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The requirement that the quantal wave function be single-valued is examined in the light
of two recent developments: The effect of a magnetic vector potential on a particle moving
in a multiply connected field-free region (Aharonov-Bohm effect), and the flux quantization
inside a superconducting ring. Both of these effects are new applications of conventional ele-
mentary quantum mechanics. The single-valuedness problem is considered, with its historical
background, for particles with no spin, particles with spin , and rigid bodies. It is shown that
the single-valuedness condition, if properly adapted to the particular physical model, is deeply
rooted in the foundations of quantum mechanics. However, wave functions which superficially
appear to be double-valued are useful in an helicity representation of spinors and in the con-

struction of nuclear wave functions.

1. INTRODUCTION

IN the discussion of the eigenvalue problem
for the z component of the orbital angular
momentum of a particle, L=rXp, one is in
quantum mechanics confronted with the differ-
ential equation

v
Ly=——=mhy (1)

which has the solution
y=Ceims. (2)

It is then argued that ¢ must be a single-valued
function of position, hence that it must have the
same value for ¢ =2 as for ¢=0. It follows that
m must be an integer: m=0, 41, £2, ---.
Most students of quantum mechanics have on
occasion felt uneasy about this argument because
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it produces one of the most fundamental results
of quantum physics, the quantization of angular
momentum, by recourse to a requirement which
does not appear to be at all obvious. To be sure,
the demand that ¢ shall be single-valued is
merely a boundary condition for Eq. (1), and
we are used to the appearance of discrete eigen-
states and eigenvalues as a consequence of the
enforcement of boundary conditions, but this
particular condition seems somewhat less natural
than, for instance, the requirement that the wave
function must be finite at large distances.

The doubts concerning the single-valuedness
condition have been expressed most concisely
by Blatt and Weisskopf in a famous footnote
of their book!: “The . . . argument is fallacious
since multiple-valued wave functions cannot be
excluded a priori. Only physically measurable

1J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New Yorlk, 1952), see
footnotes on pp. 783 and 787.
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F1G. 1. Particle moving in circular track of radius a
around a magnetic flux ®. The flux is concentrated in a
line through 0 perpendicular to the figure. The vector
potential (4) is tangent to the circle.

quantities, such as probability densities and ex-
pectation values of operators, must be single-
valued. Double-valued wave functions are used
in the theory of particles with intrinsic spin."

It is the aim of this paper to clarify the
problem of the single valuedness of y. Recently,
the question of whether the wave function of an
electron must be a single-valued function of
position has been raised in connection with an in-
teresting quantum effect predicted by Aharonov
and Bohm.? The point made by these authors
can be understood in an elementary way by con-
sidering an infinitely long, thin solenoid perpen-
dicular to the plane of the paper (Fig. 1). Under
idealized conditions the magnetic field is entirely
confined to the interior of the solenoid and
vanishes outside. However, the vector potential
A, related to the magnetic field by B=VXA,
cannot vanish everywhere outside the coil be-
cause the line integral of A along a curve en-
circling the coil is equal to the flux ® in the
solenoid :

fa-dr=f(va)-ds=fB-dS=qa. 3)

2 Y, Aharonov and D. Bohm, Phys. Rev. 115, 485
(1959); see also W. Ehrenberg and R. E. Siday, Proc.
Phys. Soc. (London) B62, 8 (1949); H. Wegener, Z.
Physik 159, 243 (1960); Y. Aharonov and D. Bohm, Phys.
Rev. 123, 1511 (1961).
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A possible representation of A in cylindrical
coordinates is given by

A,=%3g(¢)/p, (4)

p= (x4 being the radial coordinate in the xy
plane, and ¢ the azimuthal angle, ¢ =arctan v/x.
g( ) is an arbitrary function of ¢ but normalized
so that

A:=4,=0,

2w

f lade=1. (5)

It is easy to verify that B=VXA=0 except at
the origin.

If we place a particle in a narrow circular tube
of radius p=a around the origin, the particle
(of mass u) is constrained to move on a circle,
subject to the Hamiltonian

H=1}ua*¢

The generalized momentum corresponding to the
coordinate a¢ is the tangential momentum
component

Pw:ﬂaﬁb'l_ QA ] (6)
if Q is the charge of the particle. Hence,
H=3u7"(pe—0Q4,)" (7
In wave mechanics we use the representation
od
Pe— T
0 ¢
and obtain the Schriodinger equation
#sra iQa \?
o P D L O
2ua\de #
For the field (4) this becomes
wrao iQ 2
ey [y O
2uatlay %
This differential equation is solved by the

function

Y(e)=C expliz'm’p—kz'%@f

0

¥

g(so’)dso’] (10)

with the energy eigenvalue

E=m"/(2ua’). (11)
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Invoking the single-valuedness condition

¥(2m) =¢(0),
we learn from (10) that

(12)

Q 27
2o+ [ e(pde=2mm,  (13)
0

where m must be an integer. Hence, by (5),

ﬁ2 Q{b 2

E= (m———) .

2ual 2rh
and the wave function can be written as

V() = Ceime exp[é%[ f Pg(qa*)dp'—{;]l.

If g(¢) is discontinuous, but finite, the match-
ing conditions

(14)

¥ continuous
and

1Q .
( vV— -ﬁ—A) continuous

must be used.

It is seen that, independent of the choice of
the arbitrary gauge function g(¢), the energy
eigenvalues E given by (14) depend on the flux
of the magnetic field.

Indeed, as has been pointed out by Peshkin
et al.? if the flux is turned on slowly, Faraday's
law of induction implies that the rate of change
of the energy of the particle is

dE/d®= —Qu/ (2r), (15)

where w is the classical circular frequency,

w=[2E/(za®)]}. Hence,

dE  Q E)i
e w(zpaﬂ ’

in agreement with the result obtained by differ-
entiating Eq. (14).

Although this argument makes it clear “where
the energy comes from,” the Zeeman effect of
Eq. (14) has seemed paradoxical to many since
an electron, brought in from the outside after
the field has been turned on, can apparently be

3 M. Peshkin, I. Talmi, and L. J. Tassie, Ann. Phys. 12,
426 (1961).
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F1G. 2. The superconducting ring P is a
multiply connected region. The currents
flow only at the surfaces S; and Sa. (From
Byers and Yang, reference 6.)

used to measure the flux of a field which is zero
in all parts of space accessible to the electron. In
classical physics no physical feature of the elec-
tron motion could be influenced by a static
magnetic field which the particle never ''sees”;
e.g., the Lorentz force on the electron would be
zero. However, Eq. (14) provides the example
that, although B=0 in the circular track, the
nonvanishing of the vector potential A gives
rise to a physical effect. We shall refer to this
nonclassical effect briefly as the 4 haronov-Bohm
effect. Such an effect has been observed in elec-
tron diffraction experiments.* Fringes were shown
to be affected by the passage of electrons around
an excluded region containing the magnetic flux.
It is to be noted that the energy spectrum (14)
would coincide with that obtained for ®=0 if

& =1nteger X /0. (16)

This is a flux quantization condition.

In two wvery remarkable experiments it was
recently found that the magnetic flux in the
interior of a hollow superconducting ring is in
fact quantized in units of %/2e, where e is the
electronic charge.® A superconductor is charac-
terized by the condition that within it B=0. If
there is no magnetic field, no body current can
flow inside the superconductor in the steady
state, and all currents are confined to the surface.
A superconducting ring which encloses a hollow
region containing a magnetic flux ® is thus a
multiply connected region in which B=0 but
A=0. (Fig. 2). The same considerations can be
applied as to the Aharonov-Bohm effect, but
with the additional restriction that the body
current in the ring must be independent of the
enclosed flux—and, in fact, equal to zero—im-

4R. G. Chambers, Phys. Rev. Letters 5, 3 (1960); H.
Boersch, H. Hamisch, D. Wohlleben, and K. Grohmann,
Z. Physik 159, 397 (1960). For an interpretation of the
effect see also W. I1. Furry and N. F, Ramsey, Phys. Rev.
118, 623 (1960), and F. G. Werner and D. R. Brill, Phys.
Rev. Letters 4, 344 (1960).

8B. S. Deaver, Jr., and W. F. Fairbank, Phys. Rev,
Letters 7,43 (1961); R. Doll and M. Nibauer, Phys. Rev.
Letters 7, 51 (1961).
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plying that a charged particle moving in the
superconductor does not ‘“‘see’” the effect of the
flux.® This can be true only if the flux is quantized
according to Eq. (16). Q is the effective charge
of the particles whose motion is responsible for
the properties of the superconductor. The experi-
ments yield Q=2¢, and this observation is very
important for an understanding of the super-
conducting state.®

The eflect predicted by Aharonov and Bohm
and the interpretation of the recent flux quantiza-
tion experiments depend essentially on the as-
sumption that the wave function be single-valued.
It may thus be of interest to examine the
grounds on which this requirement rests.

The founders of quantum mechanics were
aware of the peculiar role which the condition
that ¢ be single-valued plays. Eddington seems
to have given some thought to the possibility of
using multivalued wave functions,” and Schré-
dinger showed that, under very general assump-
tions, one needs to consider only the alternatives
that ¢ is either a single-valued function of
position or a double-valued function, the two
values at a given point differing only by a sign.®
Schradinger assumed that the probability density
[¢(P)|* should be single-valued, that together
with any state ¢ the "time-reversed state’ y*
(complex conjugate of ¢) should also be a possible
state, and that certain continuity requirements
had to ke fulfilled.

The most important contribution to our sub-
ject was made by Pauli: He was dissatisfied with
his formulation of the problem in the 1932 edition
of Vol. 241 of the Handbuch der Physik}®
examined the question in detail in a beautiful
paper written in 1939, and finally was led to
rewrite the relevant section of his article for the
new 1958 edition of what is now known as the

¢For a complete discussion see N. Byers and C. N.
Yang, Phys. Rev. Letters 7, 46 (1961); L. Onsager, Phys.
Rev. Letters 7, 50 (1961); J. M. Blatt, Phys. Rev. Letters
7, 82 (1961); and W. Brenig, Phys. Rev. Letters 7, 337
(1961). Also the original suggestion by F. London, Super-
fluids (John Wiley & Sons, Inc., New York, 1950), Vol. 1,

o b
Py A. S. Eddington, Relativity Theory of Protons and
Electrons (Cambridge University Press, New York, 1936).

# . Schridinger, Ann. Physik (5) 32, 49 (1938).

*W. Pauli, Handbuch der Physik, edited by H. Geiger
and K. Scheel (Springer-Verlag, Berlin, Germany, 1933),
Vol. 24, part 1, p. 126; A, Nordsieck, "Quantum Theory
Lecture Notes'' (University of Illinois, 1949, unpublished}.

10V, Pauli, Helv. Phys. Acta 12, 147 (1939).
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Encyclopedia of Physics."* The discussion of this
paper leans heavily on Pauli's 1939 paper in
which he examined the double-valued eigen-
solutions of the orbital angular momentum
eigenvalue problem.!

2. PARTICLE WITHOUT SPIN

Let us, for the time being, restrict ourselves
to the nonrelativistic quantum mechanics of a
particle without spin. The wave function ¢ is
then a function of the position coordinates of the
particle, and the question of its single or multi-
valuedness can be simply phrased: Does or does
not ¢ resume its value ¢ (P) if, starting at some
point P, we move along a closed path in space
returning to the initial point (Fig. 3)?

The orbital angular momentum operator
L =rXp satisfies the commutation relations

[L.L,]=1hL. et cycl.

and
[L,L*]=0.

Consider again the eigenfunctions of orbital
angular momentum about an arbitrarily chosen
origin. Introducing spherical polar coordinates,
the simultaneous eigenfunctions of L, and L?
obey the differential equations

hoa
LZY;"‘E—_ —YVimr=mh¥,™, (17)
1 0p
1 g? 1 9 a
Ly»= —ﬁQ[——— ——i—————(sin&—)]f’,"‘
sin®f de* sind of af
=r(l+1) V¥, (18)

A familiar “ladder” argument made in quantum
mechanics'? and based on the commutation rela-
tions alone shows that the eigenvalues are m= —1,
—I+1, --+, [, and [ can only be an integer or a
half-integral number. For integral I the regular
solutions of (17) and (18) are the usual spherical
harmonics e*™¢P;™(cosf), and these are single-
valued functions of the particle position. For
half-integral I the ¢ dependence of the solutions
causes the wave function to change its sign as we

1 'W. Pauli, Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, Germany, 1958), Vol. 5, part 1,

p. 4546, _ )
2P, A, M. Dirac, Quantum Mechanics (Oxford Uni-

versity Press, Oxford, 1958), 4th ed., Sec. 36.
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Fric. 3. Closed paths through point P. If the polar axis
is arbitrary, the "inside’’ of a closed loop has no unam-
biguous meaning. The loop C can be continuously de-
formed into C’, and both can be shrunk to a point.

change ¢ from 0 to 2w. These wave functions are
thus double-valued in agreement with Schro-
dinger's assumptions. Indeed, if one wants the
time-reversed state ¢~i™¢ to be an eigensolution
together with ei™¥, both belonging to the same
angular momentum /, 'then 2m must be an
integer, since the probability density in a state
like eim¢4e-im¢=2 cosm¢, obtained by super-
position, is single-valued only if 2m is an integer.
Besides, —m can be reached from m in an
integral number of steps of &1 only if m is
integral or half-integral.

Some typical examples of double-valued solu-
tions of (17) and (18) are

Yyt « (sinf)leiv’?,

Vit « (sinf)! cosbei*’?, (I=3, m=1).

These wave functions are finite everywhere,
but they are not sufficiently well behaved to
provide a basis for the angular momentum
operators. For example, we have the strange
property that the lowering operator L_=L.—iL,
applied to Y;! does not yield ¥}, as the general
operator theory would lead us to expect. Instead,

cost

—ith |2
g‘ﬂl”

a d
L Y** — e“’\’fs( ——t COta—'-")Y%{’ o
af

de (sing)?
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giving a function which is a solution of (18) with
I=1, but whichissingularat §=0and r, although
still quadratically integrable. It follows that the
scalar product

(YyhL Vi) = f Vi L_Y:4dQ#0.

Hence, if we write the matrix element of, say, L.
as (I'm’| L.|Im), we find that

(3, —3|L:[3,3)%0,
although the commutation relation
L:L,—L.L*=0

leads to the vanishing of any matrix element of
L. which does not obey the selection rule I’=1.
The trouble arises because

(L2 Y‘}_l!Lz Y§_;) # ( Y;_;,LZL, Yi_!):

i.e., L? is not Hermitian with respect to the func-
tions generated from double-valued eigenfunc-
tions by repeated application of L_ (or L,). Nor
does the relation (L_)*Y,;*=0 hold. Hence, the
“ladder” does not terminate as it does for single-
valued ¥;™. The ladder algorithm, which seems
so unexceptionable, since it appears to be based
only on the use of the commutation relations for
angular momentum, breaks down in these
examples, as Pauli recognized, because repeated
application of the ‘raising” or ‘“lowering”
operators here ultimately produces singular func-
tions which lie outside the class of functions with
respect to which L is Hermitian. Such an even-
tuality is usually not contemplated in the formal
theory of angular momentum.

Spherical harmonics with half-integral / have
further undesirable properties. Since L. is seen
to connect states with different [ wvalues, it
follows that the rotation operator e~L=¢/* acting
on ¥V; (I half-integral) produces functions with
different / values; hence the angular momentum
of a state can be changed by merely rotating the
state in space. In the language of group theory
we may say that the half-integral spherical
harmonics do not carry a representation of the
rotation group. Thus a theorem like

Vi@, e)= ¥ Yi"(6,0)Dwn®(R), (21)

m' =1
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describing the behavior of spherical harmonics
under a rotation R, cannot hold for half-integral
I, since on circling the pole of ¥;™(8,¢) we may
not be circling that of ¥;™(#,¢"), so that one
side of Eq. (21) may change sign while the other
side does not.”? (See Fig. 3.)

We conclude that in the nonrelativistic quan-
tum mechanics of a spinless mass point the half-
integral values of ! must be excluded as eigen-
values of L? because the corresponding eigen-
functions do not provide a suitable basis for a
representation.

Based on this analysis, Pauli suggested that
the single-valuedness requirement for ¢ should
be replaced by the demand that the repeated
application of the operators ‘‘belonging” to the
particular eigenvalue problem under considera-
tion must produce a representation of the per-
tinent transformation group, such as the rotation
group. Fierz applied Pauli's criterion to the in-
teresting example of a charged particle moving
in the field of a (fictitious) magnetic pole.™*

In retrospect it seems, however, that the
simple single-valuedness requirement is alto-
gether reasonable, and, if properly applied, leads
in all examples to the correct answer. In the
case of a particle with no spin we note that it is
a fundamental assumption of quantum mechanics
for nonrelativistic particles that a state ¥ can
be expanded, in Dirac’s bracket notation, as

¥)= [ |xyddedyds(ays|¥),  (22)

since x, ¥, z are assumed to constitute a complete
commuting set of observables. The wave func-
tion is identified as the probability amplitude

(xyz| ) =y (x,7,5). (23)

A double-valued ¢ in the sense considered in
this paper could, in the general framework, be
accommodated only by introducing an additional
physical observable. This new observable would
measure whether a certain coordinate point has
been reached from some standard position by an
even or by an odd number of circulations around
the z axis. But there is no unambiguous way to
distinguish between those closed loops which

13 M. E. Rose, Elementary Theory of Angular Momentum

(John Wiley & Sons, Inc., New York, 1957).
14 M. Fierz, Helv. Phys. Acta 17, 27 (1943).
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have encircled the polar axis once, say, and those
which have not encircled it at all (Fig. 3). The
first can be deformed continuously into the
second, and, generally, any two closed loops can
be continuously transformed into each other
without leaving the space.

From the point of view of an observer on the
polar axis the distinction between the two vari-
eties of closed loops is not dictated by physical
conditions but merely by the accidental choice
of the polar axis. The axis may go through the
“inside” of a particular loop, but this designa-
tion is quite arbitrary, and an equally valid
polar axis would be on the “outside' of the same
loop. The connection of this simple argument
with Pauli’s criterion can be understood by
noting that precisely the same reasoning was
used to demonstrate that for half-integral I an
equation like (21) could not be valid and that
such values of [ must therefore be excluded.
Hence, the kind of double valuedness we have
postulated cannot be given a physical meaning
for a spinless point particle moving in ordinary
three-dimensional space. From this point of view
the usual argument that ¢ must be a single-
valued function of position is entirely sound. It
may even be said that the strange double-valued
eigenfunctions of angular momentum have ap-
peared only because we have changed from
Cartesian coordinates, which are adapted to the
homogeneity and isotropy of ordinary space, to
polar coordinates, which are singular at the
coordinate origin and distinguish a particular
direction in space. It is then perhaps not sur-
prising that we must subsequently seek to
establish criteria for excluding unwanted solu-
tions to our equations which were brought in
through the introduction of an awkward (but, of
course, eminently useful) coordinate system.

In the light of these observations it might
appear as if single valuedness of ¥ need not be
required in the discussion of the Aharonov-Bohm
effect. For, in the example of the particle moving
in a fixed circular tube (and in all other similar
examples of this effect), the particle is excluded
from the portion of space where B0, and the
remaining space in which the particle may travel
is by no means the simple Euclidean space of our
ordinary experience. Rather, it appears to be a
space “with a hole in it,”" the hole being the line
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of magnetic flux, concentrated on the z axis in
our elementary example. In such a space it is
entirely possible to distinguish between closed
loops which encircle the excluded z axis, and
those which do not. No longer can we deform
one kind of loop into the other continuously
without leaving the allowed space, since the
loop must be pulled through the z axis. There-
fore, it is now possible that a physical observable
may be defined which ‘“counts” the number of
revolutions as we circle the axis. The axis appears
to be no longer a purely arbitrary mathematical
construct but is a part of the physical environ-
ment in which the particle moves. Multivalued
basis functions appear to be acceptable for a
particle moving in such a restricted space which
is not simply connected. We claim that the single
valuedness of ¥ must nevertheless be demanded
and that the paradox is resolved by observing
that the “'space with a hole in it is an idealiza-
tion whose nature and limitations must not be
ignored.

For it should be clear from the preceding dis-
cussion that such questions as “Is ¢ single-
valued?"” or “What are the boundary conditions
on ¥?" have no meaning per se. They can only
be answered in terms of a model of the physical
situation at hand. We have seen that there is
no room for a double-valued ¢ in the framework
of a model which assumes that the coordinates
of the particle form a complete set of observables
and that the particle can be located anywhere in
ordinary space. The existence of even very high
potential barriers tending to keep the particle
out of certain portions of space is entirely com-
patible with this model. Such potential barriers,
or the equivalent condition that ¢=0 on the
boundaries of the allowed region, simulate the
effect on the particle of other parts of the physical
system and are an indispensable shorthand way
of including the extremely complicated inter-
actions which a particle experiences with its
surroundings. We are not, in this paper, dis-
cussing the merits of this model, but we do wish
to point out that if its premises are applied in the
description of a physical process, ¥ cannot be
other than single-valued. 1f observation calls for
the use of a model in which a portion of space is
actually and permanently “off limits"” to a
particle, the possibility of multivalued wave
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functions would have to be examined, but as
long as we think of such restrictions merely as
limiting cases of high, finite, but “in principle”
penetrable barriers, the wave function must
be taken to be single-valued in the discussion of
the Aharonov-Bohm effect.

The same reasoning applies to the idealized
picture of a multiply-connected superconductor
which encloses quantized flux.

There remains then a question of consistency :
Our analysis of the Aharonov-Bohm effect and
of the flux quantization in a superconducting
ring is based on an idealized model in which the
magnetic flux is assumed to be strictly confined
to a region, which is inaccessible to the particle.
Yet, both effects were also seen to depend on the
single valuedness of ¢, which is assured only if
the particle can penetrate the excluded region,
with however small a probability. This con-
tradiction is only apparent, and it has been indi-
cated by Aharonov and Bohm (and can pre-
sumably also be demonstrated for the case of
the superconductor) that the theory of the
quantal effects under consideration does not
involve any improper limiting process; rather,
the effects arise in a continuous manner from a
more realistic model which allows for partial
penetration. The experimental results lend full
support to this view.4:?

3. PARTICLE WITH SPIN

We now consider a particle with spin 1. In the
usual representation the wave function now has
two components and is written as

¢1(x,y,2)
=00

$:2(x,y,2)
¢1(x,y,2) is the amplitude for finding the particle
at point P(x,y,2z) with spin “‘up,” i.e., in the
positive z direction. As such it must be a single-
valued function of the position coordinates by
our previous discussion. Similarly, ¢.(x,y,2),
which denotes the amplitude for spin “down,”
must return to its original value if we vary

x, ¥, z along a closed loop in space.

However, it may be instructive to see that
single valuedness of a function per se is not a

sacred requirement, since it is possible to con-
struct a representation for the states of a particle

(24)
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F1G. 4. The coordinate system Px'y'z’ underlies
the triad representation of spinors.

with spin % which utilizes just those double-
valued functions that were rejected in the last
section. For some purposes this second repre-
sentation is particularly appropriate. The “‘new”
representation is obtained by choosing again a
spherical polar coordinate system with its origin
at O and by relating the spin amplitudes at a
given point P to the direction OF rather than
the axis Oz. To remind ourselves of this change in
representation we attach a suffix 0 to the spinors
based on this representation. The equation

v (X1(?'.9. 'P))
Xz(?'.ﬂ,'P) 0
is to be interpreted as follows: X;(r,8,¢) is the
amplitude for finding the particle at position
7, 8, ¢ with spin “‘out,’” i.e., away from the origin
but along OP. Similarly X2(r,8, ¢) is the amplitude
for spin “in," i.e., toward the origin. Thus, while
¢y in Eq. (24) refers to a spin orientation which
is the same for all spatial points, X; in Eq. (25)
refers to a spin orientation which is defined by
the angular coordinates 8, ¢ and, therefore, de-
pends on the particular point at which the wave
function is being evaluated.

The connection between the two representa-
tions (24) and (25) is easily established. The
change from the x, ¥, z dependence of ¢, and ¢
to the r, 8, ¢ dependence of X, and X, is trivial,
But the spinor itself undergoes a unitary trans-

formation, since the axis of quantization is
rotated from Oz to OP (Fig. 4). One way (among

(25)
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infinitely many) of accomplishing this is to
rotate the original Cartesian coordinate system
by an angle # about the y axis, and follow this
with a rotation by an angle ¢ about the original
vertical z axis.”® The result is that the new 2’ axis
points along OP, while the new x' axis lies in
the zOP plane. For convenience we shall refer to
the “new’” coordinate system, with its origin at
P and its orientation dependent upon P, as a
triad. The unitary operator which corresponds to

the over-all rotation is
S:e—-i«.wf!e—icrvﬂﬂ' (26)

where ¢, and o, are the usual Pauli spin matrices.
Explicitly ‘

e~i*/2 coszf —e'*2singd
R ¢
e'?/? cos3f

S:

evel? sinlg

and the connection between the two representa-

tions is given by
b1 X
o o
1) Xa/ o

The total angular momentum vector operator
J=L+S8 (29)

can now be written down in the new as well as
in the familiar old representation. In the old
representation it is

(28)

[
J=1X-V+-o, (30)
b 2
but in the new representation it is, instead,
Y =S8"JS. (31)

The Cartesian components of this operator can
be worked out easily and are most conveniently
exhibited in this form:

T =T04iT,)

d a 1
_.—-—..fwiw(_-l-»;: cotd——+— a,), (32a)
a6 de 2 sinf
it Jet—g f 1
d a 1
= —ﬁr“’(———i cotfl— —— Gz). (32b)
ae de 2 sind
A
Jf=—— (32¢)
1 de
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The operator for the square of the magnitude of
total angular momentum is

2 th®cosf @
J =L+ + [ P

4sin?@  sin®

(33)

where L? is the usual differential operator

1 8 1 a
L= —-ﬁ’[ —f— —(sm&—)} (34)
sin%l d¢® sinf of af

It is easily verified that the operators defined
by Eqgs. (32) and (33) satisfy the usual commuta-
tion relations

[T Ty 1=h].
[JJDJB’]=0

as they must since they are the generators of in-
finitesimal rotations of the system.

The simultaneous eigenfunctions of J." and J*
can be found from the usual angular momentum
eigenfunctions by application of the unitary
transformation S!, or they can be obtained
directly by solving the equations

et cyel.

A
JY=——y=mhy, (35)
1 de
o =3(G+1)aN. (36)
Equation (35) gives, of course,
¥ (r.0,0)=e"*f(0), (37)
and (36) then becomes
1 9 mi+3
—*(smﬂ—)f(ﬂi -2 %)
sinf 94 sin%
m cosf
- (38)

sin

e fO)+7(7+1)f(6) =0,

where f(8) is a spinor with two components

(i),

Since o, is a diagonal matrix, (38) separates into

(39)
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two uncoupled equations

1 a7, o
[—— —(sm&——)
sind a6 a
m2+1Fm cosh

‘.—+J(J+1)] f1.2(0) =0, (40)

sin?f

where the upper sign goes with f; and the lower
with fa.

So far nothing has been said about the quan-
tum numbers m and 7. But now the usual single-
valuedness reasoning can be applied, except that
special caution is required since, in the new repre-
sentation, spin and space coordinates are more
intimately coupled together than in the usual
representation. In the latter one can vary the
position coordinates without changing the axis
of spin quantization which is the z axis once
and for all. In the new representation, as we
change the 7, 8, ¢ coordinates of the particle lo-
cation we alsochange the axisof spin quantization
and the entire triad which is tied to the line OP.
As we move, for instance, on a circle around the
z axis, we return to the initial space point P,
but the triad has been rotated by 27 about the
z axis. It 1s known from the geometric properties
of spinors that under such a full rotation of the
coordinate system all spinor components change
sign.’® (Vectors and tensors behave differently,
their components being restored without change
of sign.) The state ¥ cannot be single-valued
unless this change of sign is compensated by
another change of sign incurred by the trans-
formation of the spatial function e*™¢ in Eq. (37).
Hence, we see that m now must be half-integral
so that ¢ will return to its initial value when we
move on a closed loop and simultaneously correct
for the rotation of the triad. Having thus deduced
from the fundamental postulates of quantum
mechanics that, for a particle with spin 3, m must
be half-integral, it follows from the usual mathe-
matical analysis of Eq. (40) that nonsingular
solutions exist only if j is likewise half-integral
and jZm, in agreement with the general results
derived from the commutation relations for
angular momentum. Equation (40) occurs in the
quantal description of the symmetric top, and
its eigenfunctions are the quantities d; ... (6)
which are known from the representations of the
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rotation group.*® Indeed, the eigenfunctions (37)
may be written in terms of the rotation matrices

Doy m P (a,Byy) =€ "™l D (B)e ™ (41)

CIDL ”‘(n* (0181 P)
). @
a

v(r,0,¢) =( ‘
c:Dy_ (0,8, 0)

The arbitrary constants ¢; and ¢, may be de-
termined by requiring ¢ to be an eigenfunction
of some operator which commutes with J* and
J.'. Usually one chooses the magnitude of orbital
angular momentum, L* (not L?!), as this
operator, and assigns the quantum number / to
Y besides j and m. However, it is much more
natural to take advantage of the fact that J*" and
J.! commute with the Pauli matrix ¢. which
represents in the new triad representation the
component of the spin along the radius vector
r=0P. The two eigenfunctions

(D;.,,.”"(O.B.w)) ( 0 )
0 o \Dj_n"(08,0)/0

represent two eigenstates of J* and J, corre-
sponding to ‘‘spin in"” and ‘‘spin out,” since
o.= (g-1)"/r has, respectively, the values +1 and
—1. These two simple states are said to have
helicity +1 and —1. Since both components
contain the factor e'm¢, with m being half-
integral, we see that they are double-valued
functions of position. However, it must be remem-
bered that this happens here because we have
chosen a representation in which spin and space
coordinates cannot be varied independently.

Pauli showed,! for the case of the Dirac equa-
tion of the relativistic electron, that wave func-
tions containing half-integral values of m are the
only admissible ones if we insist that repeated ap-
plication of ‘‘raising’’ and “lowering’’ operators,
J+ and J_, must not yield singular functions.'®
We have seen, however, that the geometric
transformation properties of spinors together
with a properly interpreted single-valuedness
condition give the same result very naturally,
and these considerations can be extended to the
relativistic case.'®

15 E_ Schrisdinger, Commentationes Pontificia Academia
Scientiarium 2, 231 (1938). .

16 ¥, Bakke and M. Wergeland, Physics Seminar, Trond-
heim, have also considered the double-valued solutions of
the Dirac electron in a Coulomb field (unpublished).
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The triad representation, in which the spin of
a particle is related to its radius vector rather
than to an axis of quantization fixed in space,
has useful applications in many problems, espe-
cially in the description of scattering of a particle
with spin 4. For such a particle it is evidently
simplest to describe its polarization by referring
its spin to an axis of quantization along the direc-
tion of the momentum vector of the particle.
Jacob and Wick have shown how such a helicity
description can be utilized in the analysis of
collision processes.!?

4. RIGID BODY

Finally, we may consider the quantum me-
chanics of a rigid body rotating about a fixed
point, the coordinate origin.'® In this model of a
physical system one may introduce the Euler
angles a, 8, v as suitable 'orientation coordi-
nates'’ on which the wave function depends.
Again we inquire into the change of ¢ (e,8,y) as
the coordinates «, 8, v are varied, and we ask if
¢ resumes its initial value when the original
spatial orientation of the rigid body is restored.
This happens, for example, if § and v are kept
fixed but e is varied from 0 to 2x. If it is assumed
that the spatial orientation of the body gives a
complete set of observables, then ¥ must be a
single-valued function of the orientation coordi-
nates and, hence, we must have

¥ (2m,8,7) =¢(0,8,7).

If, for example, a rotating molecule is repre-
sented by the model of a rigid body, the wave
function must satisfy the single-valuedness condi-
tion (43) because the rigidity of the structure is
an idealization, approximating the high but
nevertheless finite potential barriers which hold
the atoms in their equilibrium configuration.
Since, furthermore, the nuclear spins interact
only weakly with the orbital motion of the
nuclei, the appropriate wave functions depend
only on the position coordinates and involve the
addition of orbital angular momenta (L-S
coupling). Hence, the molecular rotations are de-
scribed by single-valued rigid body wave func-

(43)

17 M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).

18 F, Bopp and R. Haag discuss the rigid body and the
quantal many-body problem from a similar point of view
in Z. Naturforsch. 5a, 644 (1950).
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tions, and the corresponding angular momentum
can only have integral values.

However, for the idealized model of a truly
rigid body there exists also the possibility of
double valuedness of ¥ as a function of orienta-
tion, since the rotations of a rigid body which
restore it to its original orientation can be di-
vided into two separate classes: Any such
complete rotation is equivalent either to the
identity operation in which no displacement
occurs at all or to the rotation by 2# about an
arbitrary axis. The two values which a double-
valued function of orientation takes on can be
assigned to these two classes in a physically un-
ambiguous fashion. Hence, for a rigid body it is
possible to supplement the observables describing
the orientation by an additional observable which
allows for double-valued wave functions in the
framework of the general principles of quantum
mechanics. The basic reason for this possibility
is that the group space for the three-dimensional
rotation group, in which every rotation is as-
signed a point, subject to the continuity proper-
ties of the rotation group, is a doubly connected
space.’ This means that the operation ‘‘rotation
by 27 about an axis” cannot be continuously
deformed into the identity operation ‘“‘no rota-
tion at all.”” Rotations by 4w, on the other hand,
can be deformed into ‘‘no rotation.” These
statements are easily proved if the rotations are
appropriately parametrized (e.g., in terms of
Cayley-Klein parameters), but it seems difficult
to visualize these features of three-dimensional
rotations directly.

In any event, the topological structure of the
orientation coordinate space of a rigid body
permits us to distinguish “‘odd” from ‘‘even’

WE, P. Wigner, Group Theory and iis Application to the
Quantum Mechanics of Atomic Spectra (Academic Press
Inc., New York, 1959), see p. 89 and Chap. 15.
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rotations, when we have brought a rigid body
back to its initial orientation. It is even possible
to imagine an approximate physical model of a
rigid body whose wave function has the property

¥ (278,v) = —¥(0,8,7)- (44)

One only needs to couple strongly a spin %
particle to a rigid body which has a single-
valued wave function ¢ (e,8,7). The total wave
function will be of the form

‘P=W(ﬂﬂ1) (r{)ﬂ’l (Q.B;Y)r (45)

where »’ designates a set of intrinsic coordinates
describing the motion of the extra particle with
respect to a coordinate system fixed in the rigid
body and dependent on «, 8, v. As explained in
Sec. 3, w changes sign as « goes from 0 to 2.
Hence, the total wave function also has this
property.

As an example, it might be mentioned that in
the collective model of nuclear structure one
encounters symmetric top wave functions?

DtV (aBy),

where [ is the nuclear spin, so that for odd 4
nuclei, which have half-integral spin, the model
wave function is a double-valued function of
the orientation coordinates. The usefulness of
such an approximation depends, of course, on
the nature of the nuclear forces. These are
strongly spin dependent and favor j-j coupling,
so that I results from adding the individual half-
integral 7 values.
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