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1. Introduction 

During the past few years considerable interest is maintained to the far 
infrared (FIR) investigating of the collective oscillations of two-dimensional 
(2D) plasmas. Though the interaction between electromagnetic and plasma 
waves is by no means brand new in physics, its 2D version possesses a number 
of rather interesting and attractive peculiarities. The main point is the possibil- 
ity to vary nearly all characteristic parameters of 2D plasmons over a wide 
range, whereas the most essential parameter, which is the areal charge density, 
can be varied over a few orders of magnitude. Hence, the frequency of 2D 
plasma waves can be continuously tuned over a range more than ten times 
wider than the frequency itself. Thus FIR optics is a very interesting tool for 
resonant experiments, and various physical and technical applications are 
expected to be possible. 

The purpose of this paper is to survey the theory of processes in which 
optical activity of 2D plasmons plays an essential role. The appropriate 
experiments (if available) are described only in principle, without technical 
details. 

2. Plasma oscillations of 2D electron gas 

There is a rather large number of theoretical papers devoted to the deriva- 
tion of the dispersion law of 2D plasmons (for a bibliography, see Ando et al. 
[1]). Here a simple and clear way is used that allows one to track the arising 2D 
plasmons as a limiting case of the usual 3D Langmuir oscillations. To this aim 
one has to consider the eigenmodes of a plasma slab of finite thickness L. The 
slab is supposed to be embedded in a dielectric medium with permeability E 
and confined by the planes z = + L /2 .  If retardation effects are negligible (the 
criterion will be given below), the problem becomes purely electrostatic: we 
have to solve the Poisson equation for the potential (P(z) in three regions: 
z < - L / 2 ,  I zl < L/2 ,  z > L / 2  and to match properly 9 and 3~?/3z at 
z = + L /2 .  In the region [ z [ < L / 2  the dielectric constant e for the frequency 

is equal to that of a free isotropic plasma 

C = C 0 - -  0-~2/~0 2, ( 2 . 1 )  

where 0002 = 47re2Nv/m is the 3D plasma frequency, N v is the bulk density of 
electrons with mass m and charge e. By making use of the Fourier transforma- 
tion of ~b(z) with respect to z and y we get 

d 2 q ~ k / d z  2 - -  k2q~k = O, (2.2) 

where k is the two-component wave vector of a plasmon. 
The solution of eq. (1.2) may be chosen in the form 

q,k(z) =A  e x p ( - k l z  + L / 2 ] )  + B  e x p ( - k l z -  L/21 ) ,  (2.3) 
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with A and B being arbi t rary constants.  After  the boundary  condit ions are 
satisfied we obtain  the dispersion equat ion 

2 
= _ )z e x p ( - 2 k L ) ,  (2.4) 

which gives two branches  of frequencies ¢0 (k) :  the symmetr ical  b ranch  (A = B) 

0 ~ 2 ( k ) -  (~0o2/2~0)(1 - e - k L ) ,  (2.5a) 

and the ant isymmetr ical  b ranch  (A = - B )  

~02_(k) = (~0o2/2eo)(1 + e - k L ) .  (2.58) 

In the limiting case of  an infinitely thin slab ( k L  ~ 0) the symmetr ical  b ranch  
goes over to the dispersion relations of  2D p lasmons  

2 2~reZN~k/rn% (2.6) (a2+ z 

where N s - N v L is the areal density of  electrons. 
This result is based on formula  (2.1) and therefore the spatial dispersion is 

not taken into account.  In other words, eq. (2.6) is valid only for sufficiently 
small wave vectors k. A more  general result may  be obta ined  by  q u a n t u m  field 
theoretical methods.  If  the Cou lomb interaction may  be treated per turbat ively  
the p rob lem is reduced to a calculation of the polarizat ion opera tor  to lowest 
order  in e z. The result is [2] 

w2p(k) = 2~r~2N~k (2 + kao) 2 (2.7) 
m 4 +  kao ' 

where a o is the effective Bohr radius, a 0 = h2/m~ 2, and ~2 = 2e2 / (c l  + ~2), 
the p lasma layer is supposed to separate  two half-spaces with electrical 
permeabil i t ies  c 1 and c 2. One can see f rom eq. (2.7) that  eq. (2.6) corresponds  
to the approx imat ion  ka o << 1. Formula  (2.7) is derived under  the condi t ion 
k << k 0, where hk o is the Fermi  m o m e n t u m  of a degenerate  electron gas. For  
ka o >> 1 eq. (2.7) gives a dispersion relation of zero-sound 60 = kvo, where v 0 is 
the Fermi  velocity. In the long-wavelength limit, ka o << 1, the two leading 
terms in the expansion of eq. (2.7) are 

w2p( k ) = 2qr~ZN~k/rn + 3(kv0)2. (2.8) 

This  result was first derived by Stern [3]. 
In the case of  inversion layers in MOS structures, the e lec t ron-e lec t ron  

interact ion is modif ied by the presence of conduct ing boundaries .  If  the gate 
electrode is t reated as an ideal metal,  and the semiconductor  as a half-infinite 
dielectric with permeabi l i ty  ~s, the 2D p lasmon dispersion law is given by eq. 
(2.7) with the subst i tut ion 

~ 2 =  2e 2 [¢~ + Co X c o t h ( k A ) ] - 1  
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where Cox and zl are the electrical permeability and the thickness of the oxide, 
respectively. In the long-wavelength limit (ka o << 1) we get [4] 

2 2 41re2Ns k (2.9) 
Wp = COMOS = m[ ,s  + 'ox coth(kA)] " 

The 2D electron gas can be created also at the interface of two semiconduc- 
tors with different energy gaps. The heterojunction GaAs-n-AlxGal_xAs is 
being investigated most extensively. Electrons, transferred from shallow donors 
on the "dielectric side" of the heterojunction (A1GaAs) into the energetically 
lower conduction band of GaAs, form the 2D gas. Usually one or two levels of 
the transversal (with respect to the interface) part of the energy are populated. 
The plasma frequency in such a system is given by: 

2 co2hj_2"rre2Nsk(l+C-1 2k,a) (2.10) 
COp = m~- ~ e-  . 

Here A is again the thickness of the dielectric layer A1GaAs and we neglected 
the difference in electrical permeability between A1GaAs and GaAs. One can 
see from eqs. (2.9) and (2.10) that the heterojunction plasma frequency is larger 
than that of an equivalent MOS structure by the factor 

( c c ° t h ( k A ) + l )  1 / 2 ~ + 1  

(for the "equivalent MOS structure" one has to put ~ox = es = c, in eq. (2.9)). 
Retardation effects are negligible if the inequality COp << ck is satisfied (see 

ref. [3]), where c is the speed of light. Hence, the wave vector k must be larger 
than 2~r~2Ns/mC 2, which is usually fulfilled in real experiments. By making use 
of the dispersion laws (2.9) or (2.10) one can formulate the same condition on 
the CO-scale: retardation effects are negligible if CO >> 2~'~2vC~Ns/mc (the right- 
hand side of this inequality is called sometimes " the  surface plasma frequency"). 

In such a retardationless approximation the electric field accompanying the 
plasma wave is purely potential: E = - V q , ;  q~ must be proportional to 
exp(ik,  p - k [ z 1), where p is the 2D vector in the electron-sheet plane z = 0, 
to satisfy the Laplace equation outside the plane. Hence, the electric field has 
longitudinaI (E  Ilk ) and transversal (E~) components, and there is a phase 
shift between them, ~ = ~r/2. We see that the spatial distribution of the 2D 
plasmon electric field is reminiscent of the wavefunction of the bound state in 
a short-range potential well: the penetration length of the field is much larger 
than the plasma layer thickness. 

The same structure of the electric field also holds for magnetoplasmons, but 
the dispersion law changes. In a magnetic field perpendicular to the electron 
sheet the plasma oscillations are governed by the parameter kvo/COc, where COc 
is the cyclotron frequency. In the long-wavelength limit kv o << COc where the 
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velocity distribution of electrons may be neglected, the magnetoplasmon 
frequency is given by [4]: 

2 2 2 
comp : coc q- cop'  

This formula has an obvious physical sense: the magnetoplasmon is nothing 
but a charged oscillator in a magnetic field perpendicular to the direction of its 
vibration. For an arbitrary value of the parameter kvo/co c the problem becomes 
much more complicated (see ref. [5]). The spatial dispersion is essential in this 
case, and the harmonics of the cyclotron frequency together with the so-called 
"geometric resonances" are displayed in the magnetoplasmon dispersion law 
(see below, section 3.2). 

3. Excitation of 2D plasmons by FIR radiation in a single plasma layer 

3.1. How to couple plasmons with FIR radiation," plasmon absorption 

A free plasmon, both in two and three dimensions, in a homogeneous 
infinite plasma is a non-radiative eigenmode. Its phase (and group) velocity 
does not exceed the speed of light at any k. To rigorously prove this conclusion 
one should, of course, use the dispersion relations allowing for retardation 
effects. In the simplest situation (2.6) a substitution 

k - ,  ( k  ~ - ~0co2/c2)  ' / 2  

is to be done. After that we see that the maximum of phase and group 
velocities of 2D plasmons is achieved for k --* 0 and equals c/~oo. To couple 
the 2D plasmon with an electromagnetic wave the latter has to be transformed 
in a proper way in order to generate a spatially modulated electric field of the 
type of a plasma wave accompanying field 

E -  e x p [ i ( k . p -  cot)]. 

This can be done by means of a special grating structure (see fig. 1) fabricated 
on the gate electrode of the MOS system [6] or on the "dielectric side" of the 
heterojunction [7,8]. The strips of the grating structure are made of a highly 
conductive metal (e.g., A1) and are non-transparent for FIR radiation. A 
different possibility has been demonstrated by Mackens et al. [9] on Si-SiO 2 
MOS capacitors: a linear periodic structure has been prepared in which the 
thickness of the insulating oxide varies with a certain periodicity. Both these 
methods result in the desirable field transformation. If the FIR wave falling 
onto the system is polarized along the direction of periodicity (say, the x-axis) 
the electric field acting upon electrons is represented by the Fourier series: 

E ( x ,  t) = ~ E ,  exp[i(27rnx/a - cot)], 
n 
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Fig. 1. MOS structure with a grating structure upon the gate electrode; ( ® ) represent 2D electrons. 

where a is the period of the grating structure, n = 0, 1, 2 . . . . .  Thus the 
quantities a and n determine the wave vector of 2D plasmons k = 2~rn/a 
while the FIR frequency ~0 or N s can be tuned. When ~0, k and N s are 
connected by the 2D plasmon dispersion relation, the resonance of absorption 
arises in the system. This was first observed by Allen et al. [6] on Si-SiO 2 MOS 
structure (earlier Grimes and Adams [10] observed 2D plasmons in a sheet of 
electrons on liquid helium; they measured radio-frequency standing-wave 
resonances in a rectangular cell). 

An elementary theory of FIR-absorption by 2D plasmons is based on the 
Boltzmann kinetic equation in the relaxation time approximation (~" approxi- 
mation), which has to be solved together with the Poisson equation. We have: 

Of Of Of f -  ( f )  
+ v ~  + e(E~x + rsc)  I z=o~-~p + ~ - 0, (3.1) 0--~- 

dive (z )  Esc = - 4 rre&6 (z ) ,  (3.2) 

& = 2 g v f f ( P )  d2p/(2~rh) 2, f - f - f o .  (3.3) 

Here f is the electron distribution function, f0 the Fermi distribution, f the 
non-equilibrium part of the total distribution, connected with the plasma wave, 

( f )  = (2~r)-~ff dcp, 
where cp is the azimuthal angle in the plane of electron momenta p. The field 
term in the'kinetic equation (3.1) contains both the external (exciting) FIR 
field Eex and the self-consistent contribution Es¢ generated by the plasma 
oscillations. To close the system of equations one has to express the non-equi- 
librium part of the electron areal density/V~ via f ( p ) ;  this is given by eq. (3.3); 
gv is the valley degeneration factor. The spin and valley splitting are neglected, 
i.e. f ( p )  is supposed to be independent of spin and valley indices. 

When considering the absorption of the spatially modulated exciting field 

Eex = E o exp[i(kx - co/)], 
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E 0 has only an x-component,  and all values in eqs. (3.1)-(3.3) spatially depend 
only on x. From eq. (3.2) one can easily obtained for a MOS structure 

4~reNsk 
Esc I-=° = - i k [ G + % x  co th (kk) ]  " 

Then by making use of (3.1) and (3.3), after some obvious algebra, we find the 
current density and the absorption power per unit area 

Q =  ½ R e ( j . E * ) .  

The result is of the form: 

Egoo ( to / r  )2 (3.4) 

Q =  2 [ toz _ toZ(k)] 2 + ( ,o / r )2  " 

Here o 0 is the 2D static conductivity, o 0 = Nse2"r/m, t0p(k) is toMOS from eq. 
(2.9). 

The experimentally measured total absorption is a series of contributions 
from all possible values of k; the Drude background comes from k = 0, the 
first plasmon resonance from k = 2~r/a, the second from k = 4~r/a, and so 
on. Theis [11] succeeded in observing all the plasmon absorption peaks up to 
k = 107fla. Note that, if ~- tends to infinity, Q becomes proportional to 
6(to - top). This means there exists a collisionless absorption of F I R  radiation; 
it is quite similar to the interaction of electromagnetic waves with optical 
phonons in an ion crystal. 

3.2. Plasmon absorption in a magnetic field 

FIR absorption by 2D plasmons in a perpendicular magnetic field was first 
observed experimentally on Si-SiO 2 MOS structures by Theis et al. [12]. The 
magnetoplasmon peak position agreed reasonably well with elementary theory 
( to2p  = top2 + to2), ignoring non-local effects. However, both in this work and in 
more recent papers by Mohr and Heitmann [13] and by Batke et al. [14] an 
additional structure was observed, i.e. a coupling of the magnetoplasmon with 
the harmonics of the cyclotron resonance. 

It is well known that, usually, a cyclotron resonance in a spatially uniform 
high-frequency field can be accompanied by the harmonic structure only due 
to collisions of electrons. The reason is quite evident: a harmonic oscillator, 
subjected to the action of a monochromatic force which does not depend on 
coordinates, can absorb only its eigenfrequency. The interaction of electrons in 
cyclotron orbits with impurities violates the harmonic motion so that absorp- 
tion at the frequencies ntoc (n = 2, 3 . . . .  ) becomes possible. This scatterer-in- 
duced origin of harmonics has been investigated theoretic'ally by Ando [15] in 
connection with the observations by Theis et al. [12]. 
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There exists, however, a different mechanism for the origin of harmonics, 
i.e. geometric resonances. The high-frequency electric field does depend on the 
coordinates in this case and the parameter kvo/% governs the effect under 
consideration. In other words, the non-locality becomes essential if kvo/~O c is 
non-negligibly small. This kind of resonances and the closely connected 
cyclotron Landau damping are well established in a gas discharge plasma (see 
for example, ref. [16]) and in a 3D plasma of solids [17]. Now one may state 
that the non-local effects are observed in the dynamic 2D conductivity of 
A1GaAs-GaAs heterostructures [14]. The experimental situation was such 
(N s = 6.5 × 1011 cm -2, B = 1.5 T) that the number of populated Landau levels 
was sufficiently high (---8), and the quasiclassical approximation should be 
well applicable. 

Considering the problem in the framework of a classical description of 
electrons we have to introduce the term 

e[v'n] c 

in the left-hand side of the Boltzmann kinetic equation (3.1). By making use of 
polar coordinates in the p-plane we obtain for the non-equilibrium part of the 
distribution function f the following equations: 

f ( r ,  p, t) =L(v ,  q~) exp[i(kx - ~0t)], (3.5a) 

Of 1 ( i ) / ,  0f° ( f ' )  (3.5b) ~Oc-~-~ + i oa - kv cos ¢p + -r = e(Ee* + Esc) cos cp DE - 7 - - '  

with v - p / m .  Eqs. (3.5) can easily be solved: 

~)  = _eiz si.,f~e,r¢,-i~ sin (~0+4,)Z(~ _ tp) d e ,  (3.6) L(o, 

where Z stands for the right-hand side of eq. (3.5b), z =-kv/o~c, y =-(~ + 
i / r ) / % .  Then, as before in section 3.1, we calculate Ns and the current Js 
which is now a series of Bessel functions J,(zo), where z 0 = kvo/%. The 
absorbed power per unit area is of the form 

Q= im{ e2mo~gvE~,, [ 4gv 
2~rk 2 kay(k) 

where 

+ ' 
O)c'l" 

+= J. (Zo) h2[ s+ coth( a)] M =  E a (k) = 'ox 
m = - ~  y + n  ' 2me 2 

In the absence of electron scattering the series M has poles at ~o = n %. So one 
may expect that eq. (3.7) describes oscillations in absorbed power, Q, with 
maxima at the positions of the cyclotron harmonics [18]. 
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Batke et al. [14] have thoroughly investigated the vicinity of the first 
harmonic (n = 2) in magnetoplasmon absorption of the GaAs-GaA1As hetero- 
structure. Good  quantitative agreement with eq. (3.7) was established both for 
the resonance positions ~ore s and for the excitation amplitude, i.e. the peak 
absorption Qmax. 

4. Absorption of FIR by plasma oscillations in multicomponent 2D systems 

Up to now we assumed that an electron gas is in an ultraquantum state with 
respect to the motion which is transversal to the layers, i.e. that the electrons 
occupy the lowest transversal quantization level. However, modern technology 
of preparation of thin films and layer structures makes it possible to vary easily 
the parameters of such systems. The number of layers, their thickness, level of 
doping, and - consequently - the carrier density can all be varied within very 
wide limits. Therefore, it is interesting to consider systems which are essentially 
two-dimensional but exhibit to some extent a transversal degree of freedom. In 
the case of a quantum film this means that more than one transversal level is 
populated and that transitions between them have to be allowed for. In the 
case of a layer structure one may have to allow for tunneling between layers. 

This section is devoted to 2D plasma waves in films and layer structures in 
those cases when the electron plasma has several components. The components 
are groups of electrons differing either in respect of the quantum number of 
transversal motion (film, or inversion channel, or a single heterojunction) or in 
respect of the number of layers (layer structure). The spectrum of plasma 
waves in such systems has a number of interesting features. New oscillation 
branches appear and some of them resemble ion-acoustic waves in a gas 
plasma, whereas others are analogous to excitons. The Landau damping in 
such systems and the optical absorption spectra of such systems also have 
special properties [19-21]. It is shown in these works, that the number  of 
oscillation branches is generally ½n(n + 1), where n is the number of plasma 
components. Moreover, there are exactly n branches with a 2D plasmon-like 
gapless dispersion law, whereas the other branches are of intersubband exciton 
character. In what follows the F IR  absorption by the plasmon-like branches in 
a two-component plasma is considered. 

4.1. Spatially separate plasma layers 

The simplest case of two-component 2D plasma is represented by a system 
of two quantum films separated by an insulating gap. In each film only the 
lowest level is assumed to be occupied by electrons and tunneling across the 
insulator is negligible. Thus, the films are connected only "electrically" (by the 
electric fields of the plasma waves) but not "electronically". Allowance for 
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tunneling makes the system fully equivalent to a film with two populated 
levels, which is considered in the next subsection. 

As shown in ref. [19], there exists a situation where both plasmon branches 
of the system under consideration have no Landau damping for sufficiently 
small k. From the dispersion equation for oscillations of two infinitesimally 
thin plasma layers, it follows that 

[  a0 l][ 1  41a) 1 + 2~-~-71C~ ) 1 + 2(--~7_--i)  = 

2/32 - -  2 R,. 2 - (1 - k m.2/~0 ),/2, (4.1b) 

where aol and ao2 are the effective Bohr radii, /3m and v02 are the Fermi 
velocities of the electrons in the layers, and d is the distance between the 
layers. If ka m, kao2, kd<< 1, one of the branches represents the in-phase 
oscillation of particles in both plasmas and it is characterized by the usual (for 
2D plasmons) square-root dispersion law 

2 -  2rreZk(Nl + N2) (4.2) 
oa + - ~- m---- 7 m---- 7 , 

where N1. 2 and rn,, 2 are the surface densities and the effective masses of the 
particles in the layers, respectively. 

In the same limit, k--+ 0, the second branch o~_(k) describes anti-phase 
oscillations of electrons in the layers and exhibits the acoustic dispersion law 
oa_= sk. One obtains from eqs. (4.1) a real and positive value of s if (at 
/30, > /302 ) 

1 ao2(V2,-v221 '/2 
d > d o - ~ . (4.3) 

/30,-(/3o -/3o 2) 'j2 
Thus, if condition (4.3) is satisfied, both "optical" ~0+(k) and "acoustic" 
oa (k)  plasmons have no Landau damping for kao,, kao2, kd << 1 since their 
phase velocities exceed the maximal Fermi velocity /30,. If d>> am. 2 the 
dispersion equation is easily solved since in this case s >>/3m.2- It is then found 
that 

oa2_= 4rre2d NIN2 k2 
~ N, rn2 + Nzrna , k d < < l .  (4.4) 

Qualitatively, the branches 0~ ± are depicted in fig. 2. 
We now discuss the question of optical activity of the described oscillations. 

It is clear that the branch oa+ is fully analogous to a plasmon in a one-compo- 
nent plasma and that it interacts resonantly with a longitudinal inhomoge- 
neous electric field E 0 exp [ i (kx -  oat)]. The branch o~ is also, in principle, 
optically active (for the same fields), but the amplitude and width of the 
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60, 

k, Vo, 

a~ao k vo, 

k" 
Fig. 2. Dispersion curves of plasma oscillations in a system of two spatially separated layers. 

absorption resonance differ considerably from the corresponding parameters in 
the co+ case. 

By excluding transitions of electrons between layers one makes it possible to 
introduce collision frequencies for each layer , ,  and "2- The absorption 
coefficient will be defined as the ratio of the power dissipated per unit area Q 
to the surface energy density of a plasma wave amounting to P = E2/8rrk. In 
the case of constant frequencies , ,  and "2 the calculations are elementary. The 
resonance values of Q and of the linewidth are given by the following 
expressions. 

For the co+ branch, we have 

o r ~  4 ,lco2 _[_ ,2CO22 - co+ Y'+ ( 4 . 5 )  
e co,~,,, + co~.:' co~ + co~ 

For the c o  branch, we obtain 

Q~S _1 co4_ (co, co2 )2, F_ p~co] + ~'2co~ (4.6) 
P 4 co~'2 + co]", "2 co, co2 + co] 

The resonance frequencies co ± occurring in eqs. (4.5) and (4.6) are given in the 
kd<< 1 region by eqs. (4.2) and (4.4), respectively; col and co2 are the 
frequencies of 2D plasmons in the layers. The expression for Q~S given above 
is valid for 

~t.2(co~ + col) <( (co2 - co2~)2 
We can easily show that in the case of a symmetric structure (col = {°2, ul = "2) 

co_(k) = kv o 2 d +  a o (4.7) 
(4da 0 + a02) t /2 ,  

and the value of Q~S is proportional to , in the frequency range co-  co_, 
Outside this interval the absorption decreases in accordance with the law 
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uto2_/to 2. Thus, in the case of a symmetric structure the optical activity of the 
~0 branch is anomalously weak and the absorption differs only slightly from 
that due to the Drude background of free carriers. This is due to the fact that 
the branch ~0 corresponds to the anti-phase motion of like charges in the 
layers. The total current in the system at resonance differs from zero only 
because of electron scattering. As one can see from the analysis given above 
the possibility of observing experimentally FIR absorption by acoustic plas- 
mons ~0 seems to be rather small. 

4.2. Quantum f i lm (quantum well) or inversion layer 

In this situation the components of the system under consideration are 
connected both electrically and electronically due to intersubband electron 
scattering. Strictly speaking one should use in this case the quantum theory of 
non-equilibrium processes instead of the Boltzmann kinetic equation. We shall 
assume, however, that the scattering is sufficiently small, so that the usual 
conditions for describing the longitudinal effects in a quantum film by means 
of the classical kinetic equation are satisfied (see e.g. refs. [22,23]). Besides, we 
assume also that quantum effects associated with the energy of the appropriate 
photons hw - hWp are negligible (hWp << mv 2, AW,  where AW is the intersub- 
band energy interval). This permits the use of the Boltzmann equation when a 
high-frequency external field is present. 

Nevertheless, even after accepting the simplifications mentioned above the 
problem remains rather complicated, mainly due to the necessity to solve a 
system of kinetic equations with integral Stoss-terms. The phenomenological 
parameters v~ (a is the subband index) are not sufficient for solving the 
problem under consideration where the spatial dispersion ( V 3 f / 3 z  in eq. (3.1)) 
as well as intersubband transitions are very important. In this respect our 
problem differs from the one considered by Siggia and Kwok [24] for a 
uniform external field. Below an approximate theory is developed using the 
small parameter k v o / w  p - k~o [20]. 

4.2.1. General equations 
The electrostatic potential of a plasma wave is governed by the equation 

, ( z ) (  d2q~ - k2q~) = -47reY'  q'~2(z)N~. (4.8) 
 h-Tz o 

Here g'~(z) is the wavefunction of the transversal motion for the ath level 
(subband), ?~ is the non-equilibrium part of the areal density of electrons in 
level a; ¢(z) has different values in the two regions of a MOS structure (cox 
and Cs), but for a quantum film the values of ¢ in the film and in the 
surrounding medium are assumed to be identical (e.g. AIGaAs-GaAs-A1- 
GaAs). In the field-term of the kinetic equation the force acting on the 
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electrons has to be averaged over the z-coordinate with q,2 as a weight 
function. After separating the factor exp[i(kx - 0~t)] one has 

- i ( ~  - k .  v)f~(v) +f~a(Eexa - -  ikq~,) v 

+ Y~ W~fl(v, v ' ) .[ f~(v)- f~(v ')]  = 0 .  (4.9) 
fly' 

Here 

,o  = 

foe is the equilibrium distribution function for the ath subband, W,~¢(v, v') is 
the transition probability av ---, flv', averaged with respect to the position of the 
impurity centres. Obviously, 

= E L ( v ) .  
O 

The q,~ can be expressed via a formal solution of eq. (4.8) by making use of 
its Green function: 

ep. = -4 eEfGk(z, Zo) 'Az)%(Zo) dz dz 0. (4.10) 
Bv 

The Green function is 

1 e_kl z z01 Gk(z' z°) 2ck 

in the case of a quantum film, and 

Gk(z' z°) 2k% e - k l z - z ° l  + ~s-~Cox coth(kA) e k(:+:o) (4.11) 

in the case of MOS structure. Eqs. (4.9) and (4.10) form a closed system from 
which one can find the functions f~ and then calculated the dissipated power. 

4.2.2. Short-range scatterers 
In this case the probability W,~ depends on the velocities only via a 

&function providing for energy conservation. It follows from eq. (4.9) that the 
f , ( v )  are linearly connected with their zero cylindric harmonics 

/ °  ( v ) =  (2~r)- '  foZ~f~(v, oF) dcp, 

i e (~o .  + ep.)k, vfd. + ~ljo,W.¢(v, v')L°(v ') 
(4.12) L ( v ) =  v ~ - i w + i k ' v  

The summation in eq. (4.12) runs only over the modulus v', 

epo, = iEex J k ,  v, = ~ W~B( v, v'). 
fly" 
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Thus, the values of v~ determine the conductivity in a uniform constant field: 

Oo=(e2/m)ENo/ o, 

where N~ is the equilibrium concentration of electrons in the a th  subband. By 
integrating eq. (4.12) from 0 to 2~r over q~ one obtains a system of equations 
for f ° ( v ) .  On the right-hand sides of these equations the summation over v' 
with the energy &function gives )~0 at the arguments 

2 v,,~ = o 2 + (2 /m) (T , ,  - T~), 

where T~ are the transversal energy levels. To close the system one has to make 
the argument v on the left-hand sides equal to a series of appropriate values 
v~B. Thus, for n levels occupied one gets a system of n 2 equations. In what 
follows, results are given for the case n = 2. 

to%ffE 2 L(  ) 2 2 _ t o - t o p l % 2 [ A ( I )  # ( I ) ] ( t o + 2 i V 1 2 )  -1 

Q =  4 ~r----------~- Im L ( t o ) _ t o ( t o + i v l ) ( t o + i v 2 )  (4.13) 

Here top~, top2 are the 2D plasmon frequencies corresponding to the equi- 
librium concentrations of the particles in subbands 1 and 2; 7~ = 111 + I22- 
2112, ~ = I11122 -- 12,12 

I,,B= -2kf,t,d(z)G(z, z0) ¢(z0)dz dz 0, V,2 = • W,2(v ,  v'), 
v '  

%ff equals c for the quantum film and (c s + %x coth k A ) / 2  for the MOS 
structure. The result (4.13) for Q is a leading term allowing only for the first 
term in the numerator of eq. (4.12). The contribution of the second term is 
small in the parameter  (kv)2v/ to  3. The frequency dependence of Q(to) has a 
typical resonant shape. In the available experiments, the condition kL  << 1 is 
well satisfied, where L is the thickness of the film (or inversion layer). Then the 
resonance positions are given by the formulae 

2 -- 2 2 (4.14a) to+-- /lltopl + I22top2, 
2 2 

022 topl top2 
- topl2 + ¢0p22 ~ ( I ) '  (4 .14b)  

with/~ = kL.  The values of 111 and 122 tend to 1 when kL  tends to zero. The 
peak absorbed power and the widths of the appropriate resonances are 

2 2 2 ~effgg to+ Pltopl + P2top2 
(Q+)max 47rk _7"+ F + - -  2 2 ' (4 .15a)  

topl + top2 

02 (°)4  
(Q-)max 4~-k F_ /~(I )  ~ (Q+)max -~+ (4.15b) 

2 2 2 2 / ' - =  2V12 + (v2topl + Vltop2)/top, + top2, ~ - X = ( k L )  2. (4 .15c)  
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In  eqs. (4.13), (4.15a) and (4.15b) the subst i tut ion E¢× 1 = E~x 2 = E 0 has been 
made;  this is valid with a relative accuracy kL.  The characterist ics of the 0~_ 
branch  depend not  only on pa and ~'2 but  also on the probabi l i ty  II12. This 
means  that all scattering matr ix  elements are represented in the final results 
independent ly  in contras t  with the uni form field case, where the conduct ivi ty  
can be expressed via the scattering frequencies 1,1 and v z only (see ref. [24]). 
For  typical MOS structures k L  ~ 10 -2,  ~0_/¢0+-- 10 -1, Q _ / Q + ~  10 -4. 

4. 2.3. Arbitrary scattering potential 
Let the scattering probabi l i ty  W~a(v, v') depend only on the angle dif- 

ference 9~ - cg'. By expanding W~B in a series of  cylindrical harmonics  one gets 
after  integrat ion the Stoss term in eq. (4.9) over  dv ' :  

ie (,#o, , + q,,,)f~.kv cos ~ + Ez .A: / j (  v)fz" (v,~/j) e in~ 
= , ( 4 . 1 6 )  f~( v, ep) r~, - i~o + ikv cos qo 

where 

A"Ao) = (s/2 2n2)fw a(o, o', +) ei~m2v ' d r '  d~k, 

/2(v) = ( 2 = ) - ' f L ( v ,  w) dw, 

S is the area of a specimen. For  our purposes  we need only the zeroth and the 
first harmonics  of the functions f~. One can see f rom eq. (4.16) that  the 
contr ibut ion of higher harmonics  to f o  and f2 decreases at kv << ~ as 
(kv/o~) I, I since 

f (~ ,  - io~ + ikv cos cp) -~ e i"~ dg~ = 2~r i (kv)I , I  (¢0 + iu) - I"1-1 

We consider now the two-level case and we expand bo th  sides of  eq. (4.16) 
in a series of  cylindrical harmonics.  By keeping only the leading terms with 
respect  to the pa ramete r  kv/o~ one can obtain  a closed system of four  
equat ions for the functions f~.2, determining the current  density. The  number  
of  equat ions is doubled because the unknown quantit ies occur at two magni-  
tudes of their argument .  Then the functions f],2 have to be subst i tuted in the 
system of four equat ions for f~2, and, at last, one has to find ~1, q'2 f rom eq. 
(4.10). After  rather  cumbersome  calculations we obtain  the following results 
for a degenerate  system with two levels occupied: 

2 2 ( pl - , p2)2 
F +  = 02plVltr + O~p2P2tr + All2 , (4.17a) 

2 2 2 2 
~Opl -t-- ~p2 ~pl --I- ~p2 

2 2 )2 
/~ = ¢OplP2tr 3t- ta)p2Pltr "~ 2A°2 + A I 2  (C°Pl + °)P2 ( 4 . 1 7 b )  

2 2 2 2 
~pl "r ~p2 ~pl q- ~p2 
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The absorbed power at r e s o n a n c e  (Q:t:)max is given again via F+ and o~± by 
eqs. (4.15a) and (4.15b). As could be expected for an arbitrary scattering 
potential, the transport collision frequencies 

 otr = E 
flo' 

appeared in the formulae for F± and Q±. Besides, it is worthy of note that 
now the absorption spectral parameters of both branches ~+ and ~_ contain 
all the scattering matrix elements and not only ~',tr. Of course, if only one level 
is occupied the result can be expressed via a single relaxation time (1,1t r ) -  1 and 
the appropriate formulae follow from eq. (4.17a) by putting t%2 = 0, A°2 = All2 
~---0. 

To calculate corrections to the obtained results one has to keep the second 
term in the sum over n in eq. (4.16) and furthermore the n = 2 harmonic in 
expanding f,~. It turns out that the correction of f o  is of the order of ( k v / ~ )  4 
whereas for f2 one gets ( k v / w )  3. Thus, in both cases the obtained results are 
valid with a relative accuracy ( kv/o~ ) 2 = ka o. 

The experiments available up to now concern the ~+ branch. It follows 
from the results of the present subsection that when the Fermi level crosses the 
bot tom of the second subband, the second maximum in the absorption curve 
Q(w)  will appear at 0~ = t~_. Moreover, the parameters of the main resonance 
are changed: in eq. (4.17a) the values of P,~t~ exhibit a jump, and Al12 has a 
discontinuity in its first derivative as a function of N~. If one sweeps N, and 
tunes w in such a way as to keep the resonance condition satisfied (w = 0~+), 
the width F+ increases with jump at a certain Ns value whereas Q+ corre- 
spondingly decreases. One may note an analogy between this phenomenon and 
the conductivity oscillations in a quantum film when the thickness of the film 
is changed. 

5. Electromagnetic generation of 2D plasma waves in superlattices 

Man-made periodic structures, or superlattices, are of great interest in the 
up-to-date physics of 2D electron systems. The plasma oscillations in such 
structures exhibit all the general features of wave processes in periodic systems 
and, first of all, the band spectrum of plasmons. The interaction of F IR  
radiation with electrons in superlattices results in both collisional absorption 
and plasmon excitation. 

5.1. Multilayer superlattices 

There is a rather extensive literature devoted to plasma oscillations in 
multilayer superlattices. The simplest model was proposed by Visscher and 
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Falicov [25]: the superlattice is treated as an infinite pile of equidistant electron 
sheets submerged in an insulating medium. Tunneling across the insulating 
gaps is negligibly small, and the electrons are free to move only in the planes 
z = nd (n = 0, + 1, +2,  d is the superlattice period). The Poisson equation for 
the considered system coincides with eq. (4.8), where 8 ( z  - n d )  has to replace 
q~2~(z) and the summation over n (instead of a) goes from - ~ to + oc. The 
solution of the type of travelling wave is 

0 = ~ A ,  e x p ( i k x -  i~0t- k l z -  nd [), 

where the coefficients A n are determined by the equations 

aq~ 4~re~ 
T z  ,,~+0 0,~ _ (5.1) 

In the collisionless approximation N, can be expressed via the polarization 
operator (see e.g. ref. [2]). For zero temperature we have 

(1 -'j2 ] 
Tr c° 2 ] . (5.2) 

In eq. (5.2) the momentum k is assumed to be much less than the Fermi 
momentum my o. After substituting (5.2) into (5.1) one gets the following 
system of equations for the coefficients A,: 

- - ~ - )  ] ~Am e-kal" l  = 0. (5.3) 

The dispersion law which follows from eq. (5.3) has the form (cf, eq. (2.7)) 

~o2( k q)  2rre2N~k [2F(k ,  q) + ka0] 2 (5.4a) 
' rnc 4F(k ,  q ) + k a  o ' 

sinh(kd) (5.4b) 
F ( k ,  q) = 2[sinh2(½kd) + sin2(½kd)] . 

Thus there exists a band of plasma oscillations ~0(k, q) and the plasmons are 
described by the quasimomentum q in the z-direction (perpendicular to the 
layers) and by the momentum k in two others directions. The maximal 
frequency of the plasmon corresponds to the case q = 0, and in the most 
probable experimental situation, kd<< 1, it equals O~ma x = ~00, i.e. the 3D 
plasma frequency at the average bulk density of electrons 

4~re2N~ 
°~2 = c m d  

The first and second leading terms in the expansion of c02(k, q) from eq. (5.4) 
in the region kd  o << 1 give a result obtained earlier by Fetter [26] and Apostol 
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[27]. At still longer wavelength (k, q << d -1 << do 1) a dispersion law for 3D 
anisotropic plasmons arises: 

co2 = ¢00k(k 2 + q2) - 1 /2 .  

Finally, in the middle part of the plasmon band (qd--- 1) at kd << 1 we have 

co = ku cosec(½qd), 

where the velocity u equals (¢;e2dNs/~m) l/2. 
An experimental observation of the band dispersion law ~0(q, k) could, in 

principle, be realized by means of FIR absorption measurements using the 
same grating structure as described before. In this case one has to consider a 
semi-infinite set of electron sheets occupying the half-space z > 0. The exciting 
field has the form 

E 0 e x p ( -  kz + ikx  - icot); 

this is the k th Fourier component of the FIR field having passed through the 
grating structure (as usual, k = 0, +_ 2~r/a . . . .  ). 

5.1.1. Resonant excitation of the plasmons in muhilayer superlattices 
To allow for the exciting field we have to substitute 

q~ ---, q5 + ( iE0/k)  e -k"d 

in eq. (5.2). Then in the region ~ >> kv one obtains for N,, 

eNsk 
"~" rn~0(w + i ~ , ) [ k q ~ ( z = n d ) + i E ° e - k J " ] '  (5.5) 

where u is the phenomenological collision frequency of electrons (identical for 
all the sheets). The solution ~(x, z) in the form written above leads to the 
following semi-infinite chain of equations for the coefficients A,: 

COp kdlm_nl iEo 
A"~° co(~o+iv) A m e -  +-~--  e -~J" . (5.6) 

m=0 

The system (5.6) is a discrete version of the Wiener-Hopf integral equation. It 
can be solved by making use of the methods described e.g. by Rogozhin [28] 
and Gilinskii and Syltanov [29]. The result is 

2 sinh( kd ) 2iE0 COp e x p ( - i q n d ) .  (5.7) 
A'>~°= k co(w+i~)  e x p ( i q d ) - e x p ( - k d )  

The plasmon quasimomentum for fixed co and k is given by the dispersion 
equation 

2 COp 
cos(qd) = cosh(kd) o~(co + iv) sinh(kd).  (5.8) 
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An interesting formula is obtained for the x-component  of  the total electric 
field Etot(n) acting upon electrons in the n th  layer: 

Etot ( n )  = E 0 e x p ( - n k d )  - i k e p ( z  = nd)  

= 2E  0 s inh (kd )  e x p ( - i q d n  + i k x )  (5.9) 

exp(iqd ) - exp( - kd ) 

In the collisionless approximat ion (~,=0) ,  Etot(n) decreases exponentially 
when n increases if the frequency ~0 lies beyond the plasmon band  determined 
by eq. (5.8). For  the experimentally most realistic case, kd<< 1, the band  
boundaries  are Ogma x = Wp(2/kd)  W2 and ¢dmi n = O~p(kd/2) 1/2. In the vicinity of  
the upper threshold w >__ ~max the spatial decrement  of the wave (5.9) equals 

Im q = q" = - k~/2(co - COma x )/¢0 . . . .  (5.10a) 

whereas at ~o < t 0 r n i n  

q" = - (2/d)~/2(  wmi n - o~ )/~min , (5.10b) 

within the plasmon band, when collisions are neglected, q",  of  course, equals 
zero. This allows us, in a sense, to speak about  resonant  excitation of  the 
plasma waves in superlattices: in the region ~0mi n < ~0 < 02ma x the total electric 
field in the n th sheet does not  vanish at n ~ oe though the exciting field 
attenuates as e x p ( - k d n ) .  The frequency dependence of the transmitted wave 

intensity is given by 

I Etot 12 = Eg(e  2kd - 1) ~02/{Op 2, ~min "~  {.0 "~  ~max" (5.11) 

If  the scattering of electrons is allowed for, an additional damping  arises. For  
example, in the middle of the band  ({o = 60max/2 ) one has q'A << 1 (where 
q ' =  Re q), q " =  - k P / v / 2 6 0 m a x  • A n  estimation for the GsAs -GaA1As  struc- 
ture gives the following results: d =  2 x 1 0  - 6  cm, u = 3 x 1011 s -1, N~ = 1012 

cm, m = 6 X 1 0  -29 g, { = 1 2 . 5 ,  the grating structure period a = 3 X 1 0  4 c m ;  
then k d =  4 x 10 -2 , ¢0ma x = 4 X 1013 S, Iq"l  = 0.5 X 10-2k.  

Thus, if the number  of layers is larger than 60, the exciting field decreases 
by more than one order of magnitude, i.e. the transmission of  the "dif f racted"  
field through the superlattice is provided mainly by a t ransformation into 

plasma waves. 

5.1.2. The absorption band shape 
The total work done by the electric field on the electrons per unit of time is 

the sum over all the layers: 

Q = ½ Re ~ E 0 exp( - kdn) j,,, 
n = 0  

j,, = Etot(n)o,  o = ie2Ns/m(¢o + i~,). 
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By making use of eq. (5.9) we 
expression 

E2e2Ns J s inh (kd )  eq"d cos( q'd) 
Q =  - -  

m w  co2 q_ v2 A 

X eq"a(1 - e -2kd)  s i n (q ' d )  + (p/co)  s inh(kd) (1  - e 2q''d-2kd) 

obtain the following (rather cumbersome)  

[1 - 2eq"a-I'a cos(q'd) + e2q"d-2kd] 2 
, ( 5 . 1 2 )  

w h e r e  

2 2 sinh( kd ) 
coP s inh (kd ) ,  B - ~ cop 

A = c o s h ( k d )  co2 + p2 co co2 + u2 ' 

1 - A 2 - B  2 
C -  

2 

The frequency dependence of Q(co) is contained also in q'  and q"  determined 
by eq. (5.8): 

s i n Z ( q d ) = C + T r - ~ + C 2 ,  eq,,d A B 
c o s ( q ' d )  s i n (q ' d )  " (5.13) 

At the band edges Q(co) is characterized by simple asymptot ic  laws (we assume 
kd<< 1, q"  << k):  

V 
O = O o [ 2 ( c o _ c o m a x ) c o m a x ] l / 2  , co - comax ;>>/-' , ( 5 . 1 4 a )  

O = O 0 ( ° / 2 c o m a x )  1/2, [co - comax I << P, (5.14b) 
Q = Q0[2(comax co)/com.×] 'j2 - -  ' comax -- CO >> V. (5.14C) 

Here 

Qo = E2e2Nskd/2mcomax ; 

in the vicinity of the lowermost threshold Q(co) is described by a similar 
formula,  only a substitution has to made: comax ---' com~n, 

Oo = E2e 2Ns (kd)2/mcomin. 

In the inner par t  of the plasmon band, when Ico - comax I, ICO -- comin ] >> /", 
electron scattering becomes unimportant .  The  work of the exciting field is 
spent mainly for generating plasma waves. The absorpt ion is described by 

CO2 [ CCO 2 69 4 ] ' / 2  
Ede2Ns (e 2ka - 1 ) -  5 [ 2 ~ c o t h ( k d )  - 1 - ~ . (5.15) 

Q ( w )  4mco COp [ COp COp ] 

The  Q(co) curve depicted in fig. 3 is calculated from eq. (5.12) for kd= 4 × 
10 -2, l,/cop = 0.05. 
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Q m ~  10 • 
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618 °/% 
Fig. 3. Absorp t ion  curve for a mul t i layer  superlat t ice.  The midd le  par t  of the curve cor responds  to 
t r ans format ion  of the external  F I R  wave into 2D plasmons .  

Thus, in the multilayer superlattice there occurs a transformation of FIR 
radiation into plasma waves travelling through the system. Therefore, the 
superlattice may be regarded as a delay line. The characteristic parameters of 
the line are illustrated by the following numerical example. Let the amplitude 
of the exciting field be slowly varying according to the Gaussian law 

E o (  t ) = E o e x p ( - t Z / T  2) 

and ~ T  >> 1. Then the transmitted pulse is also a Gaussian and its width T* at 
z = n d  is 

T* = T ~ I  +4(~t92~2~q) 2 (nd)2T4 (5.16) 

We shall consider the frequency region in which qd,  k d  << 1 but q >> k. Then 
the dispersion equation gives ~0---~Omaxk/q. For the values of characteristic 
parameters used in the preceding subsection and for k / q  - 0.1 we get ~o - 4 × 
1 0 1 2  S - 1 ,  ~ / / - '  ~ 12, the group velocity of the pulse % = 2  x 10 v cm/s .  The 
relative broadening of the pulse for a number (n) of layers of -- 10 3 equals 
( 1 0 - H / T )  4, where T is measured in seconds. The given estimate corresponds 
to the frequency region ~ - ~/~maxt..0min . Just this region is optimal for obtaining 
small group velocities. In the vicinity of a band edge one has to allow for 
electron scattering. In the region ]~0ma x -- ~0[ << ~ the calculations give 

% = ~ / k  = 2.5 x l0 s c m / s  

(for the same ~0 . . . .  u and k as used above). The lower most band boundary is 
hardly of interest because in this case collisional damping in the superlattice is 
too high: ~min -- //" 
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5.2. Lateral superlattices 

Independently of how the lateral superlattice is fabricated its most im- 
portant feature is the periodic spatial modulation of the equilibrium electron 
density Ns(x ) = Ns(x + l). We consider here a one-dimensional superlattice 
with period / and confine ourselves to purely classical plasma oscillations. 
Strictly speaking there is also a quantum effect of this periodicity on the 
electron spectrum (minibands and minigaps), so that the electron plasma 
consists of a number of components. As is clear from what was written above, 
the optically most active branch of the plasma waves corresponds to in-phase 
oscillations of all the electron groups. This branch is insignificantly affected by 
distortions in the electron dispersion law due to superlattice effects. However 
the plasmon dispersion relation displays all the features characteristic of wave 
processes in a periodic structure. 

It is convenient to write the equilibrium plasma density in the form 
N~(x) = N o + n(x) ,  where n(x )  is a periodic function with an average value of 
zero. The equations of motion of a cold plasma (~o >> kv) together with the 
Poisson equation give a relation between the Fourier components of the 
non-equilibrium part of the electron density N~(q) and the Fourier compo- 
nents of the potential q~(q): 

2~rrno~2 Noq~(q)+ Y '~n(q -g j )q~(g j )  , (5.17) 
J 

where g j =  27rj/l ( j =  +1,  _+2 . . . .  ) are the reciprocal lattice vectors. After 
satisfying the boundary conditions an equation is obtained that determines 
¢(q) :  

~2(q)  n ( g j )  , 

q~(q) ~o2_~o~(q) j ~ ( 1 - g J q ) ~ ( q - g j ) ;  (5.18) 

here O~p(q) is the average plasma frequency for an "appropriate" situation. For 
example, in MOS structure 

~o~ (q)  = 4~re 2Noq/m [c s + %x coth( ] q ]A )]. 

The spectrum ¢0(q) that follows from eq. (5.18) is a typical band spectrum. If 
In I<< No one may solve the problem by making use of an approximation 

quite similar to the nearly free electron approximation in the quantum theory 
of solids. The plasmon dispersion curve is now broken by forbidden gaps 
situated at qs = 2qrj/l. In the vicinity of the j t h  forbidden gap one has the 
dispersion equation 

NoZ=G,~(q)G~, (q-gy)n2(g / ) ,  G,~(q) = ~°PZ(q) (5.19) 
co 2 - O~p2(q) " 
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The boundaries of the forbidden gap ~0± are determined by the formula [30]: 

47r2e2j[No +_ ln (g j ) ] ]  

¢o~= ml[% + Cox coth(TrjA/l)] " (5.20) 

Evidently this expression, obtained in a macroscopic hydrodynamic approxi- 
mation, is valid only if the inequality No 12 >> 1 is satisfied. This means that 
even within one period of the superlattice the plasma may be considered as a 
continuous liquid, but not as a collection of discrete particles. 

Thus, in the reduced zone scheme there is a set of plasmon frequencies for 
each quasimomentum k within the first Brillouin zone ¢op(k + g j ) . .The  exter- 
nal field E o exp[i(kx - ~ot)] excites, in principle, all the plasmon branches but, 
of course, with a different efficiency. To characterize this efficiency quantita- 
tively one may calculate the electric field amplitude E of the appropriate 
plasma wave at the resonance point % = O0p(k + g j) [31]. Simple calculations 
give 

,(gj) 
E(oaj) = E 0 ~ - 0  [60p(k + g j ) r ]  e i(k+g')x-i't, (5.21) 

where r is the electron relaxation time. If the momentum k of the exciting 
field coincides with one of the reciprocal lattice vectors & a splitting of the 
plasmon resonances must be observed in accordance with eq. (5.20). Such a 
splitting has been reported recently by Mackens et al. [9] who fabricated a 
MOS capacitor with a modulated oxide thickness of submicrometer periodic- 
ity. The splitting, Ao~ = o9+2 _ ~o2_, increased nearly linearly with the gate 
voltage, Vg - V t, just what one should expect from eq. (5.20), because Vg - V t is 
proportional to the areal density of 2D free electrons. 

6. Emission of electromagnetic waves by 2D plasmons 

Experiments on resonant F IR  absorption by 2D plasmons deal with a 
system of an open-type resonator. A grating structure fabricated upon the gate 
electrode defines the momentum of the excited plasmons.When a plasma wave 
is already excited the grating structure acts as an emitting antenna and 
transforms the plasmon energy into electromagnetic radiation. This means the 
plasma waves in such structures have an additional damping mechanism, i.e. 
radiative decay. This effect has been observed experimentally by Tsui et al. [32] 
and H6pfel et al. [33]. On the other hand, it has been pointed out [34] that the 
width of the plasmon resonance exceeds the scattering rate of electrons. A 
question arises whether this can be explained by the radiative decay of 
plasmons. 

A surprising circumstance has not been commented tipon in publications 
from the very first experiments with 2D plasmons: why is the observed 
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dispersion relation of the plasma waves in good agreement with a formula (eq. 
(2.9)) derived for a closed resonator, i.e. for a system with a uniform gate 
electrode? After all there is no small parameter in the problem under consider- 
ation: the plasmon wavelength equals the period of the grating structure, the 
sizes of the transparent and opaque regions differ not too strong. Thus, we are 
dealing with waves in a strongly modulated periodic structure, and the wave 
vector is equal to the reciprocal lattice vector. Hence, the continuous-medium 
approximation is totally inapplicable. To settle this contradiction one has to 
allow for the influence of the grating structure both on the imaginary (radiative 
decay) and on the real part of the plasmon frequency. In what follows a model 
of the system under consideration is proposed for which a solution can be 
found analytically [35]. 

6.1. Radiative damping and dispersion law of 2D plasmons in an open resonator 

The model proposed is depicted in fig. 4. The 2D plasma occupies the plane 
P (z = A), the grating structure lies in the plane M (z = 0). One can treat the 
M-plane as also being occupied by 2D plasma with a periodically modulated 
equilibrium density N ( y ) =  N(y  + a). The electrical permeabilities are: 1 for 
z < 0 , ~ o x  f o r 0 < z < A , c  s f o r z > A .  

Of course, posing the problem as a diffractional one seem. s to be more 
natural: appropriate boundary conditions for the fields E and H are to be 
satisfied on metal strips of the grating structure. However, in such an approach 
even the easier purely electromagnetic problem of diffraction of a plane wave 
on a periodic system of metal strips can be solved only for t /a  = ½, where t is 
the width of the transparent parts of the grating structure (see e.g. ref. [36]). 
The model proposed here allows us to get an approximate solution and retains 
the main features of the real experimental situation. 

We have to solve self-consistently the Maxwell equations and the equation 
of motion of the plasma. A special feature of our problem is the strong 
correlation between the spatial spectrum of the plasma waves and that of the 

H 

P 

z=O Et=~ ;Y  
3C 

EZ=Eo~ 

Es=Gs 

Fig. 4. Two plasma layer model of MOS structure or heterojunction with grating structure. 
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external force acting upon the plasma: both are determined by the same 
periodic function N(y ) .  The spatial Fourier  components  of the external force 
are non-zero only for waves numbers  equal to 2~rn/a (n = 0 ,  +_1, + 2  . . . .  ) 
whereas the gaps in the plasma wave spectrum occur at the p lasmon quasi- 
momenta  nvr/a. Hence, in F I R  absorption experiments one observes the 
plasmons in the vicinity of forbidden gaps of even ordinal number.  This means 
that in the reduced band  scheme we deal with the centre of the first Brillouin 
zone and have to find a solution of  the Maxwell equations which is periodical 
in y with period a. 

As is clear f rom fig. 4, the non-zero components  are E~, and E. for the 
electric field and H x for the magnetic one. The latter is chosen in the form: 

O_~ 1 ) =  ~"~D. exp( ikyn + ~.1z ), for 

H~ 2)= ~'~A. exp( ikyn + K.2z ) + B. exp( ikyn - x .2z) ,  for 

H__~ 3) = ~?. C. exp( ikyn - K.3z ), for 
¢1 

where k = 27r/a, x.j2 _- q2n2 _ ejo~2/c 2, j = 1, 2, 3, . . .  (see fig. 4). The tangen- 
tial component  of  the electric field is given by the equation 

3H~Y) iC ----x E~ J' (6.2) 
• 09Cj ~Z 

The boundary  conditions are 

E ( 1 ) =  E~2) ,  /_1(2) H~I) 4"rr . i e 2 N ( y )  Ev, 
v . -- ~ = ---~--Ysurf. J'surf = mw 

at z = 0, and 

E~2~ = E~3~, 

z < 0, (6.1a) 

0 < z < A, (6.1b) 

z > A, (6.1c) 

Hx~3 ) H~2) 47r ie2Ns 
- ~ c ~ E Y '  ( 6 . 3 b )  

at z = A. The surface currents in eqs. (6.3a) and (6.3b) are written in the cold 
collisionless plasma approximation;  Ns is the equilibrium plasma density in the 
P-plane (z = A), rn and m* are the effective masses of  electrons in the grating 
structure and inversion layer, respectively. By making use of eqs. (6.1)-(6.3b) 
one can obtain a secluded equation for the coefficients/3, .  In the most  general 
case (three parts of the space with different electrical permeabilities) this 
equation is rather cumbersome. Two small parameters allow us to get an 
essentially simple equation. These parameters are ¢o/ck and ¢oA/c; usually 
w / c k  - ao~/2vrc < 10 2; w A / c  ~ 10 3. Then we have 

D ~ d , G  41re 2 
34. m.w2 Y'~N._tnI1D t = 0. (6.4) 

/ 

(6.3a) 
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In eq. (6.4) the following notation is used: 

cox [ ¢~ coth(kA I n n) + Cox ] + Cox coth(kA [ n [) + ¢~ 

a~ .  0 = cs + Cox coth(kA In n) , 

c t 0 = c s + l ,  r . = l - w 2 / ~ 0 2 ,  M =l -w.2 /~02 ,  

~n=kl l l  i f l4=0,  a n d K n = - i ~ 0 / c  f o r l = 0 ;  

N. are the Fourier components of N(y), wn and ~. are the 2D plasmon 
frequencies in the system without metal electrode and with a uniform ideal 
conductive electrode, respectively: 

w,2 = 4rreZNskl n I[%x coth(kA I n l) + 1] 

m,{,ox[,scoth(kAinl)+%x] +%x coth(kA inl)  +,~ } , (6.5a) 

-2 = 4~re2Ns k In I (6.5b) 
~o~ m,[,s +%~ coth(kz~lnl) ] . 

If the modulation N(y) is relatively small (N±I ,  N±2 . . . .  <<No) one may 
solve the system (6.4) in the "weak-coupling" approximation (cf. section 5.2). 

The main plasmon resonance corresponds to the plasmon momenta + 2~r/a. 
Hence, the coefficients D±1 are the most important in eq. (6.4). The coupling 
between D I and D_ 1 is provided by the Fourier components N± 2. We have to 
keep also the coefficient D O in as much as we are going to catch the effect of 
electromagnetic wave emission, because only for l = 0 does the parameter x n 
become purely imaginary which just corresponds to emission. The coupling 
D O ~ D±I is provided by the components N±1 and has an additional small 
parameter ~oa/2~rc as compared with D1 ~ D_1 coupling. Thus the system 
(6.4) is reduced to three equations for D 0, D~ and D_I,  and we obtain the 
following dispersion equation 

( °tlFl m-w2 1 + *-~-7-~]~,.~4'rre2NIN-1) 2 

M, 41re2No k i m ~ , . ~ _ . , _ N  0 

( N2 47re2N]2)(  N-2 4'n'e2N2' ) (6.6) 
= -~o-im,c(~s+l)No --~-o -im*c(~.s+l)No " 

First let us neglect the emission, i.e. we omit the imaginary terms in eq. (6.6). 
Moreover, in accord with the experimental situation, one may put N O >> Ns. 
Then the roots of the dispersion equation (6.6) are close to the zeros of M1 and 
two plasmon frequencies are obtained for the momentum k = 2~r/a: 

[ aim* ( [N2I )] 
oa2=~2 1 4~re2kNo(Oa 2 - ~ 1  z) 1 _  ~ . (6.7) 
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The gap in the plasmon spectra is 

= ~01a,m*(~02 - ~2) ] N2 ] Ns ]N2 [ 
~1 - -  ( 6 . 8 )  

o~ + - w _ 4 ~re 2kN: N ff 

One can see from eq. (6.8) that the gap is small, not only due to the weak 
modulation (N 2 << N 0) but also because the ratio N J N  o is very small. N o is the 
average areal density of electrons in the grating structure and for typical N, 
this ratio does not exceed 10 -3 . For rectangular modulation of the gate 
electrode transparency 

N , / N  o = a s i n ( T r n t / a ) [ n T r ( a  - t)] 1, 

and if t << a we have N , / N  o - t / a .  Now it is clear why the experimentally 
observed dispersion law of the plasmon corresponds to the situation with a 
continuous ideal conductive gate electrode (~ = ~)  despite the presence of the 
grating structure. The solution (6.7) and (6.8) has been obtained for a weakly 
modulated transparency of the gate electrode, whereas in a real experimental 
situation the modulation is strong. However, it is shown that the distortions in 
the dispersion law have an additional small parameter  N J N  o which is not 
connected with the weakness of the modulation. It is plausible that in a real 
situation this parameter  provides for the close agreement of the observed 
dispersion relation to that of a closed resonator. 

Now we can calculate the radiative damping F R = - I m  ~0. Let us suppose, 
for the sake of simplicity, the function N ( y )  to be symmetrical with respect to 
the middle of the metal stripe of the grating structure. Then the damping of the 
upper branch ~0 + is 

¢o [ N , ~ 2  a, ¢02-~2 
(6.9) 

In the region kA << 1 the emission increases when A decreases: 

--~-w ( N1 ) 2 c°x (6.10) 
r R = ~ ° + c k l N o  (c~+ l l k a  " 

Eqs. (6.9) and (6.10) are derived under the supposition F R << ¢0+; in other 
words /'R is an imaginary correction to a certain root of the dispersion 
equation (6.6) and it must, of course, be much less than the interval between 
two various roots. If, for example, A tends to zero the root ~0+ vanishes, and 
for the plasma that forms the grating structure itself one obtains 

w2 2 [1 - 2 i ( o J / c k ) N 2 / N  g] eDp0 

where ~pO is the plasma frequency for the areal density N o of the electrons. 
In accord with eq. (6.10) the radiative contribution to the total width of the 

plasmon resonance is rather small. In experiments by Hei tmann et al. [34] the 
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characteristic parameters are: A = 5 × 10 -6 cm, a --- 5 × 10 -5 cm, t / a  = 0.25, 
w - - 2  × 1013 s - l ;  then one obtains FR/tO + -  3 × 10 -4. This is tWO orders of 
magnitude smaller than the collisional damping. Probably additional broad- 
ening observed in the experiment is caused by some other reasons. 

In the opposite limiting case kA >> 1 the damping becomes exponentially 
small: F R - e x p ( - 2 k z a  ). One can see this from eqs. (6.5) and (6.9); the 
difference 0~ 2 - ~2 tends to zero which corresponds to an exponential decrease 
of the plasmon electric field when the distance between the inversion layer and 
the grating structure increases. 

The branch 0~_ (the lower edge of the gap in the plasmon dispersion 
relation) has no radiative damping in the considered case of a symmetric N(y) .  
This can easily be understood from the spatial dependence of the field Ey. In 
the o~+ branch Ey has maxima in the centres of the metal stripes, whereas in 
the ¢0 branch there are knots of Ey at the same points. 

Formulae (6.7) and (6.9) define, respectively, the frequency and the intensity 
of spontaneous radiation of the 2D plasma. 2F  R is the amount of energy 
emitted per second by the plasma mode (k, ~0), or, in other words, F R 
characterizes the grating structure as an emitting antenna. It is interesting to 
note that in the most real case, kA << 1, the radiative width does not depend 
on the geometrical parameters k = 2~r/a and A but is governed only by Ns and 
the degree of modulation 

F R = [4~'e2Ns/me(~s + 1)] (N1/No)  2. 

Thus, the transformation coefficient of 2D plasmons into F I R  radiation 
contains only a small kinematic parameter, i.e. the ratio of the plasmon phase 
velocity to the speed of light. As there is no smallness of the type N J N  o, we 
see that in the system under consideration the imaginary part  of the eigen- 
frequency is much larger as compared with the distortion of its real part. This 
circumstance is rather important for understanding experiments on electro- 
magnetic radiation of 2D plasmons. 

6. 2. Non-equilibrium plasmons in a 2D electron gas 

Electromagnetic radiation corresponding to radiative decay of 2D plasmons 
appears when a constant electric field is applied to a MOS structure or 
heterojunction parallel to the interface. In the available experiments the 
electric field causes the electron to drift at a velocity u 0 of the order of 
(1-10) × 10 5 cm/s .  The radiation frequency does not depend on the applied 
field and is determined, in accord with the plasmon dispersion law, by the 
momentum k and by the areal charge density N S. The effect therefore cannot 
be attributed to the onset of transition radiation when the charge moves near 
the lattice of metallic electrodes. On the other hand, the attained drift velocities 
are much lower than the phase velocity of the generated plasmons (~  - 1013 
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S -1,  k -  10 4 cm-1) ,  so that Cerenkov emission of plasma waves is likewise 
impossible. It seems quite evident that the observed emission occurs due to a 
heating of the electron gas in the electric field [33]. 

The physical mechanism of 2D plasmon excitation, when the electron gas is 
being heated up, is bremsstrahlung of plasma waves by electrons. Plasmon 
emission and absorption are allowed, irrespective of the electron velocity, if 
they are accompanied by electron scattering from impurities, phonons, etc. 
These bremsstrahlung effects produce a plasmon gas described in the thermo- 
dynamic equilibrium state by a Planck distribution function n0(w ). The 
radiative decay of the equilibrium plasmons contributes to the background 
("black")  radiation. The temperature of this radiation equals the temperature 
of the electron gas (not the lattice!). This has been proved in experiments by 
H6pfel et al. [33]. 

The electric field, however, not only heats the electrons, but also upsets the 
equilibrium of the plasmon subsystem due to electron drift. If  the non-equi- 
librium distribution function of the plasmons is such that n k > n o in the mode 
"followed" by the experiment, an excess of electromagnetic radiation must be 
observed at the frequency ~0(k). The "followed" mode is one of the eigen- 
modes of the resonator formed by the grating structure, i.e. k =  2~r/a, 
4~r/a . . . . .  The intensity of the excess radiation is obviously proportional to 
6n k = n k - n  0. The problem is, thus, reduced to the calculation of the non- 
equilibrium distribution function of the plasmons [21]. 

6.2.1. Basic equations 
The plasma oscillations of electrons located in the z = 0 plane are described 

by the equations 

Aft = -  47reP~(p)8(z) ,  N s = - N s d i v R ( p ) ,  (6.11) 

where R ( p )  is the particle-displacement vector. We expand all quantities in 
Fourier series and introduce the normal coordinates Qk in standard fashion: 

R =  ~ O k  eik P+ c.c. 
k 

The Fourier component  of the potential in the z = 0 plane is then 

~k = - 21rieNs( k . Qk ) / k ,  

and the Hamiltonian of the free plasmon field is 

m----~ + mwZ(k)NsQk" Q-t, , 

where ~,0 2 = 2~reZN~k/m, and Pk is the momentum operator. The interaction of 
the electrons with the plasmons is described by the operator 

Vin t = 2~rie2N~Y" e ' k °  + c.c. (6.13) 
k 
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As already mentioned, first-order processes are forbidden by the 
energy-momentum conservation laws, so that, in the transport equation for 
the function nk, it is necessary to take into account plasmon creation and 
annihilation processes described by V~n t, with simultaneous scattering of the 
electrons by impurities or by phonons. We denote by W(p, p', k) the prob- 
ability of a process in which the transition of an electron from a state p into p '  
is accompanied by creation of a plasmon having a momentum k. 

We write down the transport equation for nk: 

On k 
Ot = ~"~W(p, p ' , k ) [ n k ( f p - f p , ) + f p ( 1 - f p , ) ]  , (6.14) 

pp" 

p2  _ ( p , ) 2  = 2 m ~ ,  h = 1. 

fp is the electron-momentum distribution function. 
In the experiments the crystal lattice was at liquid-helium temperature, and 

the electron gas heated up substantially. It is known that at the drawing fields 
used (10-30 V/cm)  the temperature of the two-dimensional electrons in the 
Si-SiO 2 system is of the order of 10-20 K at a Fermi energy of the order of 
E F - 200 K. Without determining here the true form of the electron distribu- 
tion function, we substitute in (6.14) a function fp that describes a drift with 
specified velocity u 0. We then obtain n k from the stationarity conditions. The 
simplest procedure is to put f p=fo (P-Po) ,  where f0 is the equilibrium 
distribution function at a temperature T different from the lattice temperature. 
Po = muo. 

We note that in principle the plasma oscillations can be excited by another 
mechanism connected with the development of instability. The instability sets 
in if the coefficient of n k in the right-hand side of eq. (6.14) becomes positive. 
We shall show below that this possibility is realized at drift velocities much 
higher than in the experiments reported,and can therefore have no bearing on 
the effect observed. 

6.2.2. Impurity scattering 
We begin with calculating W(p,  p' ,  k) in the lowest Born approximation in 

the electron-impurity interaction. Within the framework of standard perturba- 
tion theory, account must be taken of two processes, in which the plasmon 
emission either precedes or follows the scattering by the impurity. We obtain 
for the probability W averaged over the impurity locations 

W(p,  p', k)  8'/'rNi m4603 U ( p - p ' - k )  + U ( p ' - p - k )  2 

× 8( p2 _ (  p,)2 _ 2m¢o), (6.15) 
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where U(p)  is the Fourier component of the impurity potential and N i is the 
impurity density. We simplify (6.15) by neglecting k in the argument of 
U ( p - p ' ) ,  as well as the terms k . p / m  compared with o~(k). The validity of 
these simplifications follows from the condition for the existence of weakly 
damped plasma waves (~o >> kv, k << mv o). We have 

2~'Ni [ k ' ( p - p ' )  ] 2 
w =  ,~(k~--) IU(p-p')I2 k 8 ( p 2 - ( p ' ) 2 -  2rno~). (6.16) 

It follows from the energy conservation law that at T =  0 the plasmon 
frequency cannot exceed 2kvu o, where k F is the Fermi wave number. Esti- 
mates show that o~/2kvu o ~- 3-4  in the experiments, i.e., the radiation is due 
only to thermal smearing of the Fermi distribution. We consider first the 
region k v Uo << o~, T. The distribution function f0(P - P 0 )  should be expanded 
in this case in powers of P0. Obviously, when eq. (6.16) is used for the 
transition probability, all the odd terms of this expansion vanish. A contribu- 
tion linear in P0 would appear if corrections of order k .  p/rno~ were retained 
in eq. (6.15). The corresponding increment to n k is obviously proportional to 
k ' p o  and cannot contribute to the observed radiation, since the total number 
of plasmons with specified frequency o~(k) does not change. 

We obtain the stationary solution of eq. (6.14) by substituting W ( p ,  p', k)  
from (6.15), and fp and fp, in the form of expansion up to and including terms 
of order p02. It is easy to verify that for any isotropic impurity potential (i.e. 
U ( p - p ' )  depends only on the angle between p and p ')  the stationary 
distribution function of plasmons is of the form 

n k = no(~0 ) + const, xp02(cos2a + ½), (6.17) 

where a is the angle between the vector k and the drift velocity. The actual 
value of the constant in (6.17) depends on the form of the potential and on the 
relations between T, ~0 and E F. In the Boltzmann case, when it is natural to 
assume also that 0~ << T, scattering by short-range impurities and two-dimen- 
sional Rutherford scattering lead to the same result 

8n k = ( p~/2mco )(cos2a + ½), p2 << mT. (6.18) 

It can be shown that for scattering by short-range impurities eq. (6.18) is valid 
in a larger region, namely po 2 << mTZ/w.  For degenerate electrons scattered by 
charged impurities we have 

8n k p2°k2 e-~/T(cosZa + ½), E v >> T, ~o >> T, (6.19a) 
2mZT 2 

8n k pZk2 (cosZa + ½), E F>> T, ¢o << T, (6.19b) 
12mZ~0T 

where E v is the Fermi energy. For short-range impurity centres the results 
differ from (6.19b) by a factor of 3/2.  
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Fig. 5. Region of integration in eq. (6.14). 
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We consider now a region in which kzuo/T is arbitrary, but in accord with 
the experimental conditions we have kFU 0 << t~, T << ~0 << EF; to calculate the 
integrals in (6.14) it is convenient to transform to the variables q = p - p 0 ,  
q'  = P ' - P 0 -  In the (q2, (q,)2) plane the effective integration region is then a 
strip of width 4poPv and length 23/2rno~ (see fig. 5). The following approxima- 
tions are valid in this region 

-fo(q') = - 1 ,  f ( q ) ( l  -f(q'))--- exp( 
(q,)2 

~m-~ )" - 
q2 

fo(q) 

The calculations lead to the following results: 
for short-range impurities 

nk=e-~/r(I~(2/)+IE(2/)+cos(Za)[Io(2/)I2(2/)+I((2/)]}, (6.20a) 

for Coulomb centres 

n k = e - ' ° / r  [/02(2/) + cos(Zct)/~(2/)], (6.208) 

where 2/= UokF/T and lo.1. 2 are Bessel functions of imaginary argument. 
At 2/<< 1 eqs. (6.20a) and (6.20b) reduce to the earlier results for low drift 

velocities. If, however, 2/>> 1 then 

n'=A-~-c°s2aexp(2kvu°-°~) ; ~ r 2 /  T (6.21) 

A = 2 in the case of (6.20a) and A = 1 for (6.20b). Thus, with increasing drift 
velocity the anisotropy of the effect becomes stronger (a factor cos2a in place 
of cos2a + ½). We present the value of the anisotropy parameter ~, defined as 
the ratio of the radiation intensity at k II u0 to the analogous quantity at k _1_ u 0 

for scattering by Coulomb centres 

-2/: 0.5 0.8 1 1.2 1.5 2 
77: 3.06 3.17 3.25 3.36 3.58 4.03 
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The temperature dependence of n k as expected, is activation-governed in the 
region w >> T, with an activation energy equal to the excess energy of the 
emitted plasmons above the threshold value 2kFu  o. 

If both types of scattering are simultaneously present, it is obvious as a 
result of the random distribution of the impurities that the total probability W 
is made up additively of the quantities W c and W n, which describe, respec- 
tively, the contribution of the Coulomb and neutral centres. In the absence of 
degeneracy and at drift velocities much lower than thermal, we again obtain 
eq. (6.18) for 6n, this being obvious beforehand, since both types of impurity 
give the same result in this case. The situation is more complicated for 
degenerate electrons. We denote by X the ratio of the integrated probabilities 
of plasmon emission in scattering by two types of impurity: 

X =  ~ W, (p ,  p ' ,  t , ) / ~  We( p ,  p ' ,  k) .  
pp" pp" 

At low drift velocities (in the sence of y << 1) we then have 

2 + 3 X  
n k -  no 2 + ~ -~Sn ,  

where 8n is taken from (6.19a) or (6.19b) depending on the ratio of w and T. 
If however, y >> 1, then 

cos2a 1 + 2 X  { 2 k v u  o -  co 
nk = ~r~-- ~ e x p l  T l ;  

see (6.21). Thus, in both limiting cases the dependence of n k on a and u 0 
remains the same as before, and all that depends on X, is the total radiation 
intensity. At arbitrary 3' the formula obtained is more cumbersome, but the 
minimum of the effect corresponds as before to a = ~r/2, while the maximum 
is reached at a = 0 and a = ~r. 

6.2.3. Scattering by phonons 
Under the experimental conditions (lattice temperature 4 K, electron tem- 

perature not higher than 10-20 K) we can neglect electron scattering by optical 
phonons. It suffices to consider interaction with acoustic phonons via the 
deformation potential, and in the case of GaAs, also via the piezoeffect. In can 
easily be seen that owing to the low sound speed s << v 0 << ~o/k, the electrons 
lose energy mainly on plasmons and momentum on phonons, i.e. [ p - p '  [ - 
~o/v o - q, where q is the phonon momentum, sq - sco/v  o << co. We can there- 
fore neglect the plasmon momentum k and the phonon energy sq in the 
6-functions that express the energy and momentum conservation laws. In the 
transport equation for n k we must now take into account contributions of four 
processes, creation and annihilation of a plasmon accompanied by emission or 
absorption of a phonon. Taking the foregoing into account, we obtain for the 
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total probability of the process p - + p ' ,  k: 

W= Eg2(q)(2Nq + 1)([k . (p- t , ' ) ]2 / (m,o~ ) 2} 
q,a 

× 3 ( p - p ' + o q ) 3 ( E p - E g - o ~ ) ;  o =  +1.  (6.22) 

Here g(q) is the electron-phonon interaction constant and Nq is the distribu- 
tion function of the phonons and can be regarded as close to equilibrium, at 
least if the electron drift is slower than the longitudinal sound (8 × 105 cm/s  in 
Si and 5 x 105 cm/s  in GaAs). In the essential region of q, the phonon energy 
can easily be estimated to be much lower than the lattice temperature T L, i.e., 
we can put Nq = TL/s q >> 1. Substituting in (6.22) the corresponding expres- 
sions for g(q) we find that W -  [k. (p  _p,)]2 for interaction via the deforma- 
tion potential and 

W -  [k • (p  - t , ' ) ]  2 ( p - t , ' )  -2 

for the piezoelectric coupling. The former case reduces to scattering by 
short-range impurities, and the latter to two-dimensional Rutherford scatter- 
ing. Therefore the interaction with the phonons does not call for a separate 
treatment. 

6.2.4. Exact allowance for Coulomb scattering 
The wavefunction that describes scattering by a Coulomb centre in the 

two-dimensional case takes the form 

~p  = q7 - 1 / 2  exp(~re2m/2p)F(½ - ime2/p) exp(ip,  p) 

x + [ime2/p, ½ ; i( pp - p.  p)],  (6.23) 

where ~ is a confluent hypergeometric function. The Born approximation 
considered above corresponds to the limit me 2 << p, q~ = 1. The matrix element 
M(p, p', k) that describes plasmon emission can be calculated in the dipole 
approximation (kp << 1), as in non-relativistic bremsstrahlung theory, since the 
electron velocity is much lower than the plasmon phase velocity. We shall not 
present here the rather long calculations, which are perfectly analogous to the 
aforementioned problem of bremsstrahlung of an electron in a nucleus (see e.g. 
ref. [37]). The result is 

IM(p ,  P', k) l  z=  I~P', k l k ' o I P ) l  z 

= ( 4 ~ ]  2 exp(--2~rme2/p) 

m~ ] ( P _p,)2( p2 _ ( p,)2)2 cosh(~rmeZ/p ) cosh(~rmeZ/p,) 

d F  z. (6.24) X m e Z ( k . p -  k ' p ' ) r ( z )  + i  ( p - p ' ) z k . ( p p ' - p ' p ) ~ z  (p _p,)2 
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Here 

F(  z ) - F ( i m e Z / p ,  i m e 2 / p '  ; ½; z ) 

is a complete hypergeometric function and 

z = 2 ( p .  p '  - p p ' ) / ( p  - p,)2. 

We consider only the case mo~ << k 2 for which a simple result can be 
obtained (mo~ /k  2 - 0.1 - 0.2 in the experiments). Putting p ~ p" ~ k F, p - p '  
= mo~/k  F in (6.24) and using the asymptotic expansion of F ( z  >> 1), we 
obtain for the probability W: 

W(p, p', k ) =  0 In 2 

(6.25) 

where W 0 is the Born probability of the process and C ( m e 2 / k v )  stands for all 
the factors in (6.24) that do not depend on the directions of the vectors p,  p '  
and k. Thus, in the approximation considered, the exact probability differs 
only by a logarithmic factor from the perturbation theory result. At low drift 
velocities (y << 1), as already stated, any probability of the form 

Wof  [cos ec(p, p ' ) ]  

leads to a relation 

8 . k  - p0 (cos2  + ½). 

At y >> 1 (and as before co >> T), the ratio n J n  o is exponentially large. The 
main contribution to n a is made by the region of integration over the 
directions of p and p ' ,  a region in which cos <(k, p ) -  1, cos ~:(k, p ' ) ~  - 1 .  
We can therefore put in (6.25) cos < (p ,  p ' ) =  - 1 ,  after which we obtain eq. 
(6.20b). 

6.2.5. Possibility of  instability development 
We have so far taken into account in the transport equation (6.14) only the 

electronic plasmon relaxation mechanism. In a real situation there are also 
other mechanisms, one of which is the observable radiative decay. If all the 
"non-electronic" relaxation processes are described by a phenomenological 
time r, it is necessary to add to the right-hand side of (6.14) a term (no - n)/ 'r .  
We then easily obtain for i~nk: 

8n k = 6n~°)(1 + 1 / f i T ) - 1 ;  ~2 = • W ( p ,  p ' ,  k ) ( f p , - f p ) .  (6.26) 
pp" 

$2 is positive in all the cases considered above. If the electron gas is degenerate, 
$2 does not depend on either the magnitude or the direction of the drift in the 
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region kFU 0 << co, which is most important for the experiment. All the derived 
relations remain therefore in force, and only the absolute value of gn k 
decreases. 

Instability sets in at ~2 < - 1/T. It turns out that for the model considered 
by us, in which we assume fp = f 0 ( P - P 0 ) ,  the onset of instability depends 
significantly on the electron-scattering mechanism. This is easiest to verify with 
a non-degenerate electron gas as an example. We calculate the first term in the 
right-hand side of (6.14) without assuming P0 to be small. It turns out that for 
short-range impurities we have ~2 > 0 at all drift velocities, i.e., no instability 
sets in. 

In scattering by charged impurities we have 

~ / T  x CO oo 
~ c o s ( 2 a ) f  e-XI2 (6.27) $2-  f0 e -  I0(2 flTt~ - ) d x -  (2 f l ~ ) d x / x ,  

~o/T 

with fl =- p2/2mT. It is easy to verify that in the region co << T, fl(co/T) w2 << 1, 
a sign reversal of J2 takes place when fl is the root of the equation 

(exp fl - fl - 1) cos(2a)  = ft. (6.28) 

Thus, instability is possible in the sector 0 < a < ~r/4 and 3vr/4 < a < 7r if 
fl > flmi.. At a = 0 we have flmin ---- 1.59, which does not contradict the condi- 
tion fl(co/T) 1/2 << 1. 

In the case of degenerate electrons, the calculations become much more 
cumbersome, but it can be stated that there is no instability up to drift 
velocities of the order of the electron Fermi velocity. For short-range centres 
and at T =  0 it is possible to calculate $2 for any ratio of poky and rnco by 
assuming only that the conditions P0 << kv and mco << k 2 are satisfied. It 
turns out that $2 > 0 in the entire indicated region, i.e., no instability can 
develop. It is worthwhile to note here that there exists a quite different 
possibility to get an instability (and, consequently, an amplification) of the 2D 
plasma waves. The physical mechanism of this amplification has no connection 
with the bremsstrahlung but is a version of the negative Landau damping in 
periodic structures [38]. The most suitable systems for realizing this effect seem 
to be the lateral superlattices occurring at high-index surfaces of monocrystals 
(vicinal surfaces). 

If a MOS structure is fabricated on such a surface and a 2D electron gas is 
formed, the plasma is affected by a 1D periodic potential with a period L 
much larger than the crystal lattice constant. Typical values L are of the order 
of 100 ,~. We shall consider the Landau damping and amplification of the 
plasma oscillations due to electron drift along the superlattice. 

The problem is to calculate the work done by the monochromatic electric 
field 

E -- E 0 exp[ i (kx - cot)] 
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on an electron moving in the periodic potential Uo cos(x/L) .  The amplitude U0 
is assumed to be small as compared with the kinetic energy of the electron. 

In the available MOS structures with superlattices the Fermi energy usually 
is one order of magnitude higher than U 0. To first order in U 0, the motion of 
the electron along the x-direction is given by the relation 

x(  t ) = x(O) + vt + ( UoL/mv 2 ) sin( v t /L  ), (6.29) 

where o is the average velocity of the over-barrier motion (locking of particles 
in the potential wells is excluded by the condition U 0 << my2). The electric field 
wave distorts the law of motion (6.29). The perturbation 6x(t)  in the linear (in 
E 0) approximation and at U 0 << m v  2 obeys the equation 

d28x eE°exp(i[(kv ¢o i),)t U°kL " ( vt )]} 
. . . . . . .  dt 2 m mv 2 sin ~- , 7 ~ +0 .  (6.30) 

From eq. (6.30) one can obtain 
+oo 

6 x -  eE° Y'~ Jn(ct) e x p ( i [ ( k + g " ) v t - ( c ° + i y ) t ] } ,  (6.31) 

m ,=-~o [ ( k + g , ) o - c o - i y ]  2 

with a--- UokL/mo 2. Here, g, = n/L ,  the J,  are Bessel functions. The term 
n = 0 in eq. (6.31) corresponds to the spatially uniform case, the remaining 
terms describe umklapp processes. 

The time-averaged energy absorbed by the particle is 

q(v)  = ~ { R e  (x  + ~x)E*(x ,  t ))  - 2m Im ~ J , ;  ( a ) - - ~  , 

where b n stands for (k + q ~ ) v - , 0 -  i~,. To derive formula (6.32) one has to 
allow for two contributions to the velocity of the particle which are propor-  
tional to U 0 and E 0. By taking the limit ~, ~ 0 one obtains the total absorbed 
power (2: 

Q = fq(v)f(v - u)dv, (6.33a) 

q(v)  - ~r(eE°)2 ~_,J~(a) d [v6(o~ - kv - g,v)] (6.33b) 
n 

Here u is the plasma drift velocity in the superlattice, f is the distribution 
function of the x-component  of the velocity (it goes without saying that only 
the projection of the velocity on the drift direction is essential in the problem 
under consideration). For 2D degenerate electrons we have 

/ ( v ) = ( m / r r h ) 2 ( v 2  o - v 2 )  ~/2, i f v < v  0, 

f ( v )  --- 0, otherwise. 
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As known,  in a spatially uni form Fermi  p lasma the Landau  damp ing  equals 
zero due to the inequali ty co > kv o. Accordingly,  the te rm with n = 0 does not  
contr ibute  to the sum in eq. (6.33). However ,  the umklapp  processes result in a 
finite damping  for  a degenerate  p lasma in an external periodic potential .  
Usual ly  one may  assume kL << 1 and a < 1, so that  the leading te rm in the 
damp ing  F is defined by  the terms n = + 1. F, which is the imaginary  par t  of 
the p lasma wave frequency, equals Q/8~rk: 

F ezk ( U ° ] 2 1 4 ( v 2 -  zO/2  2 ,  ' /2  u_) +4(%2-u+) 
mcoL 2 ~ 1  [ coL 

U_ U+ 
+ + • u + = u + c o L .  

( 4 - . 2 y  (4-.2+) , 
(6.34) 

Fo rmula  (6.34) is valid until all values s tanding under  the square roots are 
positive: otherwise the corresponding terms are to be omit ted.  Moreover ,  the 
condi t ion kLU o < <  mco2Z 2 is assumed to be satisfied, which corresponds  to the 
inequali ty c~ << 1. This is realized for the most  typical exper imenta l  condit ions 
k -  10 4 cm -1, N s - 1012  cm -2, c o -  1012-1013 s -1. If  there is no drift  the 
damping  has a m in imum at co - vo/L and increases bo th  for small co and for 
co -~ vo/ L 

2e2k ( Uo ) 2 4% 2-3co2L2 
F 

mco2L 3 ~ ( v 2 _  co2L 2)1/2" (6.35) 

Ampli f ica t ion of the wave occurs for F < 0; this happens  in a certain interval 
of  the drift velocities: 

[02o +(coL/8)211/2+ ~coL <u < v o + coL (6.36) 

(the last two terms in (6.34) are zero in this case). In the vicinity of  the upper  
edge of the interval (6.36), where u = Urea x = v 0 + coL, the increment  of  amplifi-  
cat ion increases as (Uma x - U)-WE. Thus, the amplif icat ion of 2D p lasma  waves 
can take place at drift  velocities u - v  0, i.e. u - 1 0 7  cm s i for typical 
structures with a 2D electron gas. This rather  high value seems, nevertheless, to 
be  experimental ly  at tainable.  On the other  hand,  the amplif icat ion in a 
spatially un i form system (for example,  in the case of  two separated p lasma 
layers) is possible only if the t~erenkov criterion, v > co/k, is satisfied. It  
demands  much  higher drift  velocities since co/k is typically of the order  of  
1 0 8 - 1 0 9 c m  s 1. 

7. Non-linear optical phenomena associated with 2D plasmons 

The variabil i ty of  2D electron systems and, especially, the possibil i ty of  
tuning the p lasmon frequency over  a wide range is very at tract ive f rom the 
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viewpoint of "active spectroscopy". On the other hand, during the past few 
years important progress has been achieved in the construction of powerful 
tunable sources of FIR radiation (first of all, the free electron laser). This 
opens new possibilities for investigating 2D plasmas affected by a strong 
electromagnetic field when various plasma instabilities become essential. Two 
examples are considered in this section to demonstrate the non-linear optical 
properties of 2D plasmons connected with so-called "concentrational non-lin- 
earity". 

7.1. Synthesis of combination frequencies 

Our purpose is to calculate a current of frequency ~01 + oa 2 induced in the 
2D electron gas by two FIR fields, E 1 cos(~0F) and E 2 cos(oa2t ). The self-con- 
sistent system of equations for the distribution function f ( r ,  v, t) and the 
electrostatic potential ~(r,  t) is of the form (the scattering of electrons is 
neglected for a while): 

Of Of e Of 
Ot + v-~r + --m [E(r ,  t)  - grq,] ~v = 0, (7.1a) 

{(z),a~, = -4~rea(z)f(f-fo) d2p/2~r 2, (7.1b) 

where E(r, t) is the total external field created by the two incident FIR waves. 
The grating structure described above provides a spatial modulation of the 
field E identically for both waves. By expanding all the functions of r in 
Fourier integrals and by making use of a formal solution of eq. (7.1b) with the 
Green function (4.11), one can find the qth Fourier component of the 
electrostatic potential in the plane z = 0, where the electrons are supposed to 
be located: 

4~re 
f f d2p/2~r2, f - f - fo. (7.2) 

dpq(g = 0 ) =  q[•s_t._ •o x coth(qA)] 

By substituting eq. (7.2) in eq. (7.1a) one gets a closed non-linear equation for 
/,(v, t): 

Oft e Ofo 4Trek ~- d2p ] 
Ot + ikvfk + - -  Ek ( t ) -- i - -  m-~v k[{s+{oxco th(kA) l  J f k ~ ]  

e Ofk-q I 4~req ~ - d2p ] 
+ m ~q ~--v LEq - i q[ {S + {°x c°th( qA )] J f q f ~ 2  ] = 0 '  (7.3) 

We shall solve eq. (6.3) iteratively, assuming the external field Eq to be 
sufficiently small. The criterion of this approximation will be clear from what 
follows. Let the external field consist of two waves with frequencies ¢01. 2 and 
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a m p l i t u d e s  El, 2. The spatial  dependence  of the fields in a plane occupied by 
the p lasma can be expressed by the Fourier  series of  cos (2~nx /a )  (both fields 
are polar ized along the x-direction).  We shall keep only. the first spatial  
harmonic ,  so we put  

E = [ E  1 exp(09,t)  + E  2 cos(092t)] c o s ( k , x ) ,  k I = 2 ~ / a .  (7.4) 

The  second i teration gives an equat ion for f<2> which is bil inear in the E 1, E 2 

te rm of the distr ibution funct ion expansion.  Evidently,  the spatial dependence  
of f<2) corresponds  to the m o m e n t a  k = 2k  1, - 2k  1 and 0, while the f requency 
must  be 209 1, 209 2 or 091 + 092. To  be specific we put  09 = 091 + 092, k = 2k1: 

4"n'eZvxfo f~(2) dZP 
(091 "Jr 092 --  2klVx)f(~ ), + co th (Zk lA)  y z k ,  

c s + Cox 2 ~  2 

e2w2w~E, E2(091 + 092 - 2k ,Vx)d( foOx)/dvx 

= m(09, - kv x ) (09z-  kvx)[ 091 z - 092( k , ) ]  [ 0922 _ 09p2(k,)]" (7.5) 

This  equat ion can easily be solved and the total  c u r r e n t  =]'comb of the combina -  
t ion frequency 091 + 092 equal to j ( 2 k l )  + j ( - 2 k l )  + j ( 0 )  has the fo rm [39]: 

ieZElEzNskl  sin(Zklx)(091 + 092)(092 + 4091092 + 09~) 

Jcomb = - - m 2 [ ( 0 9  1 +092)2_092(2k,) l[092_092(k,) l[092_09~(k;)]  (7.6) 

As expected, Jcomb = 0 at 091 + 092 = 0: a direct current  cannot  exist in a system 
which has an inversion centre in the presence of an external field (just that  case 
we have: El. 2 - cos(klX ). For  different values of  N s three resonant  frequencies 
are possible: 091, 092 and 091 + 092. Close to resonance,  electron scattering 
should be taken into account,  which gives in the denomina to r  of  eq. (7.6) 
091(091 + i~,) instead of 092, etc. The  magni tude  of the optical  non-l ineari ty in 
the considered system can be es t imated as t h e  ratio of  the current  Jcomb 
quadrat ic  in E 1 and E2, to the linear current  J0. At resonance,  one gets 

Jcomb//J0 -- eklE/mp09 p - E09p/e~,N s 

(we put  E 1 - E  z = E in order  of  magnitude) .  In the available exper iment  
u -- 0.109p, and for N s - 10 12 cm -2 and an intensity of  the incident wave of - 1 
W / c m  2, one obtains  Jcomb/ /J0-  1 0 - 3 ;  the ampl i tude  of the current  J~omb is of  
the order  of  1 0 - 5 - 1 0  -6 A / c m .  

The  absolute m a x i m u m  of J~omb Occurs at a double  resonance:  09a (or 
092) = ~ p ( k l ) ,  091 + 092 = °~p(2kl)"  There  is only one tunable  pa rame te r  N~, so 
that  these two condi t ions can be s imultaneously satisfied only if a certain 
relat ion between 091 and 092 is fulfilled. For  example,  let 091 > ~2- A very 
simple result is obta ined  in the case klA >_ 1, when c o t h ( k ~ A ) ~  1. Then  the 
relat ion ment ioned  above is 092 = 091(v r~- - 1). 
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Fig. 6. Three-wave diagram for synthes~s of harmonics and parametric division of frequency. 

In a magnetic field perpendicular to the plane z = 0 an additional degree of 
freedom arises. The resonances are now given by the conditions: ~o 1 + ~02 or 
~01, 2 = [~02 + ¢02(k)] 2, where k = 2k 1 or k 1. By tuning the parameters N S and 
~0 c one can obtain a double resonance for any ~01 and ~02 obeying the 
inequality o~ 2 ~< ~01 (V~- - 1). At a double resonance J~omb increases additionally 
by a factor of ~o/v. 

One of the possible ways of observing a non-linear transformation of F I R  
radiation by a 2D plasma could be the detection of the first harmonic of the 
incident wave (o~ 1 + ~02 = 2o:) emitted by a "MOS-plus-grating" structure 
when subjected to a sufficiently intense exciting field. Thus, MOS structures 
seem to be rather promising non-linear optical systems, allowing frequency 
tuning over a range of 1012-1013 s -1. 

7. 2. Parametric generation of 2D plasma oscillations 

The process investigated in the preceding subsection can be graphically 
depicted as is shown in fig. 6. The wavy lines correspond to plasmons, the 
vertex (black point) is the non-linear interaction of the plasmons. This three- 
wave process may be read also " f rom right to left", and then it represents the 
frequency division according to the mechanism of parametric resonance. 

The treatment of this problem on the basis of kinetic equations leads to very 
complicated calculations. Luckily, actual plasmons satisfy the condition ~0 >> kv 
so that a more simple hydrodynamic description of the plasma is applicable. 
Then spatial dispersion may be neglected and one may use the continuity 
equation and the equations of motion of a cold plasma. With allowance for 
effects of the concentration non-linearity the continuity equation may be 
written as 

~N(x,~t t) + div[(n~ + N ) u ( x ,  t)] = 0, (7.7) 

where u is the hydrodynamical velocity of the plasma. The equation of motion 
including the plasma wave electric field is 

i4 + vu + ( e / m  ) ~reO( x, t )  Iz=o = ( e / m  )E(  x,  t ). (7.8) 
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Together with the Poisson equation, eqs. (7.7) and (7.8) form a closed system. 
One can obtain from it a system of equations for the Fourier components of 
the velocity uk(t ) and the areal density Nk(t): 

~k + ik .  uN s + ik" EUq~fk_q(t) = 0 ,  (7.9a) 
q 

2¢re2k e 
- -  reEk( t )  (7.9b) iak + vuk + i k m c ( k l  lVk(t) = 

Here c(k) stands for 

½['s + %x coth(kA)].  

We are interested in exciting the principal mode of plasma oscillations with the 
momentum k 1 = 2~r/a. The parametric generation is the three-wave process: 
(oa, 2kl) ---, 2(~0/2, kl). Hence, the pumping in the right-hand side of eq. (7.9b) 
must be the second spatial harmonic of the incident FIR wave (its amplitude is 
denoted by E2): 

Ek(t ) = ½E2(6k.2k ' + 8k_2k,) COS(Oat). (7.10) 

The first iteration of the system (6.9a), (6.9b) with respect to the pumping field 
gives a correction to the density in the form: 

fik(1)_ ieNskE k exp(i~o/) + c.c.]. (7.11) 
- 2m oaZ(k ) - -  ~ 2  + ivy0 

. i  

In what follows k and E stands for the absolute values of the vectors k and E 
because of the one-dimensional character of the problem under consideration. 

As is shown, the parametric resonance originates from terms of the type 
~(1)~(2) occurring in the third iteration. One can see from eqs. (7.10) and 
(7.11) that the components ~-(2) combine with £~(1) and with the external ~ ' k  ± 2 k  a ~ ' k  ± 2k  1 

field that also contains the momenta _+2k 1. An infinite chain of coupled 
equations arises from which one can find the region of the principal parametric 
resonance (the first zone), if one puts k = _+k  1 and neglects all the higher 
harmonics ~rq starting from q =  +3k  v It is convenient to introduce the 
function 

17(k, t ) =  f f  .K[(2)(k, ~) e"~d~ ". 
OO 

Then one gets for FI+ = FI(k 1, t) and 17_ = H ( - k  1, t): 

f I  + -  vi i++ oa~( kl)17 + + ( ek lE2/m)  exp(i60t) 

[iOap2 ( k , ) 1 7 -  ½oaf-l_ 1[ %2(2k,)-~0 2 + i w ] - 1 =  0, (7.12) 

and a similar equation for 17_, wherein 17+ and 17_ have to be interchanged 
and the coefficients have to be replaced by their complex conjugates. The 
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solution of these two coupled equations has the evident form 

/7 ± -  exp[(s  + ½i~0)t], 

where s is defined by the characteristic equation 

(s  2 - 2eco o - us) 2 + 4coo2(S - ½u) 2 = (2ec°°klEz/ms)2 (7.13) 
+ , a a  

Here coo = cop(kl), ~ = ~ / 2  - cop(k1) and the condition e << co o is used. Again 
making use of this condition we solve eq. (7.13) approximately and find the 
boundaries of the instability region [40] 

( eko E2wo/m )2 
c a + lv2 < (7.14) 

[ cop2(2kl)- co2] 2 q-l., 2co a" 

Two different cases can be realized depending on the plasmon dispersion 
relation: the square-root regime cop(kl)- k~l  which occurs at klA >> 1 (thick 
dielectric layer), and the linear regime which could take place, for example, in a 
MOS structure with a thin oxide k l a  << 1. In the square-root regime the 
threshold field providing the parametric instability equals E2 m)= m~aov/ek 1 
which can also be expressed via the mobil i ty/ ,  of 2D electrons: E2 m) = coo/#kl. 
For the record mobility reported in GaAs-GaA1As heterojunctions ( - 1 0 6  
cm2/V • S) we estimate (a = 1 × 10 -4 cm, ~00 = 2 × 1012 s -1) E2 m ) -  90 V / c m  
which corresponds to a F IR  intensity of - 20 W / c m  a. However, in the linear 
regime the threshold field estimate is more optimistic since the conditions 
co=2cop(kl) and 60=cop(2kl) can be satisfied simultaneously. Then the 
threshold field is decreased by a factor of v/co o, which is 4 x 10 -3 for the same 
magnitude of the mobility. This gives a threshold intensity as low as 3 x 10 -4 
W / c m  2. As is shown in section 6.1 the grating structure acts as a nearly 
uniform metal gate electrode at least as far as the plasmon dispersion law is 
concerned. Hence, the linear regime can be realized in a GaAs-GaA1As 
heterojunction with, for example, an aluminium grating structure upon the 
GaAIAs layer if the thickness of the layer is small compared with the period of 
the grating structure. 

To define the amplitude of oscillations in the parametric resonance regime 
one has to keep non-linear terms in the chain of equations for the Hk( / ) :  

2 k ~ ¢°pZ(q) _ , , / 7  t /  = n ,  - + - - q -  q * -q  R(k,  t ) .  (7.15) 
~ f  

The right-hand side of eq. (7.15), R(k, t), contains all the terms obtained by 
the first iteration of the system (7.9a), (7.9b) which are linear in the pumping 
field E 2. Hence, R(k, t ) - 0  if k 4= + k l ,  whereas for k = +_k I one obtains 

" eklE1 °a[-l(-T-kl)-T-2ic°2H(g-kl) e +i'°t (7.16) 
R ( - + k l )  = 2m co2(2kl) - ~2 + ivo ~ 
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By selecting again the essential harmonics ,  i.e. put t ing in eq. (7.15) k = k~, and 
q =  - k ~ ,  2k~, or k =  - k ~ ,  and q=k~, - 2 k  1 we arrive at a system of four  
equat ions f o r / 7 (  + k 1) , /7 (  + 2k 1 ). The solutions of  these equat ions are searched 
for  in the form 

/7(___kl) = a_+ e x p [ ( + i ~ / 2  + u)t], 
H ( _ 2 k , )  = A +  exp[(___i~ + u ) / ] ,  

which corresponds  to a constant  ampl i tude  of the oscillations in the concentra-  
t ion N(2 ) (+k l ) .  It  follows f rom eqs. (7.15) and (7.16) that  the system of 
equat ions is invariant  with respect to a t ransposi t ion a+~ a*, A _~ A*_. This 
essentially simplifies the solution. By using the condit ions u, c << o~ and by  
excluding, consequently,  A+ and A_ one obtains:  

a ( [~02(k , )  - ¼w2+ i~,o~p(kl)] [o~p2(2k,) - to 2 + 2i~0o(k~)]  

- [ ~ o 4 ( k , ) / N s  2 ] l a l  2 [4~o2(k , )+  ~o~(2k,)] } = - [ 2 i e k , E 2 J  (k,)/m] a*,  

(7.17) 

where  a = a+ = a*_. There  is, of course, a trivial solution of eq. (7.17), a = 0, 
but  besides there are non-zero solutions defining the ampl i tude  of resonant  
oscillations as a funct ion of the resonance defect  c and other  parameters .  For  
the most  preferential  l inear regime, top(2k l )=  26op(kl )  , the result is 

la12=(4Ns2/o~4){8,2-u2+[(ek,E2/m)2- 36u2,21'/2 }. (7.18) 

The  ampl i tude  of the al ternative par t  of  the concentra t ion  equals ½ ~ l a l .  
Fo rmula  (7.18) is applicable if the pumping  field exceeds the threshold 
magni tude  which corresponds  to the case c = 0, namely  E 2 > mu2/ekl. The 
two branches  in the dependence  of l a I 2 on c described by eq. (7.18) link up at 
£max = ek~E2/6mu; the upper  branch  ( +  sign in front of  the square root  in eq. 
(7.18)) corresponds  to stable oscillations (see fig. 7). The  threshold field 
depends  on the resonance defect c according to the formula  

E~°)( , )  = (m/ekl)[(16, 2 + 1p2)(4, 2 + tJ2)] 1/2, (7.19) 

and  increases as c 2 in the region c >> ~,. The  behaviour  of  I a I 2 at small c is 
def ined by  the pa ramete r  X = ekoEz/mt) 2. I f  X ~< 9 / 4  there is a m a x i m u m  at 
c = 0, whereas for ?, > 9 / 4  there occurs a m in imum for c = 0 and two m a x i m a  
at 

, =  -4- (1~/6) [ ~.2 -- (3)4]  1/2 

The  unstable  branches  of  ]a[ 2 are depicted in fig. 7 by  dashed lines. If  the 
pumping  field exceeds the threshold value so that  (X - 1) - 1, one can est imate 
the ampl i tude  of concentra t ion oscillations as [N~2) I - NsO'/~o) all over  the 
interval I c I < Cmax. 
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Fig. 7. Dependence of squared amplitude of resonance oscillations on the resonance defect 
c = ~ / 2 -  wo; I: ~. = 5/4,  II: ~ = 9 /4 ,  III: h = 27/4.  

The experimental manifestation of the considered effect is an emission 
arising from the 2D electron system at a frequency ½o~, if the latter is excited 
by radiation of frequency ~. Eq. (7.18) gives the dependence of the ½o~-emis- 
sion intensity on that of the incident wave. Probably in experiments it is more 
convenient to tune the defect ~ by sweeping N, at a fixed frequency of the 
incident FIR radiation. 

8. Conclusion 

In conclusion, I tried to demonstrate various possibilities of 2D charge 
carrier systems as objects for investigation by FIR physics methods. Some of 
the possible experiments have already been done, others are still waiting for 
their turn. Among the latter, plasma waves in multilayer superlattices and 
non-linear effects seem to be most interesting. It is hoped that the rapid 
progress of semiconductor technology will lead to the discovery and investiga- 
tion of these and many other phenomena in the nearest future. 
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