

^aDepartment of Materials Science and Engineering and ^bDepartment of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA

Cuprous oxide (Cu₂O) is naturally p-type, which has prevented an efficient Cu₂O solar cell. n-Type doping of Cu₂O is demonstrated during electrochemical deposition by adding a chlorine (Cl) precursor to the aqueous solution. Current-voltage characterization reveals that the resistivity of undoped Cu₂O by electrochemical deposition is $\sim 40 \text{ M}\Omega$ cm, while that of electrochemically doped Cu₂O with Cl is significantly reduced to as low as $\sim 7 \Omega$ cm. X-ray diffraction confirms that the films are pure Cu₂O. Photocurrent measurements verify that Cl-doped Cu₂O is n-type. The solution-based doping method is particularly suitable for low-cost, large-area, and high-throughput fabrication of Cu₂O solar cells. © 2009 The Electrochemical Society. [DOI: 10.1149/1.3065976] All rights reserved.

Manuscript submitted July 25, 2008; revised manuscript received December 15, 2008. Published January 13, 2009.

With its direct bandgap of 2.0 eV, abundant source materials, and nontoxicity, Cu₂O has been regarded as one of the most promising materials for photovoltaic solar cells.^{1,2} Cu₂O films can be prepared from solution including electrochemical deposition^{3,4} and sol-gel-like dip coating,⁵ promising low-cost fabrication of Cu₂O solar cells. Although the theoretical efficiency of Cu₂O solar cells is ~19%, the best-reported efficiency is only ~2%.⁶ The low efficiency was attributed to the natural p-type conduction in Cu₂O,⁷ which prevented a p-n junction in Cu₂O, the basic device structure in most inorganic solar cells. There was a report on n-type Cu₂O by electrochemical deposition with low solution pH,⁸ and Wang et al. recently demonstrated a p-n junction in Cu₂O by electrochemical deposition.⁹ A more-detailed study of the Cu₂O p-n junction revealed highly resistive n-type Cu₂O by electrochemical deposition in the range of 2.5×10^7 to $8.0 \times 10^8 \Omega$ cm, leading to a low efficiency of $\sim 0.1\%$ for a solar cell built on the Cu₂O p-n junction.

In this article, we report an electrochemical method to dope Cu₂O n-type and to reduce its resistivity from megaohm centimeters to below 10 Ω cm. This enables Cu₂O p-n junction solar cells with a much-improved efficiency, potentially exceeding 10%. More importantly, the n-type doping method is applicable to many metal oxides and metal chalcogenides prepared from solution, allowing cost-effective improvement of efficiency in many current and future solar cells made on these materials. Furthermore, doping is accomplished by one of the following methods in the conventional semiconductor technology: (i) diffusion of a dopant into a semiconductor at high temperatures, (ii) implantation of a dopant into a semiconductor with energetic ions, and (iii) codeposition of a dopant during growth of a semiconductor. The last method is typically carried out by chemical vapor deposition,¹¹ molecular beam epitaxy, or related processes. All these methods require vacuum systems. Besides their inherently high cost, the vacuum systems also limit throughput and size of the substrate. Our doping method is solution-based, which is particularly suitable for low-cost, large-area, and high-throughput fabrication of solar cells.

Substitutional n-type doping in Cu₂O can go into either Cu or O sites. Based on the valence of Cu, +1, and O, -2, in Cu₂O, potential n-type dopants include group VII elements, i.e., halogens, for O sites and group II elements for Cu sites. Our work focuses on halogens as n-type dopants in Cu₂O, because such a method is in principle universal for n-type doping in any metal oxide and metal chalcogenide. The valence of O or chalcogen in these materials is always -2. Out of all the halogens, F is best size-matched to O, but CuF is soluble in water. In this article, we report Cl as a successful n-type dopant in electrochemically deposited Cu₂O. Although Cl doping of Cu₂O has been attempted by introducing HCl into oxidation of Cu, it was

reported to be a p-type dopant.¹² To the best of our knowledge, solution-based doping in Cu₂O has never been reported.

Experimental

Electrochemical experiments were carried out using a Princeton Applied Research VERSTAT II potentiostat. Electrochemical deposition was performed in a three-electrode cell with a Pt counter electrode, a Ag/AgCl/saturated NaCl reference electrode, and a Cucoated glass substrate as the working electrode with a typical dimension of 1×4 cm². Electrochemical doping of n-type Cu₂O with Cl has also been demonstrated on Au and Ti substrates. The thickness of the Cu coating was \sim 400 nm. Prior to electrochemical deposition, the Cu-coated glass substrates were rinsed with acetone and then sonicated in distilled water for ~ 15 min. The deposition solution contained 0.3 M $\rm CuSO_4$ and 4 M sodium lactate (60% w/w aqueous solution), with solution pH adjusted to 7.5 by adding 4 M NaOH.¹³ CuSO₄ was first dissolved in deionized water to the desired concentration of 0.3 M. Lactic acid was then added to the solution to a concentration of 4 M. Lactic acid served as the complexing agent to prevent Cu precipitation when NaOH was added to the solution. NaOH (4 M) was added to the solution to adjust its pH. Therefore, the exact amount of NaOH added to the solution was determined by monitoring solution pH to a desired value. For deposition of n-type Cu₂O, solution pH was adjusted to below 9.⁹ CuCl₂ was used as the Cl precursor, with its concentration in the solution varying from 0.01 to 0.15 M to control the doping level in Cu₂O. The deposition temperature was controlled by a Precision 280 water bath, and the deposition time was 1 h. All the chemicals used were reagent grade.

The thickness of the Cu₂O films was measured with a KLA-Tencor Alpha-Step IQ profilometer. The structural properties of the Cu₂O films were determined by a Simens D-500 X-ray diffractometer (XRD) using the Cu K α line. Photocurrent characterization was carried out in a three-electrode electrochemical cell with a broad-spectrum 90 W white lamp shining onto the working electrode. A Pt foil, a Ag/AgCl/saturated NaCl reference electrode, and a Cu₂O/Cu/glass sample were used as the counter, reference, and working electrode, respectively. For photocurrent measurements, the solution contained 0.5 M Na₂SO₄. To measure the resistivity of Cldoped n-type Cu₂O, circular dots of Cu were deposited as the top electrode by a thermal evaporator through a shadow mask on Cu₂O films. The area of the electrodes was 3.6×10^{-4} cm². Current– voltage (I-V) characterization was performed with an HP 4155C semiconductor parameter analyzer. The resistivity of the Cl-doped Cu₂O films was calculated from the slope of the I-V relations and the thickness of the Cu₂O films.

Results and Discussion

Electrochemical deposition of Cu₂O is achieved by applying a constant potential between a Cu-coated glass substrate (working electrode) and a Pt foil (counter electrode), but the quoted potential

Downloaded 07 Dec 2009 to 159.226.100.225. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

^{*} Electrochemical Society Student Member.

Electrochemical Society Active Member.

^z E-mail: xxh8334@exchange.uta.edu; mtao@uta.edu

Figure 1. CV of a deposition solution containing 0.3 M CuSO₄, 4 M lactic acid, and 0.1 M CuCl₂. The solution temperature is 60°C, and the solution pH is 7.5. There are two reduction reactions for Cu²⁺ ions, which lead to Cu⁺ ions and metallic Cu. The reduction potential for Cu⁺ ions is between -0.05 and -0.15 V.

in this paper is referred to the Ag/AgCl/saturated NaCl reference electrode. Before deposition, cyclic voltammetry (CV) is performed in a deposition solution containing 0.1 M CuCl₂ at 60°C. As shown in Fig. 1, CV reveals two reduction reactions for Cu²⁺ ions; one leads to Cu⁺ ions and the other to metallic Cu

$$\mathrm{Cu}^{2+} + \mathrm{e}^{-} \to \mathrm{Cu}^{+}$$
^[1]

$$Cu^{2+} + 2e^- \rightarrow Cu$$
 [2]

The potential for Reaction 1 is between -0.05 and -0.15 V vs the Ag/AgCl/saturated NaCl reference electrode. This potential range is different from our previous report.⁹ It is suggested that Cl⁻ ions added to the solution change the reduction potential of Cu²⁺ to Cu⁺ ions. In this study, we choose -0.1 V as the deposition potential applied to the working electrode. The produced Cu⁺ ions react with OH⁻ ions in the solution to form Cu₂O¹⁴

$$2Cu^{+} + 2OH^{-} \rightarrow Cu_{2}O \downarrow + H_{2}O$$
[3]

With the presence of Cl^- ions in the solution, Cu^+ ions also react with Cl^- ions to form CuCl, which incorporates Cl into Cu_2O and thus dope the Cu_2O film

$$Cu^+ + Cl^- \rightarrow CuCl\downarrow$$
 [4]

The solubility product constant of CuCl, i.e., the product of $[Cu^+]$ and $[Cl^-]$, is 1.72×10^{-7} at $25^{\circ}C$.¹⁵ This means that even small amounts of Cu⁺ and Cl⁻ in the solution react with each other and form solid CuCl.

Several samples have been prepared with different CuCl₂ concentrations in the deposition solution at 60°C. All the samples appear polycrystalline with a gain size of ~100 nm. The thickness of the films is controlled to between 300 and 400 nm, measured with a profilometer. After deposition, photocurrent measurements are performed to determine the conduction type of the Cl-doped Cu₂O samples. Photocurrent from a Cl-doped Cu₂O sample deposited with 0.1 M CuCl₂ is shown in Fig. 2. The anodic current indicates an n-type semiconductor.⁸ During the measurement, the applied potential is 0 V vs the reference electrode. The solution contains 0.5 M Na₂SO₄. A 90 W white lamp is used as the light source, with the light chopped on and off by a rotating disk. To further confirm the n-type conduction of the Cl-doped Cu₂O samples, the photocurrentpotential characterization is performed between -0.6 and 0.1 V (data not shown). At about -0.3 V, there is a direction change in

Figure 2. Photocurrent measured from Cl-doped Cu₂O. For the measurement, the applied potential is 0 V vs an Ag/AgCl/saturated NaCl reference electrode. The solution contains 0.5 M Na₂SO₄. The sample is illuminated with a 90 W white-light source. The anodic current indicates an n-type semiconductor.

photocurrent from negative (cathodic) to positive (anodic). For p-type Cu₂O between -0.6 and 0 V, the photocurrent should always be negative.¹⁶

To confirm that the films deposited under the conditions described above are pure Cu₂O, several samples have been prepared under the same conditions on Au substrates for XRD analysis. Figure 3 shows the XRD pattern on such a sample deposited with 0.1 M CuCl₂, with one difference. The thickness of this Cl-doped Cu₂O film is \sim 700 nm, twice as thick as other samples reported in this paper. Although the (111) peak from Cu₂O is still weak as compared to the Au(111) peak, it is clear from XRD that Cu₂O is the only phase present in the film.

For *I-V* characterization, circular Cu dots of 200 μ m in diameter and 300 nm in thickness are deposited by thermal evaporation on Cl-doped Cu₂O samples through a shadow mask. These dots, with an area of 3.6 × 10⁻⁴ cm², serve as the top electrodes, and the Cucoated glass substrate serves as the bottom electrode for *I-V* characterization. All the *I-V* relations from Cl-doped Cu₂O samples show

Figure 3. XRD of Cl-doped Cu₂O on Au substrate. The CuCl₂ concentration is 0.1 M, and the film thickness is 700 nm. Only the Cu₂O(111) peak is observed, indicating that Cu₂O is the only phase present in the film. The Au(111) and (200) peaks come from the substrate.

Figure 4. Resistivity of undoped and Cl-doped Cu₂O as a function of CuCl₂ concentration in the solution. This is a logarithmic plot, and the inset is a linear plot. Without doping, the resistivity of Cu₂O is \sim 40 M Ω cm, while that of Cl-doped Cu₂O is reduced to between 157 and 48 Ω cm. The solution temperature is 60°C.

linear behavior. From the slope of the I-V relations and the thickness of the Cu₂O films, the resistivity of the Cl-doped Cu₂O samples is extracted.

The resistivity of undoped and Cl-doped Cu₂O samples as a function of CuCl₂ concentration in the solution is shown in Fig. 4. Without doping, the resistivity of electrochemically deposited Cu₂O is $\sim 40 \text{ M}\Omega$ cm, which is too high to produce an efficient solar cell. However, with 0.1 M CuCl₂ in the solution, the resistivity of the Cu_2O sample is significantly reduced to ~75 Ω cm, a reduction in Cu₂O resistivity of over 5 orders of magnitude.

The most important parameter to control the resistivity of Cldoped Cu₂O is the concentration of CuCl₂ in the solution; the higher the concentration, the more Cl incorporated into Cu₂O and the lower the resistivity of the sample. In other words, by adjusting the Cl concentration in the solution, the resistivity of the Cu₂O film can be controlled. The inset in Fig. 4 shows the resistivity of Cl-doped Cu₂O samples as a function of CuCl₂ concentration in the solution. As expected, a higher Cl concentration reduces the resistivity of Cu₂O. Between 0.01 and 0.15 M of CuCl₂, the resistivity of Cu₂O is reduced from ~ 157 to $\sim 48 \Omega$ cm.

Solution temperature primarily affects the growth rate and grain size of the polycrystalline Cu₂O film. As the temperature increases, the growth rate and grain size increase. Large grains can improve the electrical properties of the Cu₂O film, such as carrier mobility and minority carrier lifetime. In an aqueous solution, evaporation occurs when the temperature is close to 100°C, which changes the solution concentration and pH. We have investigated the effect of solution temperature on Cu₂O resistivity with a fixed CuCl₂ concentration of 0.1 M. Figure 5 shows the resistivity of Cl-doped Cu₂O as a function of solution temperature. Between 50 and 80°C, the resistivity is reduced from $\sim\!103$ to $~\sim~7~\Omega$ cm. The latter is close to the optimum resistivity for an efficient solar cell, $\sim 1 \ \Omega$ cm. Efforts are underway to bring down the resistivity of Cl-doped Cu₂O to below 1Ω cm.

The decrease in resistivity with temperature may be attributed to increased Cl incorporation into Cu₂O at higher temperatures. It is speculated that Cl incorporation creates a concentration gradient for Cl⁻ ions in the deposition solution. However, the diffusion coeffi-

Figure 5. Resistivity of Cl-doped Cu₂O as a function of solution temperature. Between 50 and 80°C, the resistivity of Cl-doped Cu₂O is reduced from 103 to 7 Ω cm. The CuCl₂ concentration is 0.1 M.

cient of typical ions in a solution increases by 2-3%/°C around 25°C,¹⁵ which reduces the concentration gradient for Cl⁻ ions and increases Cl incorporation into Cu2O.

Conclusion

In summary, an electrochemical method is demonstrated to dope Cu₂O n-type during electrochemical deposition from an aqueous solution. By adjusting the Cl concentration in the solution, the resistivity of the Cu₂O film is reduced from \sim 157 to \sim 48 Ω cm. By increasing deposition temperature from 50 to 80°C, the resistivity of the Cu₂O film is further reduced from ~ 103 to $~\sim 7~\Omega$ cm. XRD confirms that the films are pure Cu₂O. Photocurrent measurements demonstrate that the Cl-doped Cu₂O samples are n-type semiconductors. The low-resistivity n-type Cu₂O films are expected to significantly improve the efficiency of Cu₂O solar cells. Compared to conventional vacuum-based doping methods, this solution-based doping method is particularly suitable for low-cost, large-area, and high-throughput fabrication of solar cells.

Acknowledgment

This work was supported in part by the National Science Foundation under grant no. 0620319.

University of Texas at Arlington assisted in meeting the publication costs of this article.

References

- 1. D. Trivich, E. Y. Wang, R. J. Komp, and F. Ho, in Proceedings of the 12th Photovoltaic Specialists Conference, IEEE, p. 875 (1976).
- A. E. Rakhshani, Solid-State Electron., 29, 7 (1986)
- N. A. Economou, R. S. Toth, R. J. Komp, and D. Trivich, in *Proceedings of the International Conference on Photovoltaic Solar Energy*, Reidel, Dordrecht, p. 1180 3. (1977).
- Y. Zhou and J. A. Switzer, Scr. Mater., 38, 1731 (1998).
- S. C. Ray, Sol. Energy Mater. Sol. Cells, 68, 307 (2001).
- 6. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett., 88, 163502 (2006)
- L. C. Olsen, F. W. Addis, and W. Miller, Sol. Cells, 7, 247 (1982).
- W. Siripala and J. R. P. Jayakody, Sol. Energy Mater., 14, 23 (1986)
- L. Wang and M. Tao, Electrochem. Solid-State Lett., 10, H248 (2007). 9

- K. Han and M. Tao, *Sol. Energy Mater. Sol. Cells*, **93**, 153 (2009).
 B. Mehta and M. Tao, *J. Electrochem. Soc.*, **152**, G309 (2005).
 A. O. Musa, T. Akomolafe, and M. J. Carter, *Sol. Energy Mater. Sol. Cells*, **51**, 305 (1998)
- A. E. Rakhshani and J. Varghese, J. Mater. Sci., 23, 3847 (1988). 13
- M. Pourbaix, in Atlas of Electrochemical Equilibria in Aqueous Solutions, p. 386, 14 Pergamon, New York (1966)
- D. R. Lide, in Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca 15. Raton, FL (2004)
- 16. P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc., 147, 486 (2000)