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The theoretical literature on plasmons in inversion layers is briefly reviewed. Predictions of
the plasmon dispersion can be tested in experiments in which far infrared radiation is coupled
to inversion layer plasmons by a grating structure forming the gate of an MOS device. A descrip-
tion of the far infrared transmission of such a device aids in interpreting the experimental
results. The results to date generally show a remarkable agreement with simple theory, although
interesting deviations are seen at low densities. Some recent woik at plasmon wave numbers up
to ¢ = 0.14 kF is presented.

1. Introduction

Recent years have seen the development of a variety of far infrared (FIR) spec-
troscopic techniques for probing the inversion layer. Cyclotron resonance, first
observed by Abstreiter et al. [1] and Allen et al. [2], measures the dynamical con-
ductivity o,,{cw, B) parallel to the oxide—silicon interface. The study of intersub-
band transitions, initiated by Wheeler and Goldberg {3] and Kamgar et al. {4],
probes the conductivity o,,{(w) perpendicular to the interface. Here we review the
development of another spectroscopy, that of inversion layer plasmons [S—10].

As in cyclotron resonance experiments, an infrared radiation field probes the
dynamical conductivity, 0,.(w). In this case, however, a spatially modulated field
excites a different type of resonance, the plasma oscillation, or plasmon, in which
the electric restoring forces created by inhomogeneities in the inversion layer charge
density determine the resonant frequency.

A considerable body of theoretical work on the plasmon dispersion [11-27]
aids in the interpretation of experiments. This work is reviewed in section 2, with
special attention given to a simple model in which the inversion layer is considered
to be an ideal two-dimensional (2D) electron gas. The results of this approach are
compared to the results of more sophisticated models. In section 3, the use of a
metallic grating structure to couple an FIR field to plasmons of specific wave num-
ber is discussed. Section 4 reviews the experimental work. The dependence of the
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plasmon dispersion on inversion layer density [5,8], wave number [7,9], and
magnetic field [6] has been investigated. Most of the resulis can be explained in
terms of the classical long-wavelength conductivity for a 2D free electron gas, but
interesting deviations from this simple picture are seen at low density [5,8] and in
a magnetic field [6]. Finally, some recent results are presented which extend the
wave number and frequency range of the previous work.

Although this review is limited to the special case of the inversion layer on
{100) silicon, plasmons should be a useful tool for studying the dynamical conduc-
tivity in other space charge layer systems as well. Indeed, the observation of plas-
mons in the 2D system of electrons on the surface of liquid helium by Grimes et al.
[28] preceded and stimulated the work on inversion layers. The recent observation
of coupled ripplon—longitudinal plasmon modes, proving the existence of the
Wigner lattice on liquid helium [29], is another outstanding contribution.

2. The plasmon dispersion relation
2.1. Simple theory

An approach taken by many authors in calculating the plasmon dispersion is to
regard the inversion layer as a two-dimensional electron gas with conductivity
tensor o(g, w). By this it is meant that a longitudinal electric field

E(q, w) = E(z)exp(ig - r — iwt) ,

produces a sheet current density at the inversion layer

j(g, @) 8(z) = alg. w) - Elg, w) 8(z) . 2.1
Here ¢ and r are vectors in the x—y plane, and the inversion layer is assumed to be
at z = 0. Considering the total field to be the sum of external and induced fields,
E(g, w)=E%g. w) +E"Yq. w), 2.2)

an expression for £12¢ in terms of £** is readily derived.

For clarity, consider a simple model where an oxide of thickness d and dielectric
constant €,, separates the inversion layer from a metallic gate. The gate is assumed
highly conducting and of unbounded thickness. Below the inversion layer is the
silicon substrate (dielectric constant &) which is also unbounded. We assume 2
longitudinal field acting in the x direction,

EXq, w) = ES* expligex — iwt) .

Retardation effects associated with the finite speed of light are neglected, and
Poisson’s equation and the equation of continuity are solved together with eq. (2.1)
to give the induced field at the inversion layer,

a 0xx(q, @) (2.3)

~ind, — ex P
=_F .
By, @) x(g, @) w H{g/w) Ox(g, W) + € + €5y coth(gd)
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Since this field provides the restoring force for oscillations in the inversion layer
charge density, the plasmon dispersion can be obtained simply by solving for
resonances in eq. (2.3). Note that because the electric field extends into the media
surrounding the inversion layer, the dispersion must depend on the geometry and
properties of these media.

These results can be put in a more elegant form if eq. (2.2) is used to derive a
constitutive relationship between E and £°*. Using a notation due to Ando [26] we
may write

0xx(q, W) Ex(q, ) = Oxx(q, w) EX'(q, @), (2.42)
where

0.x(@, ©) = 0xx(q, W) &g, W), (2.4b)
with

&q @)= 1+~ 1 0l @) (2.40)

w e_s + €ox coth(qd)

The effect of the surrounding media is thus expressed in terms of an effective
conductivity &,, and effective dielectric constant € The plasmon dispersion is
obtained from the solution(s) of

&g, w)=0. (2.5)

The calculation can be carried further by assuming a specific form for o,,. For
plasmon wavelengths large compared to the average interelectron spacing, we may
use the Drude conductivity

ne*r 1

(2.6)

0 bl

Toomt - iwr

where ng is the surface density of inversion layer electrons, m” is the effective mass
for motion parallel to the oxide—semiconductor interface, and 7 is a phenomeno-
logical relaxation time. Substituting eq. (2.6) into eq. (2.5) and taking the limit
T = o0 we obtain

2
w2=”se q

—_——. 2.7
m" e+ €, coth(gd) 27)

We now identify w and g as the plasmon frequency and wave number, respectively.
This dispersion has been obtained by several authors including Chaplik [12] and
Nakayama [14]. Experiments which have verified this relationship for inversion
layer plasmons are discussed in section 4.

If gd > 1, eq. (2.7) reduces to

2
wi=22 L (2.8)

2m’e
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where € = 1(e; + €,x). The square root dependence of the plasmon energy on wave
number is a result first given for 2D systems by Ritchie [30] and Ferrel [31]. If
qd £ 1, then at fixed g, it can be shown that bringing the gate closer to the inver-
sion layer (decreasing d) always decreases . This reflects the reduction in the
restoring forces for charge density oscillations in the inversion layer, as E1"9 js
partially screened by image charges in the gate [12].

2.2. Retardation effects

For values of w, g, ng, and d corresponding to the experiments described in sec-
tion 4, it is easy to show that eq. (2.7) always satisfies the condition g > k; , where
ki, = w/c is the light wave number. This suggests that neglect of retardation in the
derivation of egs. (2.3) through (2.7) was justified. This is confirmed by compari-
son with the results of Eguiluz et al. {17] who solved Maxwell’s equations for the
same system. The results are experimentally indistinguishable from eq. (2.7). How-
ever, in the absence of a screening gate to reduce the range of '™, retardation
effects can be important and have been considered by many authors [11,13—17,
22,25]. In particular, Stern [11] showed that as ¢ > 0, the dispersion approaches,
but does not cross the light line. The plasmon mode is thus non-radiative for this
simple geometry.

2.3. Other geometries

Interesting variations from eq. (2.7) will arise if the geometry and properties of
the surrounding media are varied. Eguiluz et al. [17] considered the coupling that
arises between gate and inversion layer plasmon modes for the three cases where the
gate is composed of a metal, a semimetal, or another semiconductor. Caille et al.
[22] studied the case of a gate of finite thickness. Here the gate has two plasmon
modes, one of which is quasi-longitudinal and the other quasi-transverse, both of
which can be coupled to the inversion layer plasmon. In general, significant coup-
ling of gate and inversion layer modes occurs only at frequencies and wave numbers
where the uncoupled modes would cross. For the case of a metallic gate, the cros-
sing is at frequencies and wave numbers too high to be accessible. The semimetal
and semiconductor cases may be more accessible to experimental investigation.

Recently, Chaplik and Krasheninnikov [27] investigated the coupling between
inversion layer plasmons and the piezo-acoustic modes of a piezoelectric crystal. An
interesting result is that under certain conditions, damping of the plasmon occurs
by radiation of sound into the bulk piezocrystal. It will be interesting to see if
technical applications can be found for this system.

2.4. Dispersion in the conductivity, finite inversion layer thickness

As the plasmon wavelength approaches the mean interelectron spacing, the g
dependence (dispersion) in the conductivity will alter the behavior of the plasmon
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dispersion. Using the random phase approximation, Stern {11] obtained

wzzw%(li-'l‘?"aoq), (2.9
gy 4

where a, = 4nen’/m*e? is the effective Bohr radius for an inversion layer electron,
gy is the valley degeneracy, and wy is given by eq. (2.8). A hydrodynamic calcula-
tion by Fetter [13] shows that the second term may be considered to arise from
the finite compressibility of the 2D electron gas.

Beck and Kumar [23] showed that inclusion of correlation effects produces an
additional term of opposite sign and of the same order of magnitude as the second
term in eq. (2.9).-Rajagopal [24] pointed out a correction to their result, and gave
an expression which can be written as

w? > Wi (1 +—1—§aoq—«~l—~§~i). (2.10)
gv 4 gy bMkp

Jonson [20] investigated the plasmon dispersion using three different approxima-
tions to the many body problem, and found that the results were very model
dependent, especially at low densities where correlation effects are important. Ob-
servation of the plasmon dispersion for ¢ ~ ky may thus test the ranges of validity
of various many body theories. This is a very interesting area open to investiga-
tion.

At plasmon wavelengths short enough for many body effects to be important,
the finite thickness of the inversion layer must also be considered. Jonson [20]
found significant changes in the plasmon dispersion although the general trend pre-
dicted by each many body theory was unaffected. Beck and Kumar [23] gave a
simple correction to the dispersion of the same magnitude as the many body
effects. Using realistic wave functions to describe the extension of the inversion
layer perpendicular to the oxide—semiconductor interface, Dahl and Sham {[25]
made an extensive study of the electrodynamics of the inversion layer in the ran-
dom phase approximation. In a unified treatment they obtained both the intersub-
band transitions and plasmons as, respectively, the transverse and longitudinal elec-
tromagnetic modes of the system, Some analogous results had previously been sug-
gested by Chen et al. [32], who considered the electromagnetic modes of a charged
slab model of the inversion layer.

2.5. Magnetoplasmon dispersion
The plasmon dispersion in the presence of a magnetic induction, B, perpendic-
ular to the inversion layer is easily obtained in the long-wavelength limit. For a 2D

free electron gas we have

Oxx=%(04++0.), (2.11a)
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where

2
ne’r 1

i

. (2.11b)

mt l—i{lwrw)r’
and w,=eB/m" is the cyclotron resonance frequency. Substituting o,, into eq.
(2.5) and again lettting 7 > o°, we find

w2=w§+w§, (2.12)

where w,, is the B =0 plasmon frequency given by eq. (2.7). This result has been
pointed out by Horing and Yildiz [21], and can be derived in the proper limits
from the results of other authors [12,15,16,19].

Egs. (2.11) do not describe some important characteristics of the observed long-
wavelength dynamical conductivity. In particular, the presence of poles at w = vw,
where » =2, 3, ... corresponds to the subharmonic structure observed by Abstreiter
et al. [1], and explained by Ando [33,34]. In Ando’s theory, this structure arises
through the action of short range scattering centers; the strength of the poles
vanishes as 7 > oo, It is therefore not possible to speak of changes in the dispersion
given by eq. (2.12) in this limit. Nevertheless, the presence of these poles in the
conductivity can cause strong changes in the observed magnetoplasmon resonance
line shape [26]. The observation of such effects is discussed fully in section 4.

Interestingly, a consideration of dispersive effects in the magnetoconductivity
also leads to poles at w = ww,. where v = 2, 3, ... [35]. These give rise to additional
branches in the magnetoplasmon dispersion given also by w =~ vw,, as well as
slightly altering eq. {2.12). Precise results have been given by Chiu and Quinn [15]
and Horing and Yildiz [21] using the random phase approximation and by Lee and
Quinn using the Fermi Liquid Model [16]. For the present experimentally obtained
values of g, the effect of these modes on the magnetoplasmon lineshape is over-
whelmed by the effect of the subharmonic mode [26]. The dispersive effects
should, however, be observable at larger wave numbers.

3. Coupling to a far infrared field
3.1. General considerations

As discussed in the previous section, the plasmon modes are non-radiative. They
can, however, be coupled to a probing electromagnetic field by a metallic grating.
Fig. 1a illustrates the geometry of a typical experimental MOS device. As in cyclo-
tron resonance experiments [1,2], a thin high resistivity gate allows transmission of
far infrared (FIR) radiation. Here, however, the adjoining grating of highly conduc-
tive metal spatially modulates the FIR field in its vicinity, making possible the
excitation of plasmon resonances.

Momentum exchange with a perpendicularly indicent plane wave allows coupling
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Fig. 1. {a) MOS device with grating on the gate. (b) Model for calculating the far infrared trans-
mission.

to plasmons when
gn=n2nla, n=1,2 .., 3.0

where z is the grating periodicity. How will this coupling affect the transmission?
Using the simple model of the plasmon dispersion outlined in the previous section,
the space and time averaged absorption of power from an external longitfudinal field
by the inversion layer is

P =1 1E3(q, )P Re Guxlg, w), (32)

where &, is given by eq. (2.4b). From eqs. (2.4a) and (2.4b) it can be seen that a
zero in &g, w) generally corresponds to a pole in %, so a plasmon resonance absorbs
power from the field. If the absorption is small, the change in transmission will be
proportional to p.

3.2. Calculation of the FIR transmission

Experimentally it is convenient to measure the relative change in transmission,
P = —AT/T, caused by the presence of the inversion layer. An expression for P has
been given by Allen et al. [5], and the approximations leading to this result have
been discussed elsewhere [8]. Here we consider an algebraically equivalent result
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[6] based on the use of eq. (3.2). The purpose is to give a physically intuitive pic-
ture of the grating mediated coupling between the FIR field and the plasmon
resonance.

As shown in fig. 1b, the grating/gate (hereafter referred to as simply the grating)
is modeled as a vanishingly thin layer consisting of alternating strips of low and high
conductivity, Y, and Y. The strips are of widths 7 and a — 7 respectively. For FIR
wavelengths, X > 2, Poisson’s equation may be solved for the near field under the
boundary conditions imposed by the grating and the presence of the far fields. Cal-
culating the near field in the low frequency limit where, to a good approximation,
the grating current is spatially constant [36], one obtains
P 5(Yo+ Y+ Yy = Re Uylg =0, w)

D [2 sinz(qnt/il)}[ Y- Y, T{ coth®*(g,d) — 1 }

n=1l (qut/2)* Y2+ Yi(a/t — D] | [e/€0x + coth(g,d)]?

N PRy i

(3.3)

X Re gxx(ﬁm ‘;O)

Here, ¥, and ¥ are the admittances of the free space and silicon respectively, and
Y, is the grating admittance in the limit w = 0. The factor labeled “1” arises from
the average strength squared of the nth Fourler component of the longitudinal field
at the grating, the factor labeled “2” arises from the decrease in strength of the com-
ponent at distances d from the grating, and Re &,.(g,, w) describes the plasmon
lineshape. Note again that resonances in P are directly related to the plasmon
dispersion through eqs. {2.4b) and (2.5).

3.3. Sample design

Besides providing 2 good account of the experimental results discussed in section
4, eq. (3.3) contains the information needed to design samples which provide opti-
mum coupling between plasmon resonances and the FIR field. Under the experi-
mental conditions of interest, Y, > Y. The factor labeled “1” is then proportional
to sin?(g,#/2)/(gxt/2)*. In order to maximize this term at a given grating periodi-
city, a, the open space, ¢ should be made as small as possible. This is especially true
for n > 1. Qualitatively this may be understood as arising from the concentration of
the longitudinal electric field across the open space of the grating. Reducing the size
of the opening, i.e., making the ratio #/a smaller, increases the relative strength of
the higher spatial Fourier components of the field. Plasmons of large g, may be
excited.

The term labeled “2” in eq. (3.3) arises from the exponential decay of the
spatially modulated part of the electric field away from the grating, modified by
the dielectric image effects, This is easily seen for the special case €5 = e,x, when the
term reduces to exp(—2¢,d). Strong coupling is thus obtained only when dfa < 1.

Note that the conditions #/a € 1, d/a < 1 must also be satisfied by efficient plas-
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mon emission devices. In these devices, discussed by Gornik [10], emission is
through radiative decay of plasma oscillations coupled to the external field by the
grating.

There are technical limits on how thin the oxide can be made, but a technique
called shadowing substantially reduces the problems in making gratings with small
t/a. (See Jelks et al. [46] and references therein for a discussion of similar tech-
niques.) As discussed by Theis et al. [7,9] a grating is first fashioned from metal
using standard lithographic techniques. Highly conductive metal is then evaporated
onto the structure from an angle such that all but a small part of the grating gap
(the shadowed area) is covered. In section 4, gratings fashioned by electron beam
lithography are described. With the aid of shadowing, these have allowed observa-
tion of plasmon resonances with wavelengths as small as 0.2 um, corresponding to

qs.

4. Observation of inversion layer plasmons
4.1. Experimental notes

Typical inversion layer scattering times are on the order of 107!% 5. Observation
of a well-defined plasmon resonance requires cor > 1; hence the need for frequencies
in the far infrared. As FIR sources, transmission experiments have utilized the
Fourier spectrometer [5] and molecular gas lasers [6,9]. The Fourier transform
technique, discussed by Tsui et al. [8], allows w to be swept while other variables
are held constant. The laser experiments are conducted at fixed w, the resonance
being swept by varying ng or B.

The samples are MOS transistors {5] or capacitors [6,9] with grating structures
as discussed in the previous section. Oxide thickness, d, is typically ~0.1 um and
values of the grating periodicity, a, have ranged between 1.0 and 5.0 um. Gate areas
are ~5 mm?. FIR radiation is focused through the gate by a condensing cone, and
passes on to a detector. By square wave modulating the gate voltage during the
measurement, a difference signal proportional to the change in transmission caused
by the presence of the inversion layer is obtained.

When MOS capacitors are used, V7 is applied between the gate and a back con-
tact. Since at low temperatures the silicon substrate is highly insulating, sufficient
minority carriers for charging the inversion layer must be supplied by band gap
radiaticr rrom a light-emitting diode. Varying the intensity of this radiation shifts
the conduction threshold voltage. Measured as a function of gate voltage, the plas-
mon resonance also shifts, paralleling the change in threshold voltage [37]. The
inversion layer carrier density at resonance remains unchanged. Thus, no change in
the plasmon dispersion is observed as a function of band gap radiation over a wide
range of illumination intensities. Apparently, the steady state density of free
carriers induced in the bulk silicon is too low to significantly screen the plasmon
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electric field. The assumption of an insulating silicon substrate used to derive egs.
(2.3) through (2.5) is therefore justified. At high temperatures in heavily doped
substrates, screening by the bulk silicon carriers might become important.

4.2. Density dependence

The first experimental investigation of inversion layer plasmons was made by
Allen et al. [5]. Plasmon resonances were obtained for a value of g = 2n/a with
a=3.5 um. An expression equivalent to eq. (3.2) was used to fit the observed trans-
mission spectrum. For ng > 10'? ¢m™2, remarkable agreement was found with this
expression using the Drude conductivity, eq. (2.6), with m” = 0.2m, and 7 deter-
mined from the dc conductivity. This is a confirmation of both the dispersion given
by eq. (2.7) and the Drude relaxation at high frequencies.

At lower densities significant deviations from the predicted resonant frequencies
were observed. It was pointed out that the deviations could be accounted for in
terms of the Drude conductivity by assuming a lower value of », or a larger value of
m”*. Anomalously large values of 7" have been measurd in cyclotron resonance at
low densities, so the plasmon data were also interpreted in this manner. The values
of m* obtained from the plasmon energies were found to be significantly larger
than cyclotron resonance values measured on the same sample [8]. This effect
deserves further study since it may shed light on the nature of the localization
mechanism at low densities.

4.3. Wave number dependence

By employing shadowed gratings with small values of #/a, Theis et al. [9] were
able to observe plasmon resonances with g, =n2nfa where n=1,2, and 3. With
d =022 um and ¢ =5 um, the gate screening was strong for n =1 but relatively
weak for n = 3, providing a stringent test of the ¢ dependence given by eq. (2.7).

Fig. 2 shows data obtained at FIR wavelengths of 311 and 195 um. P is recorded
as a function of ns. The data clearly shows peaks corresponding to the resonant
values of ng (inverted triangles) as calculated from eq. (2.7) with ¢ = g,,. The reso-
nances are superposed on a monotonically increasing Drude background, corre-
sponding to absorption of power from the spatially unmodulated (z = 0) compo-
nent of the radiation field by the inversion layer.

The dotted lines give fits to the lineshape predicted by eq. (3.3} with indepen-
dently measured values of 7,4, and d. The n, dependences of m"* and 7 were deter-
mined from cyclotron resonance measurements at A = 337 um after the grating was
chemically stripped from the gate. Because 7 depends on magnetic field [33,34],
the cyclotron resonance values are scaled by an ng independent factor of 1.2 to give
a better fit to the plasmon resonance width. The plasmon resonance thus measures
a larger scattering time than the cyclotron resonance, in qualitative agreement with
theory and with the measurements of Abstreiter et al. [38] who compared 7 at
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cyclotron resonance with r obtained from low frequency B = 0 measurements.

Fig. 3 shows the resonant values of w?m™/ng as a function of g. The resonant
values of ng are taken from data including those of fig. 2. The theoretical line is
determined from eq. (2.7), and the agreement with experiment is generally very
good.

4.4. Magnetoplasmons

The magnetoplasmon dispersion, eq. (2.12) obtained for the classical long-wave-
length conductivity may be rewritten for the resonant value of the magnetic induc-
tion. If m™ is approximately constant as a function of ng, one obtains

B=B(1 —nfng)’?, .1

where B, = m w/e, the cyclotron resonant value of B, and ngg is the plasmon reso-
nant value of ny when B =0,

The predictions of this equation are found to be in general agreement with the
results of an experiment by Theis et al. [6]. Fig. 4 shows the magnetoplasmon
behavior as a function of B at an FIR wavelength of 337 um. With #/fa = 0.5, only
the magnetoplasmon resonance excited by the n =1 Fourier component of the
electric field is important. Resonances for n =2 are too small to be observed. As
predicted by eq. (4.1), for low values of n, as in curve h, B = B... The normal cyclo-
tron resonance peak (corresponding to the # =0 component of the field) is seen,
with an additional contribution from the magnetoplasmon resonance. At higher n,,
the magnetoplasmon moves to lower values of B, as can be seen in curves g through
c. It first appears as a distortion of the cyclotron resonance lineshape, and then
separates from it entirely to form a distinct peak. For sy > ng (curves b and a)
only the tail of the resonance is evident.

The theory (dashed line) based on the classical long-wavelength conductivity
cannot explain the splitting of the magnetoplasmon peak at B = 1B, in curves e and
f. Samples with stronger coupling to the plasmon resonance (t/a = 0.15) show an
additional splitting at B = %BC [37]. This splitting of the magnetoplasmon peak as
it crosses B=B /v, v=2,3, .. can be associated quite generally with the occur-
rence of poles in the conductivity at w = ww.. (Here we refer implicitly to the real
part of the complex resonant frequency.) In fact, such poles are observed as cyclo-
tron subharmonic resonances [38], and can be shown in a quantum mechanical
calculation to arise from transitions between non-adjacent Landau levels [33.34].

Fig. 5 gives results of a calculation by Ando {26] showing how the splitting
arises. The solid lines are generated using the expression for o, given in ref. {26],
while the dotted lines are obtained from the classical conductivity. The signal is
proportional, in Ando’s notation, to Re o = Re 0,y + 5 Re 7,.,, where Re 0y,
and Re 0,, correspond to the CR and magnetoplasmon absorption respectively.
The scale factor 5§, = 0.23 is appropriate for the sample parameters corresponding
to fig. 4.
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Fig. 4. Relative change in transmission, P, versus magnetic induction, B, for fixed values of elec-
tron density, ng, as listed above. Inverted triangles represent the magnetoplasmon resonance
position calculated from eq. (2.12). (From ref. [6].)

The structure in Re oy, around 34 kOe, denoted by the upward pointing arrow,
is the subharmonic resonance. The magnetoplasmon peak {downward pointing
arrow} is split due to its presence. Although the peak in Re o, partially fills in the
trough in Re &,, the net result in Re o is a splitting, much like that which is
observed. The splitting is observable only when w = 2w, since only then do the
subharmonic and magnetoplasmon modes interact and repel each other.

It is emphasized that the effect is general. Any theory which gives a good
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Fig. 5. Magnetoplasmon lineshape calculated by Ando (from ref. [26]). Re oy, and Re Gy,
describe the cyclotron and magnetoplasmon resonances, respectively. The change in transmis-
sion is proportional to Re oegr. The positions of the subharmonic structure and the classically
predicted magnetoplasmon resonance are denoted by upward and downward pointing arrows
respeciively.

account of the strength of the observed subharmonic resonance, will also predict
the observed splitting.

4.5. Recent results

Recently electron beam lithography [39] has been employed to extend the wave
number and frequency range of the plasmon observations. The samples were fabri-
cated on 0.2 2 cm {100) silicon and had a gate oxide with d =0.054 ym upon
which a chrome gate electrode of roughly 0.07 um thickness had been evaporated.
The grating pattern was written by the electron beam in 0.4 pm thick PMMA resist
which had been spun cast on the gate. The resist image formed a mask for chemical
wet etching of the chrome, The resulting grating, with @ = 1.0 um and #/a ~ 0.5,
was then coated with a thin NiCr film and finally shadowed, reducing #/a to ~0.1.

Fig. 6 shows results obtained at several laser frequencies. The derivative of P
with respect to gate voltage, Vg, was measured as a function of inversion layer den-
sity. This emphasizes the plasmon resonance with respect to the slowly varying
Drude background. The dotted lines are calculated from eq. (3.3), with m* =0.2m,
and assuming 7=4.5 X 1073 5 for fig. 6a and 7= 3.75 X 1073 s for fig. 6b. These
scattering times show the mobility is low with a broad, not well defined peak, con-
sistent with some damage to the oxide during the electron beam fabrication of the
grating.

A few words regarding the data analysis are appropriate. The meaured values of
d and a are believed accurate to within 2%. € is known from FIR measurements at
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Fig. 6. The derivative of the relative change in transmission with respect to pate voltage,
dP{dVy. Theory from eq. (3.3) is given by dashed lines, data by solid lines; (a) 337 um infrared
wavelengths; (b} 78.4 and 118.6 um infrared wavelengths.

T=2X [41]. For the frequency range of interest here it may be taken to be
6, = 1145 with negligible error. FIR measurements of €, are not available, but
measurements made at optical frequencies [42] suggest that values for fused quartz
are appropriate. The measured values for fused quartz at room temperature [43]
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were therefore assumed, giving €,, = 3.81 at the lowest frequency used and rising
by two percent at the highest frequency.

The threshold gate voltage for conduction at high frequency was observed and
used together with measurements of quantum oscillations in the magnetoconduc-
tivity to determine ng as a function of gate voltage. These measurements are
believed generally accurate to within three percent. In this case, however the
samples have been irradiated by an electron beam, which is known to introduce
interface states in the band gap [44]. Fowler and Hartstein [45] have shown that
such states result in a nitrogen temperature threshold voltage shifted to lower values
than the voltage determined by magnetoconductance oscillations. If the high fre-
quency onset of conductivity also displays such a shift, a systematic error is intro-
duced in determining n;.

For ng > 10" cm™ (fig. 6b) the agreement between theory and experiment is
good. The deviations from the predicted resonant positions in ng would imply an
effective mass between three and five percent larger than the value assumed. This
may indicate a systematic error in determining s as discussed above. The deviations
in line shape can be mostly attributed to the fact that 7 is not constant as a func-
tion of ng.

For ng, S 10'? cm™ (fig. 6a) the deviation from the predicted resonant position
is somewhat larger than the possible systematic error and must be interpreted as an
increase in effective mass in the localization regime. This is qualitatively consistent
with the trend observed by Allen et al. [5] and with cyclotron resonance measure-
ments in the localization regime [40].

Note that the » =4 resonance observed at an infrared wavelength of 118 um
corresponds to q/ky = 0.14. No significant shift of the resonance position attribut-
able to a variation of the ¢ dependence from that of eq. (2.7) is observed. This is
consistent with eq. (2.10) which predicts less than a two percent change in the
resonant value of ng attributable to dispersive effects in the conductivity. The
experiment does suggest the technical feasibility of observing plasmons with wave-
lengths not too much larger than the interelectron spacing. An accurate interpreta-
tion of such experiments will, however, require an understanding of the deviations
from theory evident in fig. 6.

5. Conclusion

On (100) silicon, for ng in the metallic conductivity regime, the validity of the
simple theory of inversion layer plasmons based on the long wavelength conduc-
tivity o, (¢ =0, w) has been demonstrated over a wide frequency and wave num-
ber range. The plasmon resonance can therefore be used as a tool to probe the con-
ductivity in systems less well understood. The principal components of the dynami-
cal conductivity tensor can be separately measured by changing the grating orienta-
tion, and m”* and 7 can be determined in the absence of a magnetic field. The vari-
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ous cyclotron resonance experiments [40] which have been so productive in recent
years, will be complemented.

The extension of observations to ¢ ~ k¢, offers the possibility of obtaining novel
results since the Fermi energy and wave number can be easily varied with respect to
the plasmon energy and wave number. We may expect to see much more work on
inversion layer plasmons in the next few years.
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