related to the theory without more detailed
calculations of the shape of the reflection band. Some progress in this
direction has been made by Ketelaar et al. (1954) who compared their
theory with experiments on sodium nitrate (NaNO,). A much more direct
comparison of the theory of this section with experiment can be made for
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the results on the variation of Raman frequency with 8 (see § 2.6). Mention
may also be made of the work of Tramer (1959a, b), who observed the
variation of phonon frequency with 6 in sodium nitride (NaNQ,) by direct
absorption measurements as well as by the Raman effect. Reviews of the
relevant infra-red and Raman results in this field have been given by Haas
(1956) and Mathieu ef al. (1960).

Expressions for the electric fields associated with the upper and lower
phonon branches in fig. 3 can be derived from the generalizations of (1),
(2) and (3), using (12), (18) and (19):

dor M\ 12 1 1\12
E=_(iV_) w‘”cow(—-——o) ?’”ﬁ (upper branch), . (20)

€S
12 1 1/2
E=— (%]E) w! gjng(_l__e_n) r_,_ﬁ, (lower branech), . (21)
L. &R

where r and r, are the components of r parallel and perpendicular to the
c-axis and k is a unit vector parallel to k. These values for the field strength
will be used in calculating the Raman scattering intensity. Expressions
equivalent to (20) and (21) have been derived by Poulet (1955). Our
choice for the relative magnitude of w, and o, is of course arbitrary;
for many crystals w) is smaller than w, .

The theory of this sub-section ceases to be valid when more than one
group of three lattice vibrations is infra-red active. There is little
theoretical work on the properties of the lattice vibrations in this situation,
although the generalizations of the Lyddane—Sachs-Teller relation due to
Cochran and Cowley (1962) continue to apply. For a group of infra-red-
active phonons which is well separated from the remaining groups, the
variations of their frequencies with § may still be represented by equations
similar to (18) and (19), but the constants occurring in them are not related
to the dielectric constants by (12).

2.1.3. Biaxial crystals

There is little work, either theoretical or experimental, on the Raman
effect in biaxial crystals. The long-wavelength properties could be
determined by writing down equations similar to (1) and (2) for the
components of oscillation in the directions of the three principal axes.
The frequencies of the three Raman-active phonons are determined by a
cubic equation in w? and they all vary with direction of propagation.

2.2. Theory of the Scattering Process

Each elementary Raman scattering event involves the destruction of a
photon of frequency w;, incident from a light source, the creation of a
scattered photon of frequency wg, and the creation or destruction of a
phonon of frequency w. We choose to concentrate on the Stokes component
of the scattering, so that wij=ws+w; the properties of the anti-Stokes
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component can always be obtained by simple substitutions. Figure 4
illustrates three different Raman scattering processes in terms of the
elementary interactions between the radiation, the electrons and the
lattice; Hy;, H{Y and H,, represent, in an obvious notation, the first-
order interactions between the three systems. The three-phonon anhar-
monie interaction H, and the second-order moment radiation-lattice
interaction H % (see Lax and Burstein 1955) are higher-order interactions.

Fig. 4
—f_-bL
wi /”J HEL \\\ (73] s
(@) AnannneH o meVW
\\. o ER

~=-~a=---- ELECTRON

---=--- HOLE
(b)
PHONON
Anvuvvyr PHOTON
e INTERACTION
i VERTEX
(c)

!

TIME
Three types of elementary Raman scattering process.

The initial state, with photon w; present, occurs at the left-hand end of each
diagram, and the final state, with photon ws and phonon w present, occurs
on the right. It is possible to envisage more complicated processes
connecting the initial and final states, but these are all of higher order and
give a smaller contribution to the scattering. It is noted that processes
4 (b) and 4 (c¢) require the existence of infra-red-active phonons, and could
therefore not take place in a homopolar crystal, e.g. diamond. Indeed,
numerical estimates indicate that even when all three processes are allowed,
4 (@) dominates 4 (b) and 4 (¢) in scattering intensity, and most theoretical
work on Raman scattering has explicitly assumed that the radiation
interacts with the lattice vibrations through the intermediary of the
electrons in the crystal.
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Expressed in words, process 4 (a) involves three virtual electronic transi-
tions accompanied by the following photon and phonon transitions:
(1) a photon w; is absorbed, (2) an optic phonon w is created, (3) a photon
ws is emitted. The scattering crystal is generally in its electronic ground
state, with all valence bands full and all conduction bands empty, at the
start of the scattering process, and it returns to its electronic ground state
at the end of theevent. The virtual intermediate states involve the exci-
tation of electron-hole pairs. The three transitions can occur in any time
order, leading to six related processes which could be illustrated by
deforming fig. 4 (a) to change the relative order of the transition vertices.

The problem of calculating the scattering intensity due to the basic
process 4 (a) has been tackled in a variety of ways. The first systematic
treatment of optic-phonon Raman scattering in crystals was given by Born
and Bradburn (1947) and the same approach has subsequently been used
in further work by Born and his collaborators (Smith 1948, Theimer 1951,
Born and Huang 1954). In this approach, which makes use of the semi-
classical radiation theory, the intensity of the scattered radiation is arrived
at by calculating the electric moment M set up in the crystal by the electric
vector Re [E exp (—iwt)] of the incident light beam. If the polarizability
tensor associated with the electrons in the crystal is « ,, then

M,=So,E, R ¢ )

The scattered light is produced by re-radiation of energy by the oscillating
dipole moment M, the scattered intensity being proportional to [M]* and
inversely proportional to the fourth power of the wavelength of the
scattered light. The quantum-mechanical expression for the electronic
polarizability tensor ., involves the energy eigenvalues and wave-functions
of the electron system (see Born and Huang 1954). Because of the existence
of the electron-lattice interaction Hy;, the electronic eigenvalues and
wave-funections in a diatomic lattice depend on the relative displacement
amplitude r of the two sub-lattices, and the electronic polarizability
can be expanded in a power series in r:

0‘,,0305&2‘)‘5‘z%c,pf"“‘i‘zaw,pvﬂ?’y“‘o(f:}): o wow ow (28)
® [TRY
where
Oo 0%
= [ P and = —2 s el B B 24
Yo (a?n)r=0 kg (arua’"v)mﬂ 4)

The term linear in » gives rise to the first-order Raman scattering, the
quadratic term gives rise to second-order Raman scattering, and so on.
The forms of the terms which occur in the expansion have been discussed
by Born and Huang (1954).

The Born and Bradburn method has been applied to first-order Raman
scattering in diamond by Smith (1948). The square of the relative
displacement amplitude caused by a single optic phonon in diamond is
given by (7):

P2y=h2Mw, . . . . . . . (25)
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where w, is the optic phonon frequency. ~Consider the scattering geometry
shown in fig. 5, where 2, y and z are orthogonal axes which coincide with
principal axes of the erystal and kj, ks and k are the wave vectors of the
incident light, scattered light and phonon respectively. Energy and wave
vector conservation lead to:

wi=wg+wg, . . . . - . . . (26)

ki=ks+bk. . . . . . . . . (27)

Since the percentage difference between w; and ws is small, |k;| and |ks]
are not very different and they have been assumed equal in calculating the
phonon direction. This approximation leads to:

k=2kysin(/2). . . . . . . . (28

Smith considers the case of right-angle scattering where =90°. We
define the Raman scattering efficiency S to be the ratio of the number of
scattered photons ws produced per unit time per unit cross-sectional area

Fig. 5

Raman scattering geometry.

of the crystal in solid angle dQ about the direction of observation to the
number of incident photons w; crossing unit area in unit time. Smith has
investigated the symmetry properties of «,, , and finds that the only non-
vanishing components of the tensor are those for which p, ¢ and u refer
to different crystal axes. This leaves three distinct components (the
tensor is symmetrical with respect to interchange of p and & because it is
derived from the symmetrical polarizability tensor « ) which are all equal.

AP. 21
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The result of Smith for the first-order Raman scattering efficiency with
unpolarized incident light and unanalysed scattered light is:
Bhws* LdQ
8= p;T.] oy, P +1),  © . . L. (29)
where L is the length of the crystal in the direction of k;, p is the crystal
density and n, is the Bose population factor. The expression for the anti-
Stokes component has n,+ 1 replaced by n,.

A more direct way of obtaining the Raman scattering tensor is to treat
the three-step scattering process illustrated in fig. 4 (¢) by third-order
time-dependent perturbation theory, and this calculation has been
performed by Loudon (1963 b) for the particular cases of diamond and zine
blende structure crystals. In thisapproach, which uses second quantization
of the radiative field, the quantity calculated is the probability per unit
time 1/r that one of the incident photons is destroyed in a Raman
scattering process, given by the usual third-order expression :

1 2= (mi—1,15n5+1;0|Hy|a){a|H[b) (b|H|ni, 0;n,;0) 2
125z
T K, ks |, b (wy— wi)(wp— wi)

X 8(wi— wy— wg), T 3 10))

where 7;, 0 and n, are the numbers of incident photons, scattered photons
and optic phonons present in the initial state, @ and b run over complete
sets of intermediate states for the whole system, the summation over kg
includes only directions within the solid angle dQ, and Hy=Hyp+ Hy,;.
The Hyy part contributes in two of the matrix elements while it is the
Hy,; part which contributes in the third matrix element. The final zeros
in the initial and final state quantum numbers indicate that the electrons
are in their ground state before and after the scattering event. Evaluating
the summations and the matrix elements, (30) leads to the following
expression for the scattering efficiency assuming the same geometry as
Smith :
Let? ety V(ng+1)LdQ

= = xz[2 2 2 P
S_mjc 4RPmIdE M cAwyw; [IRP + 1Bz P+ (B, « (B1)

where e and m are the electronic charge and mass, d is the lattice constant
and V is the crystal volume. The three components of the tensor R are
equal for diamond or zinc blende structure crystals, and are given by
expressions of the form :

RP=R7r(—wi,ws, w)

! P S P

== z{ g B + five similar tcrms}, o (32)
V 2% (wg+ wy— wi)(w, — wi)

where the subscripts on the p and E matrix elements refer to electron-hole

pair states with energies fiw, and fiw,, 0 referring to the electronic ground

state. The two subscripts on R are the polarization directions of the

incident and scattered photons respectively while the superscript is the
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direction of polarization of the phonon. The explicit term on the right-
hand side of (32) arises from the order of interaction vertices drawn in
fig. 4(a), and the remaining five terms correspond to the other possible
diagrams obtainable by rearrangement of this order. The two matrix
clements of the electronic momentum operator p arises from the two
Hypr matrix elements. The electron-lattice interaction Hy; has been
treated in the deformation potential approximation (Bir and Pikus 1961,
Whitfield 1961) and the = matrix elements are deformation potentials.

The signs attached to the frequencies in R on the right-hand side of
(32) have been chosen so that a negative (positive) frequency corresponds
to destruction (creation) of the appropriate photon or phonon. Whereas
the analogous quantity «,, , used in the Born theory of Raman scattering
was invariant under interchange of the polarizations p and o of the scattered
and incident photons, R does not in general have the corresponding
property. Instead,inspection of the complete form of the tensor shows that
it satisfies :

BZ(— wy, ws wy) = RE(— wi+ wy, ws+ wg, —wy). s o {83)
However, when w, is sufficiently small that it can be neglected in comparison
with all the other frequencies occurring in the tensor, as is usually the case,
(33) becomes :

R;z("wi,wi,0)=Rz§,(—w1,w1,0) - .. (34)
and RY has the same symmetry properties as a,, ,. Indeed, explicit
calculation of «,, , using the deformation potential electron-lattice inter-
action and the well-known quantum-mechanical form of the polarizability
tensor, gives:

- 63 R=
Koy, 2= — m yz(
Thus for diamond, where p=4M/V, (29) and (31) become identical in the
small w, imit. Numerical estimates based on (31) indicate that Raman
scattering efficiencies may typically be of order 10-% or 107,

The interaction Hy; between the radiation, having electric field E and
vector potential A, and the electrons, having position x and momentum
p, can be represented either as —¢E.x or as —e¢A.p/me. For Raman
scattering from molecules, both representations lead to the same results
for the scattering tensor, contrary to an assertion by Kondilenko et al.
(1960) (see the correction by Kondilenko and Strizhevskii 1961). However,
for scattering by crystals the matrix elements of x have complicated pro-
perties due to the fact that the electronic wave functions extend throughout
the crystal (see Blount 1963 and the conclusion of Butcher and McLean
1963) and it is more satisfactory to use the —eA.p/me representation,
even though this leads to formulae which do not explicitly show the
dependence of the scattered intensity on the fourth power of the wave-
length (cf. (29), (31) and (35)).

Strizhevskii (1962) has considered the theory of Raman scattering in
non-cubic crystals. He treats the quantization of the radiative field in

— wi, wi, 0). . mow w0 BD)

212
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an anisotropic crystal and derives a formula for the scattered light intensity
which is sufficiently general in form to apply to scattering by phonons,
impurities, lattice defects, etc. As a result of this generality it is difficult
to draw any explicit conclusions from his formula.

2.3. Selection Rules and the Symmelry of the Scattered Light

The different long-wavelength phonon branches in a given crystal
correspond to different symmetries of vibration of the atoms in the unit
cell and are characterized by irreducible representations of the space
group of the crystal lattice. If the wavelengths of the Raman phonons are
assumed to be effectively infinite, then the crystal point group can be
used in classifying the phonon symmetries. This infinite wavelength
assumption is not valid for Raman-active phonons which are also infra-red
active, as is evident from the discussion of § 2.1, and this type of vibration
will be discussed separately in the following section.

The selection rules for Raman-active phonons can be determined by
standard group-theoretical methodsand the calculation is described in some
detail by Heine (1960), who bases his work on the polarizability derivative
theory of Born and Bradburn (1947) described in the previous section (see
also Theimer 1953). The result of this approach is that a phonon can
participate in a first-order Raman transition if and only if its irreducible
representation is the same as one of the irreducible representations which
oceur in the reduction of the representation of the polarizability tensor.
The irreducible representations by which the components of the
polarizability tensor transform are conveniently listed by Herzberg (1945)
and Wilson ef al. (1955) for the set of molecular point groups, which includes
the 32 crystal point groups. Mathieu (1945) has listed the Raman-active
vibrational symmetries for the different crystal classes. Many of the
results had been given at an earlier date by Bhagavantam and
Venkatarayudu (1939) who considered several particular crystals in detail.

The intensity of the Raman-scattered radiation depends in general on
the directions of observation and illumination relative to the principal
axes of the crystal. The angular variation of the scattering gives infor-
mation about the symmetry of the lattice vibration responsible. The
anisotropy of the scattering can be predicted for a vibration of any given
symmetry by standard group-theoretical methods or by simple symmetry
arguments not using group theory directly (Saksena 1940, Mathieu 1945,
Ovander 1960).

The results of all the above authors, with several errors corrected, are
collected together in the table. Opposite each crystal class are listed the
irreducible representations of the Raman-active lattice vibrations, using
the notation of Herzberg (1945) and Wilson e al. (1955) for the irreducible
representations (other authors sometimes have slightly different notations).
Where an , y or z occurs in brackets after an irreducible representation, this
indicates that the vibration is also infra-red active and has the direction
of polarization indicated. Such vibrations, which occur only in piezo-
electric crystals (i.e. erystals with no centre of inversion symmetry) require



