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THE RESISTIVITY OF DILUTE MAGNETIC ALLOYS %)
by A. J. DEKKER

Institute of Technology University of Minnesota, Minneapolis, Minnesota

The resistivity of dilute magnetic alloys is discussed in terms of a model which
assumes an exchange energy only between magnetic atoms which are nearest neigh-
bours. The perturbing potential produced by the magnetic atoms is assumed to consist
of a spin-independent and a spin-dependent part. It is shawn that the elastic scattering
resulting from nearest-neighbour pairs of magnetic atoms contains a temperature-
dependent term. It is suggested that this model might explain the occurrence of a
maximum followed by a minimum in the resistivity versus temperature curve ob-
served for some alloys.

1. Introduction. It is well-known that the electrical resistivity of the
rare-earth metals drops rapidly below the ferro- or antiferromagnetic
transition temperature. Elliott 1) has discussed this behaviour in terms
of a spin-independent interaction between the conduction electrons and the
ion cores under the assumption that a fraction of the ions is excited as a
result of the crystalline Stark effect. Kasuya?) and more recently de
Gennes and Friedel3) considered the resistivity in these materials as
arising from the exchange interaction between the conduction electrons
and the localized spins of the ions. A review of the effects resulting from
spin-disorder in metals and alloys has been given by Coles 4).

In magnetic alloys with localized spins one expects contributions to the
resistivity from atomic disorder as well as from an exchange coupling
between the conduction electrons and the magnetic ions. Of particular
interest are dilute magnetic alloys of transition elements in metals such
as copper, silver and gold. Gerritsen and Linde %) observed that dilute
alloys of manganese in copper exhibit anomalous resistivity behaviour at
low temperatures; this behaviour has been confirmed by Schmitt and
Jacobs 8). These alloys also show an interesting magnetic behaviour 8)7).
In the earlier work 6)7), the magnetic properties of dilute magnetic alloys
have been discussed in terms of a molecular-field model, employing as-
sumptions very similar to those used in the Curie-Weiss and Néel theories
of cooperative magnetic phenomena. As a result of a certain amount of

*) This paper was prepared at the University of Groningen, the Netherlands} where the author

spent the academic year 1958-59 as a Guggenheim Fellow on a sabbatical leave from the University
of Minnesota.

— 1244 —



THE RESISTIVITY OF DILUTE MAGNETIC ALLOYS 1245

dissatisfaction with such a treatment, in particular for dilute alloys, the
author 8) discussed the magnetic susceptibility of such alloys from a different
point of view in which the distribution of magnetic atoms plays an essential
role. Objections to the molecular-field model for alloys were raised indepen-
dently by Sato and Arrott?9), who discussed the statistical aspects of
the problem at some length. In view of the results obtained in this work,
one may express doubt concerning the validity of calculations of the electri-
cal resistivity of dilute magnetic alloys based on a magnetic model involving
a molecular-field treatment 6)7)10). In the present paper, therefore, some
aspects of the electrical resistivity of dilute magnetic alloys will be discussed
on the basis of a magnetic model which is rather similar to that used earlier
by the author 8), and in the pair-approximation of the cluster-variation
method in the work of Sato and Arrott 9). '

2. The model of a dilute magnetic alloy. Consider a dilute alloy of A-atoms
of spin 1/2 and non-magnetic B-atoms. We shall assume that there exists
an exchange interaction only between A-atoms which are nearest neighbours.
An A-atom which has only B-atoms as nearest neighbours will be referred
to as a ‘“‘single” A-atom; magnetically, it behaves as a free spin. Similarly,
two nearest neighbour .4-atoms constitute a “‘pair’ if they are surrounded
by B-atoms only. For a pair of nearest neighbours with spin configuration
A*tA+ or A—A~ let the exchange energy be —//2; for a pair A+4~ let it
be J/2. We shall consider both ferromagnetic (J > 0) and antiferromagnetic
(J/ < 0) interactions.Let there be N, single A-atoms per unit volume and
N 44 pairs of A-atoms. Assuming for a moment that the 4 and B-atoms are
distributed ar random one has

Ng = Ne(1 — ) (1

where ¢ is the atomic concentration of A, N is the number of lattice sites
per unit volume and v is the coordination number of the lattice. The number
of AA pairs per unit volume, surrounded by B-atoms only, is equal to

Naa = (1/2)Nvc2(1 — c)zo-v'-2 2)

Here, v’ represents the number of nearest neighbours common to both
atoms constituting the pair; for a f.c.c. lattice, for example, v’ = 6. The
fraction of A-atoms incorporated in clusters of three or more is presumably
given by

/= (Nc — Ns — 2N 44)[Nc ~ vc2(2v — v' — 2) (3)

where the approximation involves the assumption ¢ <€ 1. For a face-
centered cubic lattice, f ~ 192¢2. It will be assumed that ¢ is sufficiently
small that only effects arising from single 4-atoms and AA-pairs have
to be taken into account.



1246 A. J. DEKKER

For later use it will be convenient to introduce the following densities of
single A-atoms and AA-pairs corresponding to the various possible spin
orientations:

~

spin configuration: A+ A~ A*4A+ A-A- AtA- A-A~+

density Ns+ Ns— Np+ Np_ (I/Z)Na (1/2)Na )
In the absence of an applied magnetic field statistical arguments give
1/2)N
Nyt = Np- = (1_/;) e_‘:‘ where x = J/kT (5)
Naa
N, = 6
¢ 1 + ez (©)

In the presence of an applied field H, let the energy of a “‘plus” spin in the
field be —pBH, and that of a “‘minus” spin +BH; B is a Bohr magneton.
The discussion will be limited to those cases for which fH < kT . Introducing
the quantity « = fH/RT one then finds in the presence of H, to a first
approximation:

Net = (I2No(1 + o); Ni~ = (1/2)No(1 — o) @
: 142 1—2
Np+ = (Naa/2) —1{3—_2 P Ny~ = (Naa/2) —I:e_i ®)
N, — Naa 9)
I 4 ez

3. The elastic scattering cross section for single A-atoms. For the purpose
of calculating the resistivity resulting from the presence of the magnetic
atoms we shall assume that the conduction electrons can be treated as free,
with an effective mass m. The wave vector of an electron at the Fermi level
before scattering will be denoted by ko and after scattering by k. We shall
introduce the vector K = k — k. Since we consider elastic scattering only,
|k| = |ko| and also |K| = 2k sin (6/2), where 0 is the scattering angle. We
shall assume that the scattering by a single atom located at R; results
from a perturbing potential which can be separated into a spin-independent
and a spin-dependent part:

Vi(r) = Vab(r — Ry) + Vpd(r — Ry)oe (10)

Here, r gives the position of the conduction electron and og = 4S¢°Si
where S, and S; represent the spin of the conduction electron and the ion
at Ry, respectively. Thus o, = 4 | depending on the relative orientation
of S, and S;. The quantities V, and V) are constants describing the spin-
independent and spin-dependent coupling between the electron and the ion.
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The delta-functions are introduced mainly because they are convenient for
the discussion of the scattering by pairs, as we shall see in the next section.
They represent undoubtedly a strong simplification of the problem, but it
is believed that the main purpose of this paper is not impaired by the use
of these functions. Delta-function potentials have also been used by de
Gennes and Friedel 3) in their discussion of the resistivity of the rare-
earth metals.

In the Born approximation the differential cross-section for scattering
by the single ion at R; is given by

gu(6) = 2n(m[2ah2)2 | [ Vi(r) €% dr]2. (11)
Substitution of (10) into (11) yields

qi(6) = 2n(m/22h2)2 (Va2 + V2 + 2V oV o). (12)

The transport cross section which determines the resistivity resulting from
scattering by the total of N; single A-atoms per unit volume is then equal
to

1=N,
Os =3 | qi(6)(1 — cos ) sinfdf =
i=1
Nl

= dg(m/2ah2) 2 [No(V a2 + 3V52) + 2VoVs S o). (13)
i=1

Making use of (4) and (7) one thus obtains for the cross-section in the pre-
sence of an applied magnetic field

Qs+(H) = (m2[aR4)N[Va? + V2 £ 2 ValVpa] (14)
Here, the 4- sign refers to the two possible orientations of the spin of the

conduction electron. For H = 0, « = H/RT = 0.

4. The elastic cross-section resulting from AA-pairs. Consider a pair of
nearest-neighbour 4-atoms located at R; and R;. We shall introduce the
vector p = R; — R;. In analogy with the scattering by a single A-atom,
we assume that the pair produces a perturbing potential

Vig(r) = Va[d(r — Ry) 4 8(r — Ry)] +
+ Viploed(r — Ry) + ae0(r — Ry)]. (15)

Substitution into the Born approximation (11) yields for the differential
cross section of the pair

2
Qij(a) = 2n <_2‘2;L—2> [(Va + VbUei)2 + (Va + Vbo'ej)2 -+
+ 2{(Va + Vpoei)(Va + Vioe) cos(K:p)]. (16)

Since we are interested in the cross section averaged over all directions of
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incidence, we shall replace cos(K:p) by the value obtained by averaging
over all directions of K,

sin Kp

Kp
The transport cross section corresponding to the pair under consideration
is given by

<cos (K-p)>x = (17)

Qis = [ q4(0)(1 — cos 6) sin 6 df. (18)
For brevity we shall introduce the function

sin Kp .
Fkop) = (1/2) % (1 —cos @) sinfdi =
P

= (1/2 ko%p4) [2kop sin (2kop) — (2ko%p% — 1).cos 2kop — 1] (19)

where the last equality follows from the fact that K = 2k¢sin(6/2). A
summation of the Q;; over all 4 4-pairs thus leads for elastic cross section
per unit volume resulting from pairs to the expression

Qp = Z Qu = (2m2[ahd) [Naa(Vae2 + 3Vp?) +
pairs
+ VoV 2 (0et 4 0¢5) + F(kop) {NaaVa? +

pairs
+ VoV X (0et + 0eg) + V2 2 (Ueiaej)}]- (20)
pairs pairs
Note that the term containing F(kop) arises from interference of the waves
scattered by each of the atoms constituting a pair. A term of this kind has
not been taken into account in earlier work on alloys.
From (8) and (9) it follows that

4N,
% (0t + 0g) = & 2(Nps — Np) = & ———

pairs 1 + ez

(21)

1 1
p%rsaeio'ej——‘prL'f'Np——Na=Naa<1+e_x - 1—]—6-’") (22)

where the upper sign in (21) refers to a conduction electron with a ‘‘plus”
spin, and the lower sign to one with a “minus” spin. Expression (22) holds
for conduction electrons with both spin directions. From the last three
equations, one thus obtains for the transport cross section resulting from
A A-pairs in the presence of an applied field H

4VaVba
Qps (H) = (2m2[ahY)N 44 [Va2+3Vb2j:
| 4+ =
4V oV pa < 1 1 >H
2 ianl 2 — 23
,+F(kop){vaﬂ:1+e_x+vb e S (23)

S. The concentration dependence of the resistivity of dilute mon-magnetic
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alloys. 1f there is no spin-dependent scattering, V' = O in expressions (14)
and (23). In terms of the model adopted here, this would correspond to a
non-magnetic dilute alloy. The total elastic transport cross section obtained
from (14) and (23) for this case is given by

2N 44
Queatc ~ Wem?V ) [ 1+ 24 By | 29
where we have written Ng + 2N 44 = Nc. According to (2), the coefficient
of F(k, p) is proportional to ¢, so that (24) predicts an impurity resistivity
consisting of two terms: one proportional to the concentration and another
proportional to ¢2.
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Fig. 1. The function F(4 p)

The function F( p) is shown in Fig. 1. For a monovalent host metal of
face-centered cubic structure, the free electron approximation leads to
k,p ~ 1.1z, corresponding to F(k p) ~ —O0.1. Since 2N 44/Nc according to
(2) is of the order of 10c¢ tor dilute alloys, the interference effects arrising
from scattering by pairs of impurity atoms amounts to relative deviations
from linearity of the order of c.

6. Temperature dependence of the vesistivity of dilute magnetic alloys. In
the absence of a magnetic field, the total elastic cross section per unit
volume is obtained from (14) and (23) by putting « = 0. This leads to

Qcrastic = (m2[mh) [Ne(Va? + 3V52) +
+ 2NaaF(k p) {Va? + Vo {(J/ET)}] (25)

where 1 1

JIRD) = ) = o = T
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and where we have assumed Ns + 2N 4 = Nc. Expression (25) holds for
both spin directions of the conduction electrons, and corresponds to a
temperature-dependent impurity resistivity. The function f(x) is represented
in Fig. 2. Whether the resistivity increases or decreases with increasing
temperature depends on the sign of F(k p) as well as on the sign of J. In

(X}

[ o

Fig. 2. The function f(x) where x = J/kT in the text

fact, the possible temperature dependence of the elastic cross-section may
be summarized as follows:

F(k,p) >0 and | < O (antiferromagnetic)

(
dQ/dT > 0 for { kp) <0 and J > O (ferromagnetic)
(
k

k p) > 0 and J > 0 (ferromagnetic)

) < 0 and J < O (antiferromagnetic)

E(
dQ/dT < 0 for {F( of

F(kp
The total impurity resistivity is of course determined by the elastic as well
as the inelastic cross sections. In the present model inelastic collisions would
occur between conduction electrons and A4 .4-pairs in which the spin of the
conduction electron and the spin of one of the A-atoms were reversed.
Thus, the following types of inelastic collisions would occur for a conduction

electron with plus spin:

et + A 4" s+ A+d-
et + 44 e + AT4T

In the first case, the electron would loose an amount of energy J; in the
second case it would gain /. Conduction electrons with a minus spin would
suffer similar inelastic collisions. In this model, as in many others in which
the scattering centers have two or more possible energy levels, the cross
section for inelastic scattering decreases with decreasing temperature,
becoming zero at 7 = 0. The reason is that the probability for scattering
is proportional to the probability for the final state to be unoccupied and
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to the probability of finding the scattering center in the proper initial state.
At low temperatures, absorption processes become unlikely because there
are few scattering centers in an excited state; emission processes become
unlikely because the final electron states are nearly all occupied. For the
present model the temperature dependence of the inelastic scattering cross
section would be given by an expression of the form

Qabs + (I/Z)Qem
(I + e 2){1 4 e%)

Qinelnstic = Naa (H =0) (26)
where x = J/kT, and Q,,, and Q,,, are a measure of the cross section for
absorption and emission processes. For 1" = 0, this expression becomes
zero. Similar arguments have been used in previous work to explain the
drop of the resistivity with decreasing temperature observed in some
dilute magnetic alloys. However, some dilute magnetic alloys exhibit a
maximum and subsequent minimum in the resistivity versus temperature
curve. It is suggested that the present model, which provides the possibility
of a negative temperature coefficient for the elastic cross section, might
explain these observations, as well as the negative temperature coefficient of
the resistivity of certain alloys observed at high temperatures.

It should be emphasized that in the model employed here, J is independent
of the concentration of the alloy. In a model which relies on the molecular
field treatment, the effective field acting at the position of a particular
atom does depend on concentration. In principle, the effects discussed here
are not limited to the low-temperature region; depending on the magnitude
of J, they might occur at high temperatures as well.

7. Influence of a magnetic field on the resistivity. From equations (14)
and (23), and from an extension of equation (26) for the case of a non-
vanishing magnetic field it follows that the total scattering cross-sections
for electrons with plus and minus spin can be written in the general form

Qe+ = QO + VH
Qe— = Qo — vH

where for a given temperature and concentration both Jgand y are constants.
Since the conductivities of the two kinds of conduction electrons are additive,
this leads to a reduction of the impurity resistivity upon application of a
magnetic field.
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