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Abstract—The theory of multiple quantum-well GaAs-AlGaAs IR detectors based on the principle of
quantum well photoionization is presented. The expression for the photoionization probability of the
symmetric quantum-well is found to be exact in the effective mass approximation. Depolarization effects
in the optical absorption spectra are discussed. We demonstrate that the depolarization shift of the
spectrum maximum and its broadening lead to non-monotonic dependence of the photodetector
detectivity on the electron concentration in wells in the background limited IR performance condition.
The optimal factor of quantum-well filling, corresponding to the maximum of detectivity is rather small,
and for the photoresistor with boundary wavelength 4, =10 um, is § =0.10.

We have also performed calculations for the concentration dependence of the transition temperature
for background limited IR performance and found that for optimal concentrations it is about 7 =83 K
(for 4, = 10 um). The lifetime of non-equilibrium electrons is determined by capturing processes into the
wells accompanied by emission of polar optical phonons and is 7 =~ 2 x 107" s. The gain, along with the
photoresistor sensitivity, is maximal for structures with a single quantum well.

I. INTRODUCTION

The present paper deals with the theory of multiple infrared (IR) GaAs-AlGaAs detectors
based on the principle of photoionization of quantum well (QW). A detector operating on
this principle and containing a single asymmetric QW was introduced"” with the further
elaboration of this concept.®* Multiple GaAs-AlGaAs detectors with symmetric QWSs operating
on the optical ejection of electrons from the wells were first created by Levine et al.®® and their
parameters were comparable with those of the HgCdTe devices (operating on interband
transitions). In contrast to detectors on intersubband transitions in QW,"” detectors operating on
the principle of well photoionization show smaller noise, as in the first instance it is necessary to
apply a large electric field to receive high photoconductivity, which leads to the appearance of
additional noise. QW detectors show an advantage over interband transition detectors in that
high sensitivity occurs with negligible response times: however, the small lifetime of non-equi-
librium electrons in the barrier region of the conduction band, determined by electron-phonon
interaction, leads, as was noted,”™ to a lower temperature for the BLIP condition than in that of
HgCdTe.

Various aspects of the IR QW detectors theory considered have been discussed in the
above-mentioned papers.!'"*¥ Nevertheless, there is no general theory for photoelectric and
threshold characteristics of detectors operating on the principle of QW photoionization.

The purpose of the present paper is to present this theory with calculations for properties of
multiple GaAs-AlGaAs structures with symmetric QWs, which have been investigated.®®” The
scheme of IR-radiation input also corresponds to the scheme used in these papers. Section II
discusses the probability of photoionization of symmetric QW; Section IIT deals with the influence
of concentration effects on the QW absorption spectrum; Section IV calculates the lifetime of
electrons; Section V considers the theory of photoelectric characteristics: quantum efficiency, gain
of photoresistor and sensitivity; Section VI calculates the BLIP transition temperature; and Section
VII shows detectivity D¥ of a detector in the BLIP condition and performance optimization of a
detector.
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II. BOUND-TO-EXTENDED STATE OPTICAL ABSORPTION IN QUANTUM
WELL HETEROSTRUCTURES

Let us consider the process of photoionization of a single symmetric QW where the QW is formed
by two heterojunctions (Fig. 1). Within the framework of effective mass approximation for equal
masses of electrons in both materials the problem is solved correctly. Under these conditions
electrons behave as free in the direction of the plane that is perpendicular to the layers, i.e. dipole
transitions are allowed only for radiation polarized perpendicular to the layers.

We normalize wave functions to the potential box with infinitely high walls under x = +L
(OX-axis is perpendicular to the layers). The potential is invariant under the X inversion, so all
the wave functions are either even or odd. Optical transitions from the ground even state in the
well are allowed only into the odd states of the continuous spectrum of the conduction band with
the wave functions

|f>=S""exp(iK p)¥ (x)

where, in compliance with!”? under a < L

A_sin(Kx), x| <a
Y (X)= 1
D71 ED nik(r - 1. 1x12a @

Here k; is an electron wave vector parallel to the plane of heterojunction, S is the surface area of
the normalized volume V =2LS, K = (2m(U,+ E|)/h>—k»)'? k =(2mE))/h* —k*)'?, m is
the effective mass of the electron, # is Planck constant, U, is the depth of QW, A4 %=
L[1 + (K /k)? ctg’(ka)] |sin(ka)|. E| is the energy, measured from the bottom of the conduction band
of a wideband semiconductor.

The wave function of the ground state in the QW is

li>=S""exp(ik pho(X)

where

Ay cos(kyx), x| <a. @)
Aycos(kga)exp(—k (x| —a)), [x|=a

Yo(x)= {

Here ky = @m(Uy— E,))""2/h, k, = @mE,)™"/h, Ay=(a + 45)"', o=k ', and E| is the energy of
the bottom of the 2-D subband.
The expression for the Hamiltonian interaction for photon absorption is
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Fig. 1. Conduction-band diagram of a symmetric QW with ground state £, and depth U,,.
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where N, is the number of photons in volume V, g = (wN,¢) is a photon wave vector, w is a photon
frequency, ¢ is the light velocity, N, is the refraction index, and P, = —i#(8/0x) is a projection of

the momentum operator on the OX axis.
Using equations (1)—(3) we will get the radiation absorption rate, i.e. the transition frequency:

QnyeW,
T VmNio

= =S S BIDPEY( ~ EY(E — E — hw) 4)
where E, = —E, + E,, E, = #%k%(2m), f(E) = (1 + exp((E. — E;)/kT))"" is a distribution function
for electrons in the initial and f(E) in the final states, E;, is Fermi energy and T is temperature.
Summation is taken with respect to the wave vectors k¢ = (k, k,) of the final states of the electrons.

Momentum-matrix element { f{P,]i> calculated on the wave functions of localized (2) and
delocalized (3) states is given by

S 21—=E)” 1+E _ ,fa AN
<ﬂPxfz>~w(L(a%))m(w . ctg(,:(wﬁ) )) )

In equation (5) all energies are normalized to the depth of the QW: E, = (E, /U,), E = (E /Uy),
i =h/2mU,)" ' E, = E — E is electron kinetic energy in a wideband semiconductor correspond-
ing to its movement perpendicular to the plane of the heterojunction.

From equation (5) we note that the momentum-matrix element goes to zero under energies
corresponding to the minima of amplitude 4 - of the odd state (1) in a continuous spectrum over
QW.

To proceed it is convenient to calculate the probability W of one-photon absorption which is
related to the transition frequency t ' through the expression W = (2LN,/cN, )t~

Changing from summing up to integrating over energies in equation (4) we obtain

112y a2 %
@)L f dE, j dE CNBIDVAE) 1 —fENS(E, + B —ha).  (6)

W=
mANohc Jy E7 Jo

Integrating over E. occurs over the electron energies in the 2-D subband due to conservation
of parallel momentum. Integration over E, is facilitated by é-functions, and for electrons in the
ground state we receive

81 i E(1-E)8
T he N,a + iy (hw)(hew — E )72

F(ho — E)

Here 8 = (kT/E,) In(1 + exp(E, /kT)) is the electron filling factor of the only QW-subband, and
function F(F) is given by

- 1+E a A
F(E)—-(1+ z ctgz<z(l+E}' )) .

It oscillates between zero and unity, while its maxima and minima correspond to the maximal
and minimal values of amplitude 4_. Another characteristic feature of W(E) is that it decreases
considerably with an increase of the photon energy on the characteristic interval of U,. Of special
interest, therefore, is the spectrum of the transition probability near the boundary wavelength, i.e.
for E = (hwE,) < 1. Noteworthy here is the phenomenon of resonance on the absorption threshold
with (a/A) =n/2)2n - 1), (n =1,2,3,...).

Under such relationships between the well parameters we get W(E) ~ E~'2. Under all the other
meanings of the parameter (a/4), except {(a/1) = nn, the absorption probability on the threshold
can be expressed by W(E) ~ E'% As for (a/A) = (nn) we get W(E)~ E*2,

We can find the expression for the transition probability (6) under the conditions of the first
(n = 1) resonance. In this case there is one (even) subband in the well, and the next odd subband
is virtual, i.e. it is “pushed out” into the state with energy E, = 0. The numerical calculation shows
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that under (a/A) = (n/2) the lowest energy of the even subband E, = 0.64 lics below the continuum
edge of the barrier. Taking into account i,= AE[* we have

Wees(E)=3.2 x 107°0(E 4+ 0.64) E~ '™

Furthermore we get Wpyes(0.1) = 0.7% where € = 0.3 and E =0.1. The average value over the
interval 0 < E < 0.1 is about 1.4%.

Figure 2 shows the spectrum W(4,) as a function of photon wavelength for several values of
the parameter (a¢/4) <(#/2) and for 6 = 0.5 when there is only one 2-D subband in QW with an
electron Fermi level lower than the top of the QW.

We evaluate the absorption coefficient ay(w) = (W/L) for a structure comprised of a series of
QWs: where L is the period of the structure or the mean well-spacing, if the structure is
non-periodic. Assuming that under resonance for the boundary wavelength 4, = 10 um, a =27 A
and assuming L = 250 A, we obtain, under resonance conditions, o, >~ 1.5 x 10°cm ' for £ =0.1,
and an average value over the spectrum of {gy»=3x 10°cm~'. Using the relationship
6 = (nh>N,)/(mE,) where N, is electron sheet concentration in QW, it is readily apparent that with
6 = 0.3 which corresponds to the threshold, 4, = 10 um can be obtained by doping the wideband
part of the structure with Ny= N, /(L —2a)=~5-10"cm * or the narrowband part with
Ny=N,/(2a)~2 10¥cm™.

Thus, under moderate doping a structure with a series of QWs possesses an absorption coefficient
comparable with that of vertical interband transitions. Characteristic features of the photoioniz-
ation spectrum are its oscillation as well as a prompt (hw) ** decrease (as in the case of
photoionization of a hydrogen-like impurity) when quantum energies considerably exceed
ionization energy.

III. DEPOLARIZATION EFFECTS IN PHOTOIONIZATION SPECTRA
OF QUANTUM WELLS

In Section II we discussed the coefficient of radiation absorption in structures with QWs in
ong-electron approximation. The results obtained prove that, from an absorption standpoint,
“resonant” QWs are optimal, where the bottom of the second subband of quantum confinement
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Fig. 2. The probability of photoionization of a single QW vs photon wavelength 4, for 0 =0.5 and
different values (a/A) 1, (@/A)=(x/2); 2, (afA) =147, 3, (a/2) =137
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coincides with the top of the well. Increasing electron concentration in wells increases the
depolarization effects of incident radiation. These effects are especially pronounced for resonant
wells near the absorption threshold because of the dramatic increase in the photoionization
probability, and, consequently, the imaginary part of electron gas permittivity in QWs. Depolar-
ization effects for the QW photoionization were considered for an asymmetric QW.©

Let us consider a rectangular resonant QW with half-width a and depth U,. Let us assume that
the permittivity of the layer containing electrons is ¢, = ¢,(w)+ ic;{(w), and that of the non-
absorbing layer is ¢,, = ¢, where ¢, is high-frequency permittivity. We can express the value ¢,(w)
through the probability of photoionization W(w), calculated in Section II in a one-electron
approximation ¢,(@) = (cN, W(w))/(2w(a + 4;)), where 4, is the penetration depth of the electron
wave function under the barrier.

In this paper we use Kramers-Kronig relation to find the real part of the permittivity layer.

a(w)=¢, +(2/n) F (xe; (x)/(x? — w?)) dx.
i}

Figure 3 shows dependencies ¢,(w) and ¢,{w) near the absorption threshold for 8 =0.5. It is
readily apparent that ¢, (w) and ¢,(w) are comparable in magnitude near the absorption threshold
of the region we are interested in. Dispersion ¢, (w) is also considerable. In view of the fact that
€,(w) and ¢,(w) are comparable, in order to find the absorption coefficient of the electron-contain-
ing layer one should use the formula

o (@) = Qo /c)Imle, + iey)'.

Even in the region of frequencies where ¢, () < ¢,(w), and o, (@) = (w/c) &;(w)/(€,(w))"?, refractive
index dispersion results in greater values of the layer absorption coefficient than those calculated
in Section II, where this effect was neglected. If the structure with QWs has a period L, then the
absorption coefficient calculated in terms of period of the structure is o () = #; {w)(a /L), where
a;=2(a + 4,) is the size of the localization of electron wave function in the first subband of
quantum confinement.

We also extend our previous calculations to include those of the effective permittivity of the layer,
with depolarization taken into account. The effective layer conductivity will be? normal to the
layers o, = o(w)e, /(¢, + ic,), where o(w} is the layer conductivity without depolarization, ex-
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Fig. 3. Real and imaginary parts of the layer permittivity vs (hw/U,), 8 =0.5. 1, ¢, (har/ Uy ); 2, ¢, (hes [ Uy).
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tracted from the equation ¢, (w)=¢, + 4nic(w)/w. The effective layer permittivity is then
€(w) = €, + 4mio /.
Hence we get

Ree () =c(w) =€, (2 — € 6, (€} + €3))
Ime(w) = efi(w) = €% (€] + 3). (7
The absorption coefficient of the structure can be expressed by
(@) = (270 [e) (@ /L) (e (@) + (€(@)))? = (@)™ ®)

The relationships (7) and (8) make it possible to obtain the absorption coefficient with
depolarization taken into account. Figure 4 shows graphs of the functions a,(w) for the “resonant”
structure GaAs-Al,Ga,_,As with the following parameters: U,=0.192eV, m =0.067m,,
€. =109, L =250 A. Furthermore, a =274, a,= 100 A and the photoionization threshold
correspond to the wavelength A, =10 um, and the magnitude of the structure period has been
selected from the condition of the weak overlap of the electron wave functions in neighbouring
wells. Under the given concentration a.(w) is smaller than «,(w) in the frequency region in the
vicinity of the threshold, and exceeds x,(w) outside this region. We emphasize that the result
obtained here does not depend on the choice of the quantity L.

IV. ELECTRON LIFETIME IN A STRUCTURE WITH QUANTUM WELLS

In QW structures based on GaAs-AlGaAs polar semiconductors, the lifetime of non-equilibrium
electrons is determined by their capture into wells accompanied by emission of polar optical
phonons. Starting with the Hamiltonian expression for electron—phonon interaction

Her =Y C(@) exp(iqr) (b +56_,)
q

where q is the phonon wave vector and b *, b are the phonon creation and annihilation operators,
we obtain the following expression for capture rate (into a single well):

2n
tl= m Y. CH@Q(g ) PA(E)( —f(E)O(E — E, — hw). %)
q
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Fig. 4. Effective absorption coefficient vs wavelength of incident radiation for: 1.0 =02;2,0 =04; 3,
6 =0.6.
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For electrons interacting with longitudinal polar optical phonons
C(g) = Co/(gV"?),

where C2=2ne*hw,(e2' —¢g') is the interaction constant,® hw, is phonon energy, and ¢, and ¢,
are the high-frequency and static permittivity of the layers. We assume them to be the same for
constituent semiconductors of the structure, so that we thereby neglect the phonon mode
confinement; f(E) is Fermi function, and E;= —E, + h*1/(2m) is the clectron energy in the
subband with a parabolic spectrum. The value of /(g ) in equation (9) is determined by the formula

L2
Ig,)= X ¥ (x) explig, x)¥i(x) dx

vy
where ¥,(x) and ¥ ¥(x) are the wave functions of the initial and the final electron states, which
correspond to the movement perpendicular to the layers analogous to those presented in Section
1L, and L is the normalization length (period of the structure). In equation (9) the initial p| and
final p electron momenta in the plane of the layers are related by the conservation law
p,=p;+hq,, q=(q.,q,). Bearing in mind that at low temperatures E, ~ kT < hw,, E, we obtain
from equation (9)

T dg,

_1=N55C%Jx i(qu(Ef)

h _.2m

where N, = m/(nh?) is the density of states in the subband.

To proceed we confine ourselves to the calculation of capture into a resonant QW, where the
bottom of the second 2-D subband coincides with the top of the well. As is readily apparent from
Sections II and III this is an optimal structure for achieving very high optical absorption. The value
I(g,) in this case is given by the formula

41— E\/U,) ‘]:i

L(a+4,) 2m )
VST B —he)+ql

”(QL)Iz =

As a result we have

i _ e i (i_l) (hw,/E)(1 — E [U,)

T AL € &) (1+ (1= hw,/E)7P)

TR x (1 + exp(Ey, — E, + hoo, — E)/KT))"". (10)

The last term of the formula takes into account occupancy of the final state in the subband, and
decreases with Fermi level E; approaching the top of the well closer than the value hAw,. For a
GaAs-AlGaAs photodetector with wavelength A, = 10 um (£, = 0.124 ¢V, hw, = 0.036 £V) the QW
filling factor 8,=(l —hw,/E,), where the capture mechanism with optical phonon emission
becomes ineflicient, is equal to 6, ~ 0.70. However the optimal QW filling factor corresponding to
maximum detectivity of background limited IR performance is considerably lower than 6,, a fact
apparent from further study.

Supposing the last term in equation (10) is equal to unity, for a GaAs—AlGaAs structure with
Ay=10pum, €, =109, ¢,=12.5, hw,=0.036eV, and L =250 A, we obtain t =2 x 10" "'s. The
electron lifetime is proportional to the well-spacing.

V. PHOTOELECTRIC CHARACTERISTICS OF PHOTORESISTORS

Since we know the absorption coefficient %(4,,) and the electron lifetime 7 in the conduction
band we can calculate major photoelectric characteristics of the photodetector: quantum efficiency
1 {4n), sensitivity S; and gain G. Tt should be stressed here that, generally speaking, it is not possible
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to calculate sensitivity and gain with manipulating magnitudes obtained in Sections II-I1V. What
we mean is that electrons participating in the conduction band over the wells get reflected.
Remembering that there exists a possibility of the reflected electrons being captured into the well,
the calculation of photocurrent in this case presents an independent problem. The present paper
does not consider such a problem since it is apparent {(as shown in Section II) that it is the resonant
structure that would be optimal from the point of view of increasing %(4,,). The transmission
coefficient for electrons over resonant wells is about unity for small energies, allowing one to treat
the structure as the extrinsic photodetector, where emission of the ¢lectrons into the conduction
band and their recombination are connected with the same wells."?

Another specifying circumstances to precede further calculations is the fact that the present paper
deals with the photodetector on QWs, which assumes the presence of ohmic contacts in the
structure. Contacts from n*GaAs create barriers (at the expence of band bending), but the properly
selected composition of n*AlGaAs would be an ohmic contact.

In order to proceed with calculations it is useful to concretize the design of the photodetector
with the help of the variant discussed® (Fig. 5). As was mentioned in Section II, QW
photoionization is possible under the sole condition of radiation with polarization normal to the
layers. We find the electric field magnitude in a light wave which has passed through prism into
the bedded structure characterized by a mean refractive index N,= 3.5 approaching the prism
refractive index (for Si). The normal field component is ¢, = ¢, sin ¢, where ¢; is an absolute value
of the electric vector in the plane of incidence in the medium 2. From Freunel equations we have

€, = 2¢cos(¢) sin(p,)/(sin(p + @) cos(@ ~ ;)¢

where ¢, is an absolute value of the electric vector in the plane of incidence in the medium I.
The coefficient characterizing radiation introduced into the structure with normal polarization,
with the application of an anti-reflection coating on the frontal surface of the prism is
K = (¢,/6,)%/2 ~ (sin’p);2 for unpolarized radiation, assuming ¢ = ¢,. If the back surface of the
photoresistor reflects radiation, quantum efficiency of the QW photodetector is given by

1 (Apn) = (1 — exp(— 20,4y ))) sin’(@)/2.

Figure 6 shows numerically calculated quantum efficiencies of the QW photodetector with a
boundary wavelength 4, = 10 um. These formulae and relationships are obtained from depolariz-
ation effects (Section III) for three impurity concentrations N, = ON,, where N, = (mE, )(mh?) is

1
\

Fig. 5. Scheme of radiation input. 1, Si-prism; 2, QW-structure.
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Fig. 6. Quantum efficiency of a multiple QW GaAs-AlGaAs photodetector: L = 250 A N =50, ¢ =45°,
Ay=10um. 1,6 =02; 2, 6=04; 3,0 =0.6.

the electron sheet concentration indicative of complete filling of the well. The respective 3-D
concentration of impurity as regards the well width is N,= N,/(2a), and with A, =10um is
Ny=0-6.4-10"cm~* when a =27 A.

As can be understood from Fig. 6 the curves #(4,,) register the form analogous to a.(4,,), which
1s not surprising since the inequality 2a,/ > 1 is achieved for a maximum o, only for
N =(I/L)=50. In the remaining region 2,/ <1 and we have approximately 5 (A,,) = a{A,, )/

The width of the curve n(4,,) depends on the electron concentration in the well. Our further
investigations (Section VII) show that the depolarization shift of the maximum #,,, into a short
wavelength region and broadening 5 (4,,) which occurs with an increase in concentration, lead to
lower detectivity of the photodetector in the region of large electron concentrations.

Another important characteristic is sensitivity: S, = (I;/P;) where I, is the photocurrent, P; = hvl,
is the power of the received radiation, v is the frequency of the photons, and I, is the photon flux.
The photocurrent in the short circuit mode is given by

!
I= f (eS/) Anv, dx
0

where S is the surface area of the photodetector, v, is the drift velocity of photogenerated carriers,
An = g1, gy is the rate of carrier generation: g = a/(x), where I(x) is the photon flux through
the cross-section of the photodetector with coordinate x. In the scheme with a reflective back
surface I(x) = I, ch(z(x — [)). Thus we have S, = (e/hw)nG, where G = tv, /I is the photoresistor
gain, and W = L/(t - v,) is the probability of an electron capture into the ground state of the QW.
We can express the formula for S, in the following form: ;= (S),./f(Qexl) where
S(x) = (1 —exp(—x))/x is the function with a maximum under f(0) = 1. (S,),. = (e/hw) (ot L/ W)
is a maximum of sensitivity.

As is apparent from the last formula, the photoresistor sensitivity is maximal for a single QW,
with the rather small quantum efficiency being compensated for by the maximal gain for such a
resistor, G = (1/W) c v, .

With the number of wells increasing, the growth #,,,, occurs more slowly than the decrease of
the gain G = (1/NW). This unusual dependence of sensitivity on the number of wells is connected
with the fact that photogeneration and non-equilibrium electron capturing are related to the same
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wells. However, remembering that with lower concentrations N, < (N,/2) the magnitude a, L
represents (x.,L) < 1072 it should be noted that a decrease of §; is negligible even for N = 50, so
even on the frequencies corresponding to maximum quantum efficiency S; = (S,)ma-

In summary we present evaluations for the gain. In the field £ < 10* (V/cm) the electron drift
velocity reaches v, = 10" (cm/s). Then, drawing on the estimation 7 ~2 x 107''s obtained in
Section IV for a structure with L =250 A, ¢ = 45° we have G, = (tv,)/L =~ 80.

For sensitivity we obtain the estimation drawing on (g )ms L = 5 x 107%

(a) 'l[ = IO ﬂm, (Si)max = 06 A/W
(5) A, =12 pm; (S))pae ~ 0.8 A/W.

VI. THE TEMPERATURE OF BLIP CONDITION

Under low temperatures generation-recombination noise dominates in the photoresistor, evoked
by the thermal or background generation processes. The most favorable for maximum detectivity
is the mode where the generation—recombination noise initiated by the background predominates.
The temperature of the transition into the mode where background radiation-initiated noises
predominate, can be obtained from the equation g, = g5, where

81 = J n(v)@p(v)dv/l
"1
is the rate of electron generation in the course of background radiation absorption. @yz(v) is the
spectral density of the photon background flux. For blackbody radiation with temperature Ty, we
have:
Dp(v) = 2uveHfexplhv /kTy) — 117

We can now determine the rate of carrier generation g;. As was mentioned earlier in Section
V, the photoresistor under generation-recombination equilibrium is considered, then g; = (ny/1)
where n; is the dark concentration of carriers in the conducting states.

Let us return to the correlation determining the temperature for BLIP. In order to determine
that temperature we obtain:

T [* (1 —exp(—2a(v)- 1))
L),

N @y (v)dv sin®p = N(T)exp(—E, /kT)[exp(BE, /kT) — 1].  (11)
Equation (11) was numerically calculated based on the values of the absorption coefficients
from Section III. The transition temperatures into BLIP are plotted on the graphs for photo-
resistors with boundary wavelengths 4, = 10 um and 4, = 12um (Fig. 7). As can be readily seen
the maximal transition temperature for 4, = 12 um reaches a temperature close to that of liquid
nitrogen.

For A, = 12 um we have T, ~ 72K for § =0.10 or Ny~ 4.7- 107 em . Under such concen-
trations the photoresistor possesses a small quantum efficiency (Fig. 4). An increase of # results
in a decrease of temperature. We note the weak dependence of 7 on the number of wells N
connected with the weak dependence of f(x)= (1 —exp(—x))/x on N under x = 2a{w) /< L.

Our calculations lead to the results cited in the present section, T ~ 83 K for a photoresistor with
a boundary wavelength 4, = 10 gm which exceeds the temperature estimated in Ref. (8). Low BLIP
temperatures in comparison with HgCdTe photodetectors are conditioned by two reasons. The first
one is small lifetime t ~ 2 x 10~ s of carriers in the conduction band as opposed to HgCdTe with
7 ~ (10~ — 10~ s. The second reason is connected with the lower threshold of electron thermal
generation into the conduction band in comparison with the photoelectric threshold, as magnitude
E, = (nh*/m)N, grows with an increase of N, and, consequently 6.
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Fig. 7. The temperature of BLIP vs electron filling factor 0. 1, 4, =10um; 2, 2, =12 um.

The following section will show, nevertheless, that an optimal condition exists for BLIP with a
rather small concentrations N,, where the most important characteristic of a photodetector
detectivity D*(8) has a maximum.

VII. DETECTIVITY OF A QUANTUM WELL PHOTORESISTOR

The detectivity of a photoresistor for monochromatic radiation with a wavelength A, = (c/v,)
when background limited IR performance is achieved, equals''¥

D‘_Zhvs[ﬁ exp(hv/kTB)—l‘DB(‘)"(V)dV] (12)

I
In equation (12) radiation is received into a semisphere, where #, is the quantum efficiency of a
photodetector on the frequency v, of a signal radiation.

Assuming that BLIP is achieved we can now determine D¥ for the QW (GaAs—-AlGaAs)
photoresistor. In order to perform the calculations we use quantum efficiency of the QW
photodetector from Section V, with the effect of depolarization of the received radiation (Section
IIT) being taken into account.

Figure 8 shows the dependencies of D¥*(0) for A, = 10 um and 4, = 12 um. The frequency of a
signal radiation for every concentration corresponds to the function maximum 5 (v) where v = c¢/4,,
(see Fig. 4).

'As can be seen from Fig. 8, the depencence D *(0) registers the maximum, which corresponds
to Ny=N,/(2a) ~6.4-107cm™3 for A = 10 um i.e. rather small concentration values.

So, in contrast to widespread opinion an increase of n(v,) accompanying the growth of 8 does
not mean that D¥*(0) increases. Such a correlation occurs at the initial stage of the dependence
D* (0). Further stages show a decrease of D* though #,(6) increases. It happens because the
spectrum width #(v) influences the magnitude of the background flux received. Under small 8 the
curve z(v) is narrow, and its maximum corresponds to 5(v,) € 1. An increase of D¥(8) is
accompanied by both 6 and curve width n(v).

The growth of the received background radiation occurs as a result of the increase in radiation
bandwidth received, rather than an increase in the maximum #5(v,). As a result D¥*(6) decreases
with the increase of 6 for concentrations greater than some finite figure. The initial stage growth
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Fig. 8. Detectivity of a QW photoresistor in BLIP vs electron filling factor §; L = 250 A, N = 50, ¢ = 45",
LA, =10pum 2, 4, =12 um.

of D¥(0) evokes growth of 6, at the expense of the growth of maximum #(v,). Thus the
depolarization effects influence on the width and magnitude of n(v,) is actually felt in the
dependence of the threshold characteristics on the doping impurity concentration, resulting in a
lowering of detectivity in the large electron concentrations in the subband. The curves in Fig. 8
can be considered as optimization of D¥(8) by the parameter #. The unusual dependence D* ()
prompts the conclusion that the BLIP temperature of the optimized GaAs-AlGaAs structure for
A =10 pum, and for Q =2x is taken to be 7 =~ 83 K.

In summary, we note that the influence of depolarization effects on the spectrum «. (4, ), and
#{A) on the concentration dependence of the threshold characteristics of a QW photodetector,
discussed above (Section III), leads to rather small magnitudes of the optimal concentrations of
the doping impurity corresponding to the maximal possible for the given structure BLIP
temperatures. The result obtained allows a more optimistic evaluation in comparison with the
prospects of QW photodetector application as an alternative to HgCdTe photodetectors.

VIII. CONCLUSION

Summing up the theory of photoelectric and threshold characteristics of QW (GaAs—
Al Ga,_ As) photodetectors introduced in the present paper, we want to emphasize the major
specific features of these structures when applied as radiation receivers.

(1) The absorption coefficient for IR radiation in the process of QW photoionization can be
of the same order as the absorption coefficient in direct interband transitions provided a
fairly high concentration of the doping impurity is maintained.

(2) Depolarization effects are significant in the process of absorption radiation 4 = 8-12 um
for the doping concentration N, > 10" em~* Depolarization shift and the change of the
absorption spectrum determine the magnitude of the absorption coefficient and the received
frequency bandwidth.

{3) The optimal condition as regards maximum absorption is a resonant structure with QWs
containing the virtual second subband of quantum confinement.

{4) The QW photodetector is characterized by a narrow bandwidth with (AA/4)=~0.1. The
maximal magnitude of the quantum efficiency does not exceed 50%.
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(5) The non-equilibrium electron lifetime is determined by the process of their being captured
into wells under emission of polar optical phonons. The lifetime does not depend on the
applied electric field (for low fields) and is 1 =2 x 107 "'s for GaAs—AlGaAs structure.

(6) The gain of the QW photoresistor is proportional to the drift velocity, maximal for the
structure containing the only QW and is G ~ 80.

(7) Maximum of sensitivity is also achieved on the structure with the only QW or small number
of them, where 24,L < 1 and is taken to be (S;),. ~ (e/hw) (0,LG,,, ). For the optimal
photoresistor with 4, = 10 um the estimation gives (S,)pn. =~ 0.6 (4/W).

(8) The effects of depolarization shift and photoabsorption spectrum broadening determine
unconventional dependence of BLIP detectivity on the doping impurity concentration. This
is accompanied by the increase of D* for small concentrations, evoked by an increase of
quantum efficiency maximum #, and for small concentrations it decreases with spectrum
broadening of 5 (4,).

(9) Optimal concentration corresponding to the maximum D ¥ for BLIP is N, ~ 6.4 - 10" cm
(4, = 10 um). Here the quantity D¥* for the flux @z =5 x 10" cm~2s~' depends on the
number of wells and for N = 50 is given by D*(i, = 10 um) = 2.25 x 10'° (cm Hz"*/W).

(10) The optimum for D¥ concentrations corresponds to concentrations where the maximum
photodetector BLIP temperature 7 is achieved. For a photodetector with 4, =10 um
(background radiation flux @, =5 x 10" ecm*s™') T =83 K.

-3
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