
Infrared Pigx Vol. 33, No. 5, pp. 345-357. 1992 00X-0891192 $5.00 + 0.00 
Printed in Great Britain Pergamcn Press Ltd 

THE THEORY OF MULTIPLE QUANTUM-WELL 
GaAs-AlGaAs INFRARED DETECTORS 

V. D. SHADRIN and F. L. SERZHENKO 

Department of Theoretical Physics, Institute of Applied Physics, 1 I1 123, Moscow, U.S.S.R. 

(Received 9 October 1991) 

Abstract-l’he theory of multiple quantum-well GaAs-AIGaAs IR detectors based on the principle of 

quantum well photoionization is presented. The expression for the photoionization probability of the 

symmetric quantum-well is found to be exact in the effective mass approximation. Depolarization effects 

in the optical absorption spectra are discussed. We demonstrate that the depolarization shift of the 

spectrum maximum and its broadening lead to non-monotonic dependence of the photodetector 

detectivity on the eiectron concentration in wells in the background limited IR performance condition. 

The optima1 factor of quantum-well filling, corresponding to the maximum of detectivity is rather small, 

and for the photoresistor with boundary wavelength i., = IOpm, is 8 = 0.10. 

We have also performed calculations for the concentration dependence of the transition temperature 

for background limited IR performance and found that for optimal concentrations it is about T = 83 K 

(for I, = IO pm). The lifetime of non-equilibrium electrons is determined by capturing processes into the 

wells accompanied by emission of polar optical phonons and is r = 2 x 10-l’ s. The gain, along with the 

photoresistor sensitivity, is maximal for structures with a single quantum well. 

I. INTRODUCTION 

The present paper deals with the theory of multiple infrared (IR) GaAs-AlCaAs detectors 

based on the principle of photoionization of quantum well (QW). A detector operating on 

this principle and containing a single asymmetric QW was introduced(‘) with the further 

elaboration of this concept.‘244’ Multiple GaAs -AlGaAs detectors with symmetric QWs operating 

on the optical ejection of electrons from the wells were first created by Levine et a1.‘5.6’ and their 

parameters were comparable with those of the HgCdTe devices (operating on interband 

transitions). In contrast to detectors on intersubband transitions in QW,“’ detectors operating on 

the principle of well photoionization show smaller noise, as in the first instance it is necessary to 

apply a large electric field to receive high photoconductivity, which leads to the appearance of 

additional noise. QW detectors show an advantage over interband transition detectors in that 

high sensitivity occurs with negligible response times: however, the small lifetime of non-equi- 

librium electrons in the barrier region of the conduction band, determined by electron-phonon 

interaction, leads, as was noted, (‘I to a lower temperature for the BLIP condition than in that of 

HgCdTe. 

Various aspects of the IR QW detectors theory considered have been discussed in the 

above-mentioned papers.““‘*@ Nevertheless, there is no general theory for photoelectric and 

threshold characteristics of detectors operating on the principle of QW photoionization. 

The purpose of the present paper is to present this theory with calculations for properties of 

multiple GaAs-AlGaAs structures with symmetric QWs, which have been investigated.(5,6.9) The 

scheme of IR-radiation input aiso corresponds to the scheme used in these papers. Section II 

discusses the probability of photoionization of symmetric QW; Section III deals with the influence 

of concentration effects on the QW absorption spectrum; Section IV calculates the lifetime of 

electrons; Section V considers the theory of photoelectric characteristics: quantum efficiency, gain 

of photoresistor and sensitivity; Section VI calculates the BLIP transition temperature; and Section 

VII shows detectivity DR of a detector in the BLIP condition and performance optimization of a 

detector. 
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II. BOUND-TO-EXTENDED STATE OPTICAL ABSORPTION IN QUANTUM 

WELL HETEROSTRUCTURES 

Let us consider the process of photoionization of a single symmetric QW where the QW is formed 

by two heterojunctions (Fig. 1). Within the framework of effective mass approximation for equal 

masses of electrons in both materials the problem is solved correctly. Under these conditions 

electrons behave as free in the direction of the plane that is perpendicular to the layers, i.e. dipole 

transitions are allowed only for radiation polarized perpendicular to the layers. 

We normalize wave functions to the potential box with infinitely high walls under x = +L 
(OX-axis is perpendicular to the layers). The potential is invariant under the X inversion, so all 

the wave functions are either even or odd. Optical transitions from the ground even state in the 

well are allowed only into the odd states of the continuous spectrum of the conduction band with 

the wave functions 

If> = s-‘,‘exp(iK,p)t/-(x) 

where, in compliance with”‘) under a 4 L 

r A_sin(Kx), Ix/ <a. 

y-(X> = sgn(X) . 

I 
--rrsm(k(L-I.x/), lxI>a. 

L’ 

(1) 

Here k,, is an electron wave vector parallel to the plane of heterojunction, S is the surface area of 

the normalized volume V = 2LS, K = (2m(U, + E,)/h’ - k?)’ *, k = ((2mE,)/h* - k’)“*, m is 

the effective mass of the electron, tt is Planck constant, U, is the depth of QW, AI’ = 
L[1 + (K/k)* ctg2(ka)] I sin(&) I. E, is the energy, measured from the bottom of the conduction band 

of a wideband semiconductor. 

The wave function of the ground state in the QW is 

/ i > = S -’ * exp(ik ~)lc/~(X) 

where 

Ye(x) = 
A, cos(k,x), Ix I <a. 

A,cos(k,a)exp(-k,(Ixl -a)), 1x1 3~. 
(2) 

Here k, = (2m(Uo - E,))-‘!*/h, k, = (2mE,)-‘,*/h, A, = (a + i_,)-‘, i, = k;‘, and E, is the energy of 

the bottom of the 2-D subband. 

The expression for the Hamiltonian interaction for photon absorption is 

“* 
exp(i(qx - ot))B, 

Al Ga As 1 1 1 Al Ga As 

(3) 

n - Ga As 

Fig. 1. Conduction-band diagram of a symmetric QW with ground state E, and depth (/(, 
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where N,, is the number of photons in volume P’, q = (oN,c) is a photon wave vector, u is a photon 

frequency, c is the light velocity, N, is the refraction index, and p, = - ih(d/dx) is a projection of 
the momentum operator on the 0.X axis. 

Using equations (l)-(3) we will get the radiation absorption rate, i.e. the transition frequency: 

where Ei = -El + El, E, = ~2~z~~2~),~~(~) = (1 -I- exp((E - ~~~)~~~)).-~ is a distribution function 
for electrons in the initial and f(E) in the final states, Er, is Fermi energy and 7’ is temperature. 
summation is taken with respect to the wave vectors kc = (k, k,) of the final states of the electrons. 

momentum-mat~x element (fl t”,/ i} ~al~uIat~d on the wave functions of localized (2) and 
delocalized (3) states is given by 

In equation {S) all energies are normalized to the depth of the QW: E, = (Elf U,}, E = (E~~~~~, 
iL = ~~(~mU~~~-~~2, E, = E - E is electron kinetic energy in a wideband semiconductor correspond- 
ing to its movement perpendicular to the plane of the heterojun~tion. 

From equation (5) we note that the momentum-matrix element goes to zero under energies 
corresponding to the minima of amplitude A_ of the odd state (1) in a continuous spectrum over 

QW, 
To proceed it is convenient to calculate the probability W of one-photon absorption which is 

related to the transition frequency 7 - ’ through the expression W = (2LiV,,!cN,)z-‘. 
Changing from summing up to integrating over energies in equation (4) we obtain 

Integrating over E. occurs over the electron energies in the 2-D subband due to conservation 
of parallel momentum. rntegration over El is faciIitated by ~~functions, and for efectrons in the 
ground state we receive 

Here 8 = (AT/E,) ln(1 + ~xp~E~~~~~~~ is the electron filling factor of the only QW-subband, and 
function F(E) is given by 

ctg’(; (1 + E)fi2))-‘, 

It oscillates between zero and unity, while its maxima and minima correspond to the maximal 
and minimal values of ampIitude A-. Another ~haracte~stic feature of W(E) is that it decreases 
considerably with an increase of the photon energy on the characteristic interval of V,. Of special 
interest, therefore, is the spectrum of the transition probability near the boundary waveIength, i.e. 
for E = (IktoE,) 4 1. noteworthy here is the phenomenon of resonance on the absorption threshold 
with (a/J.) = (x/2)(2n - 1), (n = 1,2, 3,. . .). 

Under such relationships between the well parameters we get W(E) - E-‘12. Under al1 the other 
meanings of the parameter (a/a), except (a/k) = ~32, the absorption probability on the threshold 
can be expressed by W(E) - E”2. As for (a,‘%) = (nn) we get W(E) - E512. 

We can find the expression for the transition probability (6) under the conditions of the first 
(n = 1) resonance. In this case there is one (even) subband in the well, and the next odd subband 
is virtual, i.e. it is “pushed out” into the state with energy E, = 0. The numerical calculation shows 



348 V. D. SHADRIN and F. L. SERZHENKO 

that under (a/A) = (n/2) the lowest energy of the even subband E, = 0.64 lies below the continuum 

edge of the barrier. Taking into account i, = 1E;“’ we have 

W,,,(E) = 3.2 x lo-“O(E + 0.64)-3E-1:2. 

Furthermore we get W,,,(O.l) 2: 0.7% where 8 = 0.3 and E = 0.1. The average value over the 

interval 0 < E < 0.1 is about 1.4%. 

Figure 2 shows the spectrum w(&,) as a function of photon wavelength for several values of 

the parameter (n/a) < (n/2) and for 8 = 0.5 when there is only one 2-D subband in QW with an 

electron Fermi level lower than the top of the QW. 

We evaluate the absorption coefficient U,,(O) = (W/L) for a structure comprised of a series of 

QWs: where L is the period of the structure or the mean well-spacing, if the structure is 

non-periodic. Assuming that under resonance for the boundary wavelength E., = 10 pm, a = 27 A 

and assuming L = 250 A, we obtain, under resonance conditions, ~1~ rr I .5 x IO3 cm ’ for E = 0.1, 

and an average value over the spectrum of (a*) = 3 x 103cm-‘. Using the relationship 

0 = (nA’N,)/(mE,) where N, is electron sheet concentration in QW, it is readily apparent that with 

8 = 0.3 which corresponds to the threshold, i,, = 10 pm can be obtained by doping the wideband 

part of the structure with Nd = N,/(L - 2~) 2: 5. 10i7cm 3 or the narrowband part with 

Nd = N,/(2a) 12 ’ 10ix cmm3. 

Thus, under moderate doping a structure with a series of QWs possesses an absorption coefficient 

comparable with that of vertical interband transitions. Characteristic features of the photoioniz- 

ation spectrum are its oscillation as well as a prompt (hw). 3.5 decrease (as in the case of 

photoionization of a hydrogen-like impurity) when quantum energies considerably exceed 

ionization energy. 

III. DEPOLARIZATION EFFECTS IN PHOTOIONIZATION SPECTRA 
OF QUANTUM WELLS 

In Section II we discussed the coefficient of radiation absorption in structures with QWs in 

one-electron approximation. The results obtained prove that, from an absorption standpoint, 

“resonant” QWs are optimal, where the bottom of the second subband of quantum con~nement 

0.06 

2 0.06 
a 

:: 
2 
0. 

.Z 0.04 

;ii 
.t! 
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Fig. 2. The probability of photoionization of a single QW YS photon wavelength A,, for 0 = 0.5 and 

different values (a/l): I, (a/i) = (n/2); 2, (a/i) = 1.47; 3, (all) = 1.37. 
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coincides with the top of the well. Increasing electron concentration in wells increases the 
depolarization effects of incident radiation. These effects are especially pronounced for resonant 
wells near the absorption threshold because of the dramatic increase in the photoionization 
probability, and, consequently the ima~nary part of electron gas ~~ittivity in QWs. Depolar- 
ization effects for the QW photoionization were considered for an asymmetric QW.(4’ 

Let us consider a rectangular resonant QW with half-width a and depth U,. Let us assume that 
the permittivity of the layer containing electrons is c,, = t, (0) + &(co), and that of the non- 
absorbing layer is L,, = C, where C, is high-frequency permittivity. We can express the value C~(CO) 
through the probability of photoionization W(o), calculated in Section II in a one-electron 
approximation C&W) = (civ, ~(~))~(2~(~ + &:o)), where & is the penetration depth of the electron 
wave function under the barrier. 

In this paper we use Kramers-Kronig relation to find the real part of the permittivity layer. 

El(W) = es; +(2/n) J (xE~(x)/(x* - co*)) dx. 
0 

Figure 3 shows dependencies ~~(0) and E*(W) near the absorption threshold for 6 =0..5. It is 
readily apparent that C, (w) and +(o) are comparable in magnitude near the absorption threshold 
of the region we are interested in. Dispersion C,(CO) is also considerable. In view of the fact that 
t, (0) and c~(w) are comparable, in order to find the absorption coefficient of the electron-contain- 
ing layer one should use the formula 

Even in the region of frequencies where ~~(0) 4 C, (CO), and CL~(W) = (o/c) c~(w)/(L, (o))“‘, refractive 
index dispersion results in greater values of the layer absorption coefficient than those calculated 
in Section II, where this effect was neglected. If the structure with QWs has a period L, then the 
absorption coefficient calculated in terms of period of the structure is a&~) = ~~(~)(~~~~~), where 
aer= 2(a -t- &) is the size of the localization of electron wave function in the first subband of 
quantum confinement. 

We also extend our previous calculations to include those of the effective permittivity of the layer, 
with depolarization taken into account. The effective layer conductivity will be(“) normal to the 
layers cef = (T(o)c, /(tl + it2), where o(o) is the layer conductivity without depolarization, ex- 
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Fig. 3. Real and imaginary parts of the layer pertnittivity vs (hw/U,), B = 0.5. 1, c, (hw/UO); 2, c~(F+w/U~). 
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tracted from the equation cX,(o) = E, + 47ria(o)/o. The effective layer permittivity is then 

L&w) = c, + 47riaer/w. 

Hence we get 

Ret,,(w) = E;T(O) = c,(2 - ~,t,/(~: + 6:)) 

Imt,,(o) = &(w) = E*&/(c: + c:,. (7) 

The absorption coefficient of the structure can be expressed by 

a,,(w) = (2’;20/C)(a,r/L)(((c~~(o))’ + (&(o))*)‘!’ - c&(W))‘;*. (8) 

The relationships (7) and (8) make it possible to obtain the absorption coefficient with 

depolarization taken into account. Figure 4 shows graphs of the functions a,r(o) for the “resonant” 

structure GaAs-Al,Ga,_,As with the following parameters: U, = 0.192 eV, rn = O.O67m,, 

t, = 10.9, L = 250 A. Furthermore, a = 27 A, a,, = 100 A and the photoionization threshold 

correspond to the wavelength 1, = 10 pm, and the magnitude of the structure period has been 

selected from the condition of the weak overlap of the electron wave functions in neighbouring 

wells. Under the given concentration c+(w) is smaller than No in the frequency region in the 

vicinity of the threshold, and exceeds x0(~) outside this region. We emphasize that the result 

obtained here does not depend on the choice of the quantity L. 

IV. ELECTRON LIFETIME IN A STRUCTURE WITH QUANTUM WELLS 

In QW structures based on GaAs-AlGaAs polar semiconductors, the lifetime of non-equilibrium 

electrons is determined by their capture into wells accompanied by emission of polar optical 

phonons. Starting with the Hamiltonian expression for electron-phonon interaction 

fiEF = 2 C(q) exp(iqr)(d: + 6_,) 
q 

where q is the phonon wave vector and b +, b are the phonon creation and annihilation operators, 

we obtain the following expression for capture rate (into a single well): 

r-’ =; C C2(s)11(q~)I%(K)(l -f(E))a(E -E, -ho). (9) 
4 

6000 

Wavelength ( pm) 

Fig. 4. Effective absorption coefficient vs wavelength of incident radiation for: 1. f? = 0.2; 2, 0 = 0.4; 3, 
0 = 0.6. 
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to calculate sensitivity and gain with manipulating magnitudes obtained in Sections II-IV. What 

we mean is that electrons participating in the conduction band over the wells get reflected. 

Remembering that there exists a possibility of the reflected electrons being captured into the weI1, 

the calculation of photocurrent in this case presents an independent problem. The present paper 

does not consider such a problem since it is apparent (as shown in Section II) that it is the resonant 

structure that would be optimal from the point of view of increasing a,,(&,,). The transmission 

coefficient for electrons over resonant wells is about unity for small energies, allowing one to treat 

the structure as the extrinsic photodetector, where emission of the electrons into the conduction 

band and their recombination are connected with the same wells.““) 

Another specifying circumstances to precede further calculations is the fact that the present paper 

deals with the photodetector on QWs, which assumes the presence of ohmic contacts in the 

structure. Contacts from n+GaAs create barriers (at the expence of band bending), but the properly 

selected composition of n+AlGaAs would be an ohmic contact. 

In order to proceed with calculations it is useful to concretize the design of the photodetector 

with the help of the variant discussed’5’ (Fig. 5). As was mentioned in Section II, QW 

photoionization is possible under the sole condition of radiation with polarization normal to the 

layers. We find the electric field magnitude in a light wave which has passed through prism into 

the bedded structure characterized by a mean refractive index N, = 3.5 approaching the prism 

refractive index (for Si). The normal field component is c i = f2 sin cp2 where c2 is an absolute value 

of the electric vector in the plane of incidence in the medium 2. From Freunel equations we have 

t2 = 2 cos(yl) sin(cpJ(sin(cp + (p2) cos(cp -- cpZ))c, 

where cr is an absolute value of the electric vector in the plane of incidence in the medium 1. 

The coefficient characterizing radiation introduced into the structure with normal polarization, 

with the application of an anti-reflection coating on the frontal surface of the prism is 

K = (c, jcZ)?/2 z (sin2q)j2 for unpolarized radiation, assuming cp 2r 50~. If the back surface of the 

photoresistor reflects radiation, quantum efficiency of the QW photodetector is given by 

q(iph) = (I - exp( -2~~~(~.~~)f)) sin’(v)/2. 

Figure 6 shows numerically calculated quantum efficiencies of the QW photodetector with a 

boundary wavelength i, = 10 pm. These formulae and relationships are obtained from depolariz- 

ation effects (Section III) for three impurity concentrations N, = SN”, where NC, = (mE,)/(7rh*) is 

Fig. 5. Scheme of radiation input. 1, S-prism; 2, QW-structure. 
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Fig. 6. Quantum efficiency of a multiple QW GaAs-AlGaAs photodetector: L = 250 A, N = 50. C,D = 45’, 

j., = 10pm. 1, H = 0.2: 2, 0 = 0.4; 3, 0 = 0.6. 

the electron sheet concentration indicative of complete filling of the well. The respective 3-D 

concentration of impurity as regards the well width is N,, = N,/(2a), and with E., = 10 pm is 

N,, = 0 .6.4. 10” cmm3 when a = 27 A. 

As can be understood from Fig. 6 the curves q(&,) register the form analogous to a,_r(&), which 

is not surprising since the inequality 2a,,l > 1 is achieved for a maximum a,(- only for 

N = (I/L) = 50. In the remaining region 2a,,Z < 1 and we have approximately v(&,,) = c(,,(&,,)I. 

The width of the curve Y](&,,,) depends on the electron concentration in the well. Our further 

investigations (Section VII) show that the depolarization shift of the maximum qmax into a short 

wavelength region and broadening ‘I(&,,) which occurs with an increase in concentration, lead to 

lower detectivity of the photodetector in the region of large electron concentrations. 

Another important characteristic is sensitivity: S, = (Z,/P,) where Zr is the photocurrent, Pr = hvZo 

is the power of the received radiation, v is the frequency of the photons, and I, is the photon flux. 

The photocurrent in the short circuit mode is given by 

I, = 
s 

’ (es/Z) Anv, dx 
0 

where S is the surface area of the photodetector, vL is the drift velocity of photogenerated carriers, 

An = g,z, g, is the rate of carrier generation: g, = tx,rZ(x), where Z(x) is the photon flux through 

the cross-section of the photodetector with coordinate x. In the scheme with a reflective back 

surface Z(x) = Z, ch(cr,,(x - I)). Thus we have S, = (e/ho)qG, where G = rv,/l is the photoresistor 

gain, and W = L/(z . vl) is the probability of an electron capture into the ground state of the QW. 

We can express the formula for Si in the following form: Si = (&),,,f(2c(,,l) where 

f(x) = (1 - exp( -x))/x is the function with a maximum under f(0) = 1. (Si)max 2: (e/hw)(cr,,L/ W) 

is a maximum of sensitivity. 

As is apparent from the last formula, the photoresistor sensitivity is maximal for a single QW, 

with the rather small quantum efficiency being compensated for by the maximal gain for such a 

resistor, G = (l/ W) cc v, . 

With the number of wells increasing, the growth nmax occurs more slowly than the decrease of 

the gain G = (l/NW). This unusual dependence of sensitivity on the number of wells is connected 

with the fact that photogeneration and non-equilibrium electron capturing are related to the same 
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wells. However, remembering that with lower concentrations N, < (N,/2) the magnitude rx,,L 
represents (cr,,L) < lo-’ it should be noted that a decrease of Si is negligible even for N = 50, so 
even on the frequencies corresponding to maximum quantum efficiency S, C?L (S,),,, . 

In summary we present evaluations for the gain. In the field E < lo4 (V/cm) the electron drift 
velocity reaches vi = lO’(cm/s). Then, drawing on the estimation r “v 2 x lo-” s obtained in 
Section IV for a structure with L = 250 A, cp = 45” we have G,,, = (rc,)/L “c 80. 

For sensitivity we obtain the estimation drawing on (~~~)“~~~~ 2: 5 x IO--? 

(a) A, = IO pm; (S,),,, = 0.6 A/W. 
(b) I, = 12 ,um; (S,),,, 2: 0.8 A/W. 

VI. THE TEMPERATURE OF BLIP CONDITION 

Under low temperatures generation-recombination noise dominates in the photoresistor, evoked 
by the thermal or background generation processes. The most favorable for maximum detectivity 
is the mode where the generation-recombination noise initiated by the background predominates. 
The temperature of the transition into the mode where background radiation-initiated noises 
predominate, can be obtained from the equation g, = g,, where 

is the rate of electron generation in the course of background radiation absorption. QpB(v) is the 
spectral density of the photon background flux. For blackbody radiation with temperature r, we 
have: 

QB(v) = (2nv’/c’)[exp(hv/kTg) - 11-l. 

We can now determine the rate of carrier generation g,. As was mentioned earlier in Section 
V, the photoresistor under generation-recombination equilibrium is considered, then gr = (nT/t) 
where n7 is the dark concentration of carriers in the conducting states. 

Let us return to the correlation determining the temperature for BLTP. In order to determine 
that temperature we obtain: 

5 s x (I - exp( -2x(v) - I)) 

Ifc v, 2N 
@,(v)dv sin”9 = N,(T)exp(-E,lkT)[exp(BE,/kT)- I]. (11) 

Equation (11) was numerically calculated based on the values of the absorption coefficients 
from Section III. The transition temperatures into BLIP are plotted on the graphs for photo- 
resistors with boundary wavelengths il, = 10 pm and A, = 12pm (Fig. 7). As can be readily seen 
the maximal transition temperature for %, = 12 pm reaches a temperature close to that of liquid 
nitrogen. 

For /1, = 12 pm we have T,,, * 72 K for 0 = 0.10 or Nd r 4.7 * lOI cm-j. Under such concen- 
trations the photoresistor possesses a small quantum efficiency (Fig. 4). An increase of 0 results 
in a decrease of temperature. We note the weak dependence of T on the number of wells N 
connected with the weak dependence of J(X) = (1 - exp( -x))/x on N under x = 2c((o). I < 1. 

Our calculations lead to the results cited in the present section, T ‘v 83 K for a photoresistor with 
a boundary wavelength I, = 10 pm which exceeds the temperature estimated in Ref. (8). Low BLIP 
temperatures in comparison with HgCdTe photodetectors are conditioned by two reasons. The first 
one is small lifetime 5 N 2 x IO-" s of carriers in the conduction band as opposed to HgCdTe with 
t 2 (IO-' - 10-6) s. The second reason is connected with the lower threshold of electron thermal 
generation into the conduction band in comparison with the photoelectric threshold, as magnitude 
Ere = (nh'/m)N, grows with an increase of N, and, consequently 6. 
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Fig. 7. The temperature of BLIP vs electron filling factor 8. 1, E., = IOpm; 2, i., = 12pm. 

The following section will show, nevertheless, that an optimal condition exists for BLIP with a 

rather small concentrations N,, where the most important characteristic of a photodetector 

detectivity D:(e) has a maximum. 

VII. DETECTIVITY OF A QUANTUM WELL PHOTORESISTOR 

The detectivity of a photoresistor for monochromatic radiation with a wavelength j_, = (c/v,) 

when background limited IR performance is achieved, equals”4’ 

(12) 

In equation (12) radiation is received into a semisphere, where qs is the quantum efficiency of a 

photodetector on the frequency v, of a signal radiation. 

Assuming that BLIP is achieved we can now determine Df for the QW (GaAs-AlGaAs) 

photoresistor. In order to perform the calculations we use quantum efficiency of the QW 

photodetector from Section V, with the effect of depolarization of the received radiation (Section 

III) being taken into account. 

Figure 8 shows the dependencies of D)(O) for ;I, = 10 pm and jti, = 12 pm. The frequency of a 

signal radiation for every concentration corresponds to the function maximum u](v) where v = c/3.,, 

(see Fig. 4). 

As can be seen from Fig. 8, the depencence OX(O) registers the maximum, which corresponds 

to N,, = N,/(2a) 2: 6.4. 10” cm- 3 for /. = 10 pm i.e. rather small concentration values. 

So, in contrast to widespread opinion an increase of q(vs) accompanying the growth of i3 does 

not mean that D:(e) increases. Such a correlation occurs at the initial stage of the dependence 

Df (0). Further stages show a decrease of 0: though q,(e) increases. It happens because the 

spectrum width q(v) influences the magnitude of the background flux received. Under small 8 the 

curve q(v) is narrow, and its maximum corresponds to q(vs) < 1. An increase of OX(O) is 

accompanied by both 0 and curve width q(v). 

The growth of the received background radiation occurs as a result of the increase in radiation 

bandwidth received, rather than an increase in the maximum I, As a result D?(e) decreases 

with the increase of e for concentrations greater than some finite figure. The initial stage growth 
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Fig. 8. Detectivity of a QW photoresistor in BLIP vs electron filling factor 0; t = 250 A. N = 50, cp = 45 ‘. 
1. i., = IOpm; 1. i, = 12pm. 

of D?(B) evokes growth of 0, at the expense of the growth of maximum y(rs). Thus the 
depolarization effects influence on the width and magnitude of I is actually felt in the 
dependence of the threshold characteristics on the doping impurity concentration, resulting in a 
lowering of detectivity in the large electron concentrations in the subband. The curves in Fig. 8 
can be considered as optimization of L)?(B) by the parameter 0. The unusual dependence O,*(t?) 
prompts the conclusion that the BLIP temperature of the optimized GaAs-AlGaAs structure for 
1, = 10 pm, and for Sz = 27~ is taken to be T 2: 83 K. 

In summary, we note that the influence of depolarization effects on the spectrum aeF(;lph), and 
rj(J.,,) on the concentration dependence of the threshold characteristics of a QW photodetector, 
discussed above {Section III), ieads to rather small magnitudes of the optimal concentrations of 
the doping impurity corresponding to the maximal possible for the given structure BLIP 
temperatures. The result obtained allows a more optimistic evaluation in comparison with the 
prospects of QW photodetector application as an alternative to HgCdTe photodetectors. 

VIII. CONCLUSION 

Summing up the theory of photoelectric and threshold characteristics of QW (GaAs- 
Al,Ga,,As) photodetectors introduced in the present paper, we want to emphasize the major 
specific features of these structures when applied as radiation receivers. 

(11 

(2) 

(3) 

(4) 

The absorption coefficient for IR radiation in the process of QW photoionization can be 
of the same order as the absorption coefficient in direct interband transitions provided a 
fairly high concentration of the doping impurity is maintained. 
Depolarization effects are significant in the process of absorption radiation I = 8-12 pm 
for the doping concentration Nd > lOI7 cm- 3. Depolarization shift and the change of the 
absorption spectrum determine the magnitude of the absorption coefficient and the received 
frequency bandwidth. 
The optimal condition as regards maximum absorption is a resonant structure with QWs 
containing the virtual second subband of quantum confinement. 
The QW photodetector is characterized by a narrow bandwidth with (Ai,jiL) N 0.1. The 
maximal magnitude of the quantum efficiency does not exceed 50%. 
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(5) The non-equilibrium electron lifetime is determined by the process of their being captured 

into wells under emission of polar optical phonons. The lifetime does not depend on the 

applied electric field (for low fields) and is r = 2 x lo-” s for GaAs-AlGaAs structure. 

(6) The gain of the QW photoresistor is proportional to the drift velocity, maximal for the 

structure containing the only QW and is G N 80. 

(7) Maximum of sensitivity is also achieved on the structure with the only QW or small number 

of them, where 2c(,,L & 1 and is taken to be (S,),,, N (e/ho) (a,,LG,,,). For the optimal 

photoresistor with i., = 10 pm the estimation gives (S,),,, 2: 0.6 (A /IV). 

(8) The effects of depolarization shift and photoabsorption spectrum broadening determine 

unconventional dependence of BLIP detectivity on the doping impurity concentration. This 

is accompanied by the increase of Df for small concentrations, evoked by an increase of 

quantum efficiency maximum q, and for small concentrations it decreases with spectrum 

broadening of q(&,). 

(9) Optimal concentration corresponding to the maximum Df for BLIP is Nd ‘v 6.4 . 10” cmm3 

(i_, = 10pm). Here the quantity 0: for the flux QB = 5 x lO”cm~*s~ depends on the 

number of wells and for N = 50 is given by D3(3., = 10 pm) = 2.25 x 10” (cm HzO.‘/W). 

(10) The optimum for 0: concentrations corresponds to concentrations where the maximum 

photodetector BLIP temperature T is achieved. For a photodetector with i, = 10 pm 

(background radiation flux Qp, = 5 x 10” cm-’ SC’) T = 83 K. 
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