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1. Introduction

Although the equations of motion of classical mechanics are strictly deterministic, the actual path
along which a complex classical system evolves may depend extremely sepsitively on the intial
conditions sa that the evolution of the %ystem becomes de facto unpredictable. Such a system is said to
behave irregulaily or chaotically. The fact that classical motion can be irregular has been known at least
since the beginning of this century. However in recent vears it has become increasingly clear that even
seemingly simple systems with few degrees of freedom generaily show chaotic behaviour, and advances
in computer technology have made it possible Lo study irregular motton in small systems in considerable
detail. This has made chaos one of the fastest growing fields in physics. '

Bound classical motion in one spatial degree of freedom is always periodic if it is governed by a time
independent Hamiltonian, i.e. if energy 15 conserved. and hence one-diménsional conservative systems

- cannot be chactic. The same is true for N-dimensionil conservative systems, N> 1. if they are

integrable, i.e. i their Hamiltoniar can be written in terms of N conserved actions. The simplest
conservative systems capable of exhibiting chaos are systems in N =72 spatial dimensicns with no other

‘integral of motien besides the energy. Examples are various types of single particle billards [i1-3]. the

Hénon-Heiles potential [4]. various tvpes of anharmonically conpled harmonic or anharmonic oscil-
tators [3, 6}, or the problem of a hydrogen atom in a uniform magnetic field (see fig. 1).

In contrast to the other simple systems mentioned above. the hydrogen atom in a uniform magnetic
field is not an abstract model system bul a real physical system that can be and has been studied in the
laboratory [7, 8]. When we study the regular or chaotic sature of the classical dynamics or look for
manifestations of classical chaos in guantum spectra we are, in this example. doing real physics and not
only mathematical physics. Our objects of stidy are sometimes classical trajectories or quantum spectra
generated by computer codes. frequently however they are real spectra observed in experiments. In

_some cases. e.g. for the oscillations in photoabsorption spectra which have long been known under the

name of quasi-Landau resonances, a deeper appreciation of the classical dyramics, and in particular of
the importgnt role of isolated unstable periodic orbits embedded in the chaotic part of th: phase space.
has led to a deeper understanding of the siructure of complex spectra. In particular, we now understand
why the experimentally observed quasi-Landau peaks are related to closed classical orbits in a way
resemnbling a Bohr-Sommerfeld guantization condition, even in the classically chaotic region, where the
orbits are unstable and the observed peaks do not correspond to individually resolved quantum states.

The aim of this article is to give a review of recent work on the hydrogen atom in a uniform magnetic
field, paying special attention 10 the occurrence of chaos in the classical dynamics and its manifestation
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Fig. 1. (a} Examptes of single particie biflardssbowing chaotic classical dynamics: a point particte moves frecly in the enclosed area and is reflected
by the shaded houndarivs. (b) Equipstential lines of the Hénon-Heiles potentiat [4].
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in observed or observable quantum spectra. Chapter 2 contains a description of the system and a
general discussion of the properties of its quantum mechanical spectrum. including a comparisen
between calculated and observed spectra. Chapter 3 contains a detailed discussion of the classical
dynamics while chapter 4 discusses how the nature of the classical dynamics, in particular the
occurrence of regular 2nd chaotic motion and the existznce of periodic orbits, manifests itself in the
guantum spectra.

2. The guantum mechanical hydrogen atom in a uniform magnetic field
2.1, Hamilionian

The hydrogen atom in a uniform magnetic field is accurately deseribed over a wide range of field
strengths B by the stimple nonrelativistic single-particle Hamiltonian

-~

H=p'2m, —e'lr + ol_+ %muwz(xi +¥7). (n

The diraction of the field is taken as the z-direction and m, is the reduced mass of electron and mucleus.
* The frequency w in (1} is haif the cyclotron frequency -

w=to =eB2mec. : ' ‘ ' (2)
At a field strength of
B=B,=midc/i’ =235 10° G=235 % 10° T, | (3)

the oscillator energy hw equals the Rydberg energy & =m e(227)=~13.6¢V. In terms of the
dimensionless field strength. parametsy o

y=BIB,=hwi/# . . - . (4]

relativistic corrections [9] to the simple mode! defined by (1) are negiigible for fields with y < 10, On
the other hand. the effects of spin—-orbit coupling [10] can be neglected for fields with yr' > 1077 where
n is the principal quantum number. Effects related to the two-body {nucleus and eleciron) center of
mass motion in the presence of an externai magnetic field have been investigated by several authors
[10-}4]. It is possible to separate a generalized ficld strength dépendent momentum. which replaces the
center of mass momentum of the field-free two-body system. For fields with y > 100 the interaa:
dynamics is considerably intluenced by the center of mass motion, but for a vunisling transversal
component of the conserved generalized mementum the effect can be accounted for accurately by @
constant energy shift which depends enly on the magnetic field strength and the azimuthal guantum
number m {13]. '

The azimuthal quantum number m is a good quantum number as is parity. which is frequentiy
expresscd in terms of the z-parity w defined with respect te reflection at the xy-plane which 13
perpendicnlar 1w the direction .of the magnetic field. In each m” subspace of Hilbert space the
Schrodinger equation defined by the Hamiltonian (1) remains nonseparable in the two coordinates =,
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s iy > : I £ e
aratlel, and p =YV x -y perpendicular. to the field. Leaving out the contribution of the normal
Zeeman term wl, because it is constant. the stationary Schradinger equation in a given m” subspace is

{in atomic units, which we will use throughout unless stated otherwise):

B (- % 5% P a—i - ;—: + f—) +iypi-(p z:)*"a}‘ﬁp:':) = E¥(p. oY, (3)
where ¥(p. 2} is the cylindrical radial part of the full single-clectron wave function ¥,

W(p. 2, $)=(INTm¥(p. z)e™ . } (6)
Thus the physical problem is that of a particle moving in an effective two-dimensi‘onal'pcteqtial

Vip.2)= by’ +mi2pt~ 1o 7 = | - ol

The potential {7) is illustrated in fig. 2 for m = 0.

- Attempts to solve the Schridinger equation {3} have a long history. Early accurate numerical
calculations of the energies of low-lying states are due o Praddaude [15], Smith et al. {16] and Simula
and Virtamo [17). First accurate numerical calculations going beyond the fowest three or four states in
each m™ subspace were performed by Clark and Taylor {18] who calculated energies, wave functious
and oscillator strengths up to and beyond the onset of the n-mixing regime (see section 2.2) at a field
strength of y=2X 1077 {corresponding to B=4.7T).

Review articles dealing wholly or in part with the problem of a hydrogen atom in a uniform magnetic
field have been written by Garstang {10], Bi-uzid [19], Kleppaer et al. [20], Gay {21}, Clark et ai. [22}.
Delande ct al. [23] and Clark [24]. Highly accurate values for the ground state energy have been given
by Le Guillou and Zinn-Justin {25], and Résner et al. [26] have given a comprehensive list of the
energies of the lowest four or five states in various m” subspaces at arbitrary field strengths (see also
Rech et al. [27]. Cho et al. [28], and Liu and Starace [29]). Seme recent approaches to solve the
problem for Rydberg states in moderate ficlds involve higher order perturbation theory [30-3%j.
dagonalization in symmetry adapted -basis sets [30, 33, 34], adiabatic semiclassical methods {33, 36/.
and an adiabatic quantum approach [140}. At very high fields. y > 1, the diamagnetic term propurtional
to v dominates the entire spectrum and convergent expansions in the Landau basis are practicable {sez
section 2.2). In this regicn complete calculations of bound siates [37} and extensive studies of
continuum states have been undertaken |31, 38-41j. o

Fig. 2 Equipotentiai lines of the poteniial (7) for azirasthal quanmm numbet =1
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2.2. High field and low field regime

At very high fields the Schridinger equation (3) is best solved [15-17, 37, 38} by expanding the wave 7
function ¥(p.2) in Landau states @,,(p), which are the normalized radial parts of the two.
dimensional harmonic oscillator wave functions corresponding to the oscillator energy fiw = v

Wmﬂ=§ﬂmwﬂMﬂ- BNCE =

b

This leads to a set of coupied channel equations for the wave functions ¥, (z} in the various Landag ‘
channels: ]

1 d - " o ' _ :

(5 -(F B NY t (E - Em ))q’:\'(Z) - ; ‘/Nf\"(z)‘p-\."(z) =0. . ' {9)

In (9) E,, =(|m|+1)y/2 is the zero-point cnergy of the lowest Landau state and deﬁnes the real

“ionization threshold in the corresponding m™ subspace ~ as opposed (o the zero-field threshold at E =1
in eq. {5). The potentials in (9) are defined by

* "_1 ’ B .
VIA2)= | dp py,(p) s D - | !
o (2) Ojdp p ..\m(p) \/P:Tl': vl P) ) . {10} | ::

and do not depend on the sign of the azimuthal quantum number m. Analytic expressions for - V7,,.(7)
have been given by Friedrich and Chu [38]. Asymptotically (large |2]) the diagonal potentials are given
by ' : ‘

2N T 1 p° -4 ) '
i) = - (1- 2L 2 o), (0

1
= )
where b =V/27y is the oscillator width of the Landau states. An efficient numerical procedure for
calculating the potentials and solving the coupled equations (9) for various magnetic field strengths can
be obtained by exploiting the fact that the potentials only depend on the fiéld strength via a universal
scaling factor 1/b [31, 42]. ' 7 _

The formulation {9) of the Schrédinger equation (5) shows that we have, in each m” subspace. & §
system of coupled Coulombic channels which are labelled by the Landau quantum number N =
0.1.2..... The channel thresholds '

‘EmN = Em + N‘y . R oo (]2]

lie Ny above the real ionization threshold E, in the respective subspace. The coupling potentials
Vin(2) fall off relatively slowly and are asymptotically proportional to z 2V 17! :

For extremely large field strengths the energy y needed to excite a Landau osciilation perpendiculer  §3
to the magnetic field becomes very large and the problem approaches that of a one-dimensional §
hydrogen atom parailel to the field [43]. The bound siates arc then dominated by the contribution from

the N =0 channel, in which the motion of the electron perpendicular to the field is given by the lowes!
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Landau state @, ., and they form a nondegenerate Rydberg serics converging to the respective

- jonization threshold £, [37]

E,=E,~12v-u), oy

~ where » runs from zero to infinity for positive z-parity states and from one to infinity for negative

z-parity states. The quanium defect paramerers ju, in (13) are alt negative amd converge to zero in the
limit of infinite field strengths; note that the lowest state in each m” subspace of positive z-parity

. corresponds fo » =0 and becomes infinitely bound in this limit.

At sufficiently high field strengths, ¥ = 1, Landau excited states corresponding to ¥ >0 all lie ahove
the ionization threshold and form Rydberg series of autoionizing resonances which converge to the
respeciive Landau channel thresholds (12}. These resonances can autionize by de-excitation of Landau
oscillations perpendicular to the field [38]. The spectrum of bound and autcionizing states in the

mt=0" subspace is illustrated in fig. 3 for y =2, y=1, and y=10.35.

As the field sirength is reduced from values around v = 1, the Rydberg series associated with the
g ) g

_different Landau channels begin to overlap and interfere. Near y=0.3 the lowest wutoionizing
resonances, which are characterized by a jump through # of the asymptotic phase shift & of ihe opesn
thannel (¥ = ) wave function, cross the ienization threshold and become perturbaticns of the Rydberg

eries of bound states, which are charactertzed h a jump through unity of the corresponding quantum
defects. iz, . This is illustrated in fig. 4 for the m” = 0" subspacc. As the field strength is reduced further,
more and more Rydberg serigs overlap and the spectrum becomes increasingiy complicated. As long as
ot too many Rydberg series overlap. the problemn may be treated with the techniques of multichannel

n =—a
E-E_ H=2
(Ry) o s

g _

1=08 T=10 y22.0

L= T - ]

| o NN=2 Het ]

A T v —

Nz=2 M=1
Nzt
1] S Ju—— e
TTTTON=D T =0 TN G
2L —— -]

Fig. 3. Spectrum of found znd autotonizing states in the "= 0" subspace for field strength paremeters y = 2.0, L0 0.5 {irom ref. |42]).
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Fiz. 4. Quantum defects g, of bound states and asymptotic phase shifts of the open channel (V¥ =0} wave function for various w}alues of the field
strength parameter y (from Friedrich and Chu [38]). (E is the energy relative to threshold in Rydbergs.)

quantum defect theory [44, 45]. Figure 5 iliustrates the multichannel structure of the spectrum in the
m”™ = 1" subspace at y = 0.04. The top half of the figure shows the quantum defects of the bound states
(left half) and the asymptotic phase shifts of the open channel (¥ =0) wave functions in the region

between the ionization threshold E, and the inelastic threshold E, ,_; = E,, + ¥ (right half). The
perturber of the bound states and the resonances above threshold form a Rydberg series whose energies
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Fig. 5. Spectrum in the m”=1" subspace at y ={L04. The top Laif shows quantum defecss of the perturbed Rydberg series of bound states
(E < E, ) and the asymptotic phase shifts uf the open charmel {N =0} wave function for energics between the ionization threshold and the nelastic
threshold {first Landau threshold). The bottom: half of the figure shows the quantum defects =7 the (perturbed) Rydberg series which consists of the
bound-statc perurber in the left hand part of the top hall and the resouances in the right hand part of the top hall. The horizontal bars show the
absolute widihs of the perturber ard the resonances, while the vertical burs show the same widths multiplied by the thied power of the effective
quantum number ¥ with respect 13 the inelastic threshold. These renormalized widths would be roughly constant in an unperturbed Rydberg
series of autcionizing resonances. (From ref. [42}) {Energies are in Rydbergs.) )
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onverge to the inelastic, the N =1, threshold and can be characterized by a series of second order
S 2
qiantum defects j; b
b v

L

= Em.h'=l - l'fz(ve} - P’tu)z M ‘ (14)
his:series of perturbers and resonances is in turn perturbed by a resonance associated with- the
‘Rydberg series converging to the N =2 Landau channel threshold, and this affects the energies, as
n by the jump through unity of the second order quantum defects 4 in the lower part of fig. 5, as
weilas the widths of the perturbers or resonances. The essential features of the spectrum at, y == 0.04
¢n be accurately described in the framework of three-channel quantum defect theory, the important
Jianriels being the ¥=0. N=1, and N =2 Landay channels [31. 42, 46, 47).

AL still lower field strengths the pumber of interfering Landau chanpels becomes 5o large that a
déécriplion in terms of the Landau basis (8) becomes impracticable. For Jow-lying bound states at low
figlds the spectrum is close 1o that of the field-free hydrogen atom and the effect of the diamagnetic
intéraction can be treated perturbatively [48-52}. :

At vanishing field strength the spectrum in each m” subspace is degenerate due to the O(4)
symmetry of the pure Coulomb problem. This ¢can be expressed in the conservation of the Runge-Lenz
vector ’

R EA

A= (=2mE)Y (px L) - (m e | (15)

For-small but finite values of the field strength the quantity

(16)

o

is-an invariant up to first order in v" In the perturbative regime it is appropriate to label the eigenstates
of 3 by an index k starting at k =0 for the maximum eigenvalue within a given n-manifold of states
degenerate in the zero-field limit. In a given m” subspace k runs from  (for # = +1) ot 1 (for 7 = -1}
1o its masimum value n — |m]— 1 within a given n-manifold. For positive eigenvalues s of (16) the

eigenstates have approximately O L(3) symmetry and are almost eigenstates of the angular momentum-

type operator A= (A . A .l) with eigenvalues A(A~+ 1) of A°. These states are called rotator states
and the cigenvalue A is related to the label k by A=r — 1 — k. The energy shifts of the rotator states are
_given approximately in the perturbative regime by {48, 51]

CAE™ = Lyt SAA T )+ T - 3mt ). (17)

4

-The eigenfunctions of ¥ with negative cipenvalues s'have approximately O(2)3 O(2) symmetry and can
be described by a two-dimensienal harmonic oscilator with anharmonic corrections. The appreximate
- energy shifts of these vibrational states are, again to first order in v '

a

AEY = 1370 (20 + {m) + 1)2V3n - 320 + m| +1)7 —m™ + 1], 18}
(REEH i

where ¢ = 0.1,2... . is given by 2o =n -~ \m| ~ 1~ k or 20 =n — {m| ~ 2 — k. depending on whether
n~|m|— kis odd or even {48. 51]. The accuracy of the formulae (17). (18) has been tested by Wintgen
and'by Wunner [31. 32},




. involved in the crossing are not only approximately eigenstates of the adiabati~ invariant { 16) with very

. the Hamiltonian, Such a representation was explicitly constructed by Wintgen and Friedrich [33] via a
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2.3, Regime of approximate separability

1.e classification of states by the principal quantum number n and the “intrashell label™ & is-"

definitely meaningful in the /-mixing regime where the diamagnetic interaction is strong enough to &
break rotational symmetry but still so weak that n-manifolds of states originating from different &

principal quantum numbers n are separated in energy. it is not a priori clear whether such a’
classification remains meaningful in the n-mixing regime where neighbouring n-manifolds overlap. The
onset of the a-mixing regime occurs, when the lowest (k=n—|m|—1) vibrator state of the (n+
1)-manifold meets the highesi (k =0 or k = 1) rotaior state of the n-manifold. From the leading terms -
in (17) and (18) the onset of the n-mixing regime is given by '

73n7_=16/5. 7 o (19)

It was observed in numencal diagonalizations of the Hamiltonian (1) that near degeneracies occurred
at the onset of n-mixing, the actual magnitudes of the avuided crossings between the lowest state of the
n'+ 1 manifold and the highest state of the n-manifold decreasing exponentially with 2 [53, 54]. Thss
was interpreted as evidence for an additional hidden symmetry related to a further constant of motion
and even as evidence for the existence of an approximately separable representation of tie Hamilto-
nian. Ar additional (approximate) constant of motion valid for low fields was recognized by Solov'ev

[48] and Herrick [S1] and is given by the combination (16) of components of the Runge-Lenz vector. §

Soloviey explained the small antic-ossings of states as being a consequence of the {act that the states
p 8 g q

different eigenvalues, but also correspond 1o different classes (rotator and vibrator) of cigenstates.
The above results stimulated an intensive search to find an approximately separable representation of

~Efen

2

n3

14

Fig. 6. Energy eigenvakies obtained by sequential disgerasization. The dashed Hines show the resulis of diagonalizing the Hamiltontan within
subspaces of states -:hur.lc:gri,:cd by a given value of the intra-shell label k. The sohd fines show the exact resnlts obtained by allowtay k-miving.
(From ref. [33].) !




H. Frledrich and D. Wimgen, The hydrogen atom in & wniform magneic field — an example of choos- ‘ B

sequential diagonalization of the Hamiltonian, first 2amongst states corresponding to the same values of
& and subsequently including the residual interaction between stutes of diiferent . A natuval basis for
uch a calculation is obtained by transforming the Schrodinger equation via the introduction of
“emi-parabolic coordinates into a Schrodinger equation for two azimuthally coupled harmonic oscil-
{ators {corresponding to the unperturbed Coulomb problem {55]) plus a diamagnetic potential (see (331,
alsoDelande and Gay [50]). In this representation the matrix elements of tae diamagnetic interaction
depend only on the coupling constant (v/EY and not on cnergy and field strength independently.
'Matrix elements leading to k-mixing are very small if at least one rotator state is involved. Appreciable
k-mixing matrix elements oceur oaly between adjacent (Ak =2} vibrator states. Their consideration
pecomes necessary when vibrator states belonging to different n-manifoids come close in energy. This
happens near y ‘n’ =16 which lies .-l within the n-mixing regime {19).

Although & can ac Jonger be simpiy related to an eigenvalue of the epevator {16) if n-mixing is
allowed, approximate separability and the classification according to the label & renizin valid well within
the n-mixing regime. Figure 6 shows the exact eigenvalues of the Hamiltonian (solid lines) compared
with the eigenvalues obtained without £-mixing (dashed lines) in a region of energics and field strengths
corresponding {o y'n =10, which lics within the region of approximate separability. Approximate
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Fig. 7. {2) Overall view of the spectrum in the m” = 1" subspace for arbitrary field streagihs up o ¥ = (.04, The vervical huiching ‘ndicates the
ahsolute widihs of the resanant stares above ihreshold. The inelastic thieshold is the Landan channe! threshola comresponding to N =1 {ef, eq. 12}
{from ref. [42]). (b} Part of the bound staie spectrum close to the zere-field threshold £ =0 shown on an enlarged scalz, at field strengths 6p 10
¥={.005 The rumbers at the hoitom stand for the n-guantum number and the intra-ahelt label k in the regire of approximate separability.
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separability breaks down as we approach the zero-field threshold £ =0, where the coupling constag)
(7/E)* determining the effective strength of the diamagnetic imefaction hecon?es infinite.
o Fi:gu}§‘7gi"shows an.overall view of the spectrum in the m™ =17 subspace for field strengths rartgingé
“from zero up.toy = 0.04, where the interpretation in terms of few interfering Rydberg series is valige
(see” fig. ). An enlarged view of the low-field region closer to threshold is given in fie. 7b. 4
-sufficiently low field strengths and principal quantum numbers approximate separability mauifests itse}
in ety small anticrossings of levels originating from different #-manifolds in the zero-field limit. Fy
decreasing values of £/y increasing level repulsion associated with the breakdown of approximayg
separability leads to an increasingly irregular pattern and a “spaghetti”-like appearance of thf
spectrum. i :

2.4, Corﬁparisbn of calculated and observed specira

Most experimental work on Rydberg atoms in a magnetic field has concentrated on atoms mor}
easily accessible to experiments than hydrogen [56-59). In recent vears, Welge et al. in Bielefeld has
performed extensive measurements of photoabsorption cross sections of atomic hydrogen in magnetig
fields up to 6 T. Because the numerical sotution of the Schrodinger equation is much easier for the purt
hydrogen atom, the experiments of Welge et al. have, apart from other important contributions to th
central theme of this article, made a direct comparison between calcylated and observed spectrf
possible [60, 61]. ' ~ E

To get a feeling of the complexity of diamagnetic Rydberg spectra fig. 8 shows a part of tht
caleulated spectrum containing states belonging to a-manifolds near 7 =40 and m" =0", where high

ig. 8, Part of the bound state spectrum in the m” = 0" subspace showing siates from n-manifolds around nm =40 ot field strengths up 1o 7T.
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Fig. 9. Comparison of measured (iop) and calculated {bottom) photoabsorption lines for Am =0 transitions from the Jp_ _, state into Rvdberg
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states in the m” =0" subspace at a field strength of 6 T (from vef. {60]).
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resolution experiments were performed. To see many of the spectra! structures the reader 1s invited to
hold the figure very flat beneath his eyes and to turn the figure round.

Figure 9 shows s comparisen of the calcuiated and the measured photoabsorption spectra for Am =8
iransitions from the 2p,.., state intc the Rydberg staies of the m™ =07 subspace at a field strength of
6T (y=2.55% 107"). The eaergy ranges up to 92cm ~! pelow the zero-field threshold, which lies wed:
within the r-mixing regime but is still in the region of approximate separability, where the individual
states can be unambiguously assigned two quantum nuinbers, # (corresponding to the hydrogenic
manifold from which the siate evolved diabatically in the zero-field limit) and the intra-shell label k.
Figure 10 show: 2 comparison of the same experimental spectrum with the final states much closer 1o
the zero-field threshold, Figure 11 shows similar spectra for a larger range of final stale- energies at 4
slightly different field strength of 5.96 T. Figure 10 and the lower two panels in fig. 11 cover ranges of
final states lying beyond the region of approximate separability and well within the “spaghetti region™
(see fig. 8) : :

: " o
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il Jﬁ.ﬂh&ﬁk}w_;{j’lﬂhﬂ wl _,Mmr’u,fj'{,
;: | | ey i}

|

e L
I o o
il T -VM\Jg
!: - ’ ) .' ety !cr
ez_i__jL_U_LL,l *l\ulﬁ |] i;]h,lih “l.lglilu !L_ | ﬂl“‘iﬁi lih’im :
L T Tp T

Fig. 11. Comparisen of suloutatcd (upper halves) and neasured (lower halves) glotoabserpition lines for the Am =4 trunsitions Tram the 2p, , stae
intoy Rydberg states in the m” =1 subspace st 4 fiekt strenpth of 3,96 T (from Holle et al |6}
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“Most recent calculations by Zeller ¢t al. [61] have extended the range for the specirum at 5.96 T ali
way up to the zero-field threshold £ =0, In all cases we observe state for stale agreement between
‘measured and calculated spectra, at least within the limits of experimental resolution. This is of
rse {0 be expected as long as we believe that the Hamiltonian (1) accurately describes the physics of
. problem and as loag as we make no mistakes in measunng or calculating the specira. Nevertheless
# fee! it worth pointing out thai the higher lving states in figs. 10 and il correspond to roughly the
erghbourhood of the 5(0th excited state in the m” =07 subspace. These are to our knowledge the

bst highly excited states of 2 measured complex spectrum that have been uniquely identified bv dn’ect
odmpan&c‘rn with an ab injtio numerical caleutation, :

fassical dynamics
. Scaling

The classical dynamics of the hydrogen atom in a uniform magnetic field is described by the
ailtonian (1). In terms of the scaled coordinates and momenta

» E.xcept for a s1miamy transformation. the classical dvnamics at a given field strength v and energy E is
completely described by the Ha.niltontan H Equation {21) shows that the classical dynamics only
A_dcpendq on the scaled energy e

=By | | (22)

nd not on £ and y separateiy. Figure 12b shows hnes of constant scaled energy next to a part of the
- quanturn mechanical bound state spectrum in the sn" =17 subspace drawn on the same scale (compare
7). By keeping £ constant but simultaneously changma the energy £ and field s1rength y we can

= expl explore different regicns of the quastum spectrum without changing the structure of the underlying

clasical dynamics. At siall {absolute} values of the energy the quantuin spectrum becomes very dense,

“while it becomes sparse for larger field strengths #nd binding encrgses In the £~y plane. ithe region
close to £ =0, =0 corresponds 10 a small Planck’s constant # in comparisen with typical classical
_:_EC,tIOIl::, whereas fi becomes effectively larger and larger as we move along lines of constant scaled
emergy towards larger field strengths. This can be expressed quantitatively via the commutation
- Telations of the scaled quantum me::hanmal Gperators associated with the scaled classical variables (20).

’e’g

5. £]=iy""%. o (2

Ay L

‘At a fixed scaled encrgy ¢ determining the classical mechanics the dependence f the quanturh
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Fig. 12 (a3 Part of the bound stawe spectrim in the m” = 1~ subspace previously shown in fig. 7b. () On the. same scale, lines of constant sca
encray ¢, along which the classical dynamics'is imvariaet o within a similarity transfornetion,

mechanics on the magnetic field sirength y can be accounted for by an effective field strength depende
Planck's constant y' “A. Keeping ¢ constant we can study the semiclassictl limit by decreasing t

3.2, Regularization

A feature of the Hamiltonizn H in (21) is its singularity at £ = (). which can be removed, e.g. by thily
introduction of semi-parabelic coordinates {62, 67]. The new coordinates » and pu are given by

vi=F-F, pl=r+i. . _ (248
and the momenta .
p,=dvidr. p,= Ei;.hf{:]T . ' ) (25§

are defined with respect to the rescaled time 7 given by:
dr =27 dr={¥" + ) dr . , | | (268

The equations of motion generated by the Hemiltonian H in (21) at a fixed value of the scaled encry) :
are equivalent 1o the egnations of motion generated by the Hamiltonian

h=%pi+lf£2v:7+%pi-#—!;f'l;u:—.s(v:%-p:}* yu(v +,LL)E2 L 12

at the fixed ““pseudo energy” 2. ‘ , ]

For negalsve (scaled) encrgies <0 the Hamiltonian (2?) represents harmonic oscillators wit§ |
frequency w ={~2¢)" ", which are Loupled by the term v {z” + «*) originating from the diamagne
interaction. Tht quaa.atu. potential vanishes at the zero-feld thresno!d £ =0 {which is the same a3
classical escape threshoid for /. =0). For positive energies the Hamiltonian corresponds to invertdg:
oscillators coupled by the dxamagnetlc interaction. -

—
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There is a one-to-one correspondence between the classical trajectories generated by the Humiiio-
nian H (21) and # (27), but they are not related by a canonical transformation. Because of the
¢rordinate dependent rescaling of tune (26}, two periodic orbits which have the same period in the
cylmdncdl representation {21) may have different periods in the semi-parabolic represeniation (I7).

£3.3. Poincaré surfaces of section

-~ The classical dynamics of the Hamilicnian (21) has been studied by various authors in recent vears
{62-71}. . common way to illustrate the classical phase space structure is to Jook at Poincaré surface

classical motion is confined to the energy sheff which is a three-dimensional subspace of

“two-dimensicnal slice in the three-dimensional enerr:v surface. The set of all intersections of a trajeciory
‘with this surface (in a certain direction} contains most of the information related to the particular
trajectory. Periodic orbits are churacterized by one or a finite (typically small) number 7 of poinis on
- the surface of section. where they are called a fixed point or an n-cycle of the map. Regulav orbuts.
whose motion is restricted to two- dimensional invariant manifolds (called rori) on the three-dimensioua!
‘eénergy shell, appear as.an array of dots on the surface of section, which densely fill a one-dimensional
- subset of the two-dimensional surface. Irregular orbits densely fill a finie volume on the three-
- dimensional energy shell and appear as irregularly but roughly uniformly spattered areas on the surfacc
- of section. '
© For I.=0 fig. 13 shows, in semj-parabolic representation, Poincaré surfaces of section tn 1
- hydrucren atom in a uniform magnetic field for six different values of the scaled enr,rgv e —0.8. =0
—0.4, -0.3. ~0.2. and —0.1 (from left to right and top to bottom). The surface of section is deﬁu_d by
u =1 ihe energy shell for & =0 maps into an arca bounded by the condition —2sv7 + pT =4, which
-~ defines a circle of radius 2 with respect to the coordinates V—2¢r and p, . Time-reversal and reflectioss
symmctr) allow us to derive from each point on the surface of section three related ones. compacih:
written as (=V—2ep, £p ). ¥’

At e = —0.8 the system is still very close to its integrable limit ¢— —x, which corresponds to the
- infinitesimally perturbed hydrogen atom: ait orbits are regular and conﬁned to tori which are
characterized by a speuﬁc value of the adiabatic mvanant**? X, eq. (16}, Note that even
_infinitesimal perturbation is strong enough to change the phase space structure of the hydrogen amm

fre

]
3.

. —completelv. For a pure hydrogen atom the surfade of section would simply give concentric cireles mna

each orbit would contribute with a fixed point. This reflects the unusual classical behaviour of a
hydrogen atom. where all orbits are periodic and degenerate in period and action. As a consequence

- the KAM-theorem [72, 73] is not appiicablé and in fact, little is known about the behaviour of a

hydrogen atom under small perturbat;ons It is not self-evident that the system behaws e gularl\ undu
the diamagnetic perwrbatlon

*'There 15 still another symmetry of the system, namely the exchange symmetry of » and p. This can be used in numencal caleulations o
increase the number of seclions and 1o accelerste ihe calvulations.

**'Sirjctly speaking this is not correct, because generalty tori having a rational winding number are replaced, even under an infiniesmal
perierhaiion. by a stable n-cvele surrounded by elipric istands and an unstable a-cyele embedded in a stochasue laver. Hovever, the widthy v
layers become infinitesimalty smalt and Gence loviaile in numenical calcslutions when we upproach the integratle hmat.

" The eniselropic Kepier problem [73. 73) provides an crampic. where the hydrogen atom becomes wnautic oven under & very smi
perturhaton.

“of section, which eliminate redundant information from classical trajectories. At a fixed {scaled) energy

‘four-dimensional phase space spanned by and The Poincaré surface of section 18 .+
p . B -
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Y T

Fig. 13. Poincaré surfaces of section at ¢ = —0.8. ~0.5. 0.4, —0.3, 0.2 and —0.1 (from lefi to richt and top to bottom}. The sections ure the 1—p

planes defined by g = 0. Horizoatal axes measuze v —2¢p. verlicel axes measure p: the radins of the circles is 2.
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- The Poincaré surface of section for &= —0.8 shows thice important structures. The elliptic fixed
o pomt in the center of the surface of section, v = p, =1{}, corresponds to the p = { straight line periodic
orbit parallel to the field. The cllipses around this fixed point belong to quastperiodic vibrational
‘motion. These are separated from quasiperiodic rotational motion represented by the ellipses around
the fixed point in the upper and lower parts of the section. The positions of these two fixed points are
independent of £ and are given by (0, 2V2); they belong ro the z =0 straight line periodic motion
.perpendicular to the field. The separatiix dividing these two regions of motion accumulates wn a
hyperboiic fixed point located at {(£V2, U) {for & = ~»), which corresponds to the exactly circular orhit
in the limit e— —2, For historical reasons the straight line orbits perpendicular and parallel to the

' direction of the magnetic field have come to be called I, and I, respectively. The alimost circular orbit is

labelled . The labelling of rotating and vibrating motion becemes clear when we transform the phase
space portrail plotred for &= —-0.8 in the { V' —=2¢ew, p,)-coordinates into a “spherical” representation
defined by the radius R*=p] — 20" (w h1,h actuafly corresponds to the psevdoenergy of the »-
oscillator. see ¢.g. Delande and Gay {76]) and the angle ¢ = arctan p,/(V=2ev). Such a representativn
“Vis givea in fig. li which actually shows the same phase space structure as a physical pendulum with its
- vibrating and rotating modes. (see. e.g. ref. {73], p. 25)

- As we increase the scaled energy . irregular mouon appears fivst near the separatrix, as is clearly
visible in fig. 13 for e = —0.5. The separatrix is replaced by a stochastic layer, which filis a finite area in
the surface of section. As we further increass the scaled energy, this layer increases in size whereas the
large islands related to rotating and vibrating regular motion become smalier and smaller. Some new
island structures embedded in the stochasiic [ayer appear close to the large islands, but they disappear
quickly as e is further increased. Finally. for ¢ = —0.1. no regular structure is visible on the surface of
section and the classical m~ton is dominated by global chaos. Some regular motion is present even for
&> —0.1 (see section 3.4). but the related elliptic islands are so smali that they are not visible on the
scale of fig. 13 and their actual overal} size can be neglected for our purpose.
_ Haradﬂ. and Hasegawa [65] numerically measured the fraction of available phase space (i.e. the size
of the layer in fig. 13} in which the classical trajectories are irregular. The result is plotted in fig. 15.
Virtually. all of the phase space is regufar for scaled energies below £ = —0.6. Around &= —0.35 there
“=~i§"a rather sudden decrease to-zero in the regular fraction of phase space.

Fig. 14, Poincaré surfuce ¢f section in a “iphericai” representation at ¢ = -0.8.
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Fig. 16. Image of the interval defined by v=0. U=p,= 7 aiter (2) one. (b) two. and (¢) three recurre:ces 10 the g =0 surface.

While fig. 13 shows the long time behaviour of a few trajectories (the surface of section for ¢ = -{.1
was ¢.g. obtained by integrating a single trajeciory for a long time). fig. 16 shows the short time
behaviour of a bunch of tizjectories. Here the trajectories starting on the line defined by v=0,
D=p, = V72 in the p =0 surface are foliowed up to one (@), two (b) and three {c) recurrences to the
i =0 section surface. While the single iteration structure (a) is still relatively simple, the double
iteration (b) is already rather complex and the structure is compietely unsurveyable after three
iterations (c). Figure 16c demonstrates the build-up of a sclf-similar structure with increasing iteration
depth. The multiply intertwined foops in a comparatively smalt region of phase space are responsible
for the extremely sensitive dependence of the classical motion on the initial conditions: a small
deviation in phase space can lead us from one loop to a neighbouring loop so that e.g. reversing the
metion can lead us to widely separated points in phase space. '

3.4. Liapunov exponenis, periodic orbits and bifurcations

One quantitative measure for the degree of chaoticity of an irregular classical orbit is its Liapunov
exponent, which characterizes the rapidity of exponential divergence of nearby trajectories. A
praciicable way of calculating Liapunov exponeats is via the stability matrix as described by Mever |771.
For Hamiltonian flow in iV spatial dimensions the stebility matrix M(s;, 1,) is a 2N X 2N mateix which
governs the infinitesimal deviations Ax(r,} from a given orbit in phase space at time 7, as.a function of
arbitrary initial infinitesimal deviations Ax{1,) at time ¢, Ax(¢,]= M Ax{1,). The Liapunov exponent A
is defined via the norm {any norm) u{r,, 15) of M(t,. 1.)

- :
A= lim PR Inp(r,. 1), (28)
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bility matrix obeys the differentiai equation
. 3'H 0 1) | .
s, men=19=(0 gl | - )

can be solved numericaily in the general case and almost analytically if the potential in the
tonian has a simple analytic form [69, 77, 1261,

Zxhe Liapunov exponent defined by eq. (28) is a unique fuuetion of the classical trajectory, te. all
; lying on a given trajectory have the same Liapunov exponesat. It is particularly easy to calculate
eriodic trajectories, which only have to be followed for one pericd T. As the stability matrix
) is symplectic, its eigenvalues occur ip pairs of product upity —they are either complex
jgate pairs on the unit circle or a real number together with its inverse. If 8 is the eigenvalue of
_T) with the maximum zbsolute value. then the Liapunov sxponent of the periodic orbit is given by

n(|B))/T. C(28a)

4 stable periodic orbit A = the eigenvalue § is a complex number, 8 =exp(2wiy, ). The winding
' v, is the frequency ratio with which neighbouring trajectories wind around the periodic orbit in
s 'space. A stable orbit appears as an elliptic fixed point in a Poincaré surface of section. If A>0.the
f!'is unstable and appears as a hyperbolic fixed point in the surface of section. For positive
pvalues 8 > 1 we have an ordinary hyperbolic fixed point; for negative eigenvalues 8 < — & the fixed
iis ‘called inverse hyperbolic or a hyperbolic fixed point with reflection. o '
“Liapunov exponent of the straight-line orbit 1, perpendicular to the direction of the magnetic
‘is illustrated in fig. 17 as a function of the scaled energy. This orbit is stable (vanishing Liapunov
Wibonient) for energies below g, = —0.127 268 612. At this value of the scaled energy the last islands of
ity still visible at ¢ = —0.2 in fig. 13 vanish and global chaos sets in. The product of the Liapunov
hent A and the period T of the orbit then grows proportional to the square root of (g ~ ¢,) [68].

A= AT =13.53(e - ). - (30)

TR

0
-015 -01 -003 0 0.05 01 £

217, Liapunov exponent A {multiplied by the period T) for the perindic straight line orhil perpendicular to she field as a lunction of the scaied
gy {from rei. {68]). ' '




labelted I, I, 1,,. .. (see also refs. {62, 67]). As the cnavgy incresses, more and more of these orkits

- escape threshold £ = there is un iafinite sequence of such orbiis [68]. The first ive orbits of the sori

g
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At ¢ =0 formula (30) yicids A = 1.312, which should be compared with the exact value A=1.317="
arcosh(2). For very large values of the scaled energy (¢ > 1) . increases logarithmically with ¢ [13¢],
The product .4 = AT gives the rate of exponential divergence of neighbouring trajectories in units of the -
period of the orbit and is the Liapunov exponent of the fixed point generated by the surface of section
map of the periodic orhit. [n contrast to the Liapunov exponent A of the orbit, A Is an invariy
property of the orbit and does not depend on whether ihe eylindrical or the semi-parabolic representy
tion is used for the evolution of the classical trajecrories. :
Figure 18 shows the Liapunov exponent of the periadic orbit I, parallel to the direction of iie
magnetic field. This orbit is stable for scaled energies belaw ¢, = —0.391 300824 and then gees throug), :
a sequence of intervals aiternating between stability and instability [68, 63. 71]. Ar the points, where {
becomes unsiable, the orbir undergoes a bifurcation and gives birth to 2 series of non-straight-fine
orbits, which were identified by Welge and collaboraters {7, 8] and Al-Laithy et al, [70] and have been

corresponding to more and more oscillatious around the axis paratiel to the fieid are born, and at the |

at the threshold are showa in fig. 19. The straghi-ime trajectory |, ceases 10 be @ periodie orhit abwe
the escape threshold, where it becomes an ionizing trajectory. The arbits I, 1, 1,. .. . are born stabie,
but they soon become unstable and their Liapunov exponents incrense monctonically with energy. The
energy dependence of the Liapunov exponents is iltustrated m fig. 20. The points at wiuch the orbits |,
I,, I, ... becowne unstable correspond to bifurcation points where stable orbits are born. These crhu
do not have the symmetry of the series I,, I;, 1, . .. and no longer pass through the origin. The points i
at which the straight line orbit I, regains stability are bifurcation points at which unstable orbits a }
born. A deraifed description of the different possibie scenarios of the birth (and death) of periodic |
orbits at points of bifurcation or confluence is given in ref. [78]. '

In a chaotic system the Liapunov exponents (28) of the periodic orbits fluctvale around a mean
value, which is called the metric entropy A of the system. This entropy is equal o or larger than the ;
topological entropy 4,. which determines the prolileration of pertodic orbits as a function of ibeir |
periods; the number M(T < T,,) of orbits with periods less than T, increases roughly proportionai to
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Fig. I8, Liapunov exponent A, (caleulated in the cylindricat representanon. which desenibes Kepier clipses in the zero-field limic) of the peridic
orbit parallel w the magnetic feld a3 functien of scaled energy. The orhil repeedly beosmes unstable ai points of bidurcation, where stehk

ronstraighi-lae orbits {corresponding fu ciliptical fixed pomts shown schemstically w the insel) ame born,
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of bifurcations of Lhe orbit I, paraliel to the ficld. This figure shows the shapes of the orbits at the sscape threshold ¢ ={.
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exp(h T,)/T, [79]. This is ilustrated in fig. 21. For reasons discussed in section 4.4 below, it s

appropriate in the present case, where the classical dynamics is determined by the scaled energy ¢, to -

order the periodic orbits not by their periods T but by their (scaled) actions S(.s) defined in eq. (42).
Figure 21a shows, for &= —0.2, the Liapunov exponents A= AT for 132 primitive periodic orbits
plotted against their scaled action S. (A “primitive” periodic orbit is a periodic orbit which is not a
repetition of a shorter periodic orbit.} The figure includes periodic orbits with actions up to $=6. In
order to simplify the search for periodic orbits, we have confined out investigation to one-parameter
families by requ'rmo the periodic orbits to obey at least one of the following symmetries: (i) they pass
through the origin, (ii) they pass perpendicularty through one of the three symmetry axes, » =0, & =0
or v=p, and (jii} they are sclfretracing orbits (that is p, = p, =0 somewhere). Figure 21a showe that
there are two stable periodic orbits having a vanishing Liapunov exponent, but 130 unstable periodic
orbits. The fact that there are so many unstable periodic orbits is related to their exponential
proliferation in the chaotic part of the phase space (note that the fraction of the regular part of the
phase space is much larger than the fraction of regular orbits 2/132, see figs. 13 and 15). From fig. 21a

we estimate the average Liapunov exponent (A) of unstable periodic orbits to be approximately 12 ¢

times their action; thus the entropy h, is roughly unity. Although the orbits plotied in fig. 21a certainly
do not cover all the primitive periodic orbits of the system up to § = 6, one can expect that these orbits

have the same proliferation as all orbits together. Their proliferation is shown in fig. 21b, which gives = :

the number of orbits with at least one of the above symmetry properties. Note that in the dense part of
the figure their number increases exponentialy with a siope compatible to the value of the metric
entropy A,

10
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Fig. 21. (a) Liapunov cxporents and (b) number N of periodic orbits at a scaled energy of £ = ~0.2 plotted against their scaled actions § isee ey
(42) in the textj for values of § up 1o six.
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4, Quentarn mechardeal absarvahles and chaos
41, General vemarks on que:tiul LAy

In contrast to the unambiguous characierization of chaos in classicai mechanics, it 15 as yet nof clear,
pow the concept of chiacs s 10 be sensibly zpphed in quantum mechanics. A Glrect transpositun of the
concent of diverging rrajevinries to cuantum mechanicy i npossinlz, because trajectorics can ondy be
defined approvimately within the uncertainty governed by Planck’s constaat.

The role of Planck's constant in stiling chaes, or at least our classical notion of chaos, van bo
ilustrated with the help of g, 12, Fie 12b shows the linzs of constam scaied energy along which the
classical dynamics is the same to within a irivial similaity transicrmation. Moving along these lines
sowards higher field strengths y, te. lowards w iarger clfeetive Planck’s eonstant v # {see eq. 23), the
quantum specirum becomes spaiser and spasser until we ar2 le {1 with only one bound state cerespond-
ing 0 the zero-pomnt motior of the electron 1o the tvo-dimensional potential iflustrated ir fig, 2. This
happens ot only for nepative scaled) energies bt also around the zero-field thredhiold, where the
dassieal ¢onamics is definitely chaotic, and even for arhitzary positive energles . The reasos for this is
that the real wontzution threshold B = (bl + 1)v/Z {see section 2.2) fnrreases more ramidly than the
energy £ =~ along lines of fised scaled coergy e, and & drops pelow tie real thieshold at
y=[2e/(Imi+ 0. Since the binding energy of the ground state i & glven m” subspace, i, s
separation {rom the resi lopization threshold increases at mest logarithmically =ith y [i5. 25, 26], thére
is, for each vilue of the scaled 2nergy £. 3 crivical fald strenzih (Gepending uom” and £} ar which the
snergy £ equals the vero-noint energy i the respective pi7 subspace, (Chere are mo bound states of
higher ficld strengths.) Such a siogle bound state has little to do with our dassical notion of chaos.

At the other end. towards lower ficld strengths and a smaller effective Planck’s corstant, the
spectrum becomes increasingly dense and complicated. In this region it is possivle and worthwhile @
study the dependence of the very comples spectra and other quantus mechanical ctservables on the

“Tgeated energy and ro look for the manifestinion of cizssical cheos in guanium mEChamics.

%
[
E,
I

4.2 Energy leve! statisiics

Many model caleulations have. in 1ecen. years. shows that the regular or cheotic nature of the
stassical dvnamics of e bound sysiew manifests fself in the siatistical propertics of the energy level

tiad
specirin [A0-33]. Eoergy spectra can be expressed in temsng of the spectral staircase fonction N{E)
: J =Y : ¥ L
defined by

Ny =2 OE - E). (31)

Tae propertics of ihe spectrum are divided Infu w smooth pett K. 15} related tothe mean level densit
n, (Ey=dN 'dE, and 2 fluctuatin {irrence between ME) and N,
in order 1o olinunaie aficcrs dug 1o variations of the smanth wmean level vensdty it is customary 1o study

g part which aceounts w7 the

L i : .t 1o A IR 0 g gt
the Ayrtpations in the endolded sracitum
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«iich has a constant mean level density cqual to unity. Asymptotically (for targe quantum mimber;,
: smoath part N, 15 given by the semiclassicai rule. that each quantum state of a d-dimcnsmn;e'
< stem occupics a volume (2+#)° of the total phase space [, [
Statistical measures frequently ased in characterizing {evel fluctuations are: L
(i) The disiribution P{s} of spacings » between adjacent levels [nearest neighbour spacing {P\‘Ngi}}
distribution]. The probability £{<)ds is the probebility for inding a separation of neighbouring lev,
between s and 5 + ds.
(i1) The number staustics (L) of the disiribution ind the moments associated with it. Given g

interval [@, o + L] of length L. n{L) counts the number of levels within this spectral range. Aveiugi, ;.

over the spectrum viclas vanous moments of the distribution such as the variance 3,(L). skewng@¥
1 {L} and excuss y{L). :

(i) Spectral rigidity 3,{L) of the spectrum. Given a substreteh [a. o + L of the spectrum, A, (Y
measures the mean square deviaiion of the speciral staircase fupction from the best straight Hae 11 mi'_s

s
¥

AfLe S min J iNte) - Ae — Bl de RUEAL

Note that through the transformation (32) we are dealing with spectra whose average part i the

identity. N (e} = ¢ but lor finite scgments of the spectrum the best struight dine it may depend stghif
on &. Averaging over g gives the rigidity 4,(L). 4; is related to the vanance I, by 4 non»invr:n;hle%*
integrai transformation, iis
The functional forms of the measures listed above are known analytically for some specific mady
spectra. Two kinds of spectra are particulurly important: (a) (Uncorrelated) random level spectnfo
{Poisson spectra}, (b) random matrix spectra. In the latter case one distinguishes between ensemblies of
real symmetric random matrices (Gaussian orthogonal ensemble - GOE) and znsembles of Cr)mp!exi :
Hermitcan random matrices {Gaussian unitary ensemble - GUE). The GOE ensemble is the relevany
one for the hydrogen afom in a uniform magnetic field, because the Hamiltonians in each yn™ subipace
(see eq. 5) are represented by real symmetric matrices, Spectra belonging to the above classes share
universal fluctuation properties. Their NN§ distributions are given by an exponential ‘

P(sy=e¢"" (3)
tor Poisson spectra,-and approximately by a Wigner distribution

- 7574

P(s)=lase (33)

for GOE spectra. Asymiptotically (targe L) the spectial nuidity is given by

A(L)=L/1S for Poisson spez‘tra : : /36)
and by

AL x(l/wz} in L —0.067  for GOE speaira.

Analytic formulae for the moments of the level distiibutions are more complicated and can be foundg
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o c.g in Bohigas ev al. [Moj. A gruphical presentation of them will be given in the discussion of the
)naj " W . R M
results. o . o . . : |
 The physical maotivation Ior studving level Sectuations accumilates 2 conjecture which was first
q E jormulated by Bohigas et al. |80]. namely that the appearance of universal fuctuaiion patierns in
S gantum spzcira s linked to the global wtruciure of the underlving ciassical dvaamics: tevel spectra of

4 glassicaiiy chaotic systems share random marrix tluctuatens, while integrable svstemes show fluciuations

Characterinic for sundom (Poisson’ spectra

b,a",j_k_ In the second half of 1986 three papers [87--8¢] uppeared. in which stutistical properties of ihe enerey
A : jevel spectra of the hyCrogen atom in a untivin magnetic field were studied and compared with the
*predictions ot statistical theeries. In these endiest papers, the scaled energy was not yer established as
18 the natural patarieter governing the ciassical dvnuwnics, so refs, 163, 89] studied spectra at fixed fa1d
'_L.};. strengths, winch meant that ¢ach spectium covercd a Bnite range of nponeguivalent classical systems.
VI peferences [87. 83] studied spectra at ronsiant values of tae encrey divided by the finid «renath,
pecause this is jusi the inverse of the effective coupling strength in the quantum mechanical teatmert
33\'=.' (see section 2.3} constant £y is actnally wot fur fr_um. c\,u'.s!.ant‘suaied CRETY. in _parf.j:::a!af near the
[ ero-field threshoid. Independently all three wvesiigations eonfirmed that {he NNS disinbutions are
cclose to a Peissun distribution for energies where the classical dvoamics is regular, and close to a
the; Wigner distbution around the zero-field thresheid. where the dassical dynamies s chactic,

wly;  More detailed studices (%0, 91], now ar fixed values of the scaled eaergy. mvestgated the tranuition
blef from the regulac (Poisson} 1o the irregular {GOE)Y regime. As an exampie fig. 22 shows various
: statistical quantitics ar a scaled energy of £= =01, where the classzeal dvnamics s governed by globai
del, chaos. From left to right and top to boiiom the fizire shows the NN3 distributicn histogram P{s}. the
peemulative spacing disiribuiion |, Plu) dx (which docs not Cepend on the histeormn sien size), the
o spectral rigndity A, the nwaber vanance X, tne skewness y, and the oxcess v, ol are shown topethe:

=
o

18

P
=
I

ant; from various m” sabspaces (o =G, 2,30 7= =0 eept Tor the
et amalyzed eparately for the wwo diffzrent r-panties. becanse o soticzable
are; observed. Altogether approximarely 3000 leveis ontered the analysts.
i There 55 generaliv close oversil agreement borween the resulta <hown ui fig. 22 and the predictiuns o
random matrix theories, and this confirms the hypoihesis of universal thuctuation paticros o the
M) quantum specha of slassically chaotic -vatenr Fowever, there are soms devintions for azge valis of
L, in particuiar [ov d.and 2., These are related 0 a breakd wn of nnversality when L becomes fager
cthan some corrclation length ... A semiclussical theory which accounts for these nonuniversal
fdepartures has been developed by Bens [Y2-94] en ihe basis of Gutzwitier s cenodic oibit theory (see
15)gsection 4.4). It not only gives the saime results as the statistical theorics for L < L, but aiso predicts
the correct asvmptotic belaviour for L » L. where random matriy theori-s fal.
[ For the spectral migidin Jd, the seimiclissics] theery predicis asvmntotic saturation. fgure 23 shows
the caleulated speetial rigidity on a facper scale of L-values, again analyzed separzizly withraspeet to
;(j)-.ihe z-panty. Obvioasly boy curves salurae asymptotically. bal they converge 10 ifferent values
torresponding to a parity splitting of (.040(2). Again this can be understocd wittin the framework of
the semiclassical theory, The origin ¢l the panty dependent saturation vatues are pericdic orbits lying
ULDH exact symmetry nes of the Hamiltonian. Theit influznee on the spectrum s different in subspaces
" belonging 10 different guaatum numbers sssociated with these discrete svimmetrice. " A il

. [ TR T
Joowich v

] . . . . . M
P This 15 wevked ol quantitstivaly in section 340

).
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Fig. 24. NS distributions P{x} for sealed energies £ varving from (.4 to 1.1, The solid lines show adempts io i the histograms with Brod; s
1} formauta (35), the dashed jines represent the interpolatton fermola of Beery and Robmk [v6]. (From .- [H0}.5
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wiich interpolates between the regaiar Poisson disiribution (g = 0) and the irregular Wigner distriby.
tion {g = 1) and is represented by the solid lines in fig. 24. Also shown in the figure are attempts to fit
ihe histograms with a distribution propesed by Berry and Robnik {96] (dashed lines), which is obtaineg
by the independent supemosition of a spectium obeying Poisson statisiics with weight g and a spectrum |
obeying Wigner statistics with weight 1 — g. Although the idea behind the Berry—Robunik distiihuiicy .
seems very reasonable, the fits were penerally poor compared to fits obtained with the Brody '
distribution. One reason for the poor performance of the Berry—Robnik distribution in the present Cug;
is. that the levels belonging to the reguiar part of the specttum do not cbey a Poisson distribution. tur
behave mors Lke the levels of « two-dimensional hdrmomc oscillator [91}. :

More detatled investigations reveal that the transition from Poisson to Wigner statistics in the N wa
distributions is not 2s smooih as might be expected from fig. 24. It seems to be difficult if not impossible }
to find a quantitative description of the NN5 distributions in the transition regime between reguiarity E
and irregularity. The reason for thiws is that the spectral statistics can depend sensitively on. nonumiversal, :
systern- spec:ﬁc details of the underlying classical dynamics [91]. This can be seen more clearly in other :
statistical ineasures shown in figs. 25 and 26.

1.0
08+
06 '
r 7’
Iy ! .’-‘ o . - -
g4t ,///.»ff’f ~0.20
L 5 e T
S e -015
0.2 %/
CIC' :L/.___L_-_L__ FUUES NN | i Ll ) i b
] 5 iC 15 26 25 I0 35 40

RO
S
T,
s
g i
cﬁ"} '
—l’é:*
=
)
o)
[w]

g / r’; S W,w‘“ W il
t a mﬁ#ﬁwvh‘m Wti‘

,meMM‘ WH&W%WMWWWWV

L -0.28
O:I A G d demd b i 3 L I T T G S 11
O 3 ' 15 20 25 30

Fig. 2o. Number variaace 2. 3. function of L For three values of the scated ensrgy = (From ref. {91])




H. Friedrich amd D. Wiragen. The hvdroger aiom in @ uriferni magneiic field - an example of chaos 67

Figure 23 shows the spectral rigidity A, for various values of the scaled energy e. together with the
redictions of the Poisson and the GOE cases. In the nonsaturated region L <5 one clearly sees the
. gansition from Poissor to random matrix statistics as £ 1s increased from —0.4 to —0.15. However. for
& jarger values of L. the spectral rigidity at ¢ = ~0.3 does not conform to the general trend and saturates
o much farger value than that observed for the other values of £. An even more dramatic deviation
" gom the general trend is observed for the number variance X, shown in fig. 26. At ¢ = —0.3 the number
. yanance 2.{L} might be expected 10 be a smoothly varying curve lying between the corresponding
. curves for 6 = -0.23 and e = ~(L33; however it s a strongly oscillating curve which lies well above the
other two curves for L >3,

- These deviations of various statistical measures from a smooth e-dependence nezr £ = —[} 3 can be
readily explained within the framework of Berry's semiclassical theorv as a consequence of the
roperties of certain stable periodic orhits {91]. The extraordinary features observed at £ = —{.3 can be

traced to the stable periodic orbit perpendicular to the field (I,}, which accidentally has a low rational
- winding number at this value of £. This causes many systemaiic near-degeneracies in the regular part of
* the spectrum (see scction 4.4). which naturally has a strong influence on the number statistics.
- The statistical analysis in this chapter applied to the fluctuating part in the density of states. Other
phySlcal quantities can also be considered. Recently Wunner et al. [141] studied transition strength
- fluctuations (d;stnbutlon of oscillator strength) and again found good agreement with random matrix
predictions. The same 15 to be expected {or the decay widths of resonant states above the ionization
fimit. Randorn matrix theories predict very narrow decay widths as the most probabie ones. A quantum
mechanical mechanism to obtain such long-living states was given by Friedrich and Wintgen [46].
- Recent experiments seem io confirm the existence of these narrow states {142].

“To summarize. the statistical measures studied in this section follow the universal predictions of
statistical theories quite well, as long as the level fluctuations are analyzed on a small scale. Agreement
F is-good for local properties of the level fluctuations. On larger scales however (global properties).
. nonuniversal features reflecting special properties of the underlying classical dynamics. become
- dominant and may lead w0 extraordinary behaviour of the statistical measures. it tums out that the
- knowledge of the classical periodic orbits is useful and necessary to understand the complex specira.
¢ The influence of periodic classical DIbHS on the properties of quantum spectra is discussed guantitatively
- inthe next two sections.

4.3. History of the quasi-Landau phenomenon

The discovery of aimost equidistant peaks in the photoabsorption specira of atoms in a magnetic field
[56] played a major role in generating the widespread attention given to the problem of atoms in
magnetic fields in recent years. Near the ionization threshold the scparation of the peaks is roughiy 1.3
times the cyclotron energy fw_= 2fw. which corresponds to the separation of the Landau states of free
electrons in a magnelic field. hence the name quasi-Landau oscillations. :

Soiutions of the one-dimensional Schrddingsr equation for an electron moving in the plane
perpendicular to the magnetic field actually give energy levels with a spacing of roughly 1.5 times fiw_.
is was soon found out on the basis of semiclassical (WKB) investigations [97~99]. The early success of
this simple explanation of the spacing of the quasi-Landau peaks led to the widespread view that these
peaks werz due 10 resorant photoabsorption into individual quantum states in which the motion of the
tlectron is localized in the plane perpendicular to the direction of the magnetic field [18, 57. 98-102].
This picture was also consistent with abserce of quasi-Landau peaks for transitions into m” subspaces

).
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with ~egative o-parity. because the negative parity wave functions all vanish in the plane perpendiculy
v the field, Tt owas shown later [67. 1031 that the disappearance of quasi-Landau structure 10 SUDSpaces
with negative z-parity is a property of the transition operatar involved and not of the final state density,

First ah 1eitic quanism calculations of states a: the zero-field thresbold E =0 and at field strengthg
somewhat higher than leboratory field sirengths showed that the above picture of a quasi-Landau peag
o5 due o n single quaptum swate with o dominant oscillator strengfth s at best a severc over.
simpiificetion {104] The guasi-Lindau region i Righiv trrepniar, «nd it is in general not possible i
arrungy the spectrum i sicple sequences ot bound o1 resonant) states. On the other hand. the

AR

experimental dawa on the quasi-Landaa “resonances” saowed smoothly modulated <ross sections ang:

did not necessarilv inpry an identification of the modufation peaks with individual quantum states. The

expermentaily observed quasi-Landau oscillations can in fact be related to the (classical) motion of the ¢
siectron in the plane perpendicular to the fiekd without invoking the existence of prominent individual |

quanium states at the peak positions, as is described befow, : _

One way of correlating modulations in the cross sections with closed classical orbits ts the picture nfy
wavs packe! recurring 10 118 starting point after each fraversal of the closed ordit. The modulation peaks
are e 1o constructive interference on recurrence. wnd this accurs when the “resonance condition”

. Lol _
ME =5 f pdr=n (39

is fuifilled [103--10%]. This resonance condiiica is not a guantization condition defiming the energies of
individual qaantie staies, but it can delerming the posiiuns of modulation peaks in Cross sections o
specttal densities. This weneral picture 1s nei oniy appheable 1o the quasi-Landau modulations of ators
in « magnens fiehd, but also to a varlety of other physical =3>1ems showing similarty modulatad spectra.
e.0. atons in external electric felds [109. 11 126 143]. aepatively charged ions in external fields
[111-113i. the spectra of the HY [113} and the H.0O molecules {134,

The interest in the quasi-Landau phenomencn reccived a boost after 1986, when Welge and
coltaborators studving photoabserption spectia of atomis hydrogen reported a new series of more
closely lving peaks for wansitions wto m” subspaces with negative z-parity [7]. These peaks conld be
cafuted via the resonance condition (39} to the fust orbet [, of the series of non-straight-ine periodic
orbits shows in fig. 19, Fourier traasforming the messured cross sections soon revealed a whole sciies
oi modu'ation frequencics, and these were correlated with the other orbits of the series (3}

4. Huizwidder's trace formula

A guantiiative deszription of how periodic classical orbits influence quantum mechanical observibles

5 providad by a theory developed by Gutywitier [79, 116-118). Baitan and Bloch [{19} and Berry unc
coworkers [120-122] Tius theory is a semiclassical approcimaton of Feynman's pain integral formal:m.

[123]. The quantum mechanical specirs:! density

HE)= 2L~ E) (N

'
!

iy written as the sum of a smoetn part A (). the mean kvel density. and o fluctuanng pait. The
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In contrast. studying quantum spectra as functions of the (non-seated) enzrgy E at tixed feld sirenpths y
involves averaging over a range of scaled energies determining the clussical dynamics, and Fourier
transforming such spectra feids to broadened peaks i the ume domszin, the locations of the peake
being given by the periods of the orbits. These peaks may be washed out. huwever, because the perieds
of the orbits depend on the cnergy.

Power spectra (i.e. squared Fourier ampiitedes) of the fluctuating part of the energy level density are
shown 1n fig. 27 for various m” subspaces at the sealed energy « = 0.2 The power spectra do indeed
show several sharp pul}\\ which vin Le correlated with classicat orbits. A remarkable feature in fig. 27 is
that the power spectra in the different #:7 subspaces are zimost wderuceal, altheugh the deils of the
underlying spectra are of course quite different. The reason for the similuriiy of the puwm speoira is,
that the scaled azimuthal quantum numiber # = 3" "in becomes nealigibly ~mail i the dense part of the
spectrum {small ficld strengths) so that the classical dynamics becomes ‘ndependint of m. (Now
however, that the peak at § = 1.38 s strong for iz =0, {ess pronounced for mo= 1 and ulmost ab 2t in
the m =2 subspaces. This point wiil be discussed later in this secilon. )

For » more quantitative analysis it 1s vsefan o recall the deavation of the wace formula {41). The
density of states can be expressed as the truce of the Green's function

n{EYy = ~Imf(1/m) Tr G(E)] (43)

The Green's function is the Laplace transterm of the time evelution propagator K,

i ! 2 I, -
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~{i R )HY -
K(y=e o (47)

In Feynman’s tormulation of quantum mechanics [123| the propagator is expressed as a path integral.

¥

‘
Kig.g' 0= " ] et (48)

o

.
where W= [{ L{g, ¢) dr is the action writlen as the time integral over the Lagrangian. The semiclassical
approximation consists in evalnating the integrals by the method of stationary phase, which vieids
signiticant contributions to the density ot states {rom the ciassical periodic orbits only These orbits
coatribute sinuseidal corrections to the mean level density n,,, which is given by the size of the energy

l sheil in phase spece

- o 1T, < exp{iftS, ho— g, 7i2)} _ :
nE)=n,(E)=1m 2, iy 4.11 e i~ T (49)
’ P Lo, 43 .

Equation (49) is the so-called trace formula in which the sums run over all primitive periodic orbits r
with pertods 7 and actions §, and over all repelitions j of the primutive orbits, u_is the respective Morse
index and M, is the 2 x 2 arabﬂm matrix describing the time evolution of transverse displacements aif
the periodic orbit.*' The eigenvalues of M. define the type of fixed point of the periodic orbit in the
Poincaré surface of section. The determinant is given, depending on the type of fixed point, by

det(M’ - 1) = 4sinh*(jA/2) hyperbolic ,

| = —dcosh(jA/2),  invesse hyperbolic | (0)
= —-4sin’( jmy, ), elliptical ,

A=AT is the Liapunov exponent of an unstable orbit in the Poincaré map, and », is the winding
number of a stable orbit {see section 3.4).

Two modifications aré necessary if the Hamiltonian has discrete symmetries and if we are studying
spectrs i subspaces of cigenfunctions of these symmetries. Firstly, the Green’s function has to be
adapted to the symmetries before taking the trace in eq. (43). As a consequence. periodic orbits can
contribute e.g. with hall-integer traversals (corresponding to j=1/2, 3/2, 3/2, ..), if the orbits are

: invariant under these symmetry transformations.**’ Secondly, penochc orbits which are selfretracing
| along symmetry lines contribute differentiy to different discrete subspaces. This can be seen by
; expanding the amplitudes of e.g. an unstable orbit, eq. (30)

1 d .

i (k124 ) 3
———————— = e - ‘ : 31
2sinh({j4/2) Zn L

Equstion (31) gives the decomposition of the amplitude in {50) into the various harmonic excitations

© M s ebuzined from the full 4 x 3 manadromy matre (29) by an orthogoral transformation {116].
T Generally, if the undeslying poteatial bas @ O -symineiny then symaety-imvaniant penodic orbits can contribute with the nth part of their
totel leagti. fn our case n =2, see eq. (1)
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k perpendicuiar 1o the orbit. (-1 )" defings the "ol parity of the rransversal excitaticas, If mis loca
parity coincides with an exact discrete symmetry of the Hamilfonian. wz. the symmetiy orbits 1tseld,
then the amplitude (51) has to be split into its odd and even parts by resumuming over odd aad even
values of k separately, In the pesent system, the straight line orbits perpendicular and paralle! to the
field (I, and 1) are such selfretiacing orhits along svimmetry jires. The latter modification is the reasen
why the peak at § = 1.58 in fig. 27 beuomes jess pronounced with increasing azimuthal quanium numoer
m.*' This peak is correlated 10 the pericdic orhit 1, paralle! to e fizld, which is unstable at £ = - 0z
Since the scaled azimuthal quantum aumber = +" a1 teads 1o cero for high excitations, the classioe
dynamics is quite generally independent of m. The main effect of the azimuathal quantum number is it-
influence on the behaviour of the wave functions near ¢ = 0. which is given by @ & p™™' Thus one has to
cum over odd or even k= m in eq. {51). The corresponding amplitudes then differ by a-facior

(ery _ ¢ _5ym il {nr="1 ._ R
dy ; -( I} € . ; . (

L
I~

The minus sign 2pplics because the fixed point is inveree Iyperbolic. Thus the peak telongmg o the
orbit paraliel to the feld becomes expanentiaily damped with increasing .

The same decomposition of the amplitude has to be performed for the periodic orbit 1, perpendienlis.
to the field. However. at & = —0.2 this does not affect the heights of the related peaks in the powe:
spectrum, because the orbit is stable at this scaled energy. Expanding the sine in eq. | 500 vielas
amplitudes which differ only in phase '

P - =i, - :-'«.‘il
_1,“,/&‘” e ) {=:

Thus the peaks in the power spectram are of the same mzgnitade for the arbit 1,. in agreement with 5.
7. This is different of course when the orbit becories unstable, 2.g. at & = -§.1, where L, correspon;
to an inverse hyperbolic fixed point in the surface of section and the Liapunov exponeni of the Poincare
map is .1 =0.6080. Thus eq. (51) predicts modulations with amplitudes differing by « Ly = =054
the value found by Fourier-iransforming the specira belonging to different z-parities is in fact —0.54.
This connection between the quantum mechanicai spectrum and the propertes of the classical orbits
means that we can determine the Liapunoy exponent of the periodic orbit {wiin an accuracy of 19%) and
the type of fixed point in the Poincaré surface of section by solving the linear Schrddinger equanou
without having to foliow the nonfinear evolution of the classical dynamics.

The effect of symmetrization of the Green's furiction on the spectra can be iftustraied by contrastine
the power spectra shown in fig. 27 with power spectia derived from parity-mixed level sequences oy
shown in fig. 28. Although the orhit T, pe pendicular to the fieid has the shortest scalad actiou

5 (e= ~0.2)=1.03305, of all periodic orbirs. the power spectra in fig. 27 show a sharp peak at the

smatter value 7 =0.62 in each m” subspace. This valuz carrespends 1o the scaled action for half .
taversal of the almost cirenlar orbit (T} (the pumerical ¥alue i 18.=0.517230) which is symmertic
under a coordinate rotation through the engle . This peak vanishes exactly 10 the Fouriet iransform of
the parity-mixed spectrum containing all levels of the m "= (" gnd the m” = subspuces together [z
28). In fig. 28, the almost circular orbit manifests itself onby at scaled actiens f(. = 1,234 60, ”;
2,469 20, .. . corresponding to full traversals of the orbi

The peaks in fig. 27 can be fully accounted for by the trace formuta. Each peak fan be assods

Al

ALl

**This modificalion also canses the shrved party depeadenies of fhe satistical measuies discussed i section 1.2
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Fig. 28. Squared Fourier transform of the fHuctusting part of the energy level densits for the spectrum consisting of all fevels of the A" =07 and
‘m" =07 subspaces wgether.

with a classical periodic orbit, and for each periodic arbit (with a scaled action in the range covered by
the abscissa) there is a corresponding peak in the Fourier transformed spectra. The locations of the
peaks agree with the directly calculated scaled actions of the classical orbits typicaily to within a few
-parts in 10°. (For further details see ref. [128].) Thus the semiclassical trace formula provides a simple,

selegant and powerful way of quantitatively explaining the quantum spectra in the low frequency.

“domairl.
<" Having established the idea that quantum spectra can be decomposed into oscillating contributions
-associated with classical periodic orbits, one might try to use the classical orbits to.cakeulate the
quantum level density. In order to obtain the full semiclassical spectrum one would have io sum over ail
speriodic orbits including arbitrarily long periods or rather large scaled actions. To do this numerically is
.a hopeless task. In order to obtain a complete knowledge of the periodic orbits one needs to know the
symbohc organization of the periodic orbits [129]-or at least an algorithm to find all of them. Unti very

“tecently such coding schemes existed only for some Hamiltonian systems without bifurcations [74, 130,

~135]; the symbolic orgammtmn of the periodic orbits for the hydrogen atom in a uniform magnetic fiela
_has-been worked out in ref. {136]. However even in the limit of including-all periodic orbits in the trace
formula, it is not clear whether the sum would reaily reproduce all the defta-function spikes associated
with the true quantum Jevels [122. i37]. The reason for this is that the trace formula is certainly not

.-absolutely convergent. Presumably it is not convergent at all so that it can be used as an asymptotic sum
“only {138]. Incorporating the symbolic organization of the periodic orbits together with refined
summation techniques may however give the analytic continuation of the trace formula. This is
-indicated by some recent work in refs. {129, 139].

The complications of a summation over ali periodic orbiis can be avoided if we include only the
%nmpie%t orbits in an attempt to generate a finite resolution densuy of states. the resolution being
‘determined by the longest period (the largest scaled action) amongst the orbits included. Figure 294
“shows the minimal version of such a calculation [131]. Only the two simplest periodic orbits. I, and C.
“are included and their contributions from up to one full traversal vield the thin solid line. The \]T]U()fhf\.]
“fluctuating part of the exact quantum mechanical spectrum is shown as the thick solid line (for more
details see ref. [131]). Figurc 29a shows that this minimal calculation based on only twd classical
periodic orbits is able to reproduce the gross structure of the quantum spectrum with remarkable
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Fig. 29. Finite resolution spectra {thin-solid lines) obtained an the basis of (a} the two shortest periodic orbits and (b) including periodic orbits wish ¥ 5
scaled actions up to three. The vertical lines in the centre of the figure show the energies of the first few quantum stares {from ref. {t31)).

accuracy. Figure 29b shows the results of a more involved calculation where the sum in the trace
formula includes all periodic orbits with scaled actions less than Smax =3. This results in nineteen
contributions from thirteen primitive orbits. Again close agreement with the smoothed quantum
spectrum is observed, now on a finer scale. '

Figure 29 demonstrates that the trace formula is abte to reproduce a finite-resolution density of
states. In spectra] regions where the resolution becomes finer than the mean separation of states, the
peaks appearing in the level density are due to individual resolved quantum states. This is the case for
v 17 <4.5 in the figure. The exact quantum eigenvalues agree with the peak positions to within a few
per cent of the mean level spacing, even down to the ground state. This is somewhat surprising, because
one does not necessariiy expect semiclassical theories to be accurate near the ground state {131]. In
addition. excited levels dp to the ninth eigenvalue are predlcted quite accurately by the simple sum
including only thirteen classical orbits.

. Periodic orbit analyses of quantum spectra have been performed not only for the density of states,
but also for calculated {67, 107, 108, 126] and measured [7, 8, 132, 133] photoabsorption cross sections.
These cross sections depend on dipole transition matrix elements involving an initial wavefunction
which, compared to the wavefunctions of the highly excited final states, are confined to a region very
close to the origin (i.e. the nucleus). In the appropriate semiclassical treatment only such classical orbuts
are important which start at the origin. Recall that. because of the Coulombic nature of the potential at
the ‘origin, all orbits which recur to the origin retrace their path and are hence periodic. A complete
listing of all periodic orbits passmg through the origin and with scaled actions up to §=4 at the
zero-field threshold £ = 0 is given in tef. [67].

Gutzwiller’s trace formula for the fluctuating part of the level density, and corresponding formulae
for (the fluctuating part of) other observables such as photoabsorption cross sections, establish a
connection between periodic classical orbits and quantum mechanical spectra. In particular, isolated
periodic orbits with short periods or small (scaled) actions lead to peaks in the quantum mechanical
spectra, ‘and the positions of the peaks are determined by a resonance condition resembling a
semiclassical quantization condition. The observed correlation between so-called “quasi-Landau resc-

\u
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aces’” and classical periodic orbits thus has a sound theoretical foundation whlrh reaches deepcr than
ly interpretations based on one-dimensiopal WKB calculations.

arrive at a semiclassical understanding of “chautic’’ wavefunctions is 2 much harder task (see e.8.
[144,145]). A theory based on Gutzwiller’s idea has bzen developed recently by Bogomolny {146).
stigations currently in progress for the hydrogen atom in a magnetic field again indicate that the
iodic orbits play an essential role in understandmg the complex stricture of the wave functions {141,
,'148].

Summary

The hydrogen atom in a uniform magnetic field is a uniquely simple example of a real physical
stem showing all the features currently causing excitement in the feld of small dynamical sysiems
ibiting classicaily chaotic dynamics.
The quantum mechanical Schrodinger equation has been solvcd numerically with high accuracy for
:bltrary field strengths and energies very close to or up to (depending on field strength) the zero-ficid
reshold. Within the accuracy of experimental measurements, the calculated spectra rcproauc:. specira
rved in photoabsorption experiments, and this connection to a real laboratory system gwes added
weight to all conclusions drawn from a theoretical or numerical analysis.
- In the plane spanned by the energy £ and the field strength y there is'a perturbative regime of low
1d strengths and excitation energies, where the quantum mechanical levels in each m” subspace can.
labelled by the quantum number # of the manifold of unperturbed (i.e. field-free) hydrogenic states
from which they evolve, and an intra-sheil label k counting the states in each manifold, In this région
-Hamiltonian is apprpxnmately separable and the label & is associated with an add:nonal approximate
tegral of the motion. The region of approximate separability actually extends well into the n-mixing
ime, where various n-manifolds overlap. Approximate separability breaks down as we approach the
ero-field threshold at E = 0, regardless of field strength. At very high field strengths where the energy
f a Landau excitation perpendicular to the direction of the magnet}c field becomes compatable to or
irger than the Rydberg energy, the system becomes s:mpter agam and can be accurate!v descnbed by
expansion in coupled Landau channels. A
“The classical dynamics of the hydrogen atom in a umform mdgnetic ﬁvld does not depcnd on energy
and field strength y separately bat is determined, to within a trivial similarity transformation, solely
by the scaled energy & = E/y*"”. Near the field free limit £-~» — the classical motion is regular and
I _“Zeonfined to invariant tori. Around &= ~0.35 there is a comparatively sudden transition to 1rregui“
-(chaotic) motion, with the last elhpttcal islands of regularity disappcaring at &= --0.127268612.
“Increasing chaotncnty is expressed in an increasing fraction of irregular orbits in phase space and also in
:Aincreasing Liapunov exponents and increasing numbers of periodic orbits.
.= The classical transition to chaos is accompanied by corresponding transitions in statistical properties
---.-fof the quantum spectra. Fine scale quantmes such as nearest nc1ghbou: spacings show the expecteu
“transition from the expectations associated with random level spectra in the LlabSlCd"y regular region to
"';'.:spectra associated with random matrix ensembles in the LlubSlCd:!y chaotic region. For statistical
- Quantities depending on correlations of somewhat longer range in the spectra, these tra.isitions are
- ."however not at all uniform and show a sensitive dependence on system specific non- umversai properties
:such as the occurrence of prominent simple periodic classical orbits.
=<7 A knowledge of the periodic classical orbits of the qystem is important for understandmg the genera!

T
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structure of the quantum level spectra and of other observable quantities such as photoabsorption
spectra. The connection between quantum spectra and .periodic classical orbits is quantitatively ¢
expressed in Gutzwiller’s trace formula. Finite resolution -spectra: can already be described quite
accurately using the knowledge of only a small number (two) of simple periodic orbits with short |
periods or small actions. We now understand, that the modulation peaks in photoabsorption spectra, ;
which have long been known under the name “quasi-Landau: resonances” are, together with the |
multitude of more recently discovered further modulations, simply a manifestation of the occurrence of |
prominent unstable periodic orbits in the classically chaotic region.
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