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The plane-strain bulge test is a powerful new technique for measuring the mechanical
properties of thin films. In this technique, the stress–strain curve of a thin film is
determined from the pressure-deflection behavior of a long rectangular membrane
made of the film of interest. For a thin membrane in a state of plane strain, film stress
and stain are distributed uniformly across the membrane width, and simple analytical
formulae for stress and strain can be established. This makes the plane-strain bulge test
ideal for studying the mechanical behavior of thin films in both the elastic and plastic
regimes. Finite element analysis confirms that the plane-strain condition holds for
rectangular membranes with aspect ratios greater than 4 and that the simple formulae
are highly accurate for materials with strain-hardening exponents ranging from 0 to
0.5. The residual stress in the film mainly affects the elastic deflection of the
membrane and changes the initial point of yield in the plane-strain stress–strain curve,
but has little or no effect on further plastic deformation. The effect of the residual
stress can be eliminated by converting the plane-strain curve into the equivalent
uniaxial stress–strain relationship using effective stress and strain. As an example, the
technique was applied to an electroplated Cu film. Si micromachining was used to
fabricate freestanding Cu membranes. Typical experimental results for the Cu film are
presented. The data analysis is in good agreement with finite element calculations.

I. INTRODUCTION

Thin films have many important applications in mod-
ern industries.1,2 For example, thin films with thick-
nesses well below 1 �m are widely used as functional
and structural elements in ultra-large-scale integrated cir-
cuits and microelectromechanical systems, as well as in
newly emerging nano-devices and biomedical devices.
Thicker films are often used as wear-resistant coatings on
cutting tools, protective coatings in data storage devices,
and thermal-barrier coatings on turbine blades. To take
full advantage of these materials and to further improve
their reliability, the mechanical behavior of thin films
must be well understood. It is well known that many
materials behave very differently in thin film form than

they do in the bulk.3 For example, thin metal films are
often found to support much higher stresses than the
same material in bulk form, and their yield stress scales
inversely with film thickness if the film surface is pas-
sivated.4,5 Besides the size effects associated with film
thickness, mechanical properties also depend strongly on
film microstructure and fabrication process.6 Conse-
quently, the mechanical properties of thin films need to
be characterized carefully to obtain accurate values.

The traditional mechanical testing methods used for
bulk materials cannot be applied directly to the study of
thin films because of the small dimensions of these ma-
terials. Several specialized techniques have been devel-
oped to characterize the mechanical behavior of thin
films during past decades. Among them, the substrate
curvature1 and nanoindentation7 techniques are the most
widely used and commercialized. These two techniques
involve little sample preparation since they directly test
thin films deposited on substrates. The information that
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can be acquired from these techniques is, however, lim-
ited. For example, nanoindentation is often affected by
the presence of the substrate, and it is not suitable for
measuring the work-hardening behavior or the residual
stress in the film.8,9 In the substrate curvature technique,
the film strain can only be changed by changing the
temperature, thus making it difficult to interpret the re-
sults.10 Among techniques developed to measure the me-
chanical behavior of freestanding thin films, the micro-
tensile test11–14 and the bulge test techniques15 are
widely used. These techniques require some sample
preparation, but they can be readily applied to measure
intrinsic film properties without any substrate effects and
to obtain thin film constitutive behavior with relatively
large applied strains. The microtensile test is the analog
of its bulk counterpart. Due to difficulties associated with
sample handling at the micron or submicron scale, mi-
crotensile testing often suffers from alignment and grip-
ping problems, although progress has been made by us-
ing Si micromachining techniques to fabricate tensile
specimens.11,13 In the bulge test, freestanding thin films
are obtained by opening a window in the substrate using
micromachining techniques. The freestanding film is de-
flected by applying a uniform pressure to the film. The
mechanical properties of the film are determined from its
pressure-deflection behavior. Compared with microten-
sile testing, the bulge test technique has the unique ad-
vantage of precise sample fabrication and minimal
sample handling. With some care, freestanding films as
thin as 100 mm films can be prepared and tested.

Bulge testing of thin films was first reported by Beams
in 1959, as a technique for measuring in-plane mechani-
cal properties of thin films.16 In the beginning, the tech-
nique suffered from a number of problems related to
sample processing, handling, and data analysis. The re-
cent rapid development of silicon micromachining tech-
nology has made it possible to manufacture bulge test
samples with precisely controlled dimensions and has
dramatically reduced sample handling.15,17 These im-
provements have made accurate bulge testing possible.
To explain the experimental data and relate them to the
mechanical properties of the tested films, both theoretical
and numerical analyses have been conducted to under-
stand the pressure–deflection relation for membranes
with various shapes. Hencky was the first to publish an
analytical solution for the elastic deflection of a pressur-
ized circular membrane with fixed edges.18 Vlassak
generalized Hencky’s solution to include the influence
of residual stress on the deflection of a membrane.19

The problem becomes more complex for noncircular ge-
ometries such as square or rectangular membranes. An
exact elastic solution for the problem of a pressurized
square membrane was given by Levy but is too complex
to be practically useful.20 A number of researchers
have developed approximate solutions using energy

minimization methods.15,17,21,22 Vlassak and Nix15 de-
rived an accurate expression for the elastic load–
deflection behavior of square and rectangular membranes
following an approach originally developed by Timo-
shenko.22 The effect of residual stress on the membrane
deflection was also taken into account. These researchers
further found that once the aspect ratio of a rectangular
membrane exceeds 4, the deflection at the center of the
membrane is nearly independent of the aspect ratio and
can be approximated with the exact solution for an infi-
nitely long rectangular membrane, which can be readily
derived.15,22

The accuracy and reliability of the bulge test has been
analyzed by a number of researchers. Itozaki showed that
failure to include the initial height of the membrane in the
analysis leads to an apparent nonlinear elastic behavior
of the film.23 Small et al. analyzed the influence of initial
film conditions such as film wrinkling, residual stress,
and initial height of the membrane using finite element
analysis.24,25 Vlassak19 investigated the contribution of
the film bending stiffness to the deflection of a mem-
brane. He showed that for typical bulge test geometries,
the bending moment is only significant very close to the
edge of the membrane and is negligible everywhere else.
These analyses, together with new sample preparation
techniques based on Si micromachining, have made the
bulge test a useful technique to accurately measure the
elastic properties of both freestanding films and multi-
layers across a wide range of materials, including ceram-
ics, metals, polymers, etc.15,26–28

Because the bulge test technique measures isothermal
stress-strain curves of freestanding films, it is also ideal
for studying plasticity in thin films. Mathematical analy-
ses of the bulge test, however, are based on linear elas-
ticity and may not be applied to the plastic regime. In
circular, square, or rectangular membranes with small-
aspect ratios, the stress and strain in the film are not
uniform.19 As a result, plastic flow does not initiate uni-
formly in the membrane. Even after the entire membrane
has yielded, different parts of the membrane undergo
different amounts of plastic deformation, and the result-
ing stress state in the film can be quite complex. These
geometries are thus not suitable for studying the plastic
properties of thin films. We will show that deformation
of rectangular membranes with aspect ratios greater than
4 results in a state that closely approximates plane strain.
For thin films in a state of plane strain, the stress and
strain are distributed uniformly across the width of the
membrane. This feature makes long rectangular mem-
branes especially useful for studying the plastic behavior
of thin films. Indeed, a similar approach has been used to
study work hardening in thin sheets, although the test
geometry is quite different in this case.33

Simple analytical formulae are established to calculate
the stress and strain independently from the applied
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pressure and the deflection at the center of the mem-
brane.19 There has been, however, no systematic study of
the accuracy of these formulae in the plastic regime. In
this study, we first review the equations used to analyze
bulge test results. Then, a finite element analysis is car-
ried out to verify the accuracy of these equations in the
plastic regime. A sample preparation process based on
silicon micromachining technology is used to manufac-
ture long rectangular freestanding Cu membranes. Typi-
cal experimental results and data analyses for the Cu thin
films are demonstrated and compared with the results
from the finite element analysis.

II. ANALYSIS

Consider a pressurized rectangular membrane made of
an isotropic elastic-plastic material with a power-law
stress–stain relationship. Figure 1(a) shows a perspec-
tive view of the membrane before and after pressure is

applied; Fig. 1(b) is a plan view of the membrane win-
dow framed by a Si substrate. The deflection h at the
center of a membrane of dimensions 2a × 2b is a function
of the applied pressure, various material parameters, and
the membrane geometry

h = f �p, �0, E, �y, �, n, a, b, t� , (1)

where p is the applied pressure, �0 the in-plane equi-
biaxial residual stress in the film, E Young’s modulus, �
Poisson’s ratio, �y the yield stress, n the strain-hardening
exponent, and t the film thickness. The dimensionless
form of the above function is

h

a
= F�p

E
,

�0

�y
,

�y

E
, �, n,

b

a
,

t

a� . (2)

In the elastic regime, the strain-hardening exponent and
the yield stress do not enter the equation and Eq. (2) is
reduced to
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For a linear elastic membrane, this relationship is well
approximated by the following functional form15,19,21

p = c1�b�a�
�0t

a2 h + c2��, b�a�
Et

�1 − ��a4 h3 ,

(4)

where c1 is a constant that depends on the aspect ratio
b/a, and c2 a constant that depends on both Poisson’s
ratio and the membrane aspect ratio. The above equation
is based on the membrane assumption, i.e., the influence
of the bending stiffness of a membrane is negligible com-
pared to the contribution of the residual stress. This is so
if (�0/E)(a2/t2).1 It can be shown with a boundary layer
analysis that in this case the effect of the bending stiff-
ness is to reduce the deflection of the membrane by an
amount less than the film thickness.19 The sample di-
mensions in the present study satisfy this membrane as-
sumption. For rectangular membranes with aspect ratios
greater than 4, the assumption of plane strain holds and
the pressure-deflection relationship is found to be

p = 2
�0t

a2 h +
4

3

Et

�1 − �2�a4 h3 , (5)

where 2a is the width of the membrane, as shown in
Fig. 1(a).

The linear elastic analysis becomes invalid once the
film deforms plastically. When subjected to uniform
pressure, an infinitely long membrane with negligible
bending stiffness takes the shape of a section of a cylin-
der with a circular cross-section.19 The stress and strain
in the membrane are then uniform across the width of the

FIG. 1. Schematic illustration of the plane-strain bulge test for a long
rectangular membrane: (a) perspective view of the freestanding film
before and after the pressure (p) is applied and (b) plan view of a
typical sample showing a long rectangular membrane framed by a Si
substrate.
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membrane independent of whether the film deforms elas-
tically or plastically, and are given by

� =
p�a2 + h2�

2ht
and

� = �0 +
a2 + h2

2ah
arcsin� 2ah

a2 + h2� − 1 , (6)

where �0 is the residual plane strain in the film. When the
deflection is much smaller than the membrane width, i.e.,
h � a, the above equations reduce to

� =
pa2

2ht
and � = �0 +

2h2

3a2 . (7)

For strains less than 1% and the membrane aspect ratios
used in this study, the difference between Eqs. (6) and (7)
is negligible. When the deflection h is large compared to
a, Eq. (6) should be used.

Because there is no analytical solution for the plastic
deflection of rectangular membranes of finite length, the
finite element method (FEM) is used to evaluate the ac-
curacy of Eqs. (6) and (7). The parameters governing
plastic deformation of the membrane are given in Eq. (2).
Since we are interested in the plastic flow behavior of
very thin films, the effects of b/a, n, and �0/�y are ex-
amined only for the limit where t � 2a. Finite element
calculations are performed using the commercial code

ABAQUS. Plastic deformation is modeled using a large-
deformation description combined with J2 flow theory.
The rectangular membrane is represented by 1000 three-
dimensional, eight-node, quadratic, thin-shell elements
(element S8R5, with 5 degrees of freedom at each node
and with reduced integration) that account for finite ro-
tations of the middle surface. The thin film is made of an
elastic-plastic material governed by a power-law consti-
tutive equation with a strain-hardening exponent n in
uniaxial tension

�

�y
=

�

�y
, when � � �y ,

�

�y
= � �

�y
�n

, when � � �y . (8)

The edges of the membrane are assumed to be clamped
since the substrate suppresses any rotation of the edges.

Using this finite element model, the deflection at the
center of a rectangular membrane is calculated as a func-
tion of applied pressure, membrane aspect ratio, and
work-hardening exponent. The residual stress was fixed
at 60% of the yield stress; the elastic modulus was taken
to be 1200 times the yield stress; the t/a ratio was 3 ×
10−3. The resulting pressure–deflection relationships are
converted into plane-strain stress–strain curves using
Eq. (6) and plotted in Fig. 2. These curves are then
compared with the plane-strain stress–strain relationship
directly calculated from the uniaxial behavior in Eq. (8)

FIG. 2. Plane-strain stress–strain curves obtained from the finite element method for various aspect ratios (b/a � 2, 4, and 5) and for (a) n �
0, (b) n � 0.2, and (c) n � 0.5; (d) plane-strain stress–strain curves calculated using small and large deformation formulae for a membrane with
n � 0.2 and b/a � 4.

Y. Xiang et al.: Plane-strain bulge test for thin films

J. Mater. Res., Vol. 20, No. 9, Sep 2005 2363



using finite elements and denoted by “input” in Fig. 2.
All stresses in Fig. 2 are normalized by the plane-strain
yield stress �Y

PS, defined as the yield stress for the input
plane-strain stress–strain curve calculated using finite el-
ements; the strains are normalized by the corresponding
yield strain (�Y

PS). The numerical results for the plane-
strain �–� relationships are presented in Figs. 2(a), 2(b),
and 2(c), for n � 0, 0.2, 0.5, respectively. For each value
of n, stress–strain curves obtained from membranes with
three different aspect ratios are compared with the input
material behavior. It can be seen that for all strain-
hardening exponents considered in this study, the trans-
verse stress and strain predicted from Eq. (6) are highly
accurate as long as the membrane aspect ratio is at least
4. Even membranes with b/a � 2 show good agreement,
especially for larger values of the work-hardening expo-
nent. To illustrate the difference between small and large
deformation formulae, Fig 2(d) shows the stress–strain
curves calculated using both sets of equations for a mem-
brane with b/a � 4. As expected, both curves coincide
with the input curve when the applied strain is small. At
a strain of 1%, the �–� relationship calculated using the
small deformation formulae [Eq. (7)], is approximately
1.5% lower than the input curve; the curve calculated
using the large deformation formulae [Eq. (6)] is indis-
tinguishable from the input curve at both small and large
strains. The FEM output data also verify that the longi-
tudinal strain does not change with the applied strain, i.e.,
the plane-strain condition is well satisfied, and the

transverse stress and strain are distributed uniformly
across the width of the membrane for membranes with
aspect ratios equal to or greater than 4.

The effect of the residual stress on the plane-strain
bulge test was also investigated using the finite element
method. Figure 3 shows the pressure–deflection curves
for films with various levels of residual stress and the
corresponding plane-strain stress–strain curves obtained
using Eq. (6) for both ideally plastic [Figs. 3(a) and 3(b)]
and strain-hardening [Figs. 3(c) and 3(d)] materials. It
is found that the residual stress affects mainly the elastic
deflection [Figs. 3(a) and 3(c)] and the initial point of
yield [Figs. 3(b) and 3(d)] as expected from the yield
criterion. If the material obeys the von Mises yield criterion,
the stress at first yield varies from the uniaxial yield stress
�y

9, if the residual stress is equal to the yield stress, to
�y/√1 − � + �2 if the residual stress is zero. Once the film
deforms plastically, the effect of the residual stress
is quickly wiped out. For ideally plastic materials, the
residual stress has no effect on the rest of the stress–
strain curve [Fig. 3(b)]; for strain-hardening materials,
the effect amounts to a small shift along the strain axis
[Fig. 3(d)]. The plane-strain stress–strain curves [Figs. 3(b)
and 3(d)] can be converted into equivalent stress-equivalent
strain curves [Figs. 4(a) and 4(b)], using the method de-
scribed in the Appendix. The small discrepancy caused by
the biaxial residual stress in the plane-strain stress–strain
curves is completely eliminated in the equivalent uniaxial
stress–strain curves.

FIG. 3. Pressure–deflection curves and corresponding plane-strain stress–strain curves obtained from the finite element method for an ideally
plastic material [(a,b) n � 0] and a strain-hardening material [(c,d) n � 0.5] with various levels of residual stress (�res/�y � 0, 0.6, and 1).
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III. SAMPLE PREPARATION

In this study, a 2.8-�m electroplated Cu film was
tested to illustrate the methodology of the plane-strain
bulge test. Freestanding Cu membranes were prepared
using standard photolithography and silicon microma-
chining techniques. As shown in Fig. 5, we start with a
(100) Si wafer coated on both sides with low-pressure
chemical vapor deposited (LPCVD) Si3N4 film. First, a
30-nm TaN adhesive layer and a thin Cu seed layer were
sputter deposited onto the Si3N4 followed by electrode-
position of the Cu film. The as-deposited film was an-
nealed for 1 h in vacuum at 600 °C to stabilize the mi-
crostructure. A detailed microstructural characterization
of the film has been published elsewhere.29 A layer
of benzocyclobutene (BCB) was spincoated onto the
Cu film to protect it during subsequent processing.

Photolithography is used to define long rectangular win-
dows (with an aspect ratio of 4:1) in the LPCVD Si3N4

coating on the backside of the substrate and with the
edges of the rectangles aligned along the 〈110〉 directions
in the Si substrate. The Si substrate is etched anisotropi-
cally [etch selectivity between (100) and (111) crystal
plane is approximately 50:1] using a potassium hydrox-
ide (KOH) based wet etch to create freestanding mem-
branes that consist of the Si3N4 coating and the Cu film.
The size of the membranes is 2.4 × 10 mm2 (with 2a �

FIG. 4. The von Mises stress-strain curves for the ideally plastic ma-
terial [(a) n � 0, corresponding to Fig. 3(b)] and strain-hardening
material [(b) n � 0.5, corresponding to Fig. 3(d)] with various levels
of residual stress (�res/�y � 0, 0.6, and 1).

FIG. 5. Schematic illustration of the sample preparation process using
standard photolithography and Si micromachining technology.
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2.4 mm in Fig. 1). Finally, freestanding Cu films are
obtained by removing the Si3N4 and TaN using reactive
ion etching (RIE) and by dissolving the protective BCB
layer in an organic solvent. The advantage of the sample
preparation process is that there are no restrictions on the
type of film or the way the film is deposited on the
substrate, as long as the Si3N4 etch is selective with
respect to the film of interest. An alternate technique

would consist of first preparing freestanding Si3N4 mem-
branes, after which the film of interest can be deposited
directly onto the Si3N4 membrane. By removing the
Si3N4 using reactive ion etching (RIE), a freestanding
film is obtained. This process is easier but much less
generally applicable; the Si3N4 membranes are fragile,
and there may be limitations with respect to which depo-
sition techniques can be used. Moreover, for high-energy

FIG. 6. Schematic illustration of the bulge test apparatus.

FIG. 7. Experimental results for a 2.8 �m electroplated Cu film: (a) pressure-deflection curve with two brief unloading cycles; (b) plane-strain
strain-stress curve; (c) evolution of the transverse and longitudinal stress with applied strain; and (d) von Mises equivalent uniaxial stress-strain
curve.

Y. Xiang et al.: Plane-strain bulge test for thin films

J. Mater. Res., Vol. 20, No. 9, Sep 20052366



deposition techniques such as sputtering, the structure of
the film deposited on the Si3N4 membrane may be dif-
ferent from that on the bulk Si substrate. The Si3N4 mem-
brane does not conduct the heat of condensation away as
efficiently as the Si substrate during the film deposition
process, and the film over the membrane may be exposed
to much higher temperatures than elsewhere. The two
methods are complimentary to each other and can be
applied to a wide range of materials.

Note that residual tension must be maintained in the
freestanding film, since any in-plane compressive stress
will cause the film to buckle due to its small bending
stiffness.24,25 Buckles near the edge of the membrane
disappear only gradually as pressure is applied during an
experiment, rendering the pressure-deflection data mean-
ingless. If the stress in the film of interest is compressive,
the LPCVD Si3N4 coating beneath the film can be kept
and the composite membrane tested. The Si3N4 coating
typically has a high tensile residual stress and the overall
stress in the composite membrane may be kept in tension
if the thickness ratio of the two layers is properly se-
lected. The mechanical properties of the film of interest
can be measured by subtracting the elastic contribution
of the Si3N4 film, which can be readily determined in-
dependently.28 This composite technique makes it pos-
sible not only to measure films with residual compres-
sion, but also to deform metal films alternating in tension
and in compression. In this case, the Si3N4 film acts as a
spring that drives the metal film into compression after
unloading. This technique has been applied to Cu and Al
films to study the Bauschinger effect in thin metal films.30

IV. EXPERIMENTAL SETUP

A schematic of the bulge test aparatus used in this
study is shown in Fig. 6. The sample is clamped onto a
sample holder. Pressure is applied by pumping water into
the cavity under the film using a syringe pump driven by
a stepper motor. The deflection at the center of the mem-
brane is measured by means of a laser interferometer
with a displacement resolution of 316.5 nm, i.e., half the
wavelength of the He–Ne laser. At the beginning of each
experiment, the interferometer is used to ensure that the
membrane is flat and level with the surrounding sub-
strate. The pressure is measured using a pressure gauge
with a resolution of 0.1 kPa. The experiment is controlled
by a computer via a LabView based program and a data-
acquisition system.

V. RESULTS AND DISCUSSION

Typical pressure–deflection data for the 2.8 �m free-
standing Cu film are presented in Fig. 7(a). The Cu film
was loaded to a maximum deflection of approximately
300 �m, at which point it ruptured. The loading segment

was interrupted by two brief unloading cycles to evaluate
the elastic properties of the film. Because of the large
deflection compared to the membrane width, the large
deformation Eq. (6) is used to calculate the plane-strain
stress–strain relationship presented in Fig. 7(b). The frac-
ture strain is approximately 4%. From the stress–strain
curve, the residual stress in the film is determined to be
66 MPa. The yield stress is defined at a specific offset
plastic strain; for example, the yield stress at 0.2% plastic
strain is found to be 125 MPa. The plane strain modulus
M � E/(1 − vi) is determined from the slopes of the
unloading curves and is 130 ± 5 GPa, in good agreement
with the value one would expect based on the crystallo-
graphic texture of the film.29 The plane-strain stress–
strain curve [Fig. 7(b)] obtained using Eq. (6) is con-
verted into an equivalent uniaxial stress-strain relation-
ship [Fig. 7(d)], using the method described in the
Appendix. The evolution of the transverse and longitu-

FIG. 8. Parallel FEM analysis for the experimental data: (a) the pres-
sure-deflection curve obtained with FEM is in good agreement with
the experimental curve; (b) the corresponding plane-strain stress-strain
curves are compared with the “input” plane-strain behavior.
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dinal stress with applied strain is presented in Fig. 7(c).
The longitudinal stress first increases with applied strain
and then decreases when the film starts yielding. At
larger strains, the longitudinal stress increases with ap-
plied strain and is equal to half of the transverse stress, as
expected for plane-strain plastic deformation. The dip in
the longitudinal stress evolution curve arises because of
the relatively high biaxial residual stress in the mem-
brane: at first, the longitudinal stress is greater than half
the transverse stress and decrease until its value is half
the transverse stress. At this point, it starts to increase
along with the transverse stress due to work hardening.
When the residual stress is below a critical level, no such
dip is observed. The equivalent uniaxial stress–strain
curve is plotted in Fig. 7(d). The strain-hardening expo-
nent obtained for this curve is 0.36, which is close to the
value for bulk Cu.31

The above analysis was verified using FEM. The film
thickness and membrane geometry were taken identical
to the tested sample. Experimental values for elastic
(M � 130 GPa) and plastic [Fig. 7(d)] properties were
used as input for the material behavior in the FEM simu-
lation. Poisson’s ratio was taken to be 0.33. The pres-
sure–deflection curve obtained from FEM is found to be
in good agreement with the experimental data [Fig. 8(a)].
The load–deflection data obtained from FEM are then
converted to a plane-strain stress–strain curve using
Eq. (7). Figure 8(b) compares this stress–strain curve
with the experimental curve. The agreement between nu-
merical and experimental results is excellent and vali-
dates the experimental data analysis.

VI. CONCLUSIONS

We used FEM to analyze the plane-strain bulge test as
a technique for measuring the mechanical properties of
thin films, with a particular emphasis on the effects of
sample aspect ratio, strain-hardening exponent, and re-
sidual stress. It was found that the analytical stress and
strain formulae used to analyze the bulge test are highly
accurate and that the plane-strain condition is well satis-
fied for all materials with strain-hardening exponents
ranging from 0 to 0.5, as long as the membrane aspect
ratio is 4 or greater. The residual stress mainly affects the
elastic deflection of the membrane and changes the initial
point of yield in the plane-strain stress–strain curve, but
there is little or no effect on the rest of the stress–strain
curve. The effect of the residual stress can be completely
eliminated by converting the plane-strain curve into its
equivalent uniaxial relationship (the von Mises stress–
strain curve). The technique was applied to an electro-
plated Cu film. Si micromachining techniques were used
to fabricate freestanding Cu membranes. Experimental
results for the Cu film are in good agreement with the
numerical analysis.
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APPENDIX

The stress–strain curves obtained in the bulge test are
plane-strain stress–strain curves. These curves can be
converted into equivalent uniaxial stress–strain curves
using an analysis first suggested by Freund.32 This analy-
sis eliminates the effect of the residual stress on the
stress–strain curves and facilitates comparison of experi-
mental bulge test data with results obtained from uniaxial
tension tests.

The three principal stress directions of the freestanding
film are shown in Fig. 1(A). Since the pressure applied to
the film is much smaller compared to the in-plane stress,
�3 can be taken equal to zero during the experiment.

Initially, when the applied pressure is zero, the film has
an equi-biaxial residual stress �1 � �2 � �0. During the
experiment, �1 are �1 are measured. In the elastic regime
�2 can be determined through Poisson’s effect:

�2 = �0 + ���1 − �0� , (A1)
as a result of the plane-strain condition.

In the following analysis, the material is assumed to
obey the J2 flow theory. Considering �3 � 0, the von
Mises equivalent stress �̄ is given by

�̄ = ��1
2 − �1�2 + �2

2�1�2 , (A2)
where �1 is measured, �2 is given by Eq. (A1) in the
elastic regime and is yet to be determined in the plastic
regime. The equivalent plastic strain �̄p is a function of
the equivalent stress �̄

�̄p = g��̄� . (A3)
The flow rates associated with the von Mises criterion

are in this case:

�̇1
p =

�1 − 1�2�2

�̄
g���̄��� ,

�̇2
p =

�2 − 1�2�1

�̄
g���̄��� , (A4)

where g�(�̄) � (d�̄p/d�̄). In the experimental configura-
tion here, the response is rate-independent, and �1 in-
creases monotonically with time. As a result, time can be
replaced with �1 in the above equations. By writing out
the equation for the strain rates in the longitudinal and
transverse directions along with the plane-strain con-
straints, we find

�
d�1

d�1
=

1

E�1 − �
d�2

d�1
� +

�1 − 1
2
�2

�̄

dg

d�1
,

d�2
e

d�1
=

1

E�d�2

d�1
− �� ,

d�2
p

d�1
=

�2 − 1
2
�1

�̄

dg

d�1
,

d�2
e

d�1
+

d�2
p

d�1
= 0 .

(A5)
These equations are solved for (dg/d�1) and (d�2/d�1),
resulting in the following differential equations

{
d�2

d�1
= � −

E�1 − �2

E
−

d�1

d�1
���1 − 2�2�

�1�2 − �� − �2�1 − 2��
,

(A6)

dg

d�1
=

2�̄�d�1

d�1
−

1 − �2

E �
�1�2 − �� − �2�1 − 2��

.
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Noting that the plane-strain modulus is M � E/(1 − v2)
and the tangential plane-strain modulus is Mt � (d�1/
d�1), the above equations are revised to

{
d�2

d�1
= � −

E� 1

M
−

1

Mt
���1 − 2�2�

�1�2 − �� − �2�1 − 2��
,

(A7)

dg

d�1
=

2�̄� 1

Mt
−

1

M�
�1�2 − �� − �2�1 − 2��

.

By integrating equations (A7), the longitudinal stress �2

and the equivalent stress–strain curve �̄p can be derived

from an experimental measurement of �1(�1). In practice,
the plane-strain modulus M is determined from the un-
loading sections of the measured �1(�1) curve, and the
tangential plane-strain modulus Mt at each point can be
obtained by a linear fit to adjacent data points. Poisson’s
ration � can be taken as equal to the bulk value or needs
to be determined from an independent measurement. The
initial value of �2 is obtained from Eq. (A1) in the elastic
regime. With these parameters, the above differential
equations can be numerically solved to get the equivalent
strain �̄p and the longitudinal stress �2, thus obtaining the
von Mises equivalent stress �̄ using equation (A2). The
resulting �̄–�̄p curve is the equivalent uniaxial stress–
strain curve. This numerical solution can be readily
implemented in a spreadsheet.
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